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Abstract
In linear specifications, the bias due to the presence of measurement error in a regressor can be entirely

avoided when either repeated measurements or instruments are available for the mismeasured regressor.
The situation is more complex in nonlinear settings. While identification and root n consistent estimation
of general nonlinear specifications have recently been proven in the presence of repeated measurements,
similar results relying on instruments have so far only been available for polynomial specifications and
absolutely integrable regression functions.

This paper addresses two unresolved issues. First, it is shown that instruments indeed allow for the
fully nonparametric identification of general nonlinear regression models in the presence of measurement
error. Second, when the regression function is parametrically specified, a root n consistent and asymp-
totically normal estimator is provided. The starting point of the proposed approach is a system of two
functional equations that relate conditional expectations of observed variables to the regression function
of interest, as first proposed by Hausman, Ichimura, Newey and Powell (1991) for polynomial specifi-
cations. Both the proof of nonparametric identification and the construction of the estimator rely on
a representation of these functional equations in terms of Fourier transforms. The proposed estimation
procedure takes the form of a generalized method of moment estimator with a plugged-in nonparametric
kernel density estimate. As a result, standard techniques borrowed from the semiparametrics literature
can be used to establish the estimator’s asymptotic properties.

1 Introduction

Estimators based on instrumental variables (IV) have long been used to estimate linear regressions models

of the form

y = θx+ ε (1)

where y is the dependent variable, θ is the parameter vector of interest and where the error term ε is

potentially correlated with the explanatory variable x. This correlation between ε and x could arise either

from endogeneity or measurement error in the regressors. Indeed, if the observed regressor x and the

true regressors x∗ are related through x = x∗ + ∆x, where ∆x is a zero mean measurement error that is

uncorrelated with x∗, the true model y = θx∗ +∆y is related to the observed Model (1) by

y = θx∗ +∆y = θx− θ∆x+∆y = θx+ ε (2)

where the disturbance term ε = −θ∆x+∆y is correlated with x, which prompts the need for IV estimation.
When the specification is nonlinear

y = g (x, θ) + ε, (3)
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IV estimation admits a straightforward extension when the correlation between ε and x is due to endogeneity,

but not when it is due to measurement error. The simple additive separation between the observed regressor

in the measurement error illustrated in Equation (2) is no longer possible. This problem, first pointed out by

Amemiya (1985), has prompted a long search for a solution. Hausman, Ichimura, Newey, and Powell (1991)

have provided an asymptotically normal and root n consistent estimator that requires no distributional

assumptions regarding the model’s variables in the special case of polynomial specifications. Subsequently,

Newey (2001) has shown that with distributional assumptions, root n consistent and asymptotically normal

estimation is possible for general functional forms and that without distributional assumptions, consistent

estimation is possible, assuming that the model is identified. Under the assumption that the regression

function is absolutely integrable, Wang and Hsiao (2003) provide a root n consistent estimator for general

functional forms. They also show identification for models having Nx + 1 parameters or less, where Nx

is the dimension of the mismeasured regressor. However, so far, a general proof that instruments enable

the identification of a nonlinear specification with measurement error has remained elusive and existing

root n consistent and asymptotically normal estimators of such models are only applicable under rather

restrictive assumptions. The difficulty of identifying and estimating nonlinear measurement error models

using instruments sharply contrasts with the analogous problem employing repeated measures, where the

polynomial case (Hausman, Ichimura, Newey, and Powell (1991)), the identification and consistent estimation

in the absence of distributional assumptions (Hausman, Newey, and Powell (1995), Li (2002)), and the root

n consistent and asymptotically normal estimation (Schennach (2004a)) have now been fully solved.

The present paper fills the gaps in this ongoing search for a solution to the measurement error problem

in nonlinear IV estimation. First, we show nonparametric identification of the regression function without

assuming its absolute integrability and without distributional assumptions. In the case where g (x, θ) is

parametric, and in the absence of distributional assumptions, we provide a root n consistent and asymp-

totically normal estimator. The properties of the proposed estimator are investigated through Monte Carlo

simulations.

2 Review of the Theory of Generalized Functions

The concept of “generalized functions” is central to the present paper, because most results will rely on

Fourier transforms, which often do not exist within the set of ordinary functions. This section thus recalls

the definitions and known results that are relevant to our problem. The formal proof of these results can

be found, for instance, in Lighthill (1962). We focus on the case of scalar-valued generalized functions of a

scalar variable.

In order to define generalized functions, we first need the following definition.

Definition 1 Let T be the set of all functions s : R 7→ R that (i) are everywhere differentiable any number
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of times and (ii) are such that1
¯̄̄
dks(t)
dtk

¯̄̄
= O

³
|t|−m

´
as |t| → ∞ for all k,m ∈ N+. Functions in T are

called “test” functions.

Intuitively, functions in T are both extremely smooth and have extremely thin tails.

Definition 2 A generalized function2 b is a sequence of functions bk in T such that limk→∞
R
bk (t) s (t) dt

exists for all s ∈ T . Let G denote the set of all generalized functions. (We take the convention that integrals
without explicit bounds extend over R.)

Note that the limit of the sequence bk (t) may not be part of T , which is precisely what makes the concept
of generalized functions more general than a function. The value of the integral

R
b (t) s (t) dt for a given

s ∈ T is then defined as limk→∞
R
bk (t) s (t) dt. Perhaps the best known example of a generalized function

is Dirac’s delta function δ (t), defined, for instance, by the sequence

bk (t) =

r
k

2π
exp

µ
−kt

2

2

¶
. (4)

Another important example of a generalized function is the j-th derivative of the delta function, denoted by

δ(j) (t) and defined by the sequence djbk (t) /dtj , where bk (t) is as in Equation (4). The generalized function

δ(j) (t) has the property that δ(0) (t) ≡ δ (t) andZ
δ(j) (t) s (t) dt = (−1)j d

js (t)

dtj

for j ∈ N.

Definition 3 Two generalized functions a (t) and b (t) are said to be equal if their associated sequences ak (t)

and bk (t), respectively, are such that limk→∞
R
ak (t) s (t) dt = limk→∞

R
bk (t) s (t) dt for all s ∈ T .

Note that this definition does not require that ak (t) = bk (t) for all k and hence, a given generalized

function can be defined in terms of more than one sequence. The set of generalized functions is closed under

addition, subtraction and differentiation. The product of a generalized function with an ordinary function is

guaranteed to be a generalized function if all of the ordinary function’s derivatives exist and diverge no faster

than a power of t as |t|→∞. However, the product of two generalized functions may not be a generalized
function.

Ordinary functions can be viewed as particular cases of generalized functions. For instance, if we let I be
the set of all ordinary functions c (t) such that

R ¡
1 + t2

¢−m |c (t)| dt is finite for somem ∈ N, then all ordinary
functions in I are also generalized functions. A generalized function b (t) is said to equal to an ordinary

function c (t) in an interval I if for all s ∈ T that are supported on I, we have
R
b (t) s (t) dt =

R
c (t) s (t) dt.

In the case of Dirac’s delta function, δ (t) is equal to the 0 function over any interval that does not contain

1By convention dks (t) /dtk = s (t) for k = 0.
2Generalized functions can also be defined as bounded linear functional on T , but this definition is less convenient for our

purposes.
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0. However, δ (t) is not equal to any ordinary function over any interval that includes 0. This concept is

important because it will allow us to treat generalized functions as ordinary functions, as long as we stay

away from their “singular” points.

Perhaps the most important result for our purpose is that the Fourier transform of a generalized function

is a generalized function. As a particular case of this result, the Fourier transform of any function in I is a
generalized function. Hence, in general, the Fourier transform of an ordinary function will not necessarily

be an ordinary function, but rather a generalized function.

An important property of any generalized function b (t) is that it can always be decomposed as (see

Lighthill (1962), Gel’fand and Shilov (1964))

b (t) = bo (t) + bs (t) (5)

where bo (t) is an ordinary function while bs (t) is purely singular, consisting solely of a linear combination of

delta functions derivatives of a finite order, as described in more detail in Section 4.2. Moreover, the product

of a generalized function b (t) with an ordinary function ao (t) can be decomposed as

b (t) ao (t) = bo (t) ao (t) + bs (t) ao (t)

where bo (t) ao (t) is an ordinary function and where bs (t) ao (t) is purely singular, as implied by Lemma 5.

Of course, b (t) ao (t) will only be well-defined if ao (t) admits a sufficient number of continuous derivatives

at the points where the delta functions derivatives contained in b (t) are located.

While this review focuses on so-called tempered distributions, there exist more general classes of gen-

eralized functions. For instance, as described in Gel’fand and Shilov (1964), the set T can be limited to

compactly supported infinitely differentiable functions, which expands the set of generalized functions for

which the limit limk→∞
R
ak (t) s (t) dt exists for any s ∈ T . However, for simplicity, we will focus on func-

tions a (t) whose Fourier transforms α (τ) are tempered distributions, therefore limiting ourselves to functions

a (t) that do not diverge faster than any power of t as |t|→∞.

3 Identification

For simplicity, let y, x, x∗,∆y,∆x,∆x∗ be scalar random variables and w be a random vector. We consider

the model:
y = g (x∗) +∆y E [∆y|w,∆x∗] = 0
x = x∗ +∆x E [∆x|w,∆x∗,∆y] = 0
x∗ = X (w) +∆x∗ ∆x∗ independent from w and3E [∆x∗] = 0

(6)

where g (x∗) is the function to be determined, while X (w) is an unknown function of a random vector

w of instruments. The variables x, y, w are observable while the variables x∗,∆x,∆y,∆x∗ are not. The

assumptions made are the same as in Newey (2001), except that we allow for nonparametric g (x∗) and

X (w). Our task consists in identifying g (x∗) based solely on the knowledge of the observed variables.
3The assumption that that E [∆x∗] = 0 results in no loss of generality since this can always be achieved by allowing for a

constant shift in the function X (w,α).
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Since

x = x∗ +∆x = X (w) +∆x∗ +∆x (7)

where E [∆x∗ +∆x|w] = 0, the function X (w) can be determined from a standard nonparametric least-

square projection of x on w (both of which are observable) and is therefore identified. Hence, for the purpose

of establishing identification, we define the observed scalar random variable

z = X (w) . (8)

Model (6) can then be rewritten as

y = g (x∗) +∆y E [∆y|z, u] = 0
x = x∗ +∆x E [∆x|z, u,∆y] = 0
x∗ = z − u. u independent from z and E [u] = 0

(9)

where, for convenience, we have set u = −∆x∗.
Newey (2001) suggests that the function g (x∗) may be identified from the knowledge of the conditional

expectations E [y|z] and E [xy|z] through the equalities:

E [y|z] =

Z
g (z − u) dF (u) (10)

E [xy|z] =

Z
(z − u) g (z − u) dF (u) (11)

where F (u) denotes the cdf of u and where the integral extend over the whole real line. The heuristic

argument supporting this suggestion is the fact that this model is characterized by two unknown functions

g (x∗) and F (u) and we have two functional equations available. Moreover, in the special case of a polynomial

g (x∗), it is known from Hausman, Ichimura, Newey, and Powell (1991) that the knowledge of the conditional

expectations E [y|z] and E [xy|z] is sufficient to identify g (x∗). However, the proof of identification of this

model in the general case has so far been missing.

Equations (10) and (11) take on a particularly simple representation in terms of their Fourier transforms.

Lemma 1 Let i =
√
−1 and define the following Fourier transforms

εy (ζ) =

Z
E [y|z] eiζzdz (12)

εxy (ζ) =

Z
E [xy|z] eiζzdz (13)

γ (ζ) =

Z
g (x∗) eiζx

∗
dx∗ (14)

φ (ζ) =

Z
eiζudF (u) . (15)

Whenever γ (ζ), εy (ζ) and εxy (ζ) are well-defined generalized functions, then Equations (10) and (11) are

equivalent to

εy (ζ) = γ (ζ)φ (ζ) (16)

iεxy (ζ) = γ̇ (ζ)φ (ζ) (17)
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where derivatives are denoted by dots and where Definition 3 provides the meaning of an equality between

generalized functions.

Proof. Since γ (ζ), εy (ζ), εxy (ζ) and φ (ζ) are well-defined generalized functions, the interchange of the order

of integration and the interchange of derivative and integration operations performed below are allowed.4

εy (ζ) =

Z Z
g (z − u) dF (u) eiζzdz

=

Z Z
g (z − u) eiζzdzdF (u)

=

Z Z
g (x∗) eiζ(x

∗+u)d (x∗) dF (u)

=

Z
g (x∗) eiζx

∗
d (x∗)

Z
eiζudF (u)

= γ (ζ)φ (ζ)

εxy (ζ) =

Z Z
(z − u) g (z − u) dF (u) eiζzdz

=

Z
x∗g (x∗) eiζx

∗
d (x∗)

Z
eiζudF (u)

=

µ
−i ∂

∂ζ

Z
g (x∗) eiζx

∗
d (x∗)

¶ Z
eiζudF (u)

=

µ
−i ∂

∂ζ
γ (ζ)

¶
φ (ζ)

≡ −iγ̇ (ζ)φ (ζ)

The Fourier transform of a probability distribution, such as φ (ζ), is called a characteristic function and

can be shown to be a well-behaved function, namely, its complex modulus is bounded and it is uniformly

continuous (Loève (1977)). These properties are consequences of the fact that probability distributions are

absolutely integrable by definition. However, functions that are not necessarily absolutely integrable, such as

g (x∗), E [y|z], and E [xy|z], may have generalized functions as their Fourier transforms instead of ordinary
functions. The requirement, in Lemma 1, that the Fourier transforms γ (ζ), εy (ζ), and εxy (ζ) exist within

the set of generalized functions is very weak; aside from excluding pathological cases such as nonmeasurable

functions or functions that are unbounded or undefined over an interval,5 it limits the rate at which g (x∗) can

diverge as |x∗|→∞ to some finite power of x∗. The only commonly used function that does not satisfy this

requirement is the exponential. However, as shown in Schennach (2004b), with an exponential specification,

g (x∗) is actually not identified from Equations (10) and (11), so allowing for exponentials would bring no

additional benefits.
4Formally, this is justified as follows. Every generalized function is defined via an inner product with test functions. After a

sufficient number of integration by parts, this inner product can be written as the integral of an absolutely integrable function,
thus permitting the use of Fubini’s Theorem.

5Lemma 1 does require E [y|z] and E [xy|z] to be everywhere defined, thus necessitating that the density of z be supported
on R.
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Wang and Hsiao (2003) avoid the complications arising from singular Fourier transforms by assuming

that g (x∗) and x∗g (x∗) are absolutely integrable (which implies that E [y|z], E [xy|z] are as well). The
following Lemma and Theorem establish that, without making this absolute integrability assumption, it is

nevertheless possible to show nonparametric identification of g (x∗) in Model (9).

Lemma 2 Using the assumptions of Lemma 1, Equations (16) and (17) are equivalent to

εy (ζ) = γ (ζ)φ (ζ) (18)

iε(z−x)y (ζ) = γ (ζ) φ̇ (ζ) (19)

where ε(z−x)y (ζ) =
R
E [(z − x) y|z] eiζzdz and where Definition 3 provides the meaning of an equality between

generalized functions.

Proof. This can be shown by differentiating each side of Equation (16) with respect to ζ:

∂

∂ζ
εy (ζ) =

∂

∂ζ

Z
E [y|z] eiζzdz

= i

Z
E [zy|z] eiζzdz

≡ iεzy (ζ)

∂

∂ζ
(γ (ζ)φ (ζ)) = γ̇ (ζ)φ (ζ) + γ (ζ) φ̇ (ζ)

and we obtain:

iεzy (ζ) = γ̇ (ζ)φ (ζ) + γ (ζ) φ̇ (ζ) . (20)

Now, calculating iεzy (ζ) − iεxy (ζ), we obtain iε(z−x)y (ζ) = γ (ζ) φ̇ (ζ), which is Equation (19). Note that,

although the differentiation operation causes a loss of information (as derivatives are unaffected by constant

shifts), the whole system of two equations does not suffer from this loss because we keep the original equation

εy (ζ) = γ (ζ)φ (ζ) as part of the system.

We then need a few conditions to state our identification result.

Assumption 1 φ (ζ) 6= 0 for all ζ ∈ R.

Requiring the characteristic function φ (ζ) of the disturbance u to be nonvanishing everywhere is a

standard assumption in the deconvolution literature (Carroll, Ruppert, and Stefanski (1995), Fan (1991),

Fan and Truong (1993), Li and Vuong (1998), Li (2002), Horowitz and Markatou (1996), Schennach (2004a)).

When φ (ζ) = 0 over some set, γ (ζ) can take any value over the interior of that set without changing the

observables εy (ζ) and εxy (ζ) and it is therefore impossible to fully recover γ (ζ).

