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Abstract

When selection bias can purely be attributed to observables, several
estimators have been discussed in the literature to estimate the average
effect of a binary treatment or policy on a scalar outcome. Identifica-
tion typically exploits the unconfoundedness of the treatment, which is
verified if the participation status is independent of potential outcomes
conditional on observable covariates. Assuming unconfoundedness, the
average effect of the treatment can be estimated by differencing within
subpopulation averages of treated and untreated units, or by propensity
score methods under an additional condition on the support of the co-
variates exploited. The latter condition, together with unconfoundedness,
makes participation into the treatment group strongly ignorable, as de-
fined by Rosenbaum and Rubin (1983). This paper studies the impact
of covariate measurement error on commonly used evaluation methods
based on strong ignorability. An approximate expression for the measure-
ment error bias is derived, and conditions are discussed for this to be zero.
A bias correction procedure is also presented, which uses non-parametric
estimates of functionals of the distribution of observed covariates.
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1 Introduction

When evaluating the effect of a programme it is common to impose the restric-
tion that, conditional on a set of observable variables, potential outcomes and
a participation indicator are independently distributed. Under this restriction
and a support condition which together constitute the strong ignorability re-
striction of Rosenbaum and Rubin (1983), the average effect of treatment on
the treated and the average treatment effect are identified. Estimation typically
proceeds by propensity score matching or by comparing weighted averages of
outcomes for participants and nonparticipants.

In practice the conditioning variables, X, with respect to which strong ignor-
ability are maintained may be observed with error, that is, instead of realisations
of X one observes realisations of Z ≡ g(X, U) where U is a vector of measure-
ment errors. This paper explores the impact of such covariate measurement
error on commonly used programme evaluation methods such as propensity
score matching. The strategy we employ is as follows.

When the strong ignorability restriction holds there are correspondences
which identify parameters of interest (e.g. the average effect of treatment on the
treated) as functionals of the distribution of observable outcomes and covariates.
Let FY X denote this distribution. In the absence of measurement error data
are informative about FY X . A parameter θ is identified by a correspondence,
θ ´ H(FY X) and H is termed an identifying functional. Matching, and other
estimators employed in practice, θ̂, are analogue estimators obtained by applying
identifying functionals to an estimate of the distribution of observable outcomes
and covariates, that is θ̂ ≡ H(F̂Y X).

When measurement error is present data are informative about the distri-
bution of observable outcomes and measurement error contaminated covariates.
Let FY Z denote this distribution. If the presence of measurement error is ig-
nored, or not perceived, then parameters of interest are estimated using realiza-
tions of (Y, Z) as if they were realizations of (Y, X), that is θ̂ ≡ H(F̂Y Z). Under
quite weak conditions θ̂

p→ H(FY Z).
We study the properties of H(FY Z) and its relationship to H(FY X), in par-

ticular ∆ ≡ H(FY Z) − H(FY X). The value of ∆ depends on details of the
features of the distribution of Y , X and U and a case by case analysis is re-
quired if exact results are to be obtained. We are interested in the generic
impacts of measurement error and obtain information about these by consider-
ing the local effects of measurement error, that is by considering the value of ∆
when Z = g(X, σU) and σ is small.

We consider the case in which Z = X +σU and U and X are independently
distributed. Under conditions to be stated, for functionals H of interest,

H(FY Z) = H(FY X) + σ2H∗(FY X) + o(σ2)

where limσ→0(σ−2o(σ2)) = 0. The functional H∗ is obtained using the method
employed in Chesher (1991). Properties of this functional are explored to shed
light on the “first order” impact of measurement error and the way in which
this depends upon features of FY X .

Arguing as in Chesher and Schluter (2002) in the cases studied hereH∗(FY X) =
H∗(FY Z) + o(σ2) and so there is

H(FY Z) = H(FY X) + σ2H∗(FY Z) + o(σ2).
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Since data are informative about FY Z it may be possible to estimate H∗(FY Z)
and so gain a view of the likely first order effect of measurement error at con-
jectured values of the measurement error variance σ2.

The method is applied in a set of simple cases in which the exact impact of
measurement error can be calculated and the quality of the “small σ” approxi-
mation is investigated.

2 Identification of treatment effects in the ab-
sence of measurement error

Let (Y1, Y0) be the potential outcomes from participating and not participating,
respectively, and let D be the participation status. The causal effect of the
program is then defined as the difference between the two potential outcomes,
β = Y1−Y0, which is not observable since being exposed to (denied) the program
reveals Y1 (Y0) but conceals the other potential outcome (Holland, 1986).

