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Abstract

This paper presents calculations of semiparametric e¢ ciency bounds for quantile treat-
ment e¤ects parameters when selection to treatment is based on observable characteristics.
The paper also presents three estimation procedures for these parameters, all of which have
two steps: a nonparametric estimation and a computation of the di¤erence between the so-
lutions of two distinct minimization problems. Root-N consistency, asymptotic normality,
and the achievement of the semiparametric e¢ ciency bound is shown for one of the three
estimators. In the �nal part of the paper, an empirical application to a job training program
reveals the importance of heterogeneous treatment e¤ects, showing that for this program
the e¤ects are concentrated in the upper quantiles of the earnings distribution.

Keywords: Quantile Treatment E¤ects, Propensity Score, Semiparametric E¢ ciency
Bounds, E¢ cient Estimation, Semiparametric Estimation

1 Introduction

In program evaluation studies it is often important to learn not only about the average treatment
e¤ects, but about the distributional e¤ects of a treatment. In particular, the policy-maker might
be interested in the e¤ect of the treatment on the dispersion of the outcome, or its e¤ect on
the lower tail of the outcome distribution.

One way of capturing this e¤ect in a setting with binary treatment and scalar outcomes
is by computing the quantiles of the distribution of the treated and of the control outcomes.
Using quantiles, discretized versions of the distribution functions of treated and controls can
be calculated. Also, quantiles are used in many inequality measurements as, for instance,
quantile ratios, inter-quantile ranges, concentration functions, and the Gini coe¢ cient. Finally,
di¤erences in quantiles are important as the e¤ects of a treatment may be heterogeneous,
varying along the outcome distribution.
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Several parameters can be de�ned in order to capture the e¤ects of a treatment. In most
cases, the focus is on the average treatment e¤ect (ATE) de�ned as the di¤erence in the means
of the potential outcomes. One reason that many program evaluation studies focus on average
treatment e¤ects is that for the special case in which the treatment has a homogeneous e¤ect,
it is possible to interpret ATE as the e¤ect of the treatment on a single observation. Note,
however, that the average treatment e¤ect does not depend on homogeneity assumptions to be
well-de�ned.

Indeed, treatment e¤ects may be heterogeneous, varying greatly along the outcome distri-
bution. The presence of heterogeneity in treatment e¤ects is very important when evaluating
programs, as policy-makers are often interested in the distributional consequences of the treat-
ment. This is true, for example, for a wide range of social programs such as welfare, unemploy-
ment insurance, subsidized job training, the minimum wage, agrarian reform, and micro-credit
provision.

A parameter of interest in the presence of heterogeneous treatment e¤ects is the quantile
treatment e¤ect (QTE). As originally de�ned by Lehmann (1974) and Doksum (1974), the QTE
corresponds, for any �xed percentile, to the horizontal distance between two cumulative distri-
bution functions. In de�ning QTE as a treatment e¤ect at the individual level, both Doksum
(1974) and Lehmann (1974) implicitly argued that an observed individual would maintain his
rank in the distribution regardless of his treatment status. This paper will refer to this type of
assumption as a rank invariance assumption.

Rank invariance assumptions are strong assumptions as they require that the relative value
(rank) of the potential outcome for a given individual would be the same under treatment
as under non-treatment. There are two ways to deal with cases in which rank invariance is
an unreasonable assumption. The �rst one is due to Heckman, Smith, and Clements (1997),
who suggested computing bounds for the QTE, allowing for several possibilities of re-orderings
of the ranks. According to them, the outcome for the same individual may di¤er from one
distribution to another based on how observable and unobservable attributes impact each one of
the potential outcomes. However, while the e¤ect of observable characteristics can be measured,
unobservable characteristics can interact with treatment status in many unknown ways, leaving
open the possibility of a sharp reordering of ranks. Bounds for the QTE that capture these
alternatives were proposed by Heckman, Smith and Clements (1997).

The second approach to coping with failures of the rank invariance assumption argues that
even without this assumption, one can still have a meaningful parameter for policy purposes.
Consider the case in which all the policy-maker is interested in is learning about the marginal
distributions of the potential outcomes. A good way to summarize interesting aspects of these
distributions is by computing their quantiles. In this case, quantile treatment e¤ects can be
de�ned as simple di¤erences between quantiles of the marginal distributions of potential out-
comes. As an example, suppose that one is interested in the di¤erence in medians between two
distributions, and not in the e¤ects of treatment on a typical individual. In such a setting it is
not necessary to have any knowledge about the joint distribution of outcomes for the treated
and control groups, so the rank invariance assumption could be dropped. Note, however, that
if rank invariance holds, then the simple di¤erences in quantiles turn out to be the quantiles of
the treatment e¤ect.1

This de�nition of quantile treatment e¤ects, together with the selection on observables

1Note that there is no similar problem in estimation of the average treatment e¤ect, as di¤erences in means
always coincide with means of di¤erences.
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approach, allows identi�cation of various QTE parameters that di¤er by the subpopulation they
refer to. Following the approach of Heckman and Robb (1986) and Hirano, Imbens and Ridder
(2003),2 who suggest several parameters of interest for the mean case, two QTE parameters
will be the object of study in this paper. They are labeled the overall quantile treatment e¤ect
(OQTE) and the quantile treatment e¤ect on the treated (QTET), the former being the QTE
parameter for the whole population under consideration and the latter the parameter for those
individuals subject to treatment. Let me de�ne T as the indicator variable of treatment. For
an individual i, if T = 1 we observe Y (1), otherwise we observe Y (0) where Y (1) and Y (0) are,
respectively, the potential outcomes of receiving and of not receiving the treatment. De�ning
q as a real number in the support of the potential outcomes, the previous parameters can be
expressed as:
Overall Quantile Treatment E¤ect (OQTE): �� = q1;� � q0;� ,
where qj;� is such that Pr[Y (j) � q] = � , j = 0; 1.
Quantile Treatment E¤ect on the Treated (QTET): �� jT=1 = q1;� jT=1 � q0;� jT=1,
where qj;� jT=1 is such that Pr[Y (j) � qjT = 1] = � , j = 0; 1.

Quantile treatment e¤ects are also useful in describing the center of the distribution of the
treatment. In particular the median treatment e¤ect (MTE), the QTE for the �fty percentile,
is a central measure of the treatment e¤ect, like ATE. However, MTE has an additional and
desirable feature not present in ATE: its corresponding estimator is robust to the presence of
data outliers.

As is the case for any treatment e¤ect parameter, identi�cation restrictions are necessary
for consistent estimation. In this paper the relevant restriction is the assumption that selection
to treatment is based on observable variables. In other words, it is assumed that given a set of
observed covariates, individuals are randomly assigned either to the treatment group or to the
control group. That assumption was termed by Rubin (1977) the unconfoundedness assumption
and it characterizes the selection on observables branch of the program evaluation literature.
Barnow, Cain and Goldberger (1980), Heckman, Ichimura, Smith and Todd (1998) and Dehejia
and Wahba (1999) are important examples. Further discussion of these identifying assumptions
will be provided in a later section.

Estimation of average treatment e¤ects under the selection on observables assumption is
often performed by �rst computing a conditional average treatment e¤ect, and then integrat-
ing over the distribution of covariates to recover the unconditional average treatment e¤ect.
However, as the mean of the quantiles is not equal to the quantile of the mean, integrating a
�rst-stage computation of the conditional quantiles (of the treated and the control outcomes)
will not yield the marginal quantiles. Instead, this paper demonstrates how to use the identi�-
cation assumption that selection to treatment is based on observable variables to calculate the
marginal quantiles for the treated and for the control outcomes without computing the corre-
sponding conditional quantiles. The role that the observable covariates play in identi�cation
of both ATE and QTE is made clearer in the QTE case as, for the latter, the covariates serve
only to remove the selection bias.

Despite the relevance of QTE, the program evaluation literature on this topic is not as
vast as that of its main competitor, ATE. Traditionally, expectations have received more atten-
tion in the literature than quantiles. Pioneer papers on quantile estimation, such as those by
Koenker and Bassett (1978) and, in an instrumental variables setting, by Amemiya (1982) and
Powell (1983) have helped to bridge this gap. In the treatment e¤ects literature, some recent

2Henceforth HIR.
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contributions have also been made to the study of the distributional e¤ects of the treatment.
Among them, Abadie, Angrist and Imbens (2002), and Chernozhukov and Hansen (2001) have
proposed instrumental variables versions of the QTE. Imbens and Rubin (1997) and Abadie
(2002) proposed methods to estimate some distributional features for a subset of the treated
units, again in an instrumental variables setting. Distributional e¤ects have also been studied
empirically, as in the papers of Freeman (1980) Card (1996) and DiNardo, Fortin and Lemieux
(1996). Particularly in the paper by DiNardo, Fortin and Lemieux, quantile treatment e¤ects
have been indirectly computed as an estimation by-product of non-parametric potential out-
comes densities for the treated subpopulation. Apparently however, no further development,
re�nement, or derivations of large sample properties of this procedure have been proposed in
the literature.

In this paper three di¤erent semiparametric ways of estimating each QTE parameter are
presented. Each one corresponds to a particular identi�cation from the observable data. These
three methods will di¤er by the number and by the sort of functionals of the observed data
involved in estimating the parameter. I focus my attention on the estimation technique that
requires estimation of only the propensity score. This estimator is the QTE analogue of the
ATE estimator proposed by HIR, and involves reweighting observations by the inverse of the
propensity score. The estimator will be equal to the di¤erence between two quantiles, which
can be expressed as the solution to minimization problems, where the minimand, a sum of check
functions, is a convex empirical process. Using the empirical process literature consistency and
asymptotic normality results are derived. As the asymptotic variance of the estimator coincides
with the semiparametric e¢ ciency bound (which I compute using the techniques suggested in
Newey (1990) and Bickel, Klassen, Ritov, and Wellner (1993)), this is an e¢ cient estimator for
the QTE parameters.

The remainder of this paper is divided as follows. In the next section I present a simple model
that might be found useful in demonstrating the relevance of treatment e¤ects on distributions
and, in particular, of the quantile treatment e¤ect parameter for policy analysis. Then I show
how the identi�cation assumptions allow expressing the parameters of interest as functionals
of the observed data. Semiparametric e¢ ciency bounds for QTE parameters are presented in
Section 4, while section 5 presents the three estimation techniques (mentioned above) and large
sample properties. Section 6 presents an empirical application for the estimator. Section 7
concludes.

2 A Simple Model of Treatment E¤ects on Distributions

In this section I present a simple model that have two important features that justify the interest
in the treatement e¤ects on distributions: First, the individual decision to be in the treatment
group depends on a vector of observable covariates and, second, the policy-maker aims to learn
features of the marginal distributions of potential outcomes.

I start by assuming that there is an available random sample of N individuals (units). For
each unit i, let Xi be a random vector of observed covariates with compact support X � Rr. As
before, we de�ne Yi(1) as the potential outcome for individual i under treatment, and Yi(0) the
potential outcome for the same individual without the treatment. Let the treatment assignment
be de�ned as Ti, which equals one if individual i is exposed to treatment and equals zero
otherwise. As we only observe each unit at one treatment status, we say that the unobserved
outcome is the counterfactual outcome. Thus, the observed outcome can be expressed as:
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Yi = TiYi(1) + (1� Ti)Yi(0); 8i (1)

To motivate, consider Yi as the observed earnings of individual i in a model of the impact of
a job training program on worker earnings. In this example, Ti is the indicator for the receipt
of training.

Potential outcomes depend on both observed and unobserved individual characteristics. For
each individual i, let "1;i and "0;i be functions, under the treatment and the control respectively,
of vectors of unobservable attributes. In a job training program model, for example, earnings
of each individual are a function of their pre-program observable characteristics, such as past
earnings, employment status, education, age, job experience, gender, and union status; they
are also a function of unobservable attributes, such as ability, motivation and some possible
idiosyncratic shock.