Assumption 2 There exists a positive finite or infinite constant ζ̄ such that (i) γ (ζ) 6= 0 almost everywhere
in
£
−ζ̄, ζ̄

¤
and (ii) γ (ζ) = 0 for all |ζ| > ζ̄.6

6There are no constraints on the behavior of γ (ζ) at ζ = ±ζ̄. Also note that if γ (ζ) contains delta function derivatives at
some point ξ, γ (ζ) is not equal to the zero function at ζ = ξ and therefore γ (ξ) 6= 0.
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While Assumption 2 requires that γ (ζ) vanish beyond some frequency ζ̄, it allows ζ̄ to be infinite, so that

the case γ (ζ) 6= 0 almost everywhere in R is included as a particular case. It is important to note that the
constant ζ̄ does not need to be known. Assumption 2 is fairly weak, as it basically excludes specifications

whose Fourier transform vanishes on a finite interval. Such functions exist, but are not commonly used

in nonlinear specifications. The asymmetry in the assumptions regarding φ (ζ) and γ (ζ) comes from the

fact that our main focus is on identifying γ (ζ) and not φ (ζ). If we wanted to identify φ (ζ) we would need

to impose that γ (ζ) 6= 0 almost everywhere in R. Assumptions 1 and 2 can probably be relaxed when

parametric constraints on g (x∗) are imposed, since it may then be sufficient to identify γ (ζ) for some, but

not necessarily all, ζ.

Assumption 3 γ (ζ), εy (ζ) and ε(z−x)y (ζ) are well-defined generalized functions.

This Assumption is satisfied when the tails of g (x∗) grow no faster than some finite power k of x∗ and

when the absolute moments of u up to the order k+1 exist. These conditions ensure that the singularities in

γ (ζ) are no worse than delta function derivatives of a finite order and that φ (ζ) admits enough derivatives

so that the products εy (ζ) = γ (ζ)φ (ζ) and ε(z−x)y (ζ) = γ (ζ) φ̇ (ζ) are well-defined (by Lemma 5).

We can now state our identification result.

Theorem 1 Under Assumptions 1-3, if E [|u|] <∞, then g (x∗) in Model (9) is nonparametrically identified.
Moreover, if ζ̄ > 0 in Assumption 2,

g (x∗) =
1

2π

Z
γ (ζ) e−iζx

∗
dζ (21)

where7

γ (ζ) =

(
0 if εy (ζ) = 0

εy (ζ) exp
³
−
R ζ
0

iε(z−x)y,o(ξ)
εy,o(ξ)

dξ
´

otherwise
, (22)

and where εy,o (ξ) and ε(z−x)y,o (ξ) denote the ordinary function components of εy (ξ) and ε(z−x)y (ξ), re-

spectively.

Proof. It is only possible to have ζ̄ = 0 when g (x∗) is a polynomial, a case which has already been shown

to be identified (Hausman, Ichimura, Newey, and Powell (1991)). Hence, we focus on the case where ζ̄ > 0.

For |ζ| > ζ̄, the fact that γ (ζ) = 0 can be directly inferred from Equation (18) and the fact that εy (ζ) = 0,

since |φ (ζ)| > 0, as stated in the first part of Equation (22).
We next focus on |ζ| ≤ ζ̄. As indicated in Section 2, any generalized function (such as γ (ζ)) can be de-

composed as the sum of an ordinary function, denoted by an “o” subscript (e.g. γo (ζ)), and a purely singular

component, denoted by an “s” subscript (e.g. γs (ζ)), which consists of a linear combination of delta function

derivatives. Decomposing εy (ζ) and εxy (ζ) in a similar fashion and substituting these decompositions into

7When the ratio iε(z−x)y,o (ξ) /εy,o (ξ) takes the forms 0/0 or ∞/∞, we take the convention that iε(z−x)y,o (ξ) /εy,o (ξ) ≡
limξ∗→ξ iε(z−x)y,o (ξ∗) /εy,o (ξ∗), a limit that is shown to always exist in the proof of the theorem. Also, by convention, the
statement εy (ζ) = 0 is false when εy (ζ) contains a delta function derivative at ζ.
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Equations (18) and (19) yields

εy,o (ζ) + εy,s (ζ) = (γo (ζ) + γs (ζ))φ (ζ) (23)

iε(z−x)y,o (ζ) + iε(z−x)y,s (ζ) = (γo (ζ) + γs (ζ)) φ̇ (ζ) . (24)

Since the product of an ordinary function with an ordinary function is an ordinary function, while the

product of a purely singular component with an ordinary function is purely singular (as indicated in Section

2), Equations (23) and (24) imply that

εy,o (ζ) = γo (ζ)φ (ζ) (25)

iε(z−x)y,o (ζ) = γo (ζ) φ̇ (ζ) . (26)

Since all quantities are now ordinary functions, Equations (25) and (26) can be manipulated according to

the usual rules of multiplication and division. Under the assumption that φ (ζ) 6= 0, and for any ζ such that
γo (ζ) 6= 0, we can divide each side of Equation (26) by the corresponding side of Equation (25) to obtain

φ̇ (ζ)

φ (ζ)
=
iε(z−x)y,o (ζ)

εy,o (ζ)
. (27)

This equation holds almost everywhere in
£
−ζ̄, ζ̄

¤
, since the assumption that γ (ζ) 6= 0 almost everywhere

in
£
−ζ̄, ζ̄

¤
also implies that γo (ζ) 6= 0 almost everywhere in

£
−ζ̄, ζ̄

¤
. By Lemma 4 (in the Appendix) and

the assumption that E [|u|] < ∞, both φ̇ (ζ) and φ (ζ) are continuous. Since φ (ζ) 6= 0 for all ζ ∈ R by

assumption, the ratio φ̇ (ζ) /φ (ζ) is continuous everywhere. Since Equation (27) holds almost everywhere in£
−ζ̄, ζ̄

¤
and since φ̇ (ζ) /φ (ζ) is continuous, the ratio iε(z−x)y,o (ξ) /εy,o (ξ) contains no essential singularity

and its value can be defined everywhere in
£
−ζ̄, ζ̄

¤
by taking limits (that is, we take the convention that

iε(z−x)y,o (ξ) /εy,o (ξ) is a shorthand notation for limξ∗→ξ iε(z−x)y,o (ξ
∗) /εy,o (ξ∗)). With this convention,

Equation (27) holds for all ζ ∈
£
−ζ̄, ζ̄

¤
.

Integrating each side of Equation (27) with respect to ζ, yields

lnφ (ζ)− lnφ (0) =
Z ζ

0

iε(z−x)y,o (ξ)
εy,o (ξ)

dξ

for |ζ| < ζ̄. Making use of the boundary condition φ (0) =
R
ei0udF (u) =

R
dF (u) = 1, and taking exponen-

tials on each side, we obtain8

φ (ζ) = exp

ÃZ ζ

0

iε(z−x)y,o (ξ)
εy,o (ξ)

dξ

!
, (28)

which provides the value of φ (ζ) for |ζ| ≤ ζ̄ in terms of observable quantities.

Next, multiplying each side of Equation (16) by (φ (ζ))−1 establishes that

γ (ζ) =
εy (ζ)

φ (ζ)
(29)

8Although, Equation (28) is reminiscent of an identity due to Kotlarski (see Rao (1992), p. 21), it differs substantially in
that it involves the Fourier transforms of conditional expectations rather than probability densities.
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where φ (ζ) is known from Equation (28). This operation is justified because (i) φ (ζ) 6= 0 by assumption,

(ii) multiplication of a generalized function by the ordinary function ((φ (ζ))−1) is allowed, provided that

the ordinary function admits a sufficient number of continuous derivatives, which is the case here, since the

result of this operation, γ (ζ), is a well-defined generalized function, by assumption. Substituting Equation

(28) into Equation (29) yields

γ (ζ) = εy (ζ) exp

Ã
−
Z ζ

0

iε(z−x)y,o (ξ)
εy,o (ξ)

dξ

!
, (30)

which is the second part of Equation (22). Finally, as indicated in Equation (21), g (x∗) is simply given by

the inverse Fourier transform of γ (ζ), by definition.

Interestingly, while γ (ζ) is identified for all ζ, φ (ζ) is only identified for |ζ| ≤ ζ̄.

4 Semiparametric Estimation

Although g (x∗) and X (w) in Model (9) is actually nonparametrically identified, we focus on the case

where g (x∗) and X (w) are parametrically specified. Accordingly, we denote the regression function by

g (x∗, θ), its Fourier transform by γ (ζ, θ) and let γ̇ (ζ, θ) = ∂γ (ζ, θ) /∂ζ, where θ ∈ RNθ is to be determined.

Similarly, the unknown function entering the instrumental equation is written as X (w,α) where α ∈ RNα

is to be determined. Note that the distribution of the disturbance u remains nonparametric, making this a

semiparametric estimation problem. The appeal of this specific case is the possibility of obtaining root n

consistency. The proposed estimator will be based on moment conditions of the form

E

·
y
ry (z, θ)

p (z)

¸
+E

·
xy

rxy (z, θ)

p (z)

¸
= 0 (31)

E

·
1y

r1y (z, θ)

p (z)

¸
= 1 (32)

where p (z) is the density of z and where the functions r1y (z, θ), ry (z, θ), and rxy (z, θ) are known functions

of γ (ζ, θ) to be subsequently defined.9 Note that, in Equation (32), the prefactor 1y (obviously equal to y)

is a mnemonic device, so all the above expectations have the form

E

·
y̆
ry̆ (z, θ)

p (z)

¸
(33)

for y̆ = y, xy, 1y.

Clearly, regularity conditions will be needed to ensure that these expectations exist and can be root n

consistently estimated, despite the presence of a division by the potentially vanishing density p (z). Also,

p (z) will need to be nonparametrically estimated, and the resulting estimator falls into the class of GMM

estimator with a plug-in nonparametric first-step estimate (as considered, for instance, by Newey (1994)).

In this section, we will construct the functions ry̆ (z, θ) for y̆ = y, xy, 1y that will enable the determination

of θ via Equations (31) and (32).

9Note that the function r1y (z, θ) differs from ry (z, θ) and does not denote the first element of ry (z, θ).
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4.1 Heuristic treatment of the absolutely integrable case

To provide some intuition regarding the form of the moment conditions, we start by providing suitable

functions ry̆ (z, θ) for y̆ = y, xy, 1y in the simple case where both g (x∗, θ) and x∗g (x∗, θ) are absolutely

integrable with respect to x∗. We will subsequently relax this assumption. The general idea is to solve

Equations (16) and (17) for γ (ζ, θ), the Fourier transform of the function g (x∗, θ) of interest.

Multiplying each side of Equation (17) by −iγ (ζ, θ) yields:

εxy (ζ) γ (ζ, θ) = −iγ̇ (ζ, θ) γ (ζ, θ)φ (ζ) . (34)

Note that by the absolute integrability of g (x∗, θ) and x∗g (x∗, θ), all quantities are ordinary functions and

multiplication between them is allowed. By Equation (16) the quantity γ (ζ, θ)φ (ζ) can be identified to

εy (ζ) and we obtain:

εxy (ζ) γ (ζ, θ) = −iεy (ζ) γ̇ (ζ, θ) . (35)

An interesting feature of Equation (35) is that the characteristic function φ (ζ) of the error term u has

been entirely removed from the problem and we are left with a single functional equation in one unknown

function γ (ζ, θ). The quantities εxy (ζ) and εy (ζ) are Fourier transforms of conditional expectations involving

observable variables and it should therefore be possible to estimate them. The functional forms of γ (ζ, θ)

and γ̇ (ζ, θ) are known from the assumed functional form of g (x∗, θ), and Equation (35) thus provides a way

to estimate the true value of θ, denoted θ∗.

Equation (35) effectively provides us with an infinite number of restrictions, as it must hold for all ζ ∈ R.
Since g (x∗, θ) is parametric, we can reduce Equation (35) to a finite system of equations without losing the

information Equation (35) provides regarding θ. We can thus replace Equation (35) by a finite system of

equations defined by Z
εy (ζ) iγ̇ (ζ, θ)ω (ζ) dζ +

Z
εxy (ζ) γ (ζ, θ)ω (ζ) dζ = 0 (36)

for some vector of weighting functions ω (ζ) chosen so that basic rank conditions hold in order to avoid

colinearity among the equations. The vector of weighting functions ω (ζ) is helpful because it simplifies both

the estimation problem and the proof of root n consistency. Next, if we define

ρy (ζ, θ) = iγ̇ (−ζ, θ)ω (−ζ) , (37)

ρxy (ζ, θ) = γ (−ζ, θ)ω (−ζ) (38)

Equation (36) can be written asZ
εy (ζ) ρy (−ζ, θ) dζ +

Z
εxy (ζ) ρxy (−ζ, θ) dζ = 0. (39)

and, by Parseval’s identity, this equality can be expressed asZ
E [y|z] ry (z, θ) dz +

Z
E [xy|z] rxy (z, θ) dz = 0 (40)

11



where ry (z, θ) and rxy (z, θ) denote the inverse Fourier transform of ρy (ζ, θ) and ρxy (ζ, θ), respectively.

Now, by multiplying and dividing the integrands by p (z), the density of z, Equation (40) becomes

E

·
E [y|z] ry (z, θ)

p (z)

¸
+E

·
E [xy|z] rxy (z, θ)

p (z)

¸
= 0, (41)

which is equivalent to Equation (31), by iterated expectations. Obviously, the vector of weighting functions

ω (ζ) has to be chosen so that ry (z, θ) and rxy (z, θ) are such that all expectations in Equation (41) exist

and can be root n consistently estimated.

Note that Equation (35) does not actually identify the scale of γ (ζ, θ) since multiplying γ (ζ, θ) (and

therefore γ̇ (ζ, θ)) by a constant maintains the validity of Equation (35). This is why the additional Equation

(32) is needed. By using the knowledge that φ (0) = 1, since a proper distribution must integrate to 1,

Equation (16) evaluated at ζ = 0 give us an avenue to estimate the scale, since

εy (0) = γ (0, θ)φ (0) = γ (0, θ) . (42)

Provided10 that γ (0, θ) 6= 0, this Equation can be trivially rewritten asZ
εy (ζ) δ (ζ)

1

γ (0, θ)
dζ = 1, (43)

where the delta function δ (ζ) merely extracts the value of εy (ζ) at ζ = 0. Define r1y (z, θ) to be the inverse

Fourier transform of δ (ζ) 1
γ(0,θ) , namely,

r1y (z, θ) =
1

2π

1

γ (0, θ)
. (44)

Using Parseval’s identity and performing the same manipulations as before, Equation (43) can then be

written as

E

·
E [y|z] r1y (z, θ)

p (z)

¸
= 1, (45)

which is equivalent to Equation (32). Of course, additional regularity conditions will be needed to ensure

that all expectations in Equations (41) and (45) exist and can be root n consistently estimated.

4.2 General case

While the previous section has justified the form of Equations (31) and (32) when absolute integrability

assumptions have been made, it will now be shown that the same basic form of moment conditions apply

more generally with a suitable choice of the functions r1y (z, θ), ry (z, θ) and rxy (z, θ). The main difference

resides in the fact that γ (ζ, θ) is no longer an ordinary function but a generalized function.

Any tempered distribution can be decomposed as a sum of an ordinary function and a finite linear

combination of derivatives of delta functions δ(k) (ζ) (Lighthill (1962)). Accordingly, we assume the following.

10We make the assumption that γ (0, θ) 6= 0 to simplify the discussion at this point. The more general case discussed in the
next section does not require this assumption.
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Assumption 4 γ (ζ, θ) admits the decomposition11

γ (ζ, θ) = γo (ζ, θ) + 2π
k̄X

k=0

γk (θ) (−i)
k δ(k) (ζ) (46)

where γo (ζ, θ) is an ordinary function, k̄ ∈ N , and the γk (θ) for k = 0, . . . , k̄ are θ-dependent scalar

parameters. Without loss of generality, γk̄ (θ) 6= 0.

Since the functional form of g (x∗, θ) is known, this decomposition can be performed exactly via an analytic

calculation12 of the Fourier transform of g (x∗, θ). Equation (46) assumes that all singularities are centered

at ζ = 0. While it is straightforward to extend our treatment to allow for singularities at other locations,

thus allowing for sines and cosines in the specification, we do not explore this eventuality here. Singularities

in γ (ζ, θ) located away from the origin are only possible if the tails of g (x∗, θ) have an oscillating behavior as

|x∗| →∞. Model specifications having this property are not commonly used in practical applications. The
benefit of a simplified notation therefore outweighs the slight loss in generality. Clearly, γ̇ (ζ, θ) also admits

a similar decomposition of the form13

γ̇ (ζ, θ) = γ̇o (ζ, θ) + 2π
k̄X

k=−1
γk (θ) (−i)

k
δ(k+1) (ζ) . (47)

By Equations (16) and (17), εy (ζ) and εxy (ζ) admit a similar decomposition

εy (ζ) = εy,o (ζ) + 2π
k̄X

k=0

εy,k (−i)k δ(k) (ζ) (48)

iεxy (ζ) = iεxy,o (ζ) + 2πi
k̄X

k=−1
εxy,k (−i)k+1 δ(k+1) (ζ) . (49)

where εy,o (ζ) and εxy,o (ζ) are ordinary functions and εy,k for k = 0, . . . , k̄ and and εxy,k for k = −1, . . . , k̄ are
scalar parameters. We know the maximum order k̄ of the singularities in εy (ζ) since it has to correspond to

the one of γ (ζ, θ), by Equations (16) and the fact that φ (ζ) is an ordinary function. By a similar reasoning,

the maximum order of the singularities in εxy (ζ) corresponds to the one of γ̇ (ζ, θ) by Equation (17). However,

εy (ζ) and εxy (ζ) are quantities that need to be estimated and achieving the above decomposition with noisy

estimates will require a special treatment. Nevertheless, the existence of such a decomposition makes it, in

principle, possible to rewrite our basic estimating equations in a manner that distinguishes the ordinary and

singular components of each generalized function.