2.1 Parameters of interest

Average effect of the treatment in the population (βp) and average effect of the
treatment on the treated (βt)

βp = EY1(Y1)− EY0(Y0),
βt = EY1|D(Y1|1)− EY0|D(Y0|1).

The latter parameter is of interest if one wishes to evaluate the effect of the
treatment on the population that is likely to take up the treatment (Heckman
et al., 1999).

2.2 Ignorable assignment

Selection bias is caused by the fact that program participants (D = 1) differ from
non-participants (D = 0) with respect to characteristics that affect potential
outcomes. It follows that, because of differences in the composition, the two
groups would not have the same outcomes even in the absence of the program
(see Heckman et al., 1999).

When differences in the composition of participants and non-participants
can purely be attributed to observable characteristics, one can control for the
selection bias by including in the model the appropriate conditioning variables.
Under these circumstances, identification of the mean impact rests on the ex-
istence of an observable vector of individual characteristics X such that strong
ignorability with respect to X (SI-X) holds true (Rosenbaum and Rubin, 1983).
This corresponds to say that the following two conditions are jointly satisfied

(Y0, Y1)⊥D|X, (1)
V ar(D|X) > 0. (2)
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According to (1), it is as if individuals were randomly assigned to the treat-
ment with a probability depending on X provided that such probability is non-
degenerate at each value of these variables.1 In a randomized experiment the
latter condition is satisfied by design, since each individual has a positive prob-
ability of being randomized into or out of the program. In the case of obser-
vational studies, the common support assumption (2) is instead required (see
Heckman et al., 1998, and Lechner, 2001).

Since units presenting the same characteristics X have a common probability
to enter the program, then an operational rule to obtain an ex post experimental-
like data set is to match participants to non-participants on such probability
(the so called propensity score), whose dimension is invariant with respect to
the dimension of X. In fact, it can be proved (Theorem 3 by Rosenbaum and
Rubin, 1983) that if SI-X is satisfied, then the treatment assignment is strongly
ignorable also given the propensity score.

In terms of distribution functions, SI-X implies

FYi|DX(yi|d, x) = FYi|X(yi|x), i = 0, 1

where d ∈ {0, 1}. Condition (1) is actually stronger than required to get iden-
tification of causal effects, since as discussed in the next section the following
mean independence condition

EYi|DX(Yi|d, x) = EYi|X(Yi|x), i = 0, 1

would be sufficient.2

2.3 Identification results

Identification results for the parameters of interest are reviewed in what follows
(see Heckman et al., 1999, and Imbens, 2004). Throughout this section, a= will
imply that SI-X (or mean independence together with the common support
condition) is required for the result to hold.

Assuming SI-X, the average effect of the treatment can be estimated by
matching, differencing within subpopulation averages of treated and untreated
units, or by propensity score methods. It is shown below that the asymptotic
behavior of these estimators can be studied by looking at the quantities (3) and
(4) if the target parameter is βp, or (5) if the target parameter is βt.

1Assumption (1) is often referred to in the literature as unconfoundedness of the treatment
given X.

2In practise, seldom a convincing case is made for mean independence without the case
being equally strong for (1). Moreover, under mean independence one can not identify average
treatment effects on transformations of the original outcome.
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2.3.1 Effect on the population

Let Y = Y0 + Dβ be the observed outcome and let eX(x) = ED|X(D|x). It
follows that

EY1(Y1) =
∫

EY1|X(Y1|x)fX(x)dx,

a=
∫

EY1|DX(Y1|1, x)fX(x)dx, (3)

=
∫

EY D|X(Y D|x)
eX(x)

fX(x)dx,

and

EY0(Y0) =
∫

EY0|X(Y0|x)fX(x)dx,

a=
∫

EY0|DX(Y0|0, x)fX(x)dx, (4)

=
∫

EY D|X(Y [1−D]|x)
1− eX(x)

fX(x)dx,

with the last equalities of each expression following from

EY D|X(Y D|x) = EY1|DX(Y1|1, x)eX(x),
EY D|X(Y [1−D]|x) = EY0|DX(Y0|0, x)[1− eX(x)].

The quantities above can be consistently estimated by their sample analogues
(see Horvitz and Thompson, 1952, Rosenbaum, 1987, Hahn, 1998, and Hirano
et al., 2003)

ÊY1(Y1) =
1
n

n∑

i=1

di

eX(xi)
yi,

ÊY0(Y0) =
1
n

n∑

i=1

1− di

1− eX(xi)
yi,

so that

β̂p = ÊY1(Y1)− ÊY0(Y0).