Specifying the impact of X and ("1, "0) on the potential outcomes:

Yi(1) = G1(Xi; "1;i) (2)

Yi(0) = G0(Xi; "0;i) (3)

I assume self-selection into treatment: individuals can decide whether or not to be treated.
When an individual i faces the decision whether or not to join the job training program, he
will weigh the gains and costs to him of both situations. Assume that an individual i predicts
his expected earnings (given his vector Xi) and his costs for each of the alternatives. In other
words, the individual i chooses the state that yields the largest expected utility:

max fE[u(Y (1)) jXi; �i]� C1(Xi; �i); E[u(Y (0)) jXi; �i]� C0(Xi; �i)g (4)

where u(�) is utility function, C1(�; �) and C0(�; �) are some costs associated respectively with
joining the training program and not joining it, and �i is a vector of variables that is unobserved
to the econometrician but not to the individual. Also, �i is assumed to be independent of
("1;i,"0;i). The e¤ect of �i on the individual�s utility will depend on whether or not he enters
the job program. For example, �i might be a reservation wage that enters as an argument
to a foregone earnings function. Individual i will then choose to take part in the program if
E[u(Y (1)) jXi; �i]� C1(Xi; �i) � E[u(Y (0)) jXi; �i]� C0(Xi; �i). That is:

3

Ti = 1IfE[u(Y (1))� u(Y (0)) jXi; �i]� (C1(Xi; �i)� C0(Xi; �i)) � 0g (5)

Note how this model �ts into the Roy model (1951) of income distribution.4 In the Roy
model, an individual chooses the greater of the potential earnings given by two di¤erent occu-
pations. Here, the choice is based on the individual�s expected earnings and on some individual
cost. Thus, after controlling for Xi, the choice of getting treatment will be independent of the
individual potential earnings, which depends only on Xi and ("1;i,"0;i). That will hold as long
as �i and ("1;i,"0;i) are independent and the functional form of potential earnings is the one
described in Equations (2) and (3). The independence result can be written as:

(Yi(1); Yi(0)) ?? Ti jXi 8i (6)

3The indicator function 1IfAg is equal to one if A is true and zero otherwise.
4See also Heckman and Honoré (1990).
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Equation (6) is the unconfoundedness assumption labeled by Rubin (1977) . This assump-
tion was derived here as a result, but we needed to put some structure on the form of the
potential outcomes and on the form of the decision rule. We also needed to put stochastic
restrictions on the unobserved variables. Note however, that unless there is a gain in insight
to writing the model with the structure presented in Equations (2)-(5), Equation (6) could
actually have been our starting point.

I will maintain the structure of the above model for now. In this model, a rank invariance
assumption can be obtained by imposing two additional requirements:
(i) 8x 2 X , G1(x; �) and G0(x; �) are either (a) strictly increasing functions or (b) strictly
decreasing functions;
(ii) 8i, "1;i and "0;i are perfectly positively correlated.

These two assumptions ensure that people do not change their position in the earnings ranks
in each one of the possible two states. I call this the rank invariance assumption. These are
strong assumptions, in particular part (ii). This is the case when skills that are useful in one
regime may not be as useful in another regime.5

However, note that if these two extra requirements hold, then for every individual i such
that Yi(1) � q1;� , it must be the case that Yi(0) � q0;� .6 Therefore, calculations of the di¤erence
q1;� � q0;� for all � in the interval [0,1] yield the distribution of the treatment e¤ects.

As rank invariance is in many cases a too strong assumption, I also motivate the interest in
the di¤erences in quantiles in a di¤erent way. Assume that there is a social welfare function,
W , such that W depends on the individual utility functions. For simplicity, assume that each
individual utility depends on his earnings only. Therefore, we can write W as a real function of
the earnings distribution of the whole population, that is, letting F be the space of all permissible
distribution functions, W : F 7! R. In order to simplify the argument, imagine that there are
two possible scenarios: we either treat everyone or treat no one.7 Under the �rst scenario,
the distribution of earnings is then equal to distribution of Y (1), which has the cumulative
distribution function F1; while in the second scenario, the earnings distribution equals that of
Y (0), whose cumulative distribution function is F0. Ignoring social choice problems, assume
that the policy-maker has to choose between these two distributions in order to maximize the
social welfare function:

W � = max
F1; F0

W (F ) (7)

In order to compareW (F1) withW (F0) the policy-maker will need to calculate approximate
distributions of the potential earnings, F1 and F0, and a good way to summarize a distribution
is to compute its quantiles. If we compute a su¢ cient number of quantiles, we will end up
having a discretized approximation of the distribution.

Consider then that each distribution is approximated by the calculation of a number P of
quantiles. When P is equal to 100, we say that each quantile corresponds to a percentile. Doing
that for both distributions, we have:

5 In terms of the Roy model (1951), in a world with only two occupations, hunting and �shing, that assumption
implies that the most able hunters are also the most able �shermen.

6The same would be true for the quantiles of the distribution of potential outcomes given T = 1, that is, if
Yi(1) � q1;� jT=1, then Yi(0) � q0;� jT=1.

7Alternatives, as discussed in Manski (1997), include allowing individuals to choose their treatment status or
assigning them to treatment based on observed characteristics.
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W1 =W (q1; 1
P
; q1; 2

P
; :::; q1;1) (8)

W0 =W (q0; 1
P
; q0; 2

P
; :::; q0;1) (9)

The policy maker chooses between treatment and no treatment according to whether W1 is
greater than W0.

Say that both W1 and W0 are linear in the quantiles, that is, say that:

W1 =W (q1; 1
P
; q1; 2

P
; :::; q1;1) =

PX
j=1

a1; j
P
q1; j

P
(10)

W0 =W (q0; 1
P
; q0; 2

P
; :::; q0;1) =

PX
j=1

a0; j
P
q0; j

P
(11)

where a1; j
P
and a0; j

P
, (j = 1; :::; P ) are parameters of the social welfare function.

Consider the case where for each � 2 f 1P ;
2
P ; :::; 1g, a1;� = a0;� = a� . This is a fairly intuitive

case: The weights on the social welfare function are the same whether or not the treatment is
implemented. In this case, the decision to run a job training program would be consistent with
the following inequality:

W1 �W0 =

PX
j=1

a j
P
(q1; j

P
� q0; j

P
) � 0 (12)

Equation (12) motivates the di¤erence in quantiles as the main object of interest for the
policy-maker. The decision to continue running the program depends crucially on the quantile
treatment e¤ects for all the quantiles of interest, that is, for all � such that a� 6= 0.8

A particular case of Equation (12) would be when a� = 0 for all � but for one � 0. This is the
case, for example, when all the policy-maker is interested in is whether the training increases the
earnings of those at the lower tail of the distribution. Other types of social welfare functions
would lead to the calculation of other treatment e¤ect parameters. For example, say that
W1 =

q1;0:25
q1;0:75

and that W0 =
q0;0:25
q0;0:75

. This is the case in which the policy-maker aims to run a
job training program that decreases earnings inequality measured in a particular way. In this
example, if W1 �W0 � 0, then the program reduces the gap between quartiles (.75 and .25),
that is, reduces earnings inequality.

3 Identi�cation of Quantile Treatment E¤ects Parameters

As potential outcomes are only partially observed, in order to identify from the observed data
both �� and �� jT=1, the overall quantile treatment e¤ect (OQTE) and the quantile treatment
e¤ect on the treated (QTET), we need an identi�cation restriction. Instead of writing that
restriction in terms of unobserved components (as in the previous section), I will start from
a more general setting, in which we do not need to know the functional form of the potential

8Note how this di¤ers from the case in which the policy-maker wants to maximize the average outcome. In
this case, the parameter of interest would simply be the average treatment e¤ect.
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outcomes. Let the propensity score (sometimes simply called the p-score), Pr[T = 1jX = x],
be written as p(x), and its expectation, E[p(X)], be written as p. Thus, the identi�cation
assumption used here, following Rosenbaum and Rubin (1983), is:

Assumption 1 (Strong Ignorability - Rosenbaum and Rubin (1983)): Let (Y (1), Y (0),
T , X) have a joint distribution. Then, for all x in X , the support of X:
(i) Unconfoundedness: (Y (1); Y (0)) is jointly independent from T given X;
(ii) Common Support: c < p(x) < 1� c, for some c > 0

Although it is a strong assumption, many studies of the e¤ect of treatments or programs
make an assumption similar to that of part (i) of Assumption 1 as, for example, Heckman,
Ichimura, Smith, and Todd (1998) and Dehejia and Wahba (1999). Alternatives to this as-
sumption are the usage of instrumental variables (the selection on unobservables approach),
and calculation of bounds for the parameter of interest, as proposed by Manski (1997).9 Part
(ii) states that for almost all values of X both treatment assignment levels have a positive
probability of occurring.

Now consider that each one of the four types of quantiles de�ned previously, q1;� , q0;� ,
q1;� jT=1, and q0;� jT=1 do exist and are uniquely determined or, in other words, the distribution
functions of the potential outcomes are continuous and not �at at the � -percentile. These
conditions appear in the following asumption:

Assumption 2 (Existence and Uniqueness of Quantiles): For j = 0; 1 , Y(j) is a
continuous random variable with support in R such that for some � 2 [0; 1]:
(i) Existence: Q�; j = fq 2 R j � = Pr[Y (j) � q]g and Q�; j jT=1 = fq 2 R j � = Pr[Y (j) �
qjT = 1]g are non-empty.
(ii)Uniqueness: Let Fj(q) = Pr[Y (j) � q] and Fj jT=1(q) = Pr[Y (j) � qjT = 1]. Then:

@Fj(q)

@q

����
q=qj;�

= fj(qj;� ) > 0 and
@Fj jT=1(q)

@q

����
q=qj;� jT=1

= fj jT=1(qj;� jT=1) > 0:

Under Assumptions 1 and 2 both OQTE and QTET become estimable from the data on
(Y; T;X). To show this, I �rst prove that the quantiles of the potential outcome distributions
can be written as implicit functions of the observed data:

Lemma 1 (Identi�cation of Quantiles): Under Assumptions 1 and 2, the following equal-
ities hold:

� =

(Q1A) = E[Pr[Y � q1;� jX;T = 1]]

(Q1B) = E

�
E[T 1IfY � q1;�gjX]

p(X)

�
(Q1C) = E

�
T 1IfY � q1;�g

p(X)

�
9For review and comparison of approaches see, for instance, Angrist and Krueger (1999) and Heckman,

LaLonde and Smith (2000).
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Proof : See Appendix I
Lemma 1 shows that there are multiple ways of expressing each quantile of the potential

outcome distributions in terms of the observed data (Y; T;X).10 In fact, the lemma shows that
there are at least three ways of identifying the quantiles using the observed data (Y; T;X).
These are divided into three groups denoted by A, B and C (which are the indices for each
expression in Lemma 1). Each group di¤ers according to the number and type of conditional
expectations to be taken inside the expectation symbol.

In the �rst identi�cation group, indexed by A, the computation of a conditional probability
function in the �rst step is required. This function is the probability of Y being less than or
equal to q given that X = x and T = 1. Taking the expectation over all x 2 X for the treated
subset (T = 1) yields the desired result: q1;� will be the quantity that sets the expected value
equal to � .

The equation indexed by B also requires computation of a conditional expectation in the �rst
step. However, as this conditional expectation function is not restricted to the subset of treated
units, one needs to divide by the probability of being treated given X = x (the �propensity
score�). Notice then, that the �rst step involves two conditional expectations computations.
This is the price paid for not restricting computation to the subset of treated units. Also, as
in expression A, in expression B q1;� will be the quantity that sets the expected value of the
ratio of conditional functions equal to � .

Finally, expression C is the simplest of the three. The �rst step requires computation
of just one conditional expectation function, namely, the propensity score. Notice, that ex-
pression A also requires just one conditional expectation computation in the �rst step. The
main di¤erence lies in the role that the quantile q plays. In A one �rst has to compute
�1(x; q) = E[1IfY � qgjX = x; T = 1]. This function does not simply depend on (y; t; x),
because the quantile q enters as an argument, complicating computation.11 This is di¤erent
for expression C. In C, the p-score computation does not involve q; in fact, it does not involve
the random variable Y nor any functional of its distribution. Finally, to get q1;� , one needs to
proceed as in the other steps and compute an unconditional expectation.

As Lemma 1 does not directly yield a way to identify the quantiles of the potential outcomes
for the actual treated units, it is necessary to postulate another set of results for that special
case:

Lemma 2 (Identi�cation of Quantiles for the Treated): Under Assumptions 1 and 2,
the following two sets of equalities hold:

10An analogous result for q0;� would follow from the same lines of Lemma 1. For example, for the group C we

would have � = E
�
(1�T )1IfY�q0;�g

1�p(X)

�
.

11However, as we will see in a later section, this does not have a real impact on the estimation procedure for
q1;� based on expression A. This is due to the fact that we are able to estimate a quantile by a minimization
procedure that does not involve q in the �rst step.
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For q1;� jT=1 :

� =

(QT1A) = E

�
p(X) Pr[Y � q1;� jT=1jX;T = 1]

p

�
(QT1B) = E

�
E[T 1IfY � q1;� jT=1gjX]

p

�
(QT1C) = E

�
T 1IfY � q1;� jT=1g

p

�
For q0;� jT=1 :

� =

(QT0A) = E

�
p(X) Pr[Y � q0;� jT=1jX;T = 0]

p

�
(QT0B) = E

�
p(X)

(1� p(X))pE[(1� T )1IfY � q0;� jT=1gjX]
�

(QT0C) = E

�
p(X)

(1� p(X))p(1� T )1IfY � q0;� jT=1g
�

Proof : See Appendix I
In the proof in Appendix I, one can see that Assumption 1 plays no role in the identi�cation

of q1;� jT=1. Heckman, Ichimura, and Todd (1997) have stressed such result when looking for
identi�cation conditions for the average treatment e¤ects on the treated.