11The factor (−i)k is included so that the coefficients γk (θ) are real-valued.
12There exist numerous symbolic computational tools which can calculate Fourier transforms that include generalized func-

tions, such as Maple or Mathematica. Alternatively, Table I in Lighthill (1962) provides numerous Fourier transforms.
13Note that if γo (ζ, θ) has a step discontinuity at ζ = 0, ∂γo (ζ, θ) /∂ζ will contain a delta function. Hence, we define γ̇o (ζ, θ)

to be the ordinary part of ∂γo (ζ, θ) /∂ζ and γ−1 (ζ) contains the magnitude of the step in γo (ζ, θ). The term γ−1 (θ) δ (ζ) will
actually never be needed in the estimation procedure we propose.
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Lemma 3 Under Assumption 4, Equations (16) and (17), are equivalent to the following system of equations

εy,o (ζ) = γo (ζ, θ)φ (ζ) (50)

iεxy,o (ζ) = γ̇o (ζ, θ)φ (ζ) (51)

Σy = Γy (θ)Φ (52)

iΣxy = Γxy (θ)Φ (53)

where the
¡
k̄ + 1

¢
× 1 vectors Φ, Σy, Σxy are given by14

Φ =

Ã
φ (0) ,−idφ (0)

dζ
. . . , (−i)k̄ d

k̄φ (0)

dζ k̄

!0
(54)

Σy =
¡
εy,0, . . . , εy,k̄

¢0
(55)

Σxy =
¡
εxy,0, . . . , εxy,k̄

¢0
(56)

and where the elements of the
¡
k̄ + 1

¢
×
¡
k̄ + 1

¢
matrices Γy (θ) and Γxy (θ) are given by

Γy,j+1 k+1 (θ) =

µ
k + j

j

¶
γk+j (θ) 1

¡
k + j ≤ k̄

¢
for j, k = 0, . . . , k̄ (57)

Γxy,j+1 k+1 (θ) =

µ
k + j + 1

j + 1

¶
γk+j (θ) 1

¡
k + j ≤ k̄

¢
for j, k = 0, . . . , k̄. (58)

and where the functions γo (ζ, θ) and γ̇o (ζ, θ), and the scalars εy,k, εxy,k, are defined via Equations (46)

through (49).

This result is shown by substituting Equations (46) through (49) into Equations (16) and (17) and by

equating the coefficients of the singularities of the same order (see Appendix). We can use this result to

devise an estimation procedure that allows for singular γ (ζ, θ).

As Equations (50) and (51) involve ordinary functions and have the same form as Equations (16) and

(17), we can follow the derivation presented in Section 4.1. After introducing a vector of weighting functions

ω (ζ), we can use an equation of the formZ
εy,o (ζ) γ̇o (ζ, θ)ω (ζ) dζ = i

Z
εxy,o (ζ) γo (ζ, θ)ω (ζ) dζ (59)

to obtain a finite system of equations. In order for Equation (59) to be useful, it must be possible to sep-

arate the “ordinary function” component εy,o (ζ) and εxy,o (ζ) from the quantities εy (ζ) and εxy (ζ) that

are actually observed. Fortunately, there is a simple way to achieve this. Since the location and the order

of the singularities are known from the functional form of γ (ζ, θ), it is straightforward to choose weight-

ing functions ω (ζ) that converge to zero sufficiently fast as ζ approaches the singularities so that we haveR
εy (ζ) γ̇o (ζ, θ)ω (ζ) dζ =

R
εy,o (ζ) γ̇o (ζ, θ)ω (ζ) dζ and

R
εxy (ζ) γo (ζ, θ)ω (ζ) dζ =

R
εxy,o (ζ) γo (ζ, θ)ω (ζ) dζ.

More specifically, as |ζ|→ 0, γo (ζ, θ)ω (ζ) must behave as ζ
j , j ≥ k̄+ 1 while γ̇o (ζ, θ)ω (ζ) must behave as

14Note that the vector Σxy does not contain the element εxy,−1 because it brings to no additional information for the purpose
of identifying θ.
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ζj , j ≥ k̄+2, where k̄ is as in Equations (48) and (49). These constraints achieve the desired result becauseR
δ(k) (ζ) ζjdζ = (−1)k

h
dk
¡
ζj
¢
/dζk

i
ζ=0

= 0, since k ≤ k̄ + 1 < j.

Equation (59) thus provides us with moment conditions of the form

E

·
y
qy (z, θ)

p (z)

¸
+E

·
xy

qxy (z, θ)

p (z)

¸
= 0 (60)

where the vector qy (z, θ) denotes the inverse Fourier transform of γ̇o (ζ, θ)ω (ζ) while qxy (z, θ) denotes the

inverse Fourier transform15 of γo (ζ, θ)ω (ζ). Since p (z)→ 0 as |z|→∞, it is essential that ω (ζ) be chosen
so that qy (z, θ) and qxy (z, θ) decay sufficiently rapidly as |z| → 0 for the expectations in Equation (60) to

exist. As will be discussed in detail in Section 5.3.1, selecting ω (ζ) to be very smooth will typically achieve

this goal.

Since Equation (60) remains valid after a multiplication of γo (ζ, θ) by a constant (as both qy (z, θ) and

qxy (z, θ) are then multiplied by the same constant), an additional equation may be needed to determine the

scale of γo (ζ, θ). The knowledge that 1 = φ (0) = limζ→0 εy,o (ζ) /γo (ζ, θ) provides the necessary information

to obtain the scale of γo (ζ, θ). This constraint can be written in the form of an inner productZ
εy (ζ)

γo (ζ, θ)
(ζ) dζ = 1, (61)

for some function (ζ) satisfying the following assumption.

Assumption 5 The exists a function (ζ) such that (i)
R
φ (ζ) (ζ) dζ = φ (0) and (ii) (ζ) /γo (ζ, θ) =

O
³
ζ k̄+1

´
as ζ → 0.

The first condition states that (ζ) indeed extracts the value of φ (ζ) = εy,o (ζ) /γo (ζ, θ) at ζ = 0, while

the second ensures that the singularities in εy (ζ) have no effect on the results. More primitive conditions

implying the existence of such a (ζ), as well as a method to construct it, will be given in Section 5.3.3. As

before, Equation (61) can be written as an expectation:

E

·
y
q1y (z, θ)

p (z)

¸
= 1 (62)

where q1y (z, θ) is the inverse Fourier transform of (ζ) /γo (ζ, θ). Note that, unlike the absolutely integrable

case, it is not reasonable to take (ζ) to be a delta function because its inverse Fourier transform is a

constant, which does not decay as z goes to infinity, and therefore cannot compensate for divergence due to

the division by the density p(z). We will describe how to construct a nondegenerate (ζ) in a subsequent

section.

In general, Equation (60) (and Equation (62)) do not constrain all the degrees of freedom of θ, indicating

that some (or all16) of the information needed to identify θ is actually contained in the singularities in εy (ζ)

15Note that even though γo (ζ, θ) is an ordinary function, it is possible that limζ→0 γo (ζ, θ) =∞, in which case ω (ζ) has to
be chosen to that γo (ζ, θ)ω (ζ) remains bounded.
16 In the extreme case where γ (ζ, θ) is purely singular (i.e. γo (ζ, θ) = 0), as in the case of polynomials, Equation (60) provides

no information.
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and εxy (ζ). In this case, Equations (52) and (53) are needed as well. These equations form a linear system

of equations for Φ and it is straightforward to solve for Φ in each equation to obtain

(Γy (θ))
−1
Σy = (Γxy (θ))

−1
Σxy. (63)

The required inverses exist because the matrices Γy (θ) and Γxy (θ) have a triangular structure with nonzero

elements on the diagonal.17 The first element of Φ is known to be equal to φ (0) = 1 (since a distribution

must integrate to 1), thus providing the scale of the singular part, and Equation (63) can then be cast into

a more informative form:

S−1 (Γy (θ))
−1
Σy = S−1 (Γxy (θ))

−1
Σxy (64)

S1 (Γy (θ))
−1Σy = 1, (65)

where S1 is a 1×
¡
k̄ + 1

¢
selection matrix extracting the first element of a

¡
k̄ + 1

¢
dimensional vector while

S−1 is a k̄×
¡
k̄ + 1

¢
selection matrix extracting the k̄ remaining elements of that vector. The matrices Γy (θ)

and Γxy (θ) are known from Lemma 3 and the functional form of γ (ζ, θ).

It is interesting to note the connection between our procedure and the one proposed by Hausman,

Ichimura, Newey, and Powell (1991) for polynomial specifications. The matrices Γy (θ) and Γxy (θ) entering

the definition of the moment conditions in Lemma 3 have a triangular form and their inversion can therefore

be performed via a recursive calculation. Not surprisingly, these recursion relations are identical to the ones

of Hausman, Ichimura, Newey, and Powell (1991). In the case of a polynomial specification, the elements of

the vectors Σy and Σxy are directly related to the polynomial coefficients of the regression of y on z and of

the regression of xy on z. However, for a general nonpolynomial specification, a procedure must be devised

to extract these coefficients from εy (ζ) and εxy (ζ), as we will do next.

Recall, from Equations (48) and (49), that the vectors Σy and Σxy contain the “magnitudes” εy,k and

εxy,k of the singularities present in εy (ζ) and εxy (ζ). We need a way to extract estimates of these magnitudes

from estimates of εy (ζ) and εxy (ζ), which will be achieved by finding functions νy,j (ζ, θ) and νxy,j (ζ, θ)

that have the following property.

Assumption 6 There exists functions νy,j (ζ, θ) and νxy,j (ζ, θ) for j = 0, . . . , k̄ such that,

εy,j =

Z
εy (ζ) νy,j (ζ, θ

∗) dζ (66)

εxy,j =

Z
εxy (ζ) νxy,j (ζ, θ

∗) dζ. (67)

where θ∗ denote the true value of θ.

It is fairly simple to find such functions when the ordinary part γo (ζ, θ) vanishes in a neighborhood

[−η, η] of the singularities at ζ = 0, such as in the case when g (x∗, θ) is a polynomial. In this case, any
17The determinant of a triangular matrix is equal to the product of the diagonal elements. Due to our convention of indices,

the “diagonal” elements have indices
¡
k̄ + 1, 1

¢
,
¡
k̄, 2

¢
, . . . ,

¡
1, k̄ + 1

¢
instead of the usual (1, 1) , (2, 2) , . . . ,

¡
k̄ + 1, k̄ + 1

¢
but

reordering the rows does not change the magnitude of the determinant.
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function νy,j (ζ, θ) supported on a set contained in ]−η, η[ and behaving as (−i)j ζj/ (j!2π) as ζ → 0 will

satisfy Equation (66) since (−i)j
j!2π

R
2πεy,k (−i)k δ(k) (ζ) ζjdζ = εy,k

ik−j
j!

h
dk

dζk
ζj
i
ζ=0

= εy,ki
k−j1 (j = k) =

εy,k1 (j = k) (and similarly for νxy,j (ζ, θ)). In general, when εy,o (ζ) does not vanish in a neighborhood of the

singularities, νy,j (ζ, θ) and νxy,j (ζ, θ) must be chosen specifically to ensure that the unwanted contributions

of the ordinary parts εy,o (ζ) and εxy,o (ζ) to the integrals vanish. A procedure to achieve this under primitive

regularity conditions will be given in Section 5.3.2.

4.3 Summary

We can now combine the results derived so far by “stacking” Equations (60), (62), (64) and (65) (with Σy

and Σxy expressed via Equations (66) and (67), respectively). The resulting system of moment conditions

has the form of Equations (31) and (32) and provides the information needed for the estimation of θ.

Theorem 2 Under Assumptions 4 and 6, if Equation 60 (and (62)) hold for some qy (z, θ), qxy (z, θ) and

q1y (z, θ), then the solution θ to the following system of equations (if it exists and is unique) gives the true

value θ∗:

E

·
y
ry (z, θ)

p (z)

¸
+E

·
xy

rxy (z, θ)

p (z)

¸
= 0 (68)

E

·
1y

r1y (z, θ)

p (z)

¸
= 1 (69)

where p (z) denotes the density of z and

ry (z, θ) =
¡
q0y (z, θ) , s

0
y (z, θ)

¢0
(70)

rxy (z, θ) =
¡
q0xy (z, θ) , s

0
xy (z, θ)

¢0
(71)

r1y (z, θ) = (q1y (z, θ) , s1y (z, θ))
0 . (72)

sy (z, θ) = S−1 (Γy (θ))
−1

V y,· (z, θ) (73)

sxy (z, θ) = −S−1 (Γxy (θ))−1 V xy,· (z, θ) (74)

s1y (z, θ) = S1 (Γy (θ))
−1

V y,· (z, θ) (75)

V y,· (z, θ) =
¡
V y,0 (z, θ) , . . . , V y,k̄ (z, θ)

¢0
V xy,· (z, θ) =

¡
V xy,0 (z, θ) , . . . , V xy,k̄ (z, θ)

¢0
where Vy,j (z, θ) and Vxy,j (z, θ) denote the inverse Fourier transform of νy,j (ζ, θ) (from Equations (66)) and

νxy,j (ζ, θ) (from Equation (67)), respectively, for j = 0, . . . , k̄, where S1 and S−1 are as in Equations (64)

and (65) and where Γy (θ) and Γxy (θ) are given by Equation (57) and (58), respectively.

Note that the vectors qy (z, θ), qxy (z, θ) may be reduced to an “empty” vector if the Fourier transform

γ (ζ, θ) has no ordinary function component. Conversely, if γ (ζ, θ) is a pure ordinary function, then the
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vectors sy (z, θ) and sxy (z, θ) are “empty” and this case reduces to the derivation of Section 4.1. In addition,

the functions q1y (z, θ) and s1y (z, θ), which deal with the scale of the ordinary and the singular parts,

respectively, may not be simultaneously needed. The vector r1y (ζ, θ) may therefore contain 2 or 1 elements,

depending whether it is possible to change the scale of the ordinary and singular part independently or not.

It may even be “empty” if the model prevents any change in the scale (e.g., as in a logit model).

Obtaining the asymptotic properties of our estimator thus reduces to analyzing the asymptotic properties

of a GMM estimator with a nonparametric first step estimating the density p (z). The estimator defined in

this section relies on a suitable choice of the functions ω (ζ), (ζ), µy,j (ζ) and µxy,j (ζ) which determine

the moment functions ry (z, θ), rxy (z, θ) and r1y (z, θ). In addition to the constraints on these functions that

we have described in this section, it will be important to check that the resulting moment functions satisfy

the standard regularity conditions of a GMM estimator. This will be the topic of the next section.

5 Asymptotic properties

5.1 Definition of the estimator

The practical implementation of the GMM estimator defined through Equations (68) and (69) requires

the following steps. Let (xj, yj , wj) for j = 1, . . . , n be a given sample. First, the variable zj needs to

be constructed from the instruments wj (see Equation (8)). To this effect, parameter α in Model (6) is

estimated using standard (nonlinear) least-squares on the specification

xj = X (wj , α) +
¡
∆x∗j +∆xj

¢
(76)

where E
£¡
∆x∗j +∆xj

¢
|wj

¤
= 0 by the assumptions of Model (6). The resulting α̂ is used to define the

variable ẑj as

ẑj = X (wj , α̂) . (77)

The variable ẑj estimates the true zj = X (wj , α
∗), where α∗ denotes the true value of α. Let p (·|α) denote

the density of the quantity X (wj , α) for a given α and let p (z) = p (z|α∗). Next, a nonparametric kernel
density estimate of p (·|α̂) at point ẑj can be obtained from

p̂ (ẑj |α̂) = (nh)−1
nX

i=1, i6=j
K ((ẑi − ẑj) /h)

for some kernel18 K (·) and some bandwidth sequence h→ 0 as n→∞.
Finally, θ̂ is defined as the solution to Q̂ (θ, α̂) = 0, where

Q̂ (θ, α) ≡ n−1
nX
j=1

µ
Y (xj , yj , wj , θ, α)

p̂ (X (wj , α) |α)
− e

¶
1 (p̂ (X (wj , α) |α) ≥ τ) (78)

Y (x̃, ỹ, w̃, θ, α) =

·
ỹ ry (X (w̃, α) , θ) + x̃ỹ rxy (X (w̃, α) , θ)

1ỹ r1y (X (w̃, α) , θ)

¸
(79)

e = (0, . . . , 0| {z }
Nθ−Ns

, 1, . . . , 1| {z }
Ns

)0 (80)

18The kernel K (·) has nothing to do with the reproducing kernel κ (·) introduced earlier.
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where 1 (·) is the indicator function, equal to 1 when the event · occurs and τ is some trimming threshold

such that τ → 0 as n→∞ designed to keep divisions by zero under control.19 The scalar Ns is the dimension

of the range of r1y (z, θ) (from Theorem 2) and can therefore be 0, 1, or 2. The true value of θ, denoted θ∗,

is the solution to Q (θ, α∗) = 0, where

Q (θ, α) = E [Q (x, y, w, θ, α)] (81)

Q (x̃, ỹ, w̃, θ, α) =
Y (x̃, ỹ, w̃, θ, α)

p (X (w̃, α) |α) − e. (82)

5.2 Asymptotic normality and root n consistency

A few standard regularity conditions are needed to establish the asymptotics of the estimator θ̂. Some of

the regularity conditions are restrictions on the functions ry̆ (z, θ), for y̆ = y, xy, 1y described in the previous

sections. Since these functions are specified by the researcher, we will also provide guidance regarding how

to construct functions that satisfy these restrictions.

Assumption 7 (yj , xj , wj) is an iid sequence of random variables distributed as (y, x, w).

While we make the iid assumption to simplify the exposition, generic results on semiparametric estimators

found in Andrews (1995) could be used to relax it.

Assumption 8 (i) Let C ∈ RNα be a compact set such that α∗ = argminα∈C E
h
(x−X (w,α))

2
i
is unique

and lies in the interior of C.

(ii) E
£
supα∈CX2 (w,α)

¤
<∞ and E

£
x2
¤
<∞,

(iii) X (w,α) is continuous in α for α ∈ C,
(iv) X (w,α) is continuously differentiable in α for α ∈ A, a neighborhood of α∗,
(v) E

·
supα∈A

°°°∂X(w,α)∂α

°°°2¸ <∞,
(vi) E

h
∂X(w,α∗)

∂α
∂X(w,α∗)

∂α0

i
is nonsingular, and

(vii) E
·
(x−X (w,α∗))2

°°°∂X(w,α∗)∂α

°°°2¸ <∞.
Assumption 8 collects all the standard regularity conditions traditionally used to show asymptotic nor-

mality and root n consistency of the first-step estimator α̂ in iid settings.

Assumption 9 There exists a unique θ∗ in the interior of some compact set Θ ⊂ RNθ such that Q (θ∗, α∗) =

0, for Q (θ∗, α∗) as in Equation (81).

Assumption 9 is basically implied by the identification results given in the previous section. All that is

added beyond what we have already shown is the assumption of the existence of a compact set Θ that contains

19The trimming is not introduced to ensure that expectations such as E [yry (z, θ) /p (z)] or E
h
(yry (z, θ) /p (z))

2
i
exist but

rather to show that remainder terms are asymptotically negligible. If E
h
(yry (z, θ) /p (z))

2
i
, for instance, did not exist, no

trimming scheme would restore the root n consistent estimation of the moment E [yry (z, θ) /p (z)].
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only one of the potentially multiple solutions to our equations. This assumption also indirectly imposes that

the choice of the functions ry̆ (z, θ
∗) for y̆ = y, xy, 1y does not inadvertently delete the information that

permits identification.

Assumption 10 The functions ry̆ (z, θ) for y̆ = y, xy, 1y are real-valued.

The assumption is notationally and practically convenient, although not strictly necessary. It is auto-

matically satisfied when the weighting functions µj (ζ) or µy,j (ζ) , µxy,j (ζ), the elements of ω (ζ), µy (ζ) and

µy (ζ) are symmetric, e.g. ω (ζ) = ω† (−ζ), where † denotes complex conjugation.

Assumption 11 The functions ry̆ (z, θ) for y̆ = y, xy, 1y are continuously differentiable in θ for θ ∈ Θ and
all z ∈ R.

Assumption 12 E
h
|y̆| supα∈A (p (X (w,α) |α))

−1 supθ∈Θ kry̆ (X (w,α) , θ)k
i
<∞ for y̆ = y, xy, 1y.

Assumption 13 E
h
|y̆| supα∈A (p (X (w,α) |α))

−1 supθ∈N kry̆,θ (X (w,α) , θ)k
i
< ∞, for some neighbor-

hood N ⊂ Θ of θ∗ and where ry̆,θ (z, θ∗) = ∂ry̆ (z, θ
∗) /∂θ0 for y̆ = y, xy, 1y.

Assumptions 11, 12 and 13 impose conventional continuity and dominance conditions that imply uniform

convergence in probability of the quantities that define the estimator and its limiting distribution.

Assumption 14 E
£
ψθ (x, y, w)ψ

0
θ (x, y, w)

¤
exists, where

ψθ (x̃, ỹ, w̃) =

"
(ỹ −E [y|z̃]) ry(z̃,θ

∗)
p(z̃|α∗) + (x̃ỹ −E [xy|z̃]) rxy(z̃,θ

∗)
p(z̃|α∗)

(ỹ −E [y|z̃]) r1y(z̃,θ
∗)

p(z̃|α∗)

#
(83)

where z̃ = X (w̃, α∗).

Assumption 14 ensures that the asymptotic variance of the estimator exists for α∗ fixed, which is essential

to obtain root n consistency.

Assumption 15 The matrix

∆ =

· R
E [y|z] ry,θ (z, θ∗) dz +

R
E [xy|z] rxy,θ (z, θ∗) dzR

E [y|z] r1y,θ (z, θ∗) dz

¸
is nonsingular.

Assumption 15 is a rank condition that avoids colinearity in the moment conditions at the true value θ∗.

It also imposes that the number of moment constraints is equal to the dimension of θ (so that ∆ is square).

It is obviously possible to relax this just-identified constraint, but for simplicity, we do not consider this here.

Assumption 16 The kernel functionK (z)satisfies (i)
R
K (z) dz = 1, (ii)K (z) = K (−z) (iii)

R
K (z) zjdz =

0 for j = 1, . . . , NK − 1 (iv)
R
|K (z)| |z|NK dz < ∞ for some NK ∈ N (v) K (0) < ∞ and (vi) dK (z) /dz

exists.
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Assumption 16 defines a standard bias-reducing kernel of order Nk.

Assumption 17 The Fourier transform of p (z|α), denoted πα (ζ), satisfies supα∈A
R
|ζ|NK |πα (ζ)| dζ <∞.

Assumption 17 is slightly stronger than requiring the NK-th derivative of p (z|α) with respect to z to be
continuous (uniformly in z and α) and is slightly weaker than imposing that the (NK + 2)-th derivative of

p (z|α) be absolutely integrable uniformly in α. It is used to show uniform convergence in probability of the

kernel density estimate.

Assumption 18 (i) n1/2h2τ2 →∞ (ii) n1/2hNkτ−1 → 0 (iii) τ → 0 (iv) h→ 0 as n→∞.

Assumption 18 imposes constraints on the rates at which h and τ can go to zero as n→∞.

Assumption 19 E
h
|y̆| supα∈A (p (X (w,α) |α))

−1
supθ∈Θ kry̆ (X (w,α) , θ)k 1 (p (z) ≤ τ)

i
= o

¡
n−1/2

¢
, for

y̆ = y, xy, 1y.

Assumption 19 ensures that the bias introduced by trimming is asymptotically negligible. Following

standard practice (e.g. Hardle and Stoker (1989), Assumption 8), this assumption is stated in a relatively

high-level form.

Assumption 20 Q (θ, α) and ∂
∂θ0Q (θ, α) are continuous in α for all α ∈ A, uniformly in θ for θ ∈ Θ,

where Q (θ, α) is given by Equation (81).

Assumption 21 E
h
supα∈A

°°°∂Q(x,y,w,θ∗,α)∂α0

°°°i <∞ where Q (x, y, w, θ∗, α) is given by Equation (82).

These two last Assumptions ensure that root n consistency of θ̂ is possible despite the statistical noise

in the first step estimator α̂.

Theorem 3 Under Assumptions 7 through 19, n1/2
³
θ̂ − θ∗

´
d→ N

¡
0,∆−1Ω∆−1

¢
, where ∆ is given in

Assumption 15 and Ω = E[Ψ (x, y, w)Ψ0 (x, y, w)], where

Ψ (x̃, ỹ, w̃) = ψθ (x̃, ỹ, w̃)−
∂Q (θ∗, α∗)

∂α0

µ
E

·
∂X (w,α∗)

∂α

∂X (w,α∗)
∂α0

¸¶−1
∂X (w̃, α∗)

∂α
(x̃−X (w̃, α∗)) (84)

Note that the term subtracted from ψθ (x̃, ỹ, w̃) in Equation (83) is the correction term for the first-step

estimation of α.

5.3 Construction of the moment conditions

Most of the regularity conditions described in the previous section require the existence of moments of the

general form E
h
xly r̃(z)p̃(z)

i
for l = 0, 1, where p̃ (z) is some function closely related to the density p (z|α)

while r̃ (z) is a function directly related to ry (z, θ), rxy (z, θ) or r1y (z, θ). Since p (z|α) → 0 as |z| → ∞, it
is essential that the numerator r̃ (z) decays sufficiently rapidly as |z| → ∞ to ensure the existence of the

expectations stated in the regularity conditions given in the previous section. Since the functions ry (z, θ),
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rxy (z, θ) or r1y (z, θ) are most naturally constructed from an inverse Fourier transform operation, achieving

sufficiently thin tails may not be entirely obvious. We thus describe a methodology to guide the choice of

the user-specified weighting functions ω (ζ), νy,j (ζ, θ), νxy,j (ζ, θ) or (ζ) introduced in Section 4.2, that

enter the definitions of ry̆ (z, θ) for y̆ = y, xy, 1y.

While the fact that our estimator involves a choice of various functions may appear unusual at first, the

reader is reminded that such a choice often arises in instrumental variable estimation. Indeed, whenever the

researcher wishes to impose a conditional mean or an independence restriction, an infinite set of moment

conditions would, technically, be needed.20 In practice, researchers typically choose a finite set of instru-

ments and perhaps various nonlinear functions of them based on considerations of convenience, sensitivity to

outliers, variance reduction, weak instrument bias, etc. Our choice of the weighting functions is conceptually

analogous to the choice of which nonlinear functions of a given set of instruments are to be used in con-

ventional instrumental variable estimation, when the disturbances are assumed to satisfy conditional mean

restrictions.

In principle, it should be possible to construct weighting functions that are specifically designed to

minimize the asymptotic variance of the estimator. For conciseness, we do not explore this issue in the

present paper, but it would constitute an interesting topic for future work. We limit ourselves to providing

weighting functions enabling root n consistent estimation, although perhaps not efficient estimation. It should

be noted that no other previous work on measurement error models with instruments has considered the

issue of efficiency either (Hausman, Ichimura, Newey, and Powell (1991), Newey (2001), Wang and Hsiao

(2003)).

5.3.1 Choice of ω (ζ)

The vector of weighting functions ω (ζ) was introduced in Section 4.2 to handle the ordinary function com-

ponent of γ (ζ, θ), denoted γo (ζ, θ). Our goal is to find a ω (ζ) such that the inverse Fourier transforms of

the functions ω (ζ) γo (ζ, θ) and ω (ζ) γ̇o (ζ, θ) are rapidly decaying in z.

The basic idea is to rely on the well-known fact that a function’s rate of decay as its argument goes to

infinity is governed by the smoothness of its Fourier transform. Formally, if dkσ(ζ)
dζk

is absolutely integrable,

then is inverse Fourier transform s (z) is o
³
|z|−k

´
as |z| → ∞.21 Lemma 7 in the Appendix refines this

result, providing sufficient conditions for exponentially decaying tails (O
³
exp

³
−c |z|k

´´
for c, k ∈ R+).

While we have no control over the smoothness of γ (ζ, θ), since it is given by the specification of the

model, we can choose the weighting function ω (ζ) to be as smooth as possible. Moreover, when γo (ζ, θ)

fails to be smooth at various points, it is possible to pick ω (ζ) such that it vanishes where γo (ζ, θ) is not

smooth, thus ensuring that the products ω (ζ) γo (ζ, θ) and ω (ζ) γ̇o (ζ, θ) are smooth, and thus resulting in

functions ry̆ (z, θ) that are rapidly decaying, as desired.

20Of course, it is well-known that there exists a finite set of instruments that can achieve the semiparametric efficiency
bound. Nevertheless, each of these optimal instruments is a nonparametric functional of the data generating process, and
infinite dimensional nuisance parameters still cannot be avoided.
21This result follows from Theorem 17 in Lighthill (1962), after noting that the Fourier transform of (iz)k s (z) is dkσ (ζ) /dζk.
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As discussed in Section 4.2, the function ω (ζ) must also have the property that it “deletes” singularities

in εy (ζ) and εxy (ζ). For simplicity, we consider the simple case where γo (ζ, θ) is continuously differentiable

at ζ = 0, so that the rates at which ω (ζ) γo (ζ, θ)→ 0 and ω (ζ) γ̇o (ζ, θ)→ 0 as ζ → 0, are the same as the

rate at which ω (ζ)→ 0. The elements ωj (ζ) of the weighting function vector ω (ζ) can then be selected as

follows. Given the highest order of the singularities k̄, from Equations (48) and (49), set

ωj (ζ) = ζ k̄+2 exp
¡
−Cjζ

2
¢

(85)

where the Cj are some constants. This choice of ω (ζ) satisfies two criteria: (i) the ωj (ζ) are very smooth,

making it likely that the E [y̆ry̆ (z, θ) /p (z)] (and all the related expectations needed in the regularity con-

ditions of Section 5.2) exist for sufficiently small Cj and (ii) each ωj (ζ) behaves as ζ
k̄+2 as |ζ| → 0, thus

ensuring that singularities up to order k̄ + 1 do not contribute to the inner product between εy (ζ) and

γ̇o (ζ, θ)ω (ζ) as well as between εxy (ζ) and γo (ζ, θ)ω (ζ).

5.3.2 Choice of νy,j (ζ, θ) and νxy,j (ζ, θ)

The weighting functions νy,j (ζ, θ), or νxy,j (ζ, θ) were introduced in Section 4.2 to handle the singular terms

in γ (ζ, θ), denoted by 2π
Pk̄

k=0 γk (θ) (−i)
k
δ(k) (ζ) in Equation (46). These weighting functions must satisfy

three requirements: (i) they must extract the magnitude of the singularity of order j from εy (ζ) and εxy (ζ),

(ii) they must be insensitive to the ordinary function terms of εy (ζ) and εxy (ζ) and (iii) their inverse Fourier

transforms must be rapidly decaying so that the expectations entering the regularity conditions of Section

5.2 are finite. Let us address each requirement in turn.

First, let us assume that we have at our disposal some families of functions µy,j (ζ) for j = 0, . . . , k̄ and

µxy,j (ζ) for j = 0, . . . , k̄+1 that are known to be orthogonal to φ (ζ). The following theorem then provides

a recipe to form the appropriate linear combination among them so as to obtain functions that extract the

magnitude of each singularity, thus satisfying conditions (i) and (ii) above.

Theorem 4 If there exist functions µy,j (ζ) for j = 0, . . . , k̄ and µxy,j (ζ) for j = 0, . . . , k̄ + 1 satisfyingR
µy̌,j (ζ)φ (ζ) dζ = 0 and if the matrices My and Mxy, whose elements are given by

My,jk = 2π (i)
k

·
dk

dζk

µ
µy,j (ζ)

γo (ζ, θ)

¶¸
ζ=0

for j, k = 0, . . . , k̄ (86)

Mxy,jk = 2π (i)k
·
dk

dζk

µ
µxy,j (ζ)

γ̇o (ζ, θ)

¶¸
ζ=0

for j, k = 0, . . . , k̄ + 1, (87)
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exist and are both nonsingular, then Assumption 6 holds with νy,j (ζ, θ) and νxy,j (ζ, θ) given by

νy,j (ζ, θ) =
k̄X

k=0

¡
M−1y

¢
jk

µy,k (ζ)

γo (ζ, θ)
(88)

νxy,j (ζ, θ) =
k̄+1X
k=0

¡
M−1xy

¢
j+1,k

µxy,k (ζ)

γ̇o (ζ, θ)
. (89)

Proof. We show the result for νy,j (ζ, θ) only since the proof is similar for νxy,j (ζ, θ). By substituting

Equation (48) into Equation (66), we obtainZ
εy (ζ) νy,j (ζ, θ

∗) dζ

=

Z εy,o (ζ) + 2π
k̄X

k=0

εy,k (−i)k δ(k) (ζ)

 k̄X
l=0

¡
M−1y

¢
jl

µy,l (ζ)

γo (ζ, θ
∗)
dζ

≡ P1 + P2

where, by assumption,

P1 =
k̄X
l=0

¡
M−1y

¢
jl

Z
εy,o (ζ)

µy,l (ζ)

γo (ζ, θ
∗)
dζ

=
k̄X
l=0

¡
M−1y

¢
jl

Z
φ (ζ)µy,l (ζ) dζ = 0.