Identi�cation of the quantile treatment e¤ect parameters is a straightforward consequence
of Lemmas 1 and 2, as stated in the next corollary.

Corollary 1 (Identi�cation of quantile treatment e¤ ect parameters): Under As-
sumptions 1 and 2, the overall quantile treatment e¤ect, �� , and the quantile treatment e¤ect
on the treated, �� jT=1, are identi�ed from data on (Y; T;X).

Proof : Note that from Lemmas 1 and 2 the four parameters q1;� , q0;� , q1;� jT=1, and q0;� jT=1
are functionals of the joint distribution of (Y; T;X). As �� equals the di¤erence between q1;�
and q0;� ; and �� jT=1 equals the di¤erence between q1;� jT=1 and q0;� jT=1, �� and �� jT=1are
also functionals of the joint distribution of (Y; T;X). Therefore, �� and �� jT=1, are identi�ed
from data on (Y; T;X). �

For �� jT=1, the method given by group A requires the computation of the p-score in
addition to the computation of one conditional expectation given T = 1 and X for (QT1A),
and another conditional expectation given T = 0 and X for (QT0A). The method in group B
requires computing one conditional expectation given X for (QT1B) and computing another
conditional expectation as well as the p-score for (QT0B). Finally, for group C all that it is
required is the p-score computation for (QT0C). Notice that the expectation of the p-score, p,
is required for all three groups.

A comparison between Lemmas 1 and 2 reveals the presence of an interesting asymmetry
in the former but not in the latter. Using procedures B and C, the computation of q1;� jT=1
requires fewer �rst step calculations of conditional functions than the computation of q0;� jT=1.
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This di¤erence does not hold for q1;� versus q0;� , since the computation of these are symmetric
and both computations involve the same number and sort of functionals.

From an estimation point of view, the classi�cation of these three groups of methods is
relevant not only for the QTE, but for mean-based measures, such as the ATE, as well. Using
sample analogues, Hahn (1998) has suggested estimation of the ATE based on an identifying
approach similar to that described by B. Dehejia and Wahba (1999) proposed (among other
techniques) estimating the average treatment e¤ect on the treated by reweighing the control
sample using the estimated p-score; this is analogous to the identi�cation set C. HIR have also
focused on the estimation of ATE using the analogue of the set C for identi�cation.

Estimation of the QTET parameter based on the set C of identifying assumptions has been
implicit in the applied literature. DFL (1996) proposed the estimation of the counterfactual
density of outcomes for the control group using a method similar to (QT0C). They argue that,
once the counterfactual density is estimated, it is possible to recover the counterfactual quantiles
and therefore the di¤erence between the quantiles of the treated group and the counterfactual
quantiles of the control group. However, as is made clear by expression (QT0C), there is no
need to �rst compute densities if the ultimate goal is the estimation of quantiles.

In Section 5 of this paper I present the estimation counterparts of all three sets of equations
for both the OQTE and the QTET.

4 Semiparametric E¢ ciency Bounds

As Lemmas 1 and 2 suggest, estimation of quantile treatment e¤ects can be attempted using
a two-step procedure, where the �rst step is a non-parametric estimation of a conditional
expectation function. This preliminary step must be non-parametric since the joint distribution
of (Y (0); Y (1)) is not parametrically speci�ed. Semiparametric estimation for the ATE can be
found in Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998) and HIR.

A semiparametric analogue of the Cramer-Rao lower bound was �rst introduced by Stein
(1956) and further developed by Bickel, Klassen, Ritov, and Wellner (1993). The semiparamet-
ric e¢ ciency bound concept was popularized in the econometric literature by a review article
by Newey (1990). In general terms, the bound corresponds to the largest variance over all
possible regular parametric speci�cations of the non-parametric component of the model. Such
a bound is indeed a (not necessarily achievable) lower bound for the asymptotic variance of
distribution-free, root-N consistent estimators.

More formally, consider a �nite-dimensional parameter � from some general statistical
model. Say that this model contains a submodel that can be parameterized by �, which has
�nite dimension. Thus, for this submodel we write �(�). If this parameter is di¤erentiable
in the sense described by Bickel, Klassen, Ritov, and Wellner (1993), then its derivative with
respect to � can be written as E[ s0�], where  is the in�uence function of � and s� is the score
of that submodel. The semiparametric e¢ ciency bound V� will be equal to E[ 0� �], where  �
is equal to E[ s0�](E[s�s

0
�])

�1s�, the �projection�onto the space spanned by all scores.
Hahn (1998) uses the setup described above to compute the semiparametric e¢ ciency

bounds for both the average treatment e¤ect, �, and the average treatment e¤ect on the treated,
. For the quantile treatment e¤ects setting, I also compute bounds for two parameters, namely,
�� and �� jT=1. With Assumptions 1 and 2, the semiparametric e¢ ciency bounds for �� and
�� jT=1 can be calculated:12

12 In what follows, V [�] is the variance operator.
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Theorem 1 : (Bounds for �� and �� jT=1): Under Assumptions 1 and 2, the semipara-
metric e¢ ciency bounds for �� and �� jT=1 are respectively equal to:

V�� =E

�
V [g1;�� (Y )jX;T = 1]

p(X)
+
V [g0;�� (Y )jX;T = 0]

1� p(X)

+ (E[g1;�� (Y )jX;T = 1]� E[g0;�� (Y )jX;T = 0])2
� (13)

and

V�� jT=1 = E

�
p(X)V [g1;�� jT=1(Y )jX;T = 1]

p2
+
p2(X)V [g0;�� jT=1(Y )jX;T = 0]

p2(1� p(X))

+
p(X)(E[g1;�� jT=1(Y )jX;T = 1]� E[g0;�� jT=1(Y )jX;T = 0])2

p2

�
(14)

where for j = 0; 1:

gj;�� (Y ) = �
�
1IfY � qj;�g � �

fj(qj;� )

�
(15)

and

gj;�� jT=1(Y ) = �
�
1IfY � qj;� jT=1g � �
fjjT=1(qj;� jT=1)

�
(16)

Proof : See Appendix I
Note that the bounds V�� and V�� jT=1 are similar to the bounds computed by Hahn (1998)

for the mean case. For � and  the bounds, as computed by Hahn (1998), are respectively:13

V� = E

�
V [Y jX;T = 1]

p(X)
+
V [Y jX;T = 0]
1� p(X)

+ ((E[Y jX;T = 1]� �1)� (E[Y jX;T = 0]� �0))2
�

and

V =E

�
p(X)V [Y jX;T = 1]

p2
+
p(X)2V [Y jX;T = 0]

p2(1� p(X))

+
p(X) ((E[Y jX;T = 1]� 1)� (E[Y jX;T = 0]� 0))2

p2

�
:

There are two reasons for the similarity between the semiparametric e¢ ciency bounds of
the QTE and the parameters. First, both the QTE and the ATE are parameters from the same

13Using Hahn�s notation, let �j = E[Y (j)] and j = E[Y (j) jT = 1] for j=0, 1. Thus, � = �1 � �0 and
 = 1 � 0.
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statistical model and, therefore, can be expressed as functionals of the same distribution of the
data. But this is not enough for the similarity. In fact, the second reason is the important
one: both the QTE and the ATE are written as di¤erences in expectations of random vari-
ables (implicitly for the QTE case) over the same density. This can be seen in the following
equations:14

�� = arg zero
q

E[1IfY (1) � qg � � ]� arg zero
q

E[1IfY (0) � qg � � ] (17)

and

� = E[Y (1)]� E[Y (0)] (18)

Note that what ultimately determines the di¤erence in the bounds is the distinction between
the random variables gj;�� (Y (j)) and Y (j), respectively the in�uence functions of qj;� and of
�j when Y is independent of X.

The role of the propensity score in e¢ cient estimation of ATE has received a great deal
of attention in the recent literature. Examples include Heckman, Ichimura, Smith and Todd
(1998), Hahn (1998) and HIR. The latter provide intuition for Hahn�s result that knowing the
true propensity score does not lead to e¢ cient estimation of the ATE. For the QTE parameters
the same results apply since both cases share the same statistical model, and thus the propensity
score plays the same role. Because of this similarity, this result will not be further explored in
this paper.

5 E¢ cient Estimation

Once we know which parameters we want to estimate and we know the minimum attainable
asymptotic variance of any semiparametric estimator, we can propose candidates for estimators.
In this section I use the sample analogy principle15 to motivate the appropriateness of the usage
of estimators of �� and �� jT=1 that are in fact solutions to minimization problems. Restricting
then attention to one of the estimators, I present its large sample properties and also show that
the asymptotic variance of the proposed estimator achieves the semiparametric e¢ ciency bound.

5.1 Minimization Approach

According to Lemmas 1 and 2 there are at least three ways of identifying the quantiles of the
potential outcome distribution. From the sets A, B and C of identi�cation expressions, it is
possible to derive three di¤erent estimators for both the �� and �� jT=1 parameters. The
estimators will di¤er among themselves by the number and type of conditional expectations
functions to be non-parametrically estimated in a �rst step. As a piece of notation, let the �rst
step estimators of functionals of (Y; T;X) be denoted by a �hat�on it. For example, the non-
parametric estimator of the p-score will be p̂(x). In order to simplify the following argument,
let me focus only on the three estimators of �� , which will be, for E 2 fA;B;Cg:

�̂E
� = q̂E1;� � q̂E0;� (19)

14Note that this argument could be very well be applied to the comparison between the �on the treated�
parameters, �� jT=1 and .
15See for instance, Manski (1988)
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where for j = 0; 1:

q̂Ej;� = argminq

NX
i=1

!̂Ej;i�� (Yi � q) (20)

and where the check function �� (�) evaluated at Yi � q is:

�� (Yi � q) = (Yi � q)(� � 1IfYi � q � 0g)

The previous de�nitions of the estimators rely on the fact that sample quantiles can be
found by minimizing a sum of check functions.16 In our particular case, we have a weighted
sum of check functions, which re�ects the fact that as we do not observe the two potential
outcomes for the same unit, a rescaling over the observed units is necessary. Also note that for
the de�nition to be complete, I need to determine what the weights !̂Ej;i are.

Once again for simpli�cation, let us focus on the estimation technique C and concentrate
on the sample quantile of the Y (1)�s distribution, q̂C1;� . This sample quantile is de�ned as the
minimizer of a weighted sum, where the weight of each unit is given by:

!̂C1;i =
Ti

Np̂(Xi)
(21)

To get some intuition on why q̂C1;� is actually consistent for q1;� , notice that an approximate
�rst derivative of Equation (20) using the weight de�ned in Equation (21) and evaluated at q̂C1;�
is equal to:

1

N

NX
i=1

Ti(1IfYi � q̂C1;�g � �)
p̂(Xi)

(22)

As q̂C1;� is the minimizer of the convex function expressed in Equation (20) using the weight
de�ned in Equation (21), Equation (22) will converge in probability to zero as N increases.
Therefore, Equation (22) is the sample analogue of the identifying expression (QC1 ) in Lemma
1.

Note that this intuition works also for the other two estimators of q1;� : q̂A1;� and q̂
B
1;� . For a

more detailed discussion on how to �nd weights for the cases A and B, see the Appendix II.
The same line of reasoning could have been applied to estimation of �� jT=1. Each estimator

will be de�ned as the di¤erence between the solutions of two minimizations of sums of weighted
check functions. For E 2 fA;B;Cg:

�̂E
� jT=1 = argminq

NX
i=1

!̂E1;i jT=1�� (Yi � q)� argminq

NX
i=1

!̂E0;i jT=1�� (Yi � q) (23)

In particular, for the estimation procedure indexed by C, the weights are equal to:

!̂C1;i jT=1 =
TiPN
l=1 Tl

and !̂C0;i jT=1 =

p̂(Xi)
1�p̂(Xi)(1� Ti)PN

l=1 Tl
(24)

16See, for instance, Koenker and Bassett (1978).
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This result will be used later in the paper. Before that, however, let us turn our attention
on the computation of the weights used in this subsection. In particular, let us concentrate on
the calculation of !̂C1;i.