On the other hand,

P2 = 2π
k̄X

k=0

εy,k (−i)k
k̄X
l=0

¡
M−1y

¢
jl

Z
δ(k) (ζ)

µy,l (ζ)

γo (ζ, θ
∗)
dζ

= 2π
k̄X

k=0

εy,k (−i)k
k̄X
l=0

¡
M−1y

¢
jl
(−1)k

·
dk

dζk

µ
µy,l (ζ)

γo (ζ, θ
∗)

¶¸
ζ=0

= 2π
k̄X

k=0

εy,k

k̄X
l=0

¡
M−1y

¢
jl
(i)

k

·
dk

dζk

µ
µy,l (ζ)

γo (ζ, θ
∗)

¶¸
ζ=0

=
k̄X

k=0

εy,k

k̄X
l=0

¡
M−1y

¢
jl
Mlk

=
k̄X

k=0

εy,k1 (j = k) = εy,j .

We formulate the hypotheses in terms of orthogonality to φ (ζ) rather than, say, εy,o (ζ) and εxy,o (ζ)

because much more is known regarding the behavior of characteristic functions (such as φ (ζ)) than regarding

general Fourier transforms. Orthogonality to φ (ζ) can be expressed in terms of a variety of more primitive

conditions. We consider two alternative cases, namely, (i) the distribution of the disturbance u has compact

support and (ii) the moment generating function of the disturbance u exists at least over an interval.
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In both cases, the following function provides a convenient building block to construct the functions

µy,j (ζ) and µxy,j (ζ) :

σ (ζ) = exp
¡
− cos−2 (ζπ/2)

¢
1 (|ζ| ≤ 1) . (90)

This function is compactly supported and infinitely many times differentiable (including at |ζ| = 1). It is a
refinement over the well-known function exp

³
−
¡
1− ζ2

¢−1´
1 (|ζ| ≤ 1) that improves the rate of decay of the

inverse Fourier transform of σ (ζ) to exp (−c |z|) for some c > 0 instead of merely faster than |z|−k for any
k ∈ N, as shown in Theorem 6 in the Appendix. Note that a similar result holds in the opposite direction,

that is, the Fourier transform of

s̃ (z) = exp
¡
− cos−2 (zπ/2)

¢
1 (|z| ≤ 1) , (91)

also decays as exp (−c |ζ|) for some c > 0.
In the case where the distribution of the disturbance u has compact support S, we consider a family

of functions Uy,j (u) for j = 0, . . . , k̄ and Uxy,j (u) for j = 0, . . . , k̄ + 1 whose supports do not overlap S.

Setting µy̆,j (ζ) to be the Fourier transform of Uy̆,j (u) for y̆ = y, xy, Parseval’s identity then implies thatR
µy̆,j (ζ)φ (ζ) dζ = 2π

R
Uy̆,j (u) dF (u) = 0, as required by the orthogonality assumption of Theorem 4.

Natural candidates for the functions Uy̆,j (u) are of the form

Uy̆,j (u) = s̃
¡
(u− uj) /ηj

¢
for some constants uj , ηj chosen so that the supports of the Uy̆,j (u) do not overlap the support of the

distribution of the disturbance u and where s̃ (·) is as defined in Equation (91). On the one hand, the
compact support of s̃ (·) makes is straightforward to ensure that supports of the Uy̆,j (u) do not overlap

the one of F (u). On the other hand, the smoothness of s̃ (·) ensures that the µy̆,j (ζ) are rapidly decaying
functions of ζ so that the ratios µy,k (ζ) /γo (ζ, θ) and µxy,k (ζ) /γ̇o (ζ, θ) entering the definition of νy,j (ζ, θ)

in Theorem 4 do not diverge as |ζ|→ 0 even if γo (ζ, θ)→ 0 or γ̇o (ζ, θ)→ 0 as |ζ|→∞.
Under the weaker assumption that the moment generating function of u exists over an interval, functions

µy̆,j (ζ) for y̆ = y, xy that satisfy the orthogonality assumption of Theorem 4 can also be constructed. The

existence of the moment generating function of the distribution of a disturbance has been previously assumed

in other works on nonlinear measurement error problems (e.g. Hausman, Newey, and Powell (1995)), and

sometimes even stronger constraints are imposed (e.g. Newey (2001) uses assumptions implying that the

nonparametric quantity φ (·) belongs to a known compact set). The following theorem proves helpful to

devise suitable functions µy̆,j (ζ).

Theorem 5 Let λ (ζ) be (i) infinitely many times differentiable (ii) supported on [−η, η] for η > 0, (iii) such
that

R
λ (ζ) dζ = C ∈ R and (iv)

R
|λ (ζ)| dζ <∞. If the moment generating function of the distribution of u

exists over [−η − , η + ], then φ (ζ), the characteristic function of u, is such that
R
µ (ζ)φ (ζ) dζ = Cφ (0)

for

µ (ζ) =
∞X
k=0

1

k!

dk

dζk

³
ζkλ (ζ)

´
. (92)
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Proof. If the moment generating function of the distribution of u exists over an interval [−η − , η + ],

then the characteristic function φ (ζ) will be analytic in a strip |Im ζ| ≤ η + in the complex plane (Lukacs

(1970), Theorem 7.1.1 and Corollary 7.1.1). It follows that the Taylor series of φ (0), expanded around some

ζ ∈ [−η, η],

φ (0) =
∞X
k=0

(−ζ)k

k!

dkφ (ζ)

dζk
,

is convergent. After multiplying by λ (ζ) and integrating over ζ, we haveZ η

−η
λ (ζ)φ (0) dζ =

Z η

−η

∞X
k=0

(−ζ)k

k!

dkφ (ζ)

dζk
λ (ζ) dζ,

where the left-hand side is Cφ (0) since
R η
−η λ (ζ) dζ = C. The integral and summation can be interchanged by

Fubini’s Theorem since the Taylor series of φ (ζ) is absolutely summable for ζ ∈ [−η, η] (
P∞

k=0

¯̄̄
(−ζ)k
k!

dkφ(ζ)
dζk

¯̄̄
≤P∞

k=0
ηk

k! E
h
|u|k

i
= E [exp (η |u|)] ≤ E [exp (ηu)]+E [exp (−ηu)]) and

R
|λ (ζ)| dζ <∞ by assumption. After

integrating the right-hand side by parts, we obtain

Cφ (0) =
∞X
k=0

Z η

−η

1

k!

µ
dk

dζk

³
ζkλ (ζ)

´¶
φ (ζ) dζ,

or
R
µ (ζ)φ (ζ) dζ = Cφ (0), where

µ (ζ) =
∞X
k=0

1

k!

dk

dζk

³
ζkλ (ζ)

´
.

A natural candidate for λ (ζ) in the above theorem is a translated and scaled version of the function22

ζjσ (ζ) − 2 (2ζ)j σ (2ζ) for some j ∈ N, where σ (ζ) is defined in Equation (90). Indeed, these functions

are compactly supported,23 infinitely many times differentiable, absolutely integrable and integrate to zero,

implying that C = 0 and thus that
R
µ (ζ)φ (ζ) dζ = 0 in Theorem 5. Therefore, for any λ (ζ) of such form,

the resulting function µ (ζ) can be used as a valid choice of µy̆,j (ζ).

Note that in the particular, but relatively common, case where the moment generating function of u

exists over the whole real line, the function λ (ζ) does not need to have compact support. In such a case, well

behaved µy̆,j (ζ) can be easily obtained by selecting λ (ζ) to be a linear combination of Gaussians multiplied

by a polynomial with coefficients such that
R
λ (ζ) dζ = 0.

5.3.3 Choice of (ζ)

A weighting function (ζ) is sometimes needed to extract the scale of γo (ζ, θ), as described in Assumption 5

in Section 4.2. The most important requirement it must fulfill is
R

(ζ)φ (ζ) dζ = φ (0). The obvious choice

(ζ) = δ (ζ) is unfortunately very nonsmooth and does not yield a function r1y (ζ, θ) that has a sufficiently

22The prefactor ζj is included so that the µy̆,j (ζ) exhibit a variety of behaviors in the neighborhood of the origin for different
j, thus making it likely that the matrices My̆,jk are invertible. Writing λ (ζ) as a difference between two functions that differ
only by their scale is a simple way to obtain a function integrating to zero.
23After suitable translation and scaling, their compact supports are contained inside the interval over which the moment

generating function exists.
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thin tail. As in the previous section, we will therefore devise smoother choices of (ζ) in two independent

cases (i) when the distribution of u has compact support S and (ii) when the moment generating function

of the distribution of u exists over some interval.

In the case of compact support S, we note that any function W (z) that is equal to 1 over S will be such

that Z
W (z) dF (u) =

Z
dF (u) = φ (0) (93)

so that setting (ζ) to be the Fourier transform of W (z) satisfies
R

(ζ)φ (ζ) dζ = φ (0), by Parseval’s

identity. We also need to ensure that (ζ) is such that (ζ) /γo (ζ, θ) = O
³
ζ k̄+1

´
as ζ → 0, as stated in

Assumption 5. If (γo (ζ, θ))
−1 is continuous at ζ = 0, this is equivalent to requiring that (ζ) = O

³
ζ k̄+1

´
,

which can be achieved by picking a W (z) such that
R
W (z) zjdz = 0 for j = 0, . . . , k̄, by the moment

theorem.

When the moment generating function of the distribution of u exists over some interval, Theorem 5 with

C = 1 and

λ (ζ) =
ζ k̄+1σ (ζ)R
ξk̄+1σ (ξ) dξ

where σ (ζ) is defined in Equation (90), provides a function µ (ζ) which can be used as a valid (ζ). Indeed,

the resulting (ζ) satisfies
R

(ζ)φ (ζ) dζ = φ (0) and behaves as ζ k̄+1 as ζ → 0, which implies that

(ζ) /γo (ζ, θ) = O
³
ζ k̄+1

´
, if (γo (ζ, θ))

−1 is continuous at ζ = 0. In the special case where the moment

generating function of u exists over the whole real line, a natural choice for λ (ζ) is a linear combination of

Gaussians multiplied by a polynomial with coefficients such that
R
λ (ζ) dζ = 1.

5.4 Computational aspects

The implementation of the estimator is considerably simplified by the fact that all the relatively abstract

operations requiring Fourier transforms involve nonrandom quantities. The end result of these operations is

a vector of nonlinear functions whose expectations are to be evaluated from the observed data.

The first step in the implementation of the estimator is the calculation of the Fourier transform γ (ζ, θ)

of g (x∗, θ). Symbolic mathematical packages such as Maple and Mathematica are often able to carry out

such transforms automatically, even when the answers involve delta function derivatives. When an analytic

expression for γ (ζ, θ) is not available, the following hybrid analytical and numerical approach can be used.

The idea is to write g (x∗, θ) as

g (x∗, θ) = (g (x∗, θ)− T (x∗, θ)) + T (x∗, θ)

where T (x∗, θ) represents the asymptotic behavior of g (x∗, θ) for large |x∗| and where (g (x∗, θ)− T (x∗, θ))

is absolutely integrable (with respect to x∗). If the tail T (x∗, θ) follows a simple behavior such as a linear

combination of functions of the form (x∗)k1 (ln (x∗))k2 , then its Fourier transforms Θ (ζ, θ) can be found in

standard Fourier transforms Tables (such as Table I in Lighthill (1962)). Typically, Θ (ζ, θ) will contain both

a sum of delta function derivatives, which will provide the values of γj (θ) in Equations (57) and (58), as
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well as an ordinary function part Θo (ζ, θ). The Fourier transform of the remaining absolutely integrable

contribution (g (x∗, θ)− T (x∗, θ)) can then be obtained numerically via

γ (ζ, θ)−Θ (ζ, θ) = lim
t∗→∞,
b→0

t∗X
t=−t∗

(g (tb, θ)− T (tb, θ)) eiζtb.

All the ordinary function contributions, γo (ζ, θ) = Θo (ζ, θ) + γ (ζ, θ) − Θ (ζ, θ), are then added and their
value over a grid G = {ζ ∈ R : ζ = tb, t = −t∗, . . . , 0, . . . , t∗} is stored, while making sure that the grid is
sufficiently fine (b→ 0) and extended (t∗ →∞) to provide an accurate numerical approximation to γo (ζ, θ).

6 Monte Carlo Simulations

We consider three different specifications, namely, a polynomial, a rational fraction and a logit model. In all

cases, the mismeasured regressor x is generated from

x = x∗ +∆x

x∗ = z − u

with z, u and ∆x drawn from the following distributions

z ∼ N (0, 1) ,

u ∼ N (0, 1/4) , (94)

∆x ∼ N (0, 1/4) .

Note that the ratio of the standard deviation of the measurement error ∆x to the standard deviation of the

true regressor x∗ is (1/2) /
p
(1 + 1/4) ≈ 0.45, so that the measurement error is fairly large. In addition the

R2 of the equation x = z−u+∆x is 2/3, indicating that the “strength” of the instrument is of a magnitude

that is fairly typical for applications. The distribution of z is deliberately chosen to be a normal in order

to explore the proposed estimator in a worst-case scenario where the requirements on the rate at which the

ry̆ (z, θ) must decay are the most stringent in order to compensate for the division by the thin-tailed density

of z in the moment conditions.

The dependent variable y is generated from

y = g (x∗, θ) +∆y, (95)

where the functional form of g (x∗, θ) and the distribution of ∆y differ for each model.

For the kernel density estimation of the density of z, an infinite order kernel is used, which has the

desirable property that the estimation bias decays faster than any power of the bandwidth h as h→ 0. The

specific kernel K (z) used is the inverse Fourier transform of

κ (ζ) =

µZ ∞
−∞

σ

µ
ξ + 2

1.9

¶
dξ

¶−1 Z ζ

−∞

µ
σ

µ
ξ + 2

1.9

¶
− σ

µ
ξ − 2
1.9

¶¶
dξ (96)
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where σ (ζ) is given by Equation (90). The prefactor ensures that κ (0) = 1 and therefore that
R
K (z) dz = 1,

as should be the case for a valid kernel. It is the fact that κ (ζ) is constant over [−0.1, 0.1] which makes K (z)

an infinite order kernel. The function κ (ζ) inherits the smoothness of the function σ (ζ), thus ensuring that

K (z) is rapidly decaying.

The “optimal” bandwidth parameter h and trimming parameter τ are chosen so as to minimize the GMM

objective function associated with the proposed estimator evaluated at θ∗. In our simulation study, this is

achieved by scanning values of h from 0.5 to 1.5 in multiplicative increments of 1.1 and values of τ from 0.005

to 0.05 in multiplicative increments of 1.5. The GMM objective function for the given level of smoothing

and trimming is then evaluated for 50 replicated samples of 1000 observations and averaged. The “optimal”

bandwidth and trimming parameters are found to be:

h = 0.585

τ = 0.026.

The “optimal” values obtained for all three models considered are the same, within the accuracy implied

by the spacings between the consecutive values of h or τ scanned. This is perhaps not surprising since the

distribution of z to be nonparametrically estimated is common across all the models.

The finite sample properties of the proposed estimator (for the given values of h and τ) are studied by

drawing 5000 samples of 1000 independent observations. As a point of comparison, we also calculate the

standard instrumental variable estimator using ∂g (z, θ) /∂θ as a vector of instruments and x as the regressor

in addition to a standard nonlinear least squares estimator using x as the regressor, although both of these

estimators are clearly biased in the presence of measurement error.

Let θ̂k denote any element of θ̂, the parameter vector estimated by any one the three estimators, and let

θ∗k denote any element of θ
∗, the true value of the parameter vector. The three estimators are compared on

the basis of their bias

Bias = E
h
θ̂k

i
− θ∗k,

their standard deviation

Std. Dev. =
µ
E

·³
θ̂k −E

h
θ̂k

i´2¸¶1/2
,

their root mean square error

RMSE =
µ
E

·³
θ̂k − θ∗k

´2¸¶1/2
and their overall root mean square error

RMSEall =
µ
trE

·³
θ̂ − θ∗

´³
θ̂ − θ∗

´0¸¶1/2
.

Note that the last quantity is a convenient summary measure of the overall performance of an estimator.

Although our estimator is based on moment conditions which have zero expectation at the true value of

the parameter vector, it is perfectly normal that it could be biased in a finite sample. First, the moment
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conditions used for estimation are nonlinear in θ, and it is well-known that, in this context, just identified

GMM exhibits a bias of order n−1, where n is sample size (see, for instance, Newey and Smith (2003)).

Second, the implementation of the estimator relies on kernel smoothing and trimming, two techniques which

introduce their own bias. Simulations prove to be a helpful tool to verify that the potential presence of such

biases does not overcome the benefits of the elimination of the measurement error-induced bias.

We now describe the specifics of each simulation.

6.1 Polynomial Model

This model is defined by

g (x∗, θ) = θ1 + θ2x
∗ + θ3 (x

∗)2 + θ4 (x
∗)3

∆y ∼ N (0, 1/4)

where

θ1 = 1, θ2 = 1, θ3 = 0, θ4 = −0.5.

The Fourier transform of a polynomial contains no ordinary function component and therefore the weighting

functions ω (ζ) and (ζ) do not need to be introduced. The weighting functions νy,j (ζ, θ) and νxy,j (ζ, θ)

for j = 0, . . . , k̄ (where k̄ = 3) are chosen to be of the form

νy,j (ζ, θ) =
k̄X
l=0

ay,jl (iζ)
l
exp

Ã
−1
2

µ
ζ

(1.1)π/2

¶2!
(97)

νxy,j (ζ, θ) =
k̄+1X
l=0

axy,jl (iζ)
l
exp

Ã
−1
2

µ
ζ

(1.1)π/2

¶2!
(98)

where the constant coefficients ay,jl and axy,jl are chosen so that Assumption 6 holds. This is achieved by

substituting Equations (97) and (98) into

∂kνy,j (0, θ)

∂ζk
= 1 (j = k) for j, k = 0, . . . , k̄ (99)

∂kνxy,j (0, θ)

∂ζk
= 1 (j + 1 = k) for j = 0, . . . k̄ and k = 0, . . . , k̄ + 1 (100)

and by solving for ay,jl and axy,jl in the resulting system of linear equations.

Table 1, compares the performance of the proposed estimator relative to IV and OLS. Although the bias

of the proposed estimator is slightly larger than the one of IV for three of the coefficients (θ1, θ3 and θ4),

the bias of IV for the remaining coefficient (θ2) is overwhelmingly large, making the overall performance of

IV poor. This is best illustrated by substituting the expected values24 of the coefficients obtained from each

estimator into the polynomial specification and by overlapping the graph of each resulting polynomial over

the “true” model specification. As seen in Figure 1a), the proposed estimator is much closer to the true

specification than any of the other estimators. While the reduction in bias achieved with our estimator comes

24That is, their average over the replications.
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Bias Std. Dev. RMSE
θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 all

present -0.052 -0.066 -0.017 0.053 0.166 0.185 0.239 0.045 0.174 0.197 0.239 0.070 0.362
IV 0.001 0.423 0.001 -0.014 0.127 0.301 0.105 0.082 0.127 0.519 0.105 0.083 0.551

OLS 0.000 -0.430 0.001 0.211 0.068 0.129 0.061 0.039 0.068 0.449 0.061 0.215 0.506

Table 1: Simultations results for a polynomial specification.

at the expense of increased standard errors for some coefficients, the overall RMSE (the column labeled by

“all” in Table 1) is still lower for the proposed estimator than for the other two estimators.

6.2 Rational fraction

The second example is a specification of the form

g (x∗, θ) = θ1 + θ2x
∗ +

θ3³
1 + (x∗)2

´2
∆y ∼ N (0, 1/4)

where

θ1 = 1, θ2 = 1, θ3 = 2.

The Fourier transform of g (x∗, θ) in this case contains both an ordinary and a singular component:

γ (ζ, θ) = θ12πδ (ζ) + θ22πiδ
(1) (ζ) + θ3

π

2
(1 + |ζ|) e−|ζ|. (101)

We clearly need to specify the weighting functions νy,j (ζ, θ) and νxy,j (ζ, θ) in order to obtain the polynomial

coefficients θ1 and θ2. To this effect, we employ Theorem 4 with µy,j (ζ) and µxy,j (ζ) obtained from Theorem

5 with

λ (ζ) = (iζ)j exp

Ã
−1
2

µ
ζ

(2.1)π/2

¶2!
− 2 (i2ζ)j exp

Ã
−1
2

µ
2ζ

(2.1)π/2

¶2!
.

Note that since the distribution of u is a normal, whose moment generating function exists over the whole

real line, we are allowed to select λ (ζ) to be supported on R.

The ordinary part in Equation (101) depends on a single parameter and, consequently, only the scale of

the ordinary part needs to be determined. As a result, the vector of weighting function ω (ζ) is not needed

– only (ζ) is. Theorem 5 is then used to obtain (ζ) with

λ (ζ) = (iζ)
3
exp

Ã
−1
2

µ
ζ

(1.6)π/2

¶2!
×
ÃZ

(iξ)
3
exp

Ã
−1
2

µ
ξ

(1.6)π/2

¶2!
dξ

!−1
.

The prefactor (iζ)3 ensures that the singular parts do not affect the estimation of the ordinary part.

Table 2 summarizes the results of the simulations for the rational fraction model and clearly illustrates

the bias-correcting power of the proposed estimator. While the IV estimator exhibits a fortuitously low bias

on the θ2 parameter, it clearly fails to produce unbiased estimates of the coefficient on the nonlinear term

(θ3). As is seen in Figure 1b), the proposed estimator provides a nearly unbiased estimate of the height of the
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Figure 1: Graphical representation of the bias of each estimator studied. Note that for the logit model in
c), the curve for the standard IV estimator excludes the 75% of the replications that do not yield a finite
estimate of θ2. The actual performance of IV is therefore far worse than indicated by the graph.
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Bias Std. Dev. RMSE
θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 all

present 0.107 0.117 -0.150 0.146 0.139 0.328 0.181 0.182 0.361 0.443
IV -0.244 0.001 0.704 0.084 0.028 0.191 0.258 0.028 0.729 0.774

OLS 0.338 -0.166 -0.643 0.046 0.022 0.085 0.341 0.167 0.649 0.752

Table 2: Simulation results for the rational fraction specification.

nonlinear component of the specification, unlike IV, which overestimates it, and OLS, which underestimates

it. The proposed estimator has, overall, a bias of only about 10% for this model. Since our estimator typically

exhibits larger standard error than both IV and OLS, it is instructive to verify whether it still comes out

ahead when both bias and variance are taken into account. Indeed, the overall RMSE clearly points towards

the proposed estimator as the best alternative.

6.3 Logit

The logit model can be written as a regression model with the following specification

g (x∗, θ) =
exp (θ1 + θ2x

∗)
1 + exp (θ1 + θ2x∗)

(102)

where the disturbance is the form

∆y =

½
1− g (x∗, θ) with probability g (x∗, θ)
−g (x∗, θ) with probability 1− g (x∗, θ) .

and where we set

θ1 = −1, θ2 = 4.

The singular part of the Fourier transform of g (x∗, θ) given in Equation (102) contains a single delta function

πδ (ζ). Since this term does not depend on θ, it provides no information to estimate the model and we

therefore only need to consider the ordinary part. In addition, the scale of the logistic function is entirely

determined by the constraint that a logistic must tends to 1 as x∗ →∞ and to 0 as x∗ → −∞ (for θ2 > 0),

so there is no need to estimate the scale. As a result, logit falls into the class of models where the only

weighting function needed is ω (ζ). The two elements of ω (ζ) are chosen to be

ωj (ζ) = (iζ)
j+2

exp

Ã
−1
2

µ
ζ

(1.5)π/2

¶2!
(103)

for j = 1, 2. Note that the prefactor (iζ)j+2 in Equation (103) is chosen to ensure that γ (ζ, θ)ω (ζ) and

γ̇ (ζ, θ)ω (ζ) are well-behaved. Indeed, the ordinary part γo (ζ, θ) behaves as ζ
−1 as ζ → 0 (and thus γ̇o (ζ, θ)

behaves as ζ−2) and the above choice of ω (ζ) guarantees that its product with γo (ζ, θ) or γ̇o (ζ, θ) is bounded.

The results shown in Table 3 and the graph of Figure 1c) clearly indicate that the proposed estimator

is nearly unbiased, unlike IV and OLS. Once again, despite its relatively large standard errors relative to

IV and OLS, our estimator still outperforms IV and OLS in terms of overall RMSE (see last column). It
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Bias Std. Dev. RMSE
θ1 θ2 θ1 θ2 θ1 θ2 all

present 0.002 0.095 0.648 0.685 0.648 0.692 0.948
IV -0.291 1.151 0.242 0.660 0.378 1.326 1.379

OLS 0.329 -1.759 0.104 0.165 0.345 1.767 1.800

Table 3: Simulation results for the logit model.

should also be noted that, for the logit model, the IV estimator using ∂g (z, θ) /∂θ as instruments exhibits

the undesirable tendency to give a θ̂2 that diverges to infinity about 75% of the time. The results for the IV

estimator given in Table 3 and Figure 1c) are averages over only the replications of that did converge to a

finite value. The actual performance of IV is therefore far worse than reported in the table.

7 Application

Section to be written.

8 Conclusion

This paper addresses two unresolved issues. First, it is shown that instruments indeed permit nonparametric

identification of general nonlinear regression models in the presence of measurement error. Second, when

the regression function is parametrically specified, a root n consistent and asymptotically normal estimator

is provided. The starting point of the proposed approach is a system of two functional equations that relate

conditional expectations of observed variables to the regression function of interest, as first proposed by

Hausman, Ichimura, Newey, and Powell (1991) for polynomial specifications. Both the proof of nonparametric

identification and the construction of the estimator rely on a representation of these functional equations in

terms of Fourier transforms. The proposed estimation procedure takes the form of a generalized method of

moment estimator with plugged-in nonparametric kernel density estimate. As a result, standard techniques

borrowed from the semiparametrics literature could be used to establish its asymptotic properties.

The approach taken in this paper encompasses the approaches of both Wang and Hsiao (2003) and

Hausman, Ichimura, Newey, and Powell (1991). When the regression function satisfies some integrability

assumptions (as in Wang and Hsiao (2003)), all the Fourier transforms entering the definition of the estimator

become ordinary functions and the derivation of Section 4.1 provides the moment conditions needed for

estimation. When the regression function is a polynomial (as in Hausman, Ichimura, Newey, and Powell

(1991)), its Fourier transform is a linear combination of delta function derivatives and Section 4.2 then

provides the moment conditions (in the special case where the Fourier transforms are purely singular).

In addition, the proposed methodology also covers functions that are not absolutely integrable and not

necessarily polynomial.
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A Proofs

While the following Lemma resembles a well-known result regarding characteristic functions (see Loève

(1977), following Property 13.1), it generalizes it to apply to Fourier transforms of any absolutely integrable

function.

Lemma 4 If s (z) is absolutely integrable, then its Fourier transform σ (ζ) is continuous. In particular, ifR
|z|k |s (z)| dz <∞ for some k ∈ N, then dkσ (ζ) /dζk is continuous.

Proof. First note that σj (ζ) =
R
eiζzs (z) 1 (|z| ≤ j) dz is continuous in ζ for every j:

|σj (ζ)− σj (ξ)| =

¯̄̄̄Z ¡
eiζz − eiξz

¢
s (z) 1 (|z| ≤ j) dz

¯̄̄̄
=

¯̄̄̄Z
ei(ζ+ξ)z/2

³
ei(ζ−ξ)z/2 − e−i(ζ−ξ)z/2

´
s (z) 1 (|z| ≤ j) dz

¯̄̄̄
≤

Z ¯̄̄
ei(ζ+ξ)z/2

¯̄̄
|2 sin ((ζ − ξ) z/2)| |s (z)| 1 (|z| ≤ j) dz

=

Z
|2 sin ((ζ − ξ) z/2)| |s (z)| 1 (|z| ≤ j) dz

≤
Z
|(ζ − ξ) z| |s (z)| 1 (|z| ≤ j) dz

≤ |ζ − ξ| j
Z
|s (z)| 1 (|z| ≤ j) dz

≤ |ζ − ξ| j
Z
|s (z)| dz.

Next, observe that σj (ζ) converges to σ (ζ) uniformly in ζ:

|σ (ζ)− σj (ζ)| =

¯̄̄̄Z
eiζzs (z) (1− 1 (|z| ≤ j)) dz

¯̄̄̄
≤

Z ¯̄
eiζz

¯̄
|s (z)| (1− 1 (|z| ≤ j)) dz

=

Z
|z|≥j

|s (z)| dz

→ 0 as j →∞.

Since σj (ζ) is a sequence of continuous functions converging uniformly to σ (ζ), the limiting function σ (ζ)

must be continuous. The second assertion then follows from the fact that the Fourier transform of (iz)k s (z)

is dkσ (ζ) /dζk.

Definition 4 For some function ψ (ζ), let d−1
dζ−1ψ (ζ) ≡

R ζ
a
ψ (ξ) dξ for some arbitrary constant a. For k ≥ 1,

define d−k−1
dζ−k−1ψ (ζ) ≡

d−1
dζ−1

d−k
dζ−kψ (ζ), by recursion.

Lemma 5 If φ (ζ) is k times continuously differentiable at ζ = 0, then δ(k) (ζ)φ (ζ) = (−1)k
Pk

j=0

³
k
j

´
dk−jφ(0)
dζk−j δ(j) (ζ).

Proof. Let ψ be some test function in T as given in Definition 1. By k repeated integration by parts, we

have, Z ³
δ(k) (ζ)φ (ζ)

´
ψ (ζ) dζ = (−1)k

Z µ
d−k

dζ−k
δ(k) (ζ)

¶
dk

dζk
(φ (ζ)ψ (ζ)) dζ,
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after noting that the boundary terms vanish due to the thin tails of ψ (ζ) and all of its derivatives. Next,Z ³
δ(k) (ζ)φ (ζ)

´
ψ (ζ) dζ = (−1)k

Z
δ (ζ)

µ
dk

dζk
(φ (ζ)ψ (ζ))

¶
dζ

= (−1)k
Z

δ (ζ)
kX

j=0

µ
k

j

¶
dk−jφ (ζ)
dζk−j

djψ (ζ)

dζj
dζ

= (−1)k
kX

j=0

µ
k

j

¶
dk−jφ (0)
dζk−j

djψ (0)

dζj

= (−1)k
kX

j=0

µ
k

j

¶
dk−jφ (0)
dζk−j

Z
δ(j) (ζ)ψ (ζ) dζ

=

Z (−1)k kX
j=0

µ
k

j

¶
dk−jφ (0)
dζk−j

δ(j) (ζ)

ψ (ζ) dζ.

Proof of Lemma 3. Substituting Equations (46) through (49) into Equations (16) and (17), we obtain

εy,o (ζ) + 2π
k̄X

k=0

εy,k (−i)k δ(k) (ζ) =

γo (ζ, θ) + 2π
k̄X

k=0

γk (θ) (−i)
k δ(k) (ζ)

φ (ζ)

iεxy,o (ζ) + 2πi
k̄X

k=−1
εxy,k (−i)k+1 δ(k+1) (ζ) =

γ̇o (ζ, θ) + 2π
k̄X

k=0

γk (θ) (−i)
k+1 δ(k+1) (ζ)

φ (ζ) .

Equating the ordinary functions part of each expression yields

εy,o (ζ) = γo (ζ, θ)φ (ζ)

iεxy,o (ζ) = γ̇o (ζ, θ)φ (ζ) ,

while equating the singular parts yields

k̄X
k=0

εy,k (−i)k δ(k) (ζ) =
k̄X

k=0

γk (θ) (−i)
k
δ(k) (ζ)φ (ζ)

k̄X
k=−1

iεxy,k (−i)k+1 δ(k+1) (ζ) =
k̄X

k=0

γk (θ) (−i)
k+1

δ(k+1) (ζ)φ (ζ) .

By Lemma 5, we have

k̄X
k=0

εy,k (−i)k δ(k) (ζ) =
k̄X

k=0

γk (θ) (−i)
k

kX
j=0

µ
k

j

¶
φ(k−j) (0) δ(j) (ζ)

k̄X
k=−1

iεxy,k (−i)k+1 δ(k+1) (ζ) =
k̄X

k=0

γk (θ) (−i)
k+1

k+1X
j=0

µ
k + 1

j

¶
φ(k+1−j) (0) δ(j) (ζ)

Simple manipulations then give

k̄X
k=0

εy,k (−i)k δ(k) (ζ) =
k̄X

k=0

γk (θ) (−i)
k

k̄X
j=0

µ
k

j

¶
1 (j ≤ k)φ(k−j) (0) δ(j) (ζ)

k̄X
k=−1

iεxy,k (−i)k+1 δ(k+1) (ζ) =
k̄X

k=0

γk (θ) (−i)
k+1

k̄+1X
j=0

µ
k + 1

j

¶
1 (j ≤ k + 1)φ(k+1−j) (0) δ(j) (ζ)
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k̄X
j=0

εy,j (−i)j δ(j) (ζ) =
k̄X

j=0

k̄X
k=0

µ
k

j

¶
γk (θ) (−i)

k
1 (j ≤ k)φ(k−j) (0) δ(j) (ζ)

k̄X
j=−1

iεxy,j (−i)j+1 δ(j+1) (ζ) =
k̄+1X
j=0

k̄X
k=0

µ
k + 1

j

¶
γk (θ) (−i)

k+1 1 (j ≤ k + 1)φ(k+1−j) (0) δ(j) (ζ)

=
k̄X

j=−1

k̄X
k=0

µ
k + 1

j + 1

¶
γk (θ) (−i)

k+1 1 (j ≤ k)φ(k−j) (0) δ(j+1) (ζ) .