5.2 Feasible Estimation

For the remainder of the paper, I shall restrict the discussion to estimators that use the set C
of identifying equations. As argued before, these are the simplest estimators. I will also focus
on q̂C1;� only since extensions for q̂

C
0;� and for �̂

C
� jT=1 follow immediately.

The estimator q̂C1;� is a two-step estimator. In the �rst step, we estimate the p-score non-
parametrically. In the second stage, we minimize:

GN (q; p̂) =
1

N

NX
i=1

Ti
p̂(Xi)

(Yi � q)(� � 1IfYi � qg) (25)

Equation (25) is a weighted sum of check functions. Following Koenker and Bassett (1978),
I �nd sample quantiles as minimizers of sums of check functions. However, I have a weighted
sum of check function, as the weights are the way used here to correct for the selection.

My speci�c methods were as follows: To estimate the p-score, I used a logistic power series
approximation, i.e., the log odds ratio of the p-score was approximated by a series of functions.17

These functions were chosen to be polynomials of x and the coe¢ cients corresponding to those
functions were estimated by maximum likelihood.

Start by de�ning HK(x) = [HK; j(x)] (j = 1; :::;K), a vector of length K of polynomial
functions of x 2 X satisfying the following properties:
(i) HK : X ! RK ;
(ii) (Constant included) HK; 1(x) = 1

If we want HK(x) to include polynomials of x up to the order n, then it is su¢ cient to choose
K such that K � (n + 1)r. In what follows, I will assume that K is a function of the sample
size N and grows without bounds as N grows without bounds, that is, K = K(N) ! 1 as
N ! 1.

Next, the propensity score is estimated. Let p̂(x) be:

p̂(x) = L(HK(x)
0�̂) (26)

where L : R! R, L(z) = (1 + exp(�z))�1
and

�̂ = argmax
�

1

N

NX
i=1

�
Ti log(L(HK(Xi)

0�)) + (1� Ti) log(1� L(HK(Xi)
0�))

�
(27)

Thus, after estimating the p-score, I minimize GN (q; p̂) with respect to q, obtaining q̂C1;� .

17The log odds ratio of p(x) is equal to log(p(x))� log(1� p(x)).
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5.3 Large Sample Properties

In this subsection I will prove that q̂C1;� is (i) root-N consistent for q1;� ; (ii) asymptotically
normal; and (iii) has asymptotic variance equal to the expected square of the e¢ cient in�uence
function of q1;� .18

This subsection is divided into several parts, each one corresponds to a step in the proof:

1. Asymptotic Properties of the First Step. I state the assumptions and the results
derived in HIR for the asymptotics properties of the non-parametric estimation of the
p-score in the �rst step by means of a power series approximation.

2. Change of Variables: u and QN . I use a transformation from q to u =
p
N(q � q1;� )

and de�ne QN (u; p̂), which is minimized by û =
p
N(q̂C1;� � q1;� ).

3. A Quadratic Approximation to the Objective Function. I show thatN (QN (u; p̂)�
~QN (u)) is op(1) for �xed u, where ~QN (u), which does not depend on p̂(x), is a quadratic
random function.

4. Asymptotic Properties of ~u. I show that ~u, the argument that minimizes the random
quadratic ~QN (u), is: (i) Op(1); and (ii) ~u

D! N(0; V1), where V1 is the semiparametric
e¢ ciency bound of q1;� .

5. Nearness of Argmins. I show that the term û is just op(1) from ~u, or written in terms
of q, that q̂C1;� is asymptotically equivalent to ~q1;� = ~u=

p
N + q1;� , which establishes the

desired result.

5.3.1 Asymptotic Properties of the First Step

The suggested approach to estimating the p-score guarantees, under certain regularity condi-
tions, that p̂(x), the estimator of the p-score, is uniformly consistent for the true p(x). To
assure that this holds, I make the following assumptions:

Assumption 3 (First Step):
(i) X is a compact subset of Rr;
(ii) the density of X, f(x), satis�es 0 < infx2X f(x) � supx2X f(x) <1
(iii) p(x) is s-times continuously di¤erentiable, where s � 7r and r is the dimension of X;
(iv) the order of HK(x), K, is of the form K = C N� where C is a constant and � 2 ( 1

4( s
r
�1) ;

1
9)

Newey (1995, 1997) has established that for orthogonal polynomials HK(x) and compact
X :

�(K) = sup
x2X

jjHK(x)jj � C K (28)

where C is a generic constant. Note then that because of part (iv) of Assumption 3 � will be
a function of N since K is assumed to be a function of N .
18Thus, as �� = q1;� � q0;� and as it can be shown by analogy that q̂C0;� equally satis�es the properties (i),

(ii) and a properly modi�ed version of (iii), the e¢ cient in�uence function of �� will be equal to the di¤erence
between the e¢ cient in�uence function of q1;� and q0;� .
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With part (ii) of Assumption 1 (Common Support) and Assumption 3 in hand we can
invoke some of the results derived by HIR in a format of a lemma:

Lemma 3 (First Step): Under Assumptions 1 and 3 the following results hold:

(I) supx2X jp(x)� pK(x)j � C�(K)K�s=r � C�1�s=r � C N (1�s=r)� = o(1); where:

pK(x) = L(HK(x)
0�K) (29)

and:

�K = argmax
�

E

�
p(X) log(L(HK(X)

0�)) + (1� p(X)) log(1� L(HK(X)
0�))

�
; (30)

(II) Ejj�̂ � �K jj2 � C �(K)
N � CN��1 = o(1);

(III) There is � > 0: limN!1 Pr[� < infX2X p̂(X) � supX2X p̂(X) < 1� �] = 1.
Proof : See HIR.

Note the importance of result (III) in simplifying the whole process of estimating q1;� by
q̂C1;� . As p̂(x) is bounded in probability from 0 and 1, there is no need to use a trimming function
in order to avoid dividing a number by zero.

5.3.2 Change of Variables: u and QN

First recall from the minimization problem described by Equation (25) that:

q̂C1;� = argminq
1

N

NX
i=1

Ti
p̂(Xi)

(Yi � q)(� � 1IfYi � qg) (31)

and then note that:

q̂C1;� = argminq
1

N

NX
i=1

Ti
p̂(Xi)

�
(Yi � q)(� � 1IfYi � qg)� (Yi � q1;� )(� � 1IfYi � q1;�g)

�

= argmin
q

1

N

NX
i=1

Ti
p̂(Xi)

�
(1IfYi � q1;�g � �)(q � q1;� ) + (Yi � q)(1IfYi � q1;�g � 1IfYi � qg)

�
(32)

Now, de�ne:

u =
p
N(q � q1;� ) (33)

û =
p
N(q̂C1;� � q1;� ) (34)

D(Yi) = 1IfYi � q1;�g � � (35)

R(Yi; u) = (Yi � (q1;� + u=
p
N))(1IfYi � q1;�g � 1IfYi � q1;� + u=

p
Ng) (36)

A(Yi; u) = D(Yi)u=
p
N +R(Yi; u) (37)

QN (u; p̂) =
1

N

NX
i=1

Ti
p̂(Xi)

A(Yi; u) (38)
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A comment about some of the quantities above: The variable D(Yi) is the approximate �rst
derivative of the check function �(Yi � q) with respect to q. It is approximate in the sense that
�(Yi�q) is not di¤erentiable for all q, as it involves indicator functions of whether q is less than
or equal to some values in the data. R(Yi; u) can be interpreted as the remainder term from a
linear expansion about q1;� that uses D(Yi) as an approximated derivative.

Next, note that as û =
p
N(q̂C1;� � q1;� ), then by Equation (32) it also equals to:

û = argmin
u

1

N

NX
i=1

Ti
p̂(Xi)

�
(1IfYi � q1;�g � �)

up
N

(39)

+

�
Yi �

�
q1;� +

up
N

���
1IfYi � q1;�g � 1IfYi � q1;� +

up
N
g
��

(40)

= argmin
u

1

N

NX
i=1

Ti
p̂(Xi)

�
D(Yi)

up
N
+R(Yi; u)

�
(41)

= argmin
u

1

N

NX
i=1

Ti
p̂(Xi)

A(Yi; u) (42)

= argmin
u
QN (u; p̂) (43)

5.3.3 A Quadratic Approximation to the Objective Function

I begin by de�ning some useful expressions: First, consider the function ~QN (u), which will be
shown to be a quadratic approximation to QN (u; p̂), which, however, does not depend on the
�rst step p̂(�):

~QN (u) =
1

N

NX
i=1

�
TiD(Yi)

p(Xi)
� E[D(Y ) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
up
N
+
f1(q1;� )

2

u2

N
(44)

Now, de�ne:
�N (u; p̂) = QN (u; p̂)� ~QN (u) (45)

The next lemma shows that N �N (u; p̂) goes to zero in probability for each u, which means
that the objective function is asymptotically equivalent to a quadratic random function. Before
stating the lemma, let me �rst assume that the next regularity condition holds:

Assumption 4 (Lipschitz condition): For j = 0; 1 and every q, the conditional density of
Y (j) given X = x, fj(� jx), satis�es the following inequality, where E[M(X)] <1, and � > 0:

����fj(q jx)� fj(qj;� jx)���� �M(x) jq � qj;� j� (46)

Lemma 4 (Bounding the di¤ erences in the Objective Functions): Under Assumptions
1, 2, 3 and 4, for each u:

N �N (u; p̂)
P! 0 (47)

Proof : See Appendix I
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5.3.4 Asymptotic Properties of ~u

We have used Assumption 2 previously both for identi�cation of quantiles of the potential
outcomes and for an appropriate de�nition of the e¢ ciency bounds. The same assumption is
plays another role in this subsection; it guarantees that ~u, the argument that minimizes ~QN (u)
is unique. From Equation (44) we have:

~QN (u) =
1

N

NX
i=1

�
up
N

�
TiD(Yi)

p(Xi)
� E[D(Y ) jXi; T = 1]

Ti � p(Xi)

p(Xi)

��
+

u2

2N
f1(q1;� )

Then under Assumption 2, ~QN (u) has a unique minimum at:

~u = argmin
u

1

N

NX
i=1

�
up
N

�
TiD(Yi)

p(Xi)
� E[D(Y ) jXi; T = 1]

Ti � p(Xi)

p(Xi)

��
+

u2

2N
f1(q1;� ) (48)

= � 1p
N f1(q1;� )

NX
i=1

�
TiD(Yi)

p(Xi)
� E[D(Y ) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
(49)

=
1p
N

NX
i=1

�
Ti(g1;�� (Yi)� E[g1;�� (Y ) jXi; T = 1])

p(Xi)
+ E[g1;�� (Y ) jXi; T = 1]

�
(50)

=
1p
N

NX
i=1

 1;i (51)

where the function g1;�� was de�ned by Equation (15) and:

 1;i =
Ti(g1;�� (Yi)� E[g1;�� (Y ) jXi; T = 1])

p(Xi)
+ E[g1;�� (Y ) jXi; T = 1] (52)

Let me now write the main result of this subsection as a lemma:

Lemma 5 (Asymptotic Properties of ~u): Let ~u = argminu ~QN (u). Then, under Assump-
tions 1, 2 and 3:
(i) ~u = Op(1);

(ii) ~u D! N(0; E[ 21;i]);
(iii) E[ 21;i] = V1, the semiparametric e¢ ciency bound for q1;� .

Proof : See Appendix I

5.3.5 Nearness of Argmins

De�ning û =
p
N(q̂ � q1;� ), I show the desired result that û � ~u = op(1), which will imply

that
p
N(q̂C1;� � q1;� ) is (i) Op(1), (ii) and asymptotically normal (iii) and has an asymptotic
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variance that is equal to the semiparametric e¢ ciency bound for q1;� . Before I do that, let me
state and prove an intermediate lemma.