Equating the coefficients of the delta function derivatives of the same order gives

εy,j (−i)j =
k̄X

k=0

µ
k

j

¶
γk (θ) (−i)

k
1 (j ≤ k)φ(k−j) (0)

iεxy,j (−i)j+1 =
k̄X

k=0

µ
k + 1

j + 1

¶
γk (θ) (−i)

k+1
1 (j ≤ k)φ(k−j) (0)

εy,j (−i)j =

k̄−jX
l=−j

µ
j + l

j

¶
γj+l (θ) (−i)

j+l 1 (j ≤ j + l)φ(j+l−j) (0)

=

k̄−jX
l=−j

µ
j + l

j

¶
γj+l (θ) (−i)

j+l 1 (0 ≤ l)φ(l) (0)

=

k̄−jX
l=0

µ
j + l

j

¶
γj+l (θ) (−i)

j+l
φ(l) (0)

=
k̄X
l=0

µ
j + l

j

¶
γj+l (θ) (−i)

j+l 1
¡
l ≤ k̄ − j

¢
φ(l) (0)

=
k̄X

k=0

µ
k + j

j

¶
γk+j (θ) (−i)

k+j 1
¡
k ≤ k̄ − j

¢
φ(k) (0)

iεxy,j (−i)j =

k̄−jX
l=−j

µ
j + l + 1

j + 1

¶
γj+l (θ) (−i)

j+l
1 (j ≤ j + l)φ(j+l−j) (0)

=

k̄−jX
l=0

µ
j + l + 1

j + 1

¶
γj+l (θ) (−i)

j+l
φ(l) (0)

=
k̄+1X
l=0

µ
j + l + 1

j + 1

¶
γj+l (θ) (−i)

j+l
1
¡
l ≤ k̄ − j

¢
φ(l) (0)

=
k̄X

k=0

µ
k + j + 1

j + 1

¶
γk+j (θ) (−i)

k+j 1
¡
k ≤ k̄ − j

¢
φ(k) (0) for j ≥ 0.

εy,j =
k̄X

k=0

µ
k + j

j

¶
γk+j (θ) 1

¡
k ≤ k̄ − j

¢
(−i)k φ(k) (0)

iεxy,j =
k̄X

k=0

µ
k + j + 1

j + 1

¶
γk+j (θ) 1

¡
k ≤ k̄ − j

¢
(−i)k φ(k) (0) .
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While the following Lemma may seem familiar, we were not able to find this result at the required level

of generality in the existing literature (Theorem 1 and 3 in Andrews (1995) and Theorem 2.8 in Pagan and

Ullah (1999) come very close, however).

Lemma 6 Under Assumptions 7, 16 and 17

sup
α∈A

sup
z∈R

|p̃ (z|α)− p (z|α)| = Op

³
n−1/2h−1

´
+O

¡
hNk

¢
where p̃ (z|α) = (nh)−1

Pn
j=1K ((zj − z) /h) and p (z|α) is the density of z = X (w,α) for a given function

X (w,α) of some random vector w. The same result holds with p̃ (z|α) replaced by p̂ (z|α) = (nh)
−1Pn

j=1

K ((zj − z) /h) 1 (zi 6= z).

Proof. This proof is based in part on the proof of Theorem 2.8 in Pagan and Ullah (1999). Note that

supα∈A supz∈R |p̃ (z|α)− p (z|α)| ≤ R+B, where

R = sup
α∈A

sup
z∈R

|p̃ (z|α)−E [p̃ (z|α)]| ,

B = sup
α∈A

sup
z∈R

|E [p̃ (z|α)]− p (z|α)| .

By the convolution Theorem,

R = sup
α∈A

sup
z∈R

¯̄̄̄
¯̄Z κ (hζ)n−1

nX
j=1

¡
eiζzj −E

£
eiζzj

¤¢
e−iζzdζ

¯̄̄̄
¯̄

≤ sup
α∈A

sup
z∈R

Z
|κ (hζ)|

¯̄̄̄
¯̄n−1 nX

j=1

¡
eiζzj −E

£
eiζzj

¤¢¯̄̄̄¯̄ dζ
= sup

α∈A

Z
|κ (hζ)|

¯̄̄̄
¯̄n−1 nX

j=1

¡
eiζzj −E

£
eiζzj

¤¢¯̄̄̄¯̄ dζ
where κ (ζ) denotes the Fourier transform of K (z). We then have

E [R] ≤ sup
α∈A

Z
|κ (hζ)|E

¯̄̄̄¯̄n−1 nX
j=1

¡
eiζzj −E

£
eiζzj

¤¢¯̄̄̄¯̄
 dζ

≤ sup
α∈A

Z
|κ (hζ)|

E


¯̄̄̄
¯̄n−1 nX

j=1

¡
eiζzj −E

£
eiζzj

¤¢¯̄̄̄¯̄
2


1/2

dζ

= sup
α∈A

Z
|κ (hζ)|

¡
n−1E

£¡
eiζzj −E

£
eiζzj

¤¢ ¡
e−iζzj −E

£
e−iζzj

¤¢¤¢1/2
dζ

= sup
α∈A

n−1/2
Z
|κ (hζ)|

¡
E
£¡
eiζzj −E

£
eiζzj

¤¢ ¡
e−iζzj −E

£
e−iζzj

¤¢¤¢1/2
dζ

≤ n−1/221/2
Z
|κ (hζ)| dζ

= n−1/2h−121/2
Z
|κ (ζ)| dζ

= O
³
n−1/2h−1

´
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and R = Op

¡
n−1/2h−1

¢
by Markov’s inequality.

By the convolution Theorem once again,

B = sup
α∈A

sup
z∈R

¯̄̄̄Z
(1− κ (hζ))πα (ζ) e

−iζzdζ
¯̄̄̄

where πα (ζ) denotes the Fourier transform of pz|α| (z |α|) with respect to z. By a Taylor expansion,

B = sup
α∈A

sup
z∈R

¯̄̄̄
¯
Z Ã

Nk−1X
l=1

1

l!

dlκ (0)

dζl
(hζ)

l
+

1

Nk!

dNkκ
¡
ζ̄
¢

dζNk
(hζ)

Nk

!
πα (ζ) e

−iζzdζ

¯̄̄̄
¯ for some ζ̄ ∈ [0, ζ]

= sup
α∈A

sup
z∈R

¯̄̄̄
¯
Z

1

Nk!

dNkκ
¡
ζ̄
¢

dζNk
(hζ)Nk πα (ζ) e

−iζzdζ

¯̄̄̄
¯ ,

since dlκ(0)
dζl

= 0 by the Moment Theorem and Assumption 16 (iii). Next,

B ≤ hNk
1

Nk!
sup
α∈A

Z ¯̄̄̄
¯dNkκ

¡
ζ̄
¢

dζNk

¯̄̄̄
¯ |ζ|Nk |πα (ζ)| dζ

≤ ChNk

for some C < ∞ since

¯̄̄̄
dNkκ(ζ̄)
dζNk

¯̄̄̄
≤ C2 < ∞ by the Moment Theorem and Assumption 16 (iv) andR

|ζ|Nk |πα (ζ)| dζ <∞ by Assumption 17.

The second assertion is shown by noting that the difference between p̃ (z) and p̂ (z) is at mostK (0)n−1h−1

which is of an order less than n−1/2h−1 and can therefore be absorbed in the Op

¡
n−1/2h−1

¢
remainder.

Proof of Theorem 3. Let Q (x̃, ỹ, w̃, θ, α), Y (x̃, ỹ, w̃, θ, α), Q̂ (θ, α) and Q (θ, α) be as defined in Section

5.1. We first show consistency of θ̂. This involves establishing the uniform convergence of Q̂ (θ, α̂) to Q (θ, α∗)

for θ ∈ Θ. We first note that α̂ p→ α∗, by Lemma 2.4 and Theorem 2.1 in Newey and McFadden (1994),

under Assumptions 7 and 8. Hence α̂ ∈ A with probability approaching 1 (hereafter w.p.a.1). We can then

write, w.p.a.1,

sup
θ∈Θ

°°°Q̂ (θ, α̂)−Q (θ, α∗)
°°° ≤ sup

θ∈Θ

°°°Q̂ (θ, α̂)−Q (θ, α̂)
°°°+ sup

θ∈Θ
kQ (θ, α̂)−Q (θ, α∗)k

≤ sup
α∈A

sup
θ∈Θ

°°°Q̂ (θ, α)−Q (θ, α)
°°°+ sup

θ∈Θ
kQ (θ, α̂)−Q (θ, α∗)k

where supθ∈Θ kQ (θ, α̂)−Q (θ, α∗)k p→ 0 by α̂
p→ α∗ and Assumption 20. Next,

sup
α∈A

sup
θ∈Θ

°°°Q̂ (θ, α)−Q (θ, α)
°°° ≤ RA +RI +RD

where

RA = sup
α∈A

sup
θ∈Θ

°°°°°°n−1
nX
j=1

Y (xj, yj , wj , θ, α)

p (X (wj, α) |α)
−E

·
Y (x, y,w, θ, α)

p (X (w,α) |α)

¸°°°°°°
RI = sup

α∈A
sup
θ∈Θ

°°°°°°n−1
nX
j=1

Y (xj, yj , wj , θ, α)

p (X (wj, α) |α)
(1 (p̂ (X (wj , α) |α) ≥ τ)− 1)

°°°°°°
RD = sup

α∈A
sup
θ∈Θ

°°°°°°n−1
nX
j=1

Y (xj , yj , wj , θ, α)

µ
p (X (wj , α) |α)− p̂ (X (wj , α) |α)
p̂ (X (wj , α) |α) p (X (wj , α) |α)

¶
1 (p̂ (X (wj , α) |α) ≥ τ)

°°°°°° .
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We then have supθ∈Θ kRAk
p→ 0 by Assumptions 7, 11 and 12 and Lemma 2.4 in Newey and McFadden

(1994). Next, by Lemma 6, we have

RI ≤ sup
α∈A

sup
θ∈Θ

n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

|1 (p̂ (X (wj , α) |α) < τ)|

≤ sup
α∈A

sup
θ∈Θ

n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

¯̄̄
1
³
p (X (wj , α) |α)− Cn −1/2h−1 < τ

´¯̄̄
w.p.a. 1 for ∈ ]0, 1/4[

= sup
α∈A

sup
θ∈Θ

n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

¯̄̄
1
³
p (X (wj , α) |α) < τ

³
1 + Cn −1/2h−1/τ

´´¯̄̄
≤ sup

α∈A
sup
θ∈Θ

n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

|1 (p (X (wj , α) |α) < 2τ)| by Assumption 18

and E [RI ] = E
h
supα∈A supθ∈Θ

kY (xj ,yj ,wj ,θ,α)k
p(X(wj ,α)|α) |1 (p (zj) < 2τ)|

i
= o

¡
n−1/2

¢
by Assumption 19, thus im-

plying that RI = op
¡
n−1/2

¢
, by Markov’s inequality. Next,

RD ≤ sup
α∈A

sup
θ∈Θ

n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
µ
|p (X (wj , α) |α)− p̂ (X (wj , α) |α)|

p̂ (zj) p (X (wj , α) |α)

¶
Îj

≤ sup
α∈A

sup
θ∈Θ

τ−1n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
µ
|p (X (wj , α) |α)− p̂ (X (wj , α) |α)|

p (X (wj , α) |α)

¶
Îj

≤ sup
z∈R

|p (z)− p̂ (z)| τ−1n−1
nX
j=1

µ
kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

¶
=

³
Op

³
n−1/2h−1

´
+O

¡
hNK

¢´
τ−1Op (1)

by Lemma 6, and Lemma 2.4 in Newey and McFadden (1994) under Assumptions 7, 11 and 12. By Assump-

tion 18, n−1/2h−1τ−1 → 0 and hNk → 0 and it follows that RD
p→ 0.

Having shown that supθ∈Θ
°°°Q̂ (θ, α̂)−Q (θ, α∗)

°°° p→ 0, we now establish that this implies25 that θ̂ con-

verges to θ∗. Since Q̂
³
θ̂, α̂

´
= 0 and supθ∈Θ

°°°Q̂ (θ, α̂)−Q (θ, α∗)
°°° p→ 0 it follows that plimn→∞Q

³
θ̂, α∗

´
=

0. Since Q̂ (θ, α̂) is continuous in θ (because Y (xj , yj , wj , θ, α) is), and its convergence to Q (θ, α∗) is uni-

form in θ, Q (θ, α∗) must be continuous in θ. Combining these two results yields plimn→∞Q
³
θ̂, α∗

´
=

Q
³
plimn→∞ θ̂, α∗

´
= 0. Since θ = θ∗ is the only solution to Q (θ, α∗) = 0 by Assumption 9, we conclude

that plimn→∞ θ̂ = θ∗.

Having shown consistency, we turn to asymptotic normality and root n consistency. By a standard mean

value expansion of the first-order conditions Q̂
³
θ̂, α̂

´
= 0 around θ∗ and the usual manipulations,

n1/2
³
θ̂ − θ∗

´
= −

Ã
∂Q̂

¡
θ̄, α̂

¢
∂θ0

!−1
n1/2Q̂ (θ∗, α̂) , (104)

for some mean value θ̄. Following the same steps as used above to show uniform convergence in probability

of Q̂ (θ, α̂), we can show that supθ∈N
°°°∂Q̂(θ,α̂)∂θ0 − ∂Q(θ,α∗)

∂θ0

°°° p→ 0 and ∂Q(θ,α∗)
∂θ0 is continuous in θ, by simply

25This would be obvious if θ̂ were defined as the maximizer of a random function. Here θ̂ is the solution to a set of equations
and the usual consistency result (e.g. Theorem 2.1 in Newey and McFadden (1994)) does not directly apply.
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replacing Assumption 12 by Assumption 13. Since θ̂
p→ θ∗ it follows that θ̄

p→ θ∗ and that
∂Q(θ̄,α∗)

∂θ0
p→

∂Q(θ∗,α∗)
∂θ0 , thus implying that

∂Q̂
¡
θ̄, α̂

¢
∂θ0

p→ ∂Q (θ∗, α∗)
∂θ0

. (105)

Next, we let Yj = Y (xj , yj , wj , θ
∗, α∗), zj = X (wj , α

∗), p̂ (zj) = p̂ (X (wj , α
∗) |α∗), p (zj) = p (X (wj , α

∗) |α∗),
Îj = 1 (p̂ (zj) ≥ τ), Ij = 1 (p (zj) ≥ τ) and decompose the term n1/2Q̂ (θ∗, α̂) in Equation 104 as

n1/2Q̂ (θ∗, α̂) = N +Nα +RT1 +RT2 +RT3 +RL +RU +RB +Rsec

where the asymptotically normal terms are given by

N = n−1/2
nX
j=1

Yj −E [Yj |zj ]
p (zj)

Nα = n1/2 (Q (θ∗, α̂)−Q (θ∗, α∗))

while the remainder terms associated with trimming are

RT1 = n−1/2
nX
j=1

Yj
p̂ (zj)

³
Îj − Ij

´
RT2 = n1/2E

·
Yj

p (zj)
(1− Ij)

¸
RT3 = n−1/2

nX
j=1

(Yj −E [Yj |zj ])
p (zj)

(Ij − 1)

the remainder from the linearization is given by

RL = n−1/2
nX
j=1

Yj
p̂ (zj) p2 (zj)

(p̂ (zj)− p (zj))
2
Ij

the “U -statistic” term is

RU = −n−1/2
nX
j=1

µ
Yj

p2 (zj)
(p̂ (zj)−E [p̂ (zj) |zj ]) Ij −

µ
E [Yj |zj ]
p (zj)

Ij −E

·
Yj

p (zj)
Ij

¸¶¶
,

the “bias” term is

RB = n−1/2
nX
j=1

Yj
p2 (zj)

(p (zj)−E [p̂ (zj) |zj ]) Ij

and the “stochastic equicontinuity” remainder term is

Rsec = n1/2
³³

Q̂ (θ∗, α̂)−Q (θ∗, α̂)
´
−
³
Q̂ (θ∗, α∗)−Q (θ∗, α∗)

´´
.
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We consider each remainder in turn.

|RT1| ≤ n−1/2
nX
j=1

|Yj |
p̂ (zj)

|1 (p̂ (zj) ≥ τ)− 1 (p (zj) ≥ τ)|

≤ n−1/2
nX
j=1

|Yj |
p (zj)− Cn −1/2h−1

|1 (p̂ (zj) ≥ τ)− 1 (p (zj) ≥ τ)| w.p.a. 1 for ∈ ]0, 1/4[

≤ n−1/2
nX
j=1

|Yj |
p (zj)− p(zj)

τ−Cn −1/2h−1Cn
−1/2h−1

|1 (p̂ (zj) ≥ τ)− 1 (p (zj) ≥ τ)| w.p.a. 1

=
1

1− 1
Cτn1/2− h−1

n−1/2
nX
j=1

|Yj |
p (zj)

|1 (p̂ (zj) ≥ τ)− 1 (p (zj) ≥ τ)|

= o (1)n−1/2
nX
j=1

|Yj |
p (zj)

|1 (p̂ (zj) ≥ τ and p (zj) < τ)− 1 (p (zj) ≥ τ and p̂ (zj) < τ)|

= o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1 (p̂ (zj) ≥ τ and p (zj) < τ) + o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1 (p (zj) ≥ τ and p̂ (zj) < τ)

≤ o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1 (p (zj) < τ) + o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1 (p̂ (zj) < τ)

≤ o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1 (p (zj) < τ) + o (1)n−1/2
nX
j=1

|Yj |
p (zj)

1
³
p (zj) < τ − Cn −1/2h−1

´
w.p.a. 1

where

E

n−1/2 nX
j=1

|Yj |
p (zj)

1 (p (zj) < τ)

 = n1/2E

·
|Yj |
p (zj)

1 (p (zj) < τ)

¸
= o (1)