We have already seen that Lemma 5 holds. To get results about û and consequently about
q̂C1;� I will use a result in Hjört and Pollard (1993) on the nearness of minimizers of convex
random functions. In particular, I apply Hjört and Pollard�s Lemma 2 directly to my case:

Lemma 6 : (Nearness of Argmins (Hjört and Pollard (1993)) Under Assumptions
1, 2, 3 and 4 we have the following probabilistic bound on how far û can be from ~u: For each
� > 0:

Pr[jû� ~uj � �] � Pr
"
sup

ju�~uj��
jN �N (u; p̂)j �

1

4
f1(q1;� )�

2

#
(53)

Moreover :

Pr

"
sup

ju�~uj��
jN �N (u; p̂)j �

1

4
f1(q1;� )�

2

#
= o(1) (54)

Proof : See Appendix I
Stating the �nal results:

Theorem 2 : (Asymptotic Properties of q̂C1;�)
Let q̂C1;� = argminq

1
N

PN
i=1

Ti
p̂(Xi)

(Yi� q)(� � 1IfYi � qg) where p̂(x) is computed as described in
subsection 5.2. Under Assumptions 1, 2, 3 and 4:
(i)

p
N(q̂C1;� � q1;� ) = Op(1)

(ii)
p
N(q̂C1;� � q1;� ) = 1p

N

PN
i=1  1;i + op(1)

where 1p
N

PN
i=1  1;i

D! N(0; V1);

(iii)V1 = E[ 21] = E

�
V [g1;�� (Y )jX;T=1]

p(X) + E2[g1;�� (Y )jX;T = 1]
�

Proof : De�ning ~q1;� = ~u=
p
N + q1;� , by Lemma 6 we have:

p
N jq̂C1;� � ~q1;� j =j

p
N(q̂C1;� � q1;� )�

p
N(~qC1;� � q1;� )j

�jû� ~uj
=op(1)

(55)

That is, q̂C1;� is asymptotically equivalent to ~q1;� and Theorem 2 follows immediately by
Lemma 5. �

The same result obtained for q1;� could have been obtained analogously for q0;� . In par-
ticular, with the same set of assumptions used in Theorem 2, it is possible to derive an as-
ymptotic linear in�uence function for q̂C0;� ,  0, which is analogous to  1. In fact,  0;i =
1�Ti

1�p(Xi)(g0;�� (Yi) � E[g0;�� (Y ) jXi; T = 0]) + E[g0;�� (Y ) jXi; T = 0].

A consequence of Theorem 2 is that �̂C
� , which is equal to the di¤erence between q̂

C
1;� and

q̂C0;� : (i) will also be consistent, (ii) will have an asymptotically linear in�uence function and,
(iii) will be asymptotically normal:
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Theorem 3 : (Asymptotic Properties of �̂C
� ): Under Assumptions 1, 2, 3 and 4:

(i) �̂C
� ���

P! 0
(ii)

p
N(�̂C

� ��� ) =
1p
N

PN
i=1  i + op(1)

(iii)
p
N(�̂C

� ��� )
D! N(0; V� )

where
 i =  1;i �  0;i
and

V�� = E

�
V [g1;�� (Y )jX;T=1]

p(X) +
V [g0;�� (Y )jX;T=0]

1�p(X) + (E[g1;�� (Y )jX;T = 1] � E[g0;�� (Y )jX;T =

0])2
�

Proof: Omitted.
Theorem 3 shows that besides �̂C

� being root-N consistent and asymptotically linear, it is
e¢ cient, as it achieves the semiparametric lower bound for �� .

Estimation of the QTET parameter, �� jT=1, will yield a similar result, which could have
been obtained using analogous steps to those used for the OQTE parameter, �� , to get results
similar to Theorem 3.

6 Empirical Application

In this section I consider one empirical application for the QTE estimators proposed in the
previous sections. This application uses the job training program data set �rst analyzed by
LaLonde (1986) and later by many others, including Heckman and Hotz (1989), Dehejia and
Wahba (1999), Smith and Todd (2001) and Abadie and Imbens (2002).

The original data set from the �National Supported Work Program� (NSW) is well de-
scribed in LaLonde (1986). The program was designed as an experiment as applicants were
randomly assigned into treatment. The treatment was work experience in a wide range of
possible activities, like learning to operating a restaurant or a child care center, for a period
not exceeding twelve months. Eligible participants were targeted from recipients of AFDC,
former addicts, former o¤enders and young school dropouts. The NSW data set consists of
information on earnings and employment (outcome variables); whether treated or not; and
background characteristics, such as education, ethnicity, age, and employment variables before
treatment. LaLonde uses this experimental data set as a benchmark for comparisons with the
case in which control samples come from non-experimental data sets, as for example, control
samples based on Panel Study of Income Dynamics (PSID) and on Westat�s Matched Current
Population Survey-Social Security Administration File (CPS-SSA). I use only a subsample from
the PSID, which corresponds the subsample termed �PSID-1�by Dehejia and Wahba (1999).
Summary statistics for the two data sets are presented in Table 1. As this table reveals, the
non-experimental control group is essentially di¤erent from the treated group, which leads us
to turn the attention to the parameters of the treatment e¤ect on the treated. In what follows
here, the outcome variable is earnings in 1978.19 As in Dehejia and Wahba (1999) I consider
male workers only.

LaLonde �nds that non-experimental control samples are poor substitutes for experimental
data. Some reasons for those �ndings are described in the survey paper by Heckman, LaLonde
19Earnings are measured in 1982 US Dollars.
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and Smith (2000) and explored subsequently by Smith and Todd (2001). Three reasons that
do not depend on the estimating procedures but on the data quality of the non-experimental
data set are the following. A �rst reason relies on the fact that the non-experimental data set is
not of the same type of the NSW, which implies that same variables are obtained from distinct
questions and questionnaires. A second reason is the fact that comparisons groups obtained
from surveys that do not cover only the original local labor market where the program took
place should not be used to assess the impact of the program on that speci�c labor market.
A third reason is that both data sets must have a su¢ cient number of relevant variables that
explain the participation decision, which might not necessarily be the case for the NSW data
set.

The choice of the estimation procedure also contributed for LaLonde�s �ndings on the per-
formance of comparisons using non-experimental samples. Dehejia and Wahba (1999) used the
same data set as LaLonde (1986) and reached a di¤erent conclusion than LaLonde did. A �rst
reason for the di¤erence in conclusions come from the choice of which pre-program variables to
include.20 Another important di¤erence relies on the parametric nature of LaLonde�s analysis
using non-experimental control groups. While LaLonde estimates parametric wage regressions
for treatment and control groups which are intrinsically di¤erent from each other, Dehejia and
Wahba use a more �exible methodology. Their methods involve considering di¤erentially the
control units based on some closeness measure of their observable characteristics to character-
istics of the treatment group.

In Dehejia and Wahba�s estimation of the ATE on the treated, they estimate the propensity
score in a �rst step using logistic regressions and propose several ways of using it to control
for the selection problem. One of these methods, reweighing using the estimated p-score, uses
exactly the weights described by Equation (24), !̂C1;i jT=1 and !̂

C
0;i jT=1.

One data set Dehejia and Wahba use is a subset of 185 treated units and 2490 control
observations from the PSID.21 Dehejia and Wahba estimate the p-score using logistic regression.
The speci�cation of the logit model is an issue in their paper, and it varies for each control
sample, because they are trying to �nd a speci�cation that best �balances� each covariate
between treated and control groups. Next, they compute the average treatment e¤ect on the
treated, which is equal to

PN
i=1(!̂

C
1;i jT=1� !̂

C
0;i jT=1)Yi. For these speci�c treatment and control

groups they �nd an average treatment e¤ect on the treated of US$ 1129.22 This is lower than
the unadjusted experimental treatment e¤ect of US$1794, but larger than the initial numbers
LaLonde computed using the non-experimental data.23

Using the same data, I analyze the treatment and control subsets to generate estimates of
the QTET for each percentile. I also perform an �experimental� QTE estimation, which is
just the di¤erence between the quantiles of the treated and the experimental controls, without
any weighting. My results are presented in Table 2 and in Figures 1 to 5.24 I �nd that using
experimental controls, treatment e¤ects tend to be more homogenous than in the observational

20Dehejia and Wahba included information on previous two years earnings, what reduced the treated sample
in about 40%. See Dehejia and Wahba (1999) and Smith and Todd (2001).
21As mentioned earlier this corresponds to the control sample labelled by LaLonde (1986) and Dehejia and

Wahba (1999) as PSID-1, as they constructed more than one control group based on PSID.
22 I replicated their calculations using the same p-score speci�cation and got a slightly di¤erent number,

US$1120.
23The unadjusted for covariates treatment e¤ect was computed using the experimental control sample of size

260. It is a simple di¤erence in means between treated and control groups.
24 In Table 2 and in Figures 3 and 5, the standard errors were computed by 100 bootstrap replications.
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setting. With a non-experimental control sample, treatment e¤ects seem to be above the
median until almost the upper end of the distribution. At the extreme upper quantiles, the
very high earnings of the control sample induce a negative e¤ect. Despite the fact that the
counterfactual c.d.f. of the control group introduces a heterogeneity in e¤ects not seen by using
the experimental control, the di¤erence between the two lies around zero, as it is shown by
Figure 5.

An important feature of the estimated counterfactual distribution is that there are some
discrete jumps in the c.d.f., as some points had probability mass. A closer look at the data
reveals that these points correspond to the observations from the non-experimental control
sample that have the largest values of the estimated propensity-score and, therefore, the highest
weight values. These �leverage points� are important in the sense that their large weights
compensate the greater number of comparable treated individuals. For example, there is only
one individual in the non-experimental control group that reported earnings of US$2305 but
his estimated p-score is larger than .98, what leads to a weight (.41) more than 600 times larger
than the average weight (.0006) of the control group.

To assess the importance of the weights in the described method of �nding the counterfactual
distributions, consider a very simple example, in which we have just two data points, the
�rst one with an outcome equals to 1 and a weight equals to 10; and a second point with
10 as outcome and 1 as weight. For this simple example, the function to be minimized is
10(1� q)(� � 1Ifq � 1g)+ (10� q)(� � 1Ifq � 10g). We can check that the value of the function
at q = 1 is smaller than its value at q = 10 for all � < 90=99. This example, although very
simpli�ed, helps explaining the presence of jumps in the estimated counterfactual distribution.

Another interesting result is that the value I �nd for the median treatment e¤ect using the
non-experimental data is US$1927, which is relatively close to the estimated experimental mean
e¤ect of US$1794.

7 Conclusion

This paper has shown how to estimate the quantile treatment e¤ects in three di¤erent ways,
using a two-step procedure. The estimator that (in the �rst step) involves only estimation of the
propensity score is shown to be root-N consistent and asymptotically normal. I also calculated
the semiparametric e¢ ciency bound and proved that this quantile treatment e¤ects estimator
achieves it.

The empirical application was designed to show how to apply the estimator and how it di¤ers
from the usual average treatment e¤ects estimator. In this particular example, estimation of
the quantiles of the potential outcomes revealed the presence of heterogenous impacts of the
treatment. This heterogeneity could never be captured by the estimator of average treatment
e¤ects.

A natural extension to this paper would be the computation and estimation of inequality
measures for the potential outcomes of being treated and not being treated. Several relevant
inequality measures are of interest in the applied literature. The framework developed here could
be extended to estimate and predict the response of such inequality measures to a treatment.
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APPENDIX I: Proofs

Proof of Lemma 1:
Starting from the de�nition of the � -quantile of Y (1) I show how to express q1;� in terms of

the observed data (Y; T;X):

� = Pr[Y (1) � q1;� ]

= E[Pr[Y (1) � q1;� jX]]
= E[Pr[Y (1) � q1;� jX;T = 1]]

(Q1A) = E[Pr[Y � q1;� jX;T = 1]]
= E[E[T 1IfY � q1;�gjX;T = 1]]

(Q1B) = E

�
E[T 1IfY � q1;�gjX]

p(X)

�
(Q1C) = E

�
T 1IfY � q1;�g

p(X)

�
The �rst equality follows from the de�nition of q1;� and from Assumption 2. The second

is an application of the law of iterated expectations. The third equality follows from the
ignorability assumption (Assumption 1). The fourth results from the de�nition of Y , Y =
T Y (1)+ (1�T )Y (0). The �fth equality comes from E[1IfAg] = Pr[A] (where A is some event)
and from the fact that the expectation is conditional on T = 1. The sixth is a consequence from
E[Z jX] = p(X)E[Z jX;T = 1]+ (1� p(X))E[Z jX;T = 0], where Z is some random variable.
Finally, the last equality is a backward application of the law of iterated expectations.

An analogous result for q0;� could have been derived following essentially the same steps as
above. �
Proof of Lemma 2:
For q1;� jT=1 :

� = Pr[Y (1) � q1;� jT=1jT = 1]

=
Pr[Y (1) � q1;� jT=1; T = 1]

p

= E

�
Pr[Y (1) � q1;� jT=1; T = 1 jX]

p

�
= E

�
Pr[Y � q1;� jT=1; T = 1 jX]

p

�
(QT1A) = E

�
p(X) Pr[Y � q1;� jT=1jX;T = 1]

p

�
= E

�
p(X)E[T 1IfY � q1;� jT=1gjX;T = 1]

p

�
(QT1B) = E

�
E[T 1IfY � q1;� jT=1gjX]

p

�
(QT1C) = E

�
T 1IfY � q1;� jT=1g

p

�
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The �rst equality follows from the de�nition of q1;� jT=1 and from Assumption 2. The
second is an application of the Bayes�rule. The third equality follows from an application of
the law of iterated expectations. The fourth results from Y = T Y (1) + (1� T )Y (0). The �fth
equality comes from another application of the Bayes�rule. Sixth equality is a consequence from
the fact that the expectation is conditional on T = 1. Seventh uses the relation E[Z jX] =
p(X)E[Z jX;T = 1] + (1 � p(X))E[Z jX;T = 0], where Z is some random variable. Finally,
the last equality is a backward application of the law of iterated expectations.
For q0;� jT=1 :

� = Pr[Y (0) � q0;� jT=1jT = 1]

=
Pr[Y (0) � q0;� jT=1; T = 1]

p

= E

�
Pr[Y (0) � q0;� jT=1; T = 1 jX]

p

�
= E

�
p(X) Pr[Y (0) � q0;� jT=1jX;T = 1]

p

�
= E

�
p(X) Pr[Y (0) � q0;� jT=1jX;T = 0]

p

�
(QT0A) = E

�
p(X) Pr[Y � q0;� jT=1jX;T = 0]

p

�
= E

�
p(X)E[(1� T )1IfY � q0;� jT=1gjX;T = 0]

p

�
(QT0B) = E

�
p(X)

(1� p(X))pE[(1� T )1IfY � q0;� jT=1gjX]
�

(QT0C) = E

�
p(X)

(1� p(X))p(1� T )1IfY � q0;� jT=1g
�

Equalities 1 to 3 hold by the same reasons equalities 1-3 hold for the q1;� jT=1 case. The
fourth equality comes from an application of the Bayes�rule. The �fth equality follows from
Assumption 1. Sixth results from Y = T Y (1)+(1�T )Y (0). Seventh equality is a consequence
from the fact that the expectation is conditional on T = 0. Eighth and ninth equalities hold by
the same reasons the last two equalities for the q1;� jT=1 case hold. �
Proof of Theorem 1:

This proof is an extension to the quantile case of the proofs by Hahn (1998) and by HIR
for the mean case. Both references use the machinery presented by Bickel, Klassen, Ritov, and
Wellner (1993), Newey (1990) and Newey (1994). Start de�ning the densities, with respect
to some �-�nite measure, of (Y (1); Y (0); T;X) and of the observed data (Y; T;X). Under
Assumption 1, both densities represent the same statistical model and are, therefore, equivalent.
These densities can be written as:

'(y(1); y(0); t; x) = f(y(1); y(0) jx)p(x)t(1� p(x))1�tf(x):

and

�(y; t; x) = [f1(y jx)p(x)]t[f0(y jx)(1� p(x))]1�tf(x);
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where f1(y jx) =
R
f(y; z jx)dz and f0(y jx) =

R
f(z; y jx)dz.

Working with the density of observed data, consider the regular parametric submodel in-
dexed by �, a �nite dimensional vector:

�(y; t; x j �) = [f1(y jx; �)p(x j �)]t[f0(y jx; �)(1� p(x j �))]1�tf(x j �);

By a normalization argument, let �(y; t; x) = �(y; t; x j �0).
The score of a parametric submodel indexed by � is given by:

s(y; t; x j �) = t s1(y jx; �) + (1� t)s0(y jx; �) +
t� p(x j �)

p(x j �)(1� p(x j �))p
0(x j �) + sx(x j �)

where, for j = 0; 1:

sj(y jx; �) =
@

@�
log fj(y jx; �)

p0(x j �) = @

@�
p(x j �)

and

sx(x j �) =
@

@�
log f(x j �):

Again I normalize: s(y; t; x) = s(y; t; x j �0).
In order to �nd the e¢ cient in�uence functions of the parameters of interest, �� (�) and

�� jT=1(�), I need �rst to de�ne the tangent space of this statistical model. This will be the
set S of all possible score functions, and it is de�ned as:

S =
�
S : R � f0; 1g � X ! R

���� S(y; t; x) = t s1(y jx) + (1� t)s0(y jx) + a(x)(t� p(x)) + sx(x);

and E[sj(Y jX) jX = x; T = j] = E[sx(X)] = 0; 8x and j = 0; 1

�
where a(x) is some square-integrable measurable function of x.

Next I show that both �� (�) and �� jT=1(�) are pathwise di¤erentiable, that is, I show
that for each one the derivative with respect to � evaluated at �0 is equal to the expectation
of the product of the score s(Y; T;X) and the respective in�uence functions  �� (Y; T;X) and
 �� jT=1(Y; T;X) respectively.

After I show pathwise di¤erentiability, I �nd the projection of the in�uence function on the
set of scores. That projection is often called the e¢ cient in�uence function. If an in�uence
function belongs to the set S, then its projection onto S is the original in�uence function itself.
Therefore, the goal is to �nd an in�uence function that already belongs to the set of scores. A
function that is in the set of the scores must be written as:

 = T c1(Y; X) + (1� T )c0(Y; X) + a(X)(T � p(X)) + cx(X);

where E[cj(Y; X) jX = x; T = j] = E[cx(X)] = 0; 8x and j = 0; 1.
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Starting with q1;� , the �rst part of the parameter �� . For the parametric submodel indexed
by �, we have for all �:

0 =

ZZ
(1Ify � q1;� (�)g � �)f1(y jx; �)f(x j �)dydx (I-1)

Thus, using the normalization q1;� = q1;� (�0), and by an application of Leibniz�s rule we
have:

0 =f1(q1;� )
@q1;� (�0)

@�
+

ZZ
(1Ify � q1;�g � �)s1(y jx)f1(y jx)f(x)dydx

+

ZZ
(1Ify � q1;�g � �)sx(x)f1(y jx)f(x)dydx

(I-2)

Note that:

ZZ
s1(y jx)f1(y jx)f(x)dydx = 0 (I-3)ZZ

sx(x)f1(y jx)f(x)dydx =
Z
sx(x)f(x)dx = 0 (I-4)

Hence the derivative of q1;� (�) evaluated at �0 is equal to:

@q1;� (�0)

@�
= �

RR
1Ify � q1;�gs1(y jx)f1(y jx)f(x)dydx

f1(q1;� )
�
RR
1Ify � q1;�gsx(x)f1(y jx)f(x)dydx

f1(q1;� )
(I-5)

After similar calculations for q0;� , we can express the derivative of �� (�) evaluated at �0 as:

@�� (�0)

@�
= �

RR
1Ify � q1;�gs1(y jx)f1(y jx)f(x)dydx

f1(q1;� )
+

RR
1Ify � q0;�gs0(y jx)f0(y jx)f(x)dydx

f0(q0;� )

�
RR
1Ify � q1;�gsx(x)f1(y jx)f(x)dydx

f1(q1;� )
+

RR
1Ify � q0;�gsx(x)f0(y jx)f(x)dydx

f0(q0;� )

(I-6)

The next goal is to �nd a function of (Y; T;X) such that the expectation of the product
of that function times the score is equal to Equation (I-6). A solution to this problem is the
following:

 �� (Y; T;X) =
T (g1;�� (Y )� E[g1;�� (Y ) jX;T = 1])

p(X)
� (1� T )(g0;�� (Y )� E[g0;�� (Y ) jX;T = 0])

1� p(X)
+ E[g1;�� (Y ) jX;T = 1]� E[g0;�� (Y ) jX;T = 0]

(I-7)

where the function gj;�� was de�ned in Equation (15).
Note however that this in�uence function belongs to the set of the scores. In order to check

that, we need only to verify that the following three equalities hold:

30



E

�
g1;�� (Y )� E[g1;�� (Y ) jX;T = 1]

p(X)

����X;T = 1� = 0 (I-8)

E

�
g0;�� (Y )� E[g0;�� (Y ) jX;T = 0]

1� p(X)

����X;T = 0� = 0 (I-9)

E

�
E[g1;�� (Y ) jX;T = 1]� E[g0;�� (Y ) jX;T = 0]

�
= 0 (I-10)

Equations (I-8) and (I-9) hold by inspection. By the de�nition of gj;�� , E[gj;�� (Y ) jX;T =
j] = 0, so Equation (I-10) also holds. Hence,  �� is the e¢ cient in�uence function and has
expected value equal to zero, since it is in the set of scores. Thus its variance is equal to
E[ 2�� (Y; T;X)], which is the semiparametric e¢ ciency bound for �� , V�� .

Now we do the same for �� jT=1. For a parametric submodel indexed by �, we have:

0 =

ZZ
p(x j �)R

p(x j �)f(x j �)dx(1Ify � q1;� jT=1(�)g � �)f1(y jx; �)f(x j �)dydx (I-11)

Again I normalize: q1;� jT=1 = q1;� jT=1(�0). The derivative evaluated at �0 is equal to:

@q1;� jT=1(�0)

@�
= � 1

f1 jT=1(q1;� jT=1)

�ZZ
1Ify � q1;� jT=1gp(x)s1(y jx)f1(y jx)f(x)dydx

+

Z
(E[1Ify � q1;� jT=1g jX = x]� �)p0(x)f1(y jx)f(x)dydx

+

Z
(E[1Ify � q1;� jT=1g jX = x]� �)p(x)sx(x)f1(y jx)f(x)dydx

�
(I-12)

As the same sort of calculations are true for q0;� jT=1, we can express the derivative of
�� jT=1(�) evaluated at �0 as being:

@�� jT=1(�0)

@�
= �

RR
1Ify � q1;� jT=1gp(x)s1(y jx)f1(y jx)f(x)dydx

f1 jT=1(q1;� jT=1)

+

RR
1Ify � q0;� jT=1gp(x)s0(y jx)f0(y jx)f(x)dydx

f0 jT=1(q0;� jT=1)

�
R
(E[1Ify � q1;� jT=1g jX = x]� �)p0(x)f1(y jx)f(x)dydx

f1 jT=1(q1;� jT=1)

+

R
(E[1Ify � q0;� jT=1g jX = x]� �)p0(x)f0(y jx)f(x)dydx

f0 jT=1(q0;� jT=1)

�
R
(E[1Ify � q1;� jT=1g jX = x]� �)p(x)sx(x)f1(y jx)f(x)dydx

f1 jT=1(q1;� jT=1)

+

R
(E[1Ify � q0;� jT=1g jX = x]� �)p(x)sx(x)f0(y jx)f(x)dydx

f0 jT=1(q0;� jT=1)

(I-13)
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The e¢ cient in�uence function for this case is equal to:

 �� jT=1(Y; T;X) =
T (g1;�� jT=1(Y )� E[g1;�� jT=1(Y ) jX;T = 1])

p

�
(1� T )p(X)(g0;�� jT=1(Y )� E[g0;�� jT=1(Y ) jX;T = 0])

p(1� p(X))

+
(T � p(X))

p
(E[g1;�� jT=1(Y ) jX;T = 1]� E[g0;�� jT=1(Y ) jX;T = 0])

+
p(X)

p
(E[g1;�� jT=1(Y ) jX;T = 1]� E[g0;�� jT=1(Y ) jX;T = 0])

(I-14)

where the function gj;�� jT=1 was de�ned by Equation (16).
As this in�uence function is in the set of scores, its expected value is zero and its variance

is equal to E[ 2�� jT=1(Y; T;X)], which is the semiparametric e¢ ciency bound for �� jT=1,
V�� jT=1 . �
Proof of Lemma 4:

In order to prove Lemma 4, I will need �rst to decompose �N (u; p̂) = QN (u; p̂)� ~QN (u) into
three parts:

�N (u; p̂) =
�
~RN (u)� E[ ~RN (u)]

�
+ �1;N (u; p̂) + o

�
u2

N

�
(I-15)

We saw that A(Y; u) can be decomposed into two parts, D(Y )u=
p
N and R(Y; u). Notice

however, that we will be interested here in an approximation of 1
N

PN
i=1

TiD(Yi)u=
p
N

p̂(Xi)
by an

expression that does not depend on p̂(X). An approximation that is analogous to the �rst part
of the sum of Equation (44) but that uses R(Y; u) in the place of D(Y )u=

p
N is de�ned by

~RN (u) and written as:

~RN (u) =
1

N

NX
i=1

�
TiR(Yi; u)

p(Xi)
� E[R(Y; u) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
(I-16)

To proceed, I �rst show that Equation (I-15) actually holds. Then I show that N times
each one of the three parts of Equation (I-15) will converge in probability to zero for each u.