E

n−1/2 nX
j=1

|Yj |
p (zj)

1
³
p (zj) < τ − Cn −1/2h−1

´ = n1/2E

·
|Yj |
p (zj)

1
³
p (zj) < τ − Cn −1/2h−1

´¸

= n1/2E

·
|Yj |
p (zj)

1
³
p (zj) < τ

³
1− Cn −1/2h−1/τ

´´¸
= n1/2E

·
|Yj |
p (zj)

1 (p (zj) < τ (1− o (1)))

¸
→ n1/2E

·
|Yj |
p (zj)

1 (p (zj) < τ)

¸
= o (1)

and by Markov’s inequality RT1 = op (1). Next,

|RT2| ≤ n1/2E

·
|Yj |
p (zj)

|Ij − 1|
¸

= n1/2E

·
|Yj |
p (zj)

1 (p (zj) ≤ τ)

¸
= n1/2o

³
n−1/2

´
= o (1)
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and

E [|RT3|] = E

¯̄̄̄¯̄n−1/2 nX
j=1

Yj −E [Yj |zj]
p (zj)

(Ij − 1)

¯̄̄̄
¯̄


≤ n1/22E

·
|Yj |
p (zj)

|Ij − 1|
¸

= n1/2o
³
n−1/2

´
= o (1)

implying that |RT3| = op (1) as well by the Markov inequality. The linearization remainder is then

|RL| =

¯̄̄̄
¯̄n−1/2 nX

j=1

Yj
p̂ (zj) p2 (zj)

(p̂ (zj)− p (zj))
2 Ij

¯̄̄̄
¯̄

≤ n−1/2
nX
j=1

|Yj |
p̂ (zj) p2 (zj)

|p̂ (zj)− p (zj)|2 Ij

≤ n−1/2
nX
j=1

|Yj |¡
p (zj)− Cn−1/2h−1

¢
p2 (zj)

|p̂ (zj)− p (zj)|2 Ij

≤ n−1/2
nX
j=1

|Yj |¡
τ − Cn−1/2h−1

¢
τp (zj)

|p̂ (zj)− p (zj)|2 Ij

=
1

τ2

³
1− Cn−1/2h−1/τ

´−1
n−1/2

nX
j=1

|Yj |
p (zj)

|p̂ (zj)− p (zj)|2 Ij

≤ 2

τ2
n−1/2

nX
j=1

|Yj |
p (zj)

|p̂ (zj)− p (zj)|2

≤ 2Cn−1h−2

τ2
n1/2n−1

nX
j=1

|Yj |
p (zj)

≤ 2Cn−1h−2

τ2
n1/2

n−1
nX
j=1

|Yj |2

p2 (zj)

1/2

=
2Cn−1h−2

τ2
n1/2Op (1)

= o
³
n−1/2

´
n1/2Op (1)

= op (1)
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The “U -statistic” term can be written as

−RU = n−1/2
nX
j=1

(n− 1)−1 ×

×
X
i6=j

µ
YjIj
p2 (zj)

(Kh (zi − zj)−E [Kh (zi − zj) |zj ])−
µ
E [Yj |zj ]
p (zj)

Ij −E

·
Yj

p (zj)
Ij

¸¶¶

= n−1/2
nX
j=1

(n− 1)−1 ×

×
X
i6=j

µµ
YjIj
2p2 (zj)

+
YiIi
2p2 (zi)

¶
(Kh (zi − zj)−E [Kh (zi − zj) |zj ])−

µ
E [Yi|zi]
p (zi)

Ii −E

·
Yi

p (zi)
Ii

¸¶¶

= n1/2
³n
2

´−1 nX
j=1

nX
i=j+1

U ((Yj , zj) , (Yi, zi))

where Kh (z) = h−1K (z/h) and

U ((Yj , zj) , (Yi, zi)) =

µ
YjIj
2p2 (zj)

+
YiIi
2p2 (zi)

¶
(Kh (zi − zj)−E [Kh (zi − zj) |zj ])−

µ
E [Yi|zi]
p (zi)

Ii −E

·
Yi

p (zi)
Ii

¸¶
.

Using the “U -statistic” projection Theorem (e.g. Lemma 3.1 in Powell, Stock, and Stoker (1989)), standard

but tedious manipulations show that RU = op (1) under Assumptions 16 and 18. Finally, the bias term is

|RB | ≤ n−1/2
nX
j=1

|Yj |
p2 (zj)

|p (zj)−E [p̂ (zj) |zj ]| Ij

≤ τ−1n−1/2
nX
j=1

|Yj |
p (zj)

|p (zj)−E [p̂ (zj) |zj ]| Ij

≤ τ−1n−1/2
nX
j=1

|Yj |
p (zj)

|p (zj)−E [p̂ (zj) |zj ]|

≤ τ−1n−1/2
nX
j=1

|Yj |
p (zj)

ChNK by Lemma 6

= τ−1n1/2Op (1)h
Nk

and |RB| = Op

¡
n1/2hNkτ−1

¢
= op (1) since n1/2hNkτ−1 → 0 by Assumption 18.

To bound the Rsec term, let Sτ (t) be continuously differentiable in t for all τ 6= 0 and such that (i)

1 (t ≥ τ) = 0 ⇔ Sτ (t) = 0 (ii) 1 (t ≥ τ) = 1 ⇔ S2τ (t) = 1 (iii) 0 ≤ Sτ (t) ≤ 1. (iv) supt∈R |dSτ (t) /dt| =
O (τ). We then decompose Q̂ (θ∗, α) as

Q̂ (θ∗, α) = Q̂S (θ
∗, α) +RS (α)

where Q̂S (θ
∗, α) is continuous in α while RS (α) may not be and are given by

Q̂S (θ
∗, α) = n−1

nX
j=1

Y (xj , yj , wj, θ
∗, α)

p̂ (X (wj , α) |α)
Sτ (p̂ (X (wj , α) |α))

RS (α) = n−1
nX
j=1

Y (xj , yj , wj, θ
∗, α)

p̂ (X (wj , α) |α)
(1 (p̂ (X (wj , α) |α) ≥ τ)− Sτ (p̂ (X (wj, α) |α))) .
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The remainder RS (α) satisfies supα∈A kRS (α)k = op
¡
n−1/2

¢
since

sup
α∈A

kRS (α)k ≤ sup
α∈A

n−1
nX
j=1

kY (xj , yj , wj , θ
∗, α)k

p (X (wj , α) |α)− n−1/2h−1
1 (p̂ (X (wj , α) |α) < 2τ) = op

³
n−1/2

´
By Assumption 19 and the same arguments as used for RT1. We can then write Rsec as

Rsec = n1/2
³³

Q̂ (θ∗, α̂)−Q (θ∗, α̂)
´
−
³
Q̂ (θ∗, α∗)−Q (θ∗, α∗)

´´
= n1/2

³³
Q̂S (θ

∗, α̂)−Q (θ∗, α̂)
´
−
³
Q̂S (θ

∗, α∗)−Q (θ∗, α∗)
´´
+ op (1)

=

Ã
∂Q̂ (θ∗, ᾱ)

∂α0
− ∂Q (θ∗, ᾱ)

∂α0

!
n1/2 (α̂− α∗) + op (1) (106)

for some mean value ᾱ. We then decompose ∂
∂α0 Q̂S (θ

∗, α) as

∂

∂α0
Q̂S (θ

∗, α) = D1 +D2 +RDS

where

D1 = n−1/2
nX
j=1

Ã
∂
∂α0Y (xj , yj , wj , θ, α)

p̂ (X (wj , α) |α)

!
Sτ (p̂ (X (wj , α) |α))

D2 = −n−1/2
nX
j=1

µ
Y (xj , yj , wj , θ, α)

p̂2 (X (wj , α) |α)
∂

∂α0
p̂ (X (wj , α) |α)

¶
Sτ (p̂ (X (wj , α) |α))

RDS = n−1/2
nX
j=1

Y (xj , yj , wj , θ, α)

p̂ (X (wj , α) |α)
∂Sτ (p̂ (X (wj , α) |α))

∂α0
.

The RDS term is negligible, since°°°°°°n−1/2
nX
j=1

Y (xj , yj , wj , θ, α)

p̂ (X (wj , α) |α)
∂Sτ (p̂ (X (wj , α) |α))

∂α0

°°°°°°
≤ n−1/2

nX
j=1

kY (xj , yj , wj , θ, α)k
τ

¯̄̄̄
∂Sτ (p̂ (X (wj , α) |α))

∂α0

¯̄̄̄

≤ n−1/2
nX
j=1

kY (xj , yj , wj , θ, α)k
τ

Cτ1 (p (X (wj , α) |α) > τ)

= Cn−1/2
nX
j=1

kY (xj , yj , wj , θ, α)k 1 (p (X (wj , α) |α) > τ)

= Cn−1/2
nX
j=1

kY (xj, yj , wj , θ, α)k
p (X (wj, α) |α)

p (X (wj , α) |α) 1 (p (X (wj , α) |α) > τ)

≤ Cn1/2n−1
nX
j=1

kY (xj , yj , wj , θ, α)k
p (X (wj , α) |α)

1 (p (X (wj , α) |α) > τ) since p (z|α) is bounded by Assumption 17

= n1/2op

³
n−1/2

´
= op (1) by Markov’s inequality and Assumption 19.

Now, the terms D1 and D2 can be handled through the same techniques as the ones used to show uniform

convergence of Q̂ (θ, α̂) after noting that trimming by Sτ (p̂ (X (wj , α) |α)) is asymptotically equivalent to
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trimming by 1 (p̂ (X (wj , α) |α) ≥ τ). Under Assumption 21, and by using an expansion of the form

D1 = n−1/2
nX
j=1

∂
∂α0Y (xj , yj , wj , θ, α)

p (X (wj , α) |α)
Sτ (p̂ (X (wj , α) |α)) +

−n−1/2
nX
j=1

∂
∂α0Y (xj , yj , wj , θ, α)

p (X (wj , α) |α)
(p̂ (X (wj , α) |α)− p (X (wj , α) |α))

p̂ (X (wj , α) |α)
Sτ (p̂ (X (wj , α) |α))

D2 = n−1/2
nX
j=1

Y (xj , yj , wj , θ, α)

p (X (wj , α) |α)

µ
1− (p̂ (X (wj , α) |α)− p (X (wj , α) |α))

p̂ (X (wj , α) |α)

¶
×

×
∂
∂α0 p (X (wj , α) |α) +

¡
∂
∂α0 p̂ (X (wj , α) |α)− ∂

∂α0 p (X (wj , α) |α)
¢

p̂ (X (wj , α) |α)

it can be shown that D1
p→ E

h ∂
∂α0 Y (xj ,yj ,wj ,θ,α)

p(X(wj ,α)|α)
i
and D2

p→ E
h
Y (xj ,yj ,wj ,θ,α)
p2(X(wj ,α)|α)

∂p(X(wj ,α)|α)
∂α0

i
uniformly in α

for α ∈ A. (The convergence rate of ∂
∂α0 p̂ (X (wj , α) |α) − ∂

∂α0 p (X (wj , α) |α) is obtained as in the proof of
Lemma 6, with Nk replaced by Nk − 1.) This implies, by Assumption 20, that

sup
α∈A

Ã
∂Q̂ (θ∗, α)

∂α0
− ∂Q (θ∗, α)

∂α0

!
p→ 0

and by Equation (106) and the fact that α̂− α∗ = Op

¡
n−1/2

¢
, we have that Rsec = op (1).

Having bounded all remainder terms, we note that the N term clearly satisfies

N = n−1/2
nX
j=1

ψθ (xj , yj , w)

where E
£
ψθ (xj , yj , w)ψ

0
θ (xj , yj , w)

¤
is finite under Assumption 14.

By a mean-value expansion, the Nα term is equal to

Nα =
∂Q (θ∗, ᾱ)

∂α0
n1/2 (α̂− α∗)

for some mean value ᾱ. Since α̂
p→ α∗ and therefore ᾱ

p→ α∗, Assumption 20 implies that ∂Q(θ
∗,ᾱ)

∂α0
p→ ∂Q(θ∗,α)

∂α0 .

By standard results (such as Theorem 3.1 in Newey and McFadden (1994)), Assumptions 7 and 8 imply

that the first-step estimate α̂ is a root n consistent estimator of α∗ with influence function equal to

ψα (x̃, w̃) = −
µ
E

·
∂X (w,α∗)

∂α

∂X (w,α∗)
∂α0

¸¶−1
∂X (w̃, α∗)

∂α
(x̃−X (w̃, α∗))

and such that E
£
ψα (x̃, w̃)ψ

0
α (x̃, w̃)

¤
exists. Hence, we can write

Nα = n−1/2
nX
j=1

∂Q (θ∗, α)
∂α0

ψα (xj , wj) .

We have just established that

n1/2Q̂ (θ∗, α̂) = n−1/2
nX
j=1

µ
ψθ (xj , yj , wj) +

∂Q (θ∗, α)
∂α0

ψα (xj , wj)

¶
+ op (1)

and by the finiteness of E
£
ψθ (xj, yj , wj)ψ

0
θ (xj , yj , wj)

¤
and E

£
ψα (x̃, w̃)ψ

0
α (x̃, w̃)

¤
, the Cauchy-Schwartz

inequality, Assumptions 7 and the Lindeberg-Levy Central Limit Theorem, this sum is asymptotically nor-

mal. By Equations (104), (105) and the Slutzky Theorem, the conclusion of the Theorem follows.
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Lemma 7 Let σ (ζ) be the Fourier transform of s (z). For α ∈ R+ and γ ∈ N, if
∞X
t=0

αt

t!

Z ¯̄̄̄
dγtσ (ζ)

dζγt

¯̄̄̄
dζ <∞

then, for some C > 0,

|s (z)| ≤ C exp (−α |z|γ) .

Proof. Let T (z) = exp (αzγ). Since the radius of convergence of the Taylor series of the exponential

function is infinite, we can also write T (z) =
P∞

t=0
αt

t! z
γt for all z ∈ R. Let Θ denote the linear operator

defined by

Θσ (ζ) =
∞X
t=0

αt

t!

(−i)γt dγtσ (ζ)
dζγt

.

Since the Fourier transform of zts (z) is (−i)t d
tσ(ζ)
dζt

, the Fourier transform of T (z) s (z) is Θσ (ζ). We can

then write, for z ≥ 0,

|s (z)| =
1

|T (z)| |T (z) s (z)|

=
1

|T (z)|

¯̄̄̄Z
Θσ (ζ) e−iζzdζ

¯̄̄̄
≤ 1

|T (z)|

Z
|Θσ (ζ)| dζ

=
1

|T (z)|

Z ¯̄̄̄
¯
∞X
t=0

αt

t!

(−i)γt dγtσ (ζ)
dζγt

¯̄̄̄
¯ dζ

≤ 1

|T (z)|

∞X
t=0

αt

t!

Z ¯̄̄̄
dγtσ (ζ)

dζγt

¯̄̄̄
dζ

=
C

|T (z)|
= C exp (−α |z|γ) .

with C =
P∞

t=0
αt

t!

R ¯̄̄dγtσ(ζ)
dζγt

¯̄̄
dζ <∞. For z < 0, we can similarly write

|s (z)| =
1

|T (−z)| |T (−z) s (z)|

=
1

|T (−z)|

¯̄̄̄Z
Θσ (ζ) eiζzdζ

¯̄̄̄
≤ 1

|T (−z)|

Z
|Θσ (ζ)| dζ

≤ C

|T (|z|)| = C exp (−α |z|γ) .

Theorem 6 The inverse Fourier transform s (ζ) of the function σ (ζ) = exp
¡
− cos−2 (ζ)

¢
1 (|ζ| ≤ π/2) is

such that |s (z)| ≤ C exp (−α |z|) for α ∈ [0, 1/3[ and some positive C <∞.
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Proof. The proof consists of verifying that σ (ζ) satisfies the hypothesis of Lemma 7. The t-th derivative of

exp
¡
− cos−2 (ζ)

¢
consists of a sum of at most 3t terms of the form

C exp
¡
− cos−2 (ζ)

¢
cos−p (ζ) sinq (ζ) , (107)

where q ≥ 0, 0 ≤ p ≤ 2t, and |C| ≤ 1 + t. Since p ≤ 2t, |sin (ζ)| ≤ 1 and Xt exp (−X) ≤ tt exp (−t) for all
X ∈ R+ and all t ∈ N, we have

¯̄
exp

¡
− cos−2 (ζ)

¢
cos−p (ζ) sinq (ζ)

¯̄
≤ exp

¡
− cos−2 (ζ)

¢
cos−2t (ζ)

≤ tt exp (−t) .

Consequently, for some C > 0,

∞X
t=0

αt

t!

Z ¯̄̄̄
dtσ (ζ)

dζt

¯̄̄̄
dζ ≤ C

∞X
t=0

αt

t!
3t (1 + 2t) tt exp (−t)

≤ C
∞X
t=0

αt (3 + ε1)
t t

t exp (−t)
t!

for any ε1 > 0

≤ C
∞X
t=0

((3 + ε2)α)
t
, for any ε2 > 0

which converges if α < 1/3, choosing ε2 < 1/α− 3.
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