I start by summing and subtracting several terms from QN (u; p̂).
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QN (u; p̂) =
1

N

NX
i=1

�
TiA(Yi; u)

p̂(Xi)
� TiA(Yi; u)

p(Xi)
+
TiA(Yi; u)

p2(Xi)
(p̂(Xi)� p(Xi))

�
(I-17)

� 1

N

NX
i=1

�
TiA(Yi; u)

p2(Xi)
(p̂(Xi)� p(Xi))

�
+ E

�
E[A(Y; u) jX;T = 1]

p(X)
(p̂(X)� p(X))

�
(I-18)

� E
�
E[A(Y; u) jX;T = 1]

p(X)
(p̂(X)� p(X))

�
� 1

N

NX
i=1

~�(Xi; u)
Ti � pK(Xi)p

pK(Xi)(1� pK(Xi))

(I-19)

+
1

N

NX
i=1

(~�(Xi; u)� �K(Xi; u))
Ti � pK(Xi)p

pK(Xi)(1� pK(Xi))
(I-20)

+
1

N

NX
i=1

�K(Xi; u)
Ti � pK(Xi)p

pK(Xi)(1� pK(Xi))
� 1

N

NX
i=1

�(Xi; u)
Ti � p(Xi)p

p(Xi)(1� p(Xi))

(I-21)

+
1

N

NX
i=1

�
TiA(Yi; u)

p(Xi)
� E[A(Y; u) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
(I-22)

where:

~�(Xi; u) = �E
�
E[A(Y; u) jX;T = 1]

p(X)
L0(HK(X)

0~�)HK(X)
0
�
~��1

p
L0(HK(Xi)0�K)HK(Xi)

(I-23)

�K(Xi; u) = �E
�
E[A(Y; u) jX;T = 1]

p(X)
L0(HK(X)

0�K)HK(X)
0
�
��1K

p
L0(HK(Xi)0�K)HK(Xi)

(I-24)

�(Xi; u) = �E[A(Y; u) jXi; T = 1]

p
p(Xi)(1� p(Xi))

p(Xi)
(I-25)

~� =
1

N

NX
i=1

HK(Xi)HK(Xi)
0L0(HK(Xi)

0~�) (I-26)

� = E[HK(X)HK(X)
0L0(HK(X)

0�K)] (I-27)
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Thus, by Equations (37) and (44):

QN (u; p̂) =
u

N3=2

NX
i=1

�
TiD(Yi)

p(Xi)
� E[D(Y ) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
+ ~RN (u)� E[ ~RN (u)] + E[ ~RN (u)] + �1;N (u; p̂) (I-28)

(I-29)

where �1;N (u; p̂) is equal to the sum of Equations (I-17) to (I-21).
In order to decompose QN (u; p̂) into the sum of ~QN (u) and �N (u; p̂), from Equation (I-28)

I show that E[ ~RN (u)] = E[R(Y (1); u)] = u2

2N f1(q1;� ) + o
�
u2

N

�
. I will do more than that. In

fact, let me compute the �rst two conditional moments of A(Y (1); u) given X and its �rst two
unconditional moments.

Starting with the conditonal and the unconditional �rst moments of A(Y (1); u), respectively
E[A(Y (1); u) jX] = E[D(Y (1)) jX] up

N
+E[R(Y (1); u) jX] and E[A(Y (1); u)] = E[D(Y (1))] up

N

+ E[R(Y (1); u)], where:

E[D(Y (1)) jX] = E[1IfY (1) � q1;�g � � jX] (I-30)

and

E[D(Y (1))] =E[E[1IfY (1) � q1;�g � � jX]]
=E[1IfY (1) � q1;�g � � ]
=0

(I-31)

In order to compute E[R(Y (1); u) jX = x], I will need to do integration by parts and to use
the Mean Value Theorem:

E[R(Y (1); u) jX = x] =E

��
Y (1)�

�
q1;� +

up
N

��
1IfY (1) � q1;�g

����X = x

�
� E

��
Y (1)�

�
q1;� +

up
N

��
1IfY (1) � q1;� +

up
N
g
����X = x

�
=

Z q1;�

q1;�+u=
p
N
(y � (q1;� + u=

p
N))f1(y jx)dy

=(y � (q1;� + u=
p
N))F1(y jx)

����q1;�
q1;�+u=

p
N

+

Z q1;�+u=
p
N

q1;�

F1(y jx)dy

=� F1(q1;� jx)
up
N
+ F1(q1;� jx)

up
N
+

u2

2N
f1

�
q1;� +

u�(x; u)p
N

����x�
=
u2

2N
f1

�
q1;� +

u�(x; u)p
N

����x�
(I-32)

where u�(x; u) is some real number between 0 and u.
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Under Assumption 4, the unconditional expectation of R(Y (1); u) can be found by noticing
the following:25

����E[R(Y (1); u)]� u2

2N
f1(q1;� )

���� �E�����E[R(Y (1); u)jX]� u2

2N
f1(q1;� jX)

�����
=E

����� u22N f1

�
q1;� +

u�(x; u)p
N

����x�� u2

2N
f1(q1;� jX)

�����
� u2

2N
E[M(X)]jq � q1;� j�

=o

�
u2

N

�
(I-33)

Thus:

E[R(Y (1); u)] =
u2

2N
f1(q1;� ) + o

�
u2

N

�
(I-34)

Finally, we have:

E[A(Y (1); u) jX = x] =
up
N
E[1IfY (1) � q1;�g � � jX = x] +

u2

2N
f1(q1;� + u

�(x; u)=
p
N jx)

(I-35)
and

E[A(Y (1); u)] =
u2

2N
f1(q1;� ) + o

�
u2

N

�
(I-36)

Now I compute the conditional second moment of A(Y (1); u):

E[A2(Y (1); u) jX = x] =
u2

N
E[D2(Y (1)) jX = x] + 2

up
N
E[D(Y (1)); R(Y (1); u) jX = x]

+ E[R2(Y (1); u) jX = x]

(I-37)

where:

E[D2(Y (1)) jX = x] =

Z
(1Ify � q1;�g � �)2f1(y jx)dy (I-38)

The conditional expectation E[R2(Y (1); u) jX = x] is computed using similar steps to those
used for the computation of the �rst conditional moment of R(Y (1); u):

25Let me be clear about the notation. There are two ways that the remainder terms of some Taylor approxi-
mation go to zero. The �rst one is to say that o (aN g(u))! 0 as g(u)! 0 for some function g of u and sequence
aN . But the remainder term might go to zero even for �xed u if the sequence aN is o(1). In the above example,
aN is 1=N , which is clearly o(1), and g(u) = u2.
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E[R2(Y (1); u) jX = x] =

Z q1;�

q1;�+
up
N

�
y �

�
q1;� +

up
N

��2
1Ify � q1;�gf1(y jx)dy

�
Z q1;�

q1;�+
up
N

�
y �

�
q1;� +

up
N

��2
1Ify � q1;� +

up
N
g
�
f1(y jx)dy

(I-39)

Consider the case in which u > 0:26

E[R2(Y (1); u) jX = x] =

Z q1;�+
up
N

q1;�

�
y �

�
q1;� +

up
N

��2
f1(y jx)dy

=

�
y �

�
q1;� +

up
N

��2
F1(y jx)

����q1;�+ up
N

q1;�

� 2
Z q1;�+

up
N

q1;�

�
y �

�
q1;� +

up
N

��
F1(y jx)dy

=� F1(q1;� jx)
u2

N
+ 2

�
u2

2N
F1(q1;� jx) +

u3

6N3=2
f1

�
q1;� +

u��(x; u)p
N

jx
��

=
u3

3N3=2
f1

�
q1;� +

u��(x; u)p
N

jx
�

(I-40)

where u��(x; u) is some real number between 0 and u.
The cross-term E[D(Y (1))R(Y (1); u) jX = x] equals to:

E[D(Y (1))R(Y (1); u) jX = x] =

Z q1;�

q1;�+
up
N

�
y �

�
q1;� +

up
N

��
(1Ify � q1;�g � �) f1(y jx)dy

(I-41)
For u > 0:

E[D(Y (1))R(Y (1); u) jX = x] =�

Z q1;�+u=
p
N

q1;�

(y � (q1;� + u=
p
N))f1(y jx)dy

=� � E[R(Y (1); u) jX = x]

(I-42)

while for u < 0:

E[D(Y (1))R(Y (1); u) jX = x] = (1� �)E[R(Y (1); u) jX = x] (I-43)

Therefore:

E[D(Y (1))R(Y (1); u) jX = x] =
u2

2N
f1(q1;� + u

�(x; u)=
p
N jx)(1Ifu < 0g � �) (I-44)

26The u < 0 case yields the same result times (�1).
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Calculations similar to those used to �nd Equation (I-34), which are based on Assumption
4 guarantee that:

E[R2(Y (1); u)] = E[E[R2(Y (1); u) jX]] = u3

3N3=2
f1(q1;� ) + o

�
juj3

N3=2

�
= O

�
juj3

N3=2

�
(I-45)

E[D(Y (1))R(Y (1); u)] = E[E[D(Y (1))R(Y (1); u) jX]] = O

�
u2

N

�
(I-46)

Also, we know that

E[D(Y (1))2] = �(1� �) (I-47)

Therefore,

E[A2(Y (1); u) jX] = u2

N
E[D2(Y (1)) jX] + 2up

N
E[D(Y (1))R(Y (1); u) jX] + E[R2(Y (1); u) jX]

(I-48)
and

E[A2(Y (1); u)] =
u2

N
E[D2(Y (1))] +

2up
N
E[D(Y (1))R(Y (1); u)] + E[R2(Y (1); u)] (I-49)

= �(1� �)u
2

N
+O

�
u2

N

�
+O

�
juj3

N3=2

�
= O

�
u2

N

�
(I-50)

Finally, note that

E[ ~RN (u)] = E

"
1

N

NX
i=1

�
TiR(Yi; u)

p(Xi)
� E[R(Y; u) jXi; T = 1]

Ti � p(Xi)

p(Xi)

�#

= E

�
T R(Y; u)

p(X)
� E[R(Y; u) jX;T = 1]T � p(X)

p(X)

�
= E

�
E[T R(Y; u) jX;T = 1]p(X)

p(X)

� E[R(Y; u) jX;T = 1]
�
(1� p(X))p(X)

p(X)
� (p(X)(1� p(X))

p(X)

��
= E[E[R(Y (1); u) jX]]
= E[R(Y (1); u)]

=
u2

2N
f1(q1;� ) + o

�
u2

N

�
(I-51)

Hence Equation (I-15) holds by Equations (44), (I-28) and (I-51). Therefore N �N (u; p̂) is
a sum of three components:

N �N (u; p̂) = N( ~RN (u)� E[ ~RN (u)]) +N �1;N (u; p̂) +N o

�
u2

N

�
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I now show that each one of these components goes to zero in probability for each u.
Start with the last term, N o(u2=N). This is goes to zero for each u by de�nition.
Now the �rst part of the sum: N( ~RN (u) � E[ ~RN (u)]). This is mean zero and its variance

can be computed by �rst calculating E[ ~R2N (u)]:

E[ ~R2N (u)] =
1

N
E

��
T R(Y; u)

p(X)
� E[R(Y; u) jX;T = 1]T � p(Xi)

p(X)

�2 �
=
1

N
E

�
T 2R2(Y; u)

p2(X)
+ E2[R(Y; u) jX;T = 1]

�
T � p(X)
p(X)

�2
� 2

�
T R(Y; u)(T � p(X))E[R(Y; u) jX;T = 1]

p2(X)

��
=
1

N
E

�
E[R2(Y (1); u) jX]

p(X)
+ E2[R(Y (1); u) jX]

�
1� p(X)
p(X)

�
� 2E2[R(Y (1); u) jX]

�
1� p(X)
p(X)

��
=
1

N
E

�
V [R(Y (1); u) jX]

p(X)
+ E2[R(Y (1); u) jX]

�
=
1

N
E

�
E[R2(Y (1); u) jX]

p(X)
� 1� p(X)

p(X)
E2[R(Y (1); u) jX]

�
(I-52)

Hence, the expected ~RN (u) squared is equal to the sum of two terms, 1NE
�
E[R2(Y (1);u) jX]

p(X)

�
and 1

NE

��
p(X)�1
p(X)

�
E2[R(Y (1); u) jX]

�
. The �rst one is equal to:

1

N
E

�
E[R2(Y (1); u) jX]

p(X)

�
=
1

N
E

�
1

p(X)

�
1

3N3=2
f1(q1;� + u

��(x; u)=
p
N jX)u3

��
� 1

cN
O

�
juj3

N3=2

�
=O

�
juj3

N5=2

� (I-53)

whereas the second term is bounded by:
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1� c
cN

� ����E[E2[R(Y (1); u) jX]]� u4

4N2
E[f21 (q1;� jX)]

����
� C

N
E

����� u44N2
E[f21 (q1;� + u

�(X; u)=
p
N jX)]� u4

4N2
E[f21 (q1;� jX)]

�����
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C

N

u4

4N2
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p
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� C u4

4N2
E

�
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u�(X; u)p
N
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� C u4

4N2
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p
N j2� + 2f1(q1;� )E[M(X)]ju=

p
N j�
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�
u4
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�

(I-54)

for some positive constants c and C. Thus, 1
NE[E

2[R(Y (1); u) jX]] = O(u4=N2), and �nally:

E[ ~R2N (u)] = O

�
juj3

N5=2

�
(I-55)

Therefore for each u:

V ar
h
N( ~RN (u)� E[ ~RN (u)])

i
= N2O

�
juj3

N5=2

�
= O(juj3=

p
N)

= O(juj3 o(1))
= o(juj3) (I-56)

Then we can �nally conclude that for each u, N( ~RN (u=
p
N)�E[ ~RN (u=

p
N)]) goes to zero

in probability.

The missing part to prove Lemma 4 is to prove that for each u, N �1;N (u; p̂)
P! 0.

HIR have computed their �rst step in the exact same way I do. Also, in their Theorem 1
they have a remainder term to bound very similar to N �1;N (u; p̂). The main di¤erence is that
their terms do not depend on u, as instead of A(Y; u) they have Y=

p
N , where E[Y 2] is assumed

to be �nite. However, it is possible to bound N�1;N (u; p̂) using exactly the same arguments
they used, being just aware that we will have an extra term which will re�ect the dependence
on u.

I will show how the analogy between N�1;N (u; p̂) and the remainder term in HIR can be
drawn. Consider for instance N times the absolute value of Equation (I-17):
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���� NX
i=1

TiA(Yi; u)

p̂(Xi)
� TiA(Yi; u)

p(Xi)
+
TiA(Yi; u)

p2(Xi)
(p̂(Xi)� p(Xi))

���� (I-57)

�
NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(p̂(Xi)� p(Xi))

2

���� (I-58)

=

NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(p̂(Xi)� pK(Xi))

2

���� (I-59)

+

NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(pK(Xi)� p(Xi))

2

���� (I-60)

+ 2

NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(p̂(Xi)� pK(Xi))(pK(Xi)� p(Xi))

���� (I-61)

(I-62)

Let me start working with Equation (I-59):

NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(p̂(Xi)� pK(Xi))

2

���� = NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)

�
L0(HK(Xi)

0~�)HK(Xi)
0(�̂ � �K)

�2 ����
� ( inf

x2X
p(x))�2( inf

x2X
p̂(x))�1

NX
i=1

����TiA(Yi; u) �L0(HK(Xi)
0~�)HK(Xi)

0(�̂ � �K)
�2 ����

� ( inf
x2X

p(x))�2( inf
x2X

p̂(x))�1
1

16
�2(N) jj�̂ � �K jj2

NX
i=1

jA(Yi(1); u)j

= O(1)Op(1)O(K
2)Op(K=N)Op(juj)

= Op

�
K3 juj
N

�
= Op

�
N3��1 juj

�
= Op (o(1) juj)
= op(juj) (I-63)

In the �rst line of the above expression I used the Mean Value Theorem.27. In the third line
I used a property of the logistic function and Newey�s result presented in Equation (28). In the
fourth line I used the common support assumption, results (II) and (III) of Lemma 3 and the
Markov inequality with the previous result on the order of E[A2(Y (1); u)]. Finally, in the sixth
line I used Assumption 3.

The same logic could have been applied to Equations (I-60) and (I-61) yielding respectively:

27Note that for ~� 2 [�̂; �K ], L0(HK(x)
0~�) > 0 where L0(z) = dL(z)

dz
= L(z)(1 � L(z)), yielding then that

supz L
0(z) = 1=4. Also note that L00(z) = L0(z)(1� 2L(z)).
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NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(pK(Xi)� p(Xi))

2

���� = O(1)Op(1)Op(juj)O(K2�2 s
r )

= Op(jujN (2�2 s
r
)�)

= op(juj) (I-64)

and

2
NX
i=1

���� TiA(Yi; u)p2(Xi)p̂(Xi)
(p̂(Xi)� pK(Xi))(pK(Xi)� p(Xi))

����
= O(1)Op(1)Op(juj)O(K1� s

r )Op(K
3
2 =
p
N)

= Op

 
juj K

(5=2�s=r)�
p
N

!
= op(juj) (I-65)

Now note that these bounds are similar to those computed by HIR for the same sort of
approximation. The only di¤erence is that here we have the extra term juj. However, for a
�xed u, the rate of convergence remains the same one they computed, op(1).

Computation of bounds for Equations (I-18)-(I-21) follows again the same lines as in HIR.
Therefore, and for reasons of space, a detailed proof that shows that each one of those equations
times N is op(1) for �xed u is omitted. Note only however, that in the process of �nding bounds
for all of those four equations, we will face expressions depending either on

PN
i=1 jTiA(Yi; u)j

or on E[A(Y (1); u) jX]. For the former I have already computed a probabilistic bound. But
the latter, by the Markov inequality, is a random variable such that:

���� NX
i=1

E[A(Y (1); u) jXi]

���� = Op

�p
N E[E2[A(Y (1); u) jX]]

�
= Op

 s
N(

u2

N
O(1) +

u4

N2
O

�
u4

N2

�
+
juj3
N3=2

O(1)O(u2=N)

!
= Op(juj+ u4N�7=2 + juj7=2N�2)

= Op(juj) (I-66)

Hence, as claimed earlier, the proof that N �1;N (u; p̂) = op(juj), will follow the same steps as
in the proof by HIR. This happens because when they have

PN
i=1 jYi(1)=

p
N j = Op(1), I havePN

i=1 jA(Yi(1); u)j = Op(juj); and when they have that���PN
i=1E[Y (1)=

p
N jXi]

��� = Op(1), I have
���PN

i=1E[A(Y (1); u) jXi]
��� = Op(juj). Thus, the only

di¤erence from their approach to mine is the juj term.
Finally, we conclude that for each �xed u, N �N (u; p̂) goes to zero in probability.�

Proof of Lemma 5:
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From Equation (51), for result (i) I need to show that 1p
N

PN
i=1  1;i is Op(1). This will

follow by the Markov inequality:

Pr

" ����� 1pN
NX
i=1

 1;i

����� > M

#
<
E[ 21;i]

M2
(I-67)

Choosing M to satisfy
E[ 21;i]

M2 < �, where � is a small enough positive constant, there will
exist a sample size N� such that for all N > N�, Equation (I-67) will be satis�ed.

Result (ii) follows by a Central Limit Theorem; while (iii) follows by noting that  1 is
the e¢ cient in�uence function of q1;� , and therefore, its expected square is E[ 21] = V1, the
semiparametric e¢ ciency bound for q1;� .28 �
Proof of Lemma 6:

First notice that GN (q; p̂) = 1
N

PN
i=1

Ti
p̂(Xi)

�� (Yi � q) is convex in q with probability ap-
proaching one, as it is a sum of zeros and convex functions in q. As a result, the transformed
objective function, QN (u; p̂) will be convex in u and the following random function must be
convex in u:

BN (u; p̂) = N QN (u; p̂)�
NX
i=1

up
N

�
TiDi

p(Xi)
� E[D jXi; T = 1]

Ti � p(Xi)

p(Xi)

�
=
1

2
f1(q1;� )u

2 +N �N (u; p̂) (I-68)

Let me call B(u) the quadratic 1
2f1(q1;� )u

2.
Now, by convexity of BN (u; p̂) for any u such that ju� ~uj = a > �:

(1� �

a
)BN (~u; p̂) +

�

a
BN (u; p̂) � BN (~u+ �; p̂) (I-69)

By Equation (I-68), this can be rewritten as:

�

a
(BN (u; p̂)�BN (~u; p̂)) �B(~u+ �) +N �N (~u+ �; p̂)� (B(~u) +N �N (~u; p̂))

�� 2 sup
ju�~uj��

jN �N (u; p̂)j + inf
ju�~uj=�

jB(u)�B(~u)j
(I-70)

Now, note that

inf
ju�~uj=�

jB(u)�B(~u)j = 1

2
f1(q1;� )�

2 (I-71)

Thus, for all u outside the �-interval around ~u, if:

�2 sup
ju�~uj��

jN �N (u; p̂)j +
1

2
f1(q1;� )�

2 > 0 (I-72)

then û, the minimizer of N QN (u; p̂), will be inside the �-interval around ~u. Hence, I need to
show that with probability approaching one, Equation (I-72) holds.

28See the proof of the semiparametric e¢ ciency bound in this appendix.
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By the Hjört and Pollard�s (1993) version of the Convexity Lemma, supu2KjN �N (u; p̂)j =
op(1) for each compact subset K of R. De�ne:

K � = fu 2 R; ju� ~uj � �g (I-73)

Because K � is a bounded and closed subset of R, it is compact. Therefore:

sup
u2K �

jN �N (u; p̂)j = op(1) (I-74)

Thus, for each � > 0:

Pr[ sup
u2K �

jN �N (u; p̂)j �
1

4
f1(q1;� )�

2] = o(1) (I-75)

Hence with probability approaching one, for each � > 0, Equation (I-72) holds, which means
that û, the minimizer of N QN (u; p̂), will be inside the �-interval around ~u with probability
approaching one:

jû� ~uj = op(1) (I-76)

�
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APPENDIX II

For the set A, it is necessary to estimate in the �rst step the conditional expectation,mA
1 (x j q) =

E[1IfY � qg�� jX = x; T = 1], by m̂A
1 (x j q) = Ê[1IfY � qg�� jX = x; T = 1]. This estimation

problem can be written as:

m̂A
1 (x j q) =Ê[1IfY � qg � � jX = x; T = 1]

=Ê[T 1IfY � qg � � jX = x; T = 1]

=

NX
i=1

�̂Ai (x)(1IfYi � qg � �)

where �̂Ai is a weight that is chosen according to the choice of non-parametric estimation
technique. For example, suppose that for the non-parametric estimation we use a smooth-
ing function Kh(�), which is equal to h�kK(�=h) and where K(�) is a kernel function and h is a
bandwidth. Then:

�̂Ai =
Kh(Xi � x)TiPN
l=1Kh(Xl � x)Tl

The unconditional expectation function, E[mA
1 (X j q)], can be estimated by 1

N

PN
j=1 m̂

A
1 (Xj j q).

But this expression can be rewritten as:

1

N

NX
j=1

m̂A
1 (Xj j q) =

1

N

NX
j=1

NX
i=1

�̂Ai (Xj)(1IfYi � qg � �)

=
1

N

NX
i=1

NX
j=1

�̂Ai (Xj)(1IfYi � qg � �)

Now, de�ne !̂A1;i as being equal to
1
N

PN
j=1 �̂

A
i (Xj). Then:

1

N

NX
j=1

m̂A
1 (Xj j q) =

NX
i=1

!̂A1;i(1IfYi � qg � �)

and:

1

N

NX
j=1

m̂A
1 (Xj j q̂A1;� ) =

NX
i=1

!̂A1;i(1IfYi � q̂A1;�g � �)

=
1

N

NX
i=1

Ê[1IfY � q̂A1;�g � � jXi; T = 1]

Thus, �nally:

q̂A1;� = argminq

NX
i=1

!̂A1;i�� (Yi � q) (II-1)
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In the identi�cation condition given by B, the weight associated with q̂B1;� , !̂
B
1;i, is equal to

1
N

PN
j=1 �̂

B
i (Xj). For the example where the conditional expectation is estimated by a kernel

K(�) with bandwidth h:

�̂Bi =
Kh(Xi � x)TiPN

l=1Kh(Xl � x)p̂(x)
As an interesting by-product, note that if the kernel function and the bandwidth are exactly

the same for the cases A and B, then the weights !̂A1;i and !̂
B
1;i must be equal. Also note that

these weights, !̂A1;i and !̂
B
1;i, sum to 1 over i, regardless of whether they are estimated using

kernel smoothing or using some other non-parametric estimation technique.
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Figure 1: LaLonde/Dehejia and Wahba Experimental Data Set (Treatment: solid line; Control:
dashed line)
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Figure 2: LaLonde/Dehejia and Wahba Non-Experimental Data Set (Treatment: solid line;
Counterfactual Control: dashed line; Actual Control: dotted line)

49



Figure 3: LaLonde/Dehejia and Wahba Non-Experimental Data Set
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Figure 4: LaLonde/Dehejia and Wahba Data Set (Non-experimental QTE: solid line; Experi-
mental QTE: dashed line)
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Figure 5: LaLonde/Dehejia and Wahba Data Set Non-experimental and Experimental Controls
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