The quantity eX(x) represents the conditional probability of participation given
the observed characteristics X, which is often referred to in the literature as
the propensity score (Rosenbaum and Rubin, 1983). The interpretation of the
weighting procedure is appealing: participants and non-participants are given
more (less) weight depending on whether they are under (over) represented in
the population with respect to their characteristics X. Regardless of the number
of X variables, weights can be defined using the propensity score which is always
a scalar.
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2.3.2 Effect on the treated

Along the same lines of what discussed in the previous section,3 it follows that

EY0|D(Y0|1) =
∫

EY0|DX(Y0|1, x)fX|D(x|1)dx,

a=
∫

EY0|DX(Y0|0, x)fX|D(x|1)dx, (5)

=
∫

EY0|DX(Y0|0, x)
eX(x)fX(x)
P (D = 1)

dx,

=
∫

EY D|X(Y [1−D]|x)
1− eX(x)

eX(x)
P (D = 1)

fX(x)dx.

Therefore, a consistent estimate of the treatment effect can be obtained from

ÊY1|D(Y1|1) =
1
n1

n∑

i=1

diyi,

ÊY0|D(Y0|1) =
1
n1

n∑

i=1

(1− di)eX(xi)
1− eX(xi)

yi,

and

β̂t = ÊY1|D(Y1|1)− ÊY0|D(Y0|1).

2.3.3 Alternative estimation strategies

Estimation strategies alternative to the ones presented above can be obtained by
using the empirical analogues of the distributions fX(x) and fX|D(x|1) combined
with an estimator of the conditional expectation EYd|DX(Yd|d, x), d ∈ {0, 1}.
This yields the generalized matching estimators

ÊY1(Y1) =
1
n

n∑

i=1

ÊY1|DX(Y1|1, xi),

ÊY0(Y0) =
1
n

n∑

i=1

ÊY0|DX(Y0|0, xi),

ÊY0|D(Y0|1) =
1
n1

n1∑

i=1

ÊY0|DX(Y0|0, xi),

for the quantities in (3), (4) and (5), respectively. Conditional expectations
in the previous expressions can be estimated semi-non-parametrically following
one of the several methods suggested in the literature (see Imbens, 2004, for a
review).

It is worth noting that any “X-adjusted” estimator is asymptotically equiv-
alent to an “eX(x)-adjusted” estimator. This result straightforwardly follows

3Note that, throughout this section, only conditional (or mean) independence of Y0 from
D given X is required, as the Y1 outcome does not enter the equations below.
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from the fact that X⊥D|eX(x), that is from the fact that the propensity score
is a balancing score for X (see Theorem 2 by Rosenbaum and Rubin, 1983,
and Frölich, 2003). For example, by using this property and the law of iterated
expectations one would get

∫
EY0|DeX

(Y0|0, e)feX |D(e|1)de, (6)

=
∫ ∫

EY0|DX(Y0|0, x)fX|DeX
(x|0, e)feX |D(e|1)dxde,

=
∫ ∫

EY0|DX(Y0|0, x)fX|DeX
(x|1, e)feX |D(e|1)dxde,

=
∫

EY0|DX(Y0|0, x)fX|D(x|1)dx,

which corresponds to (5). The empirical analogue of (6) defines the propensity
score matching estimator of βt (see, for example, Heckman et al., 1999). It
follows that this class of estimators is also covered by our discussion.

2.4 A parametric example

To fix ideas, consider the following parametric regression

yi = α + βdi + δxi + εi (7)

for the case of homogeneous returns to the treatment (βi = β) and E(εi|di, xi) =
0. If participation is SI-X, then ordinary least squares provide a consistent
estimate of β.

By partialing out the effect of D from (7)

E(yi|di) = α + βdi + δE(xi|di),

it follows that

ỹi = δx̃i + εi,

where ỹi = yi −E(yi|di) and x̃i = xi −E(xi|di). A consistent estimate of δ can
be obtained from the last regression, and identification of β follows from

β = [E(yi|1)− E(yi|0)]− δ[E(xi|1)− E(xi|0)].

Accordingly, the effect β is identified by the raw difference of mean outcomes
net of the composition difference with respect to X scaled by δ.4

4Note that, in a fully controlled experiment, the distribution of X is the same for treated
and controls, so that the last term in the previous expression is zero regardless of the value
of δ.

8



3 Covariate measurement error

In what follows identification results for βp and βt are discussed when the sample
analogues of the expressions in (3), (4) and (5) are computed unknowingly
observing Z in place of X. Let Z = X + U with U ⊥ (X,D, Y ) and E[U ] = 0,
E[U2] = σ2. For the moment regard X as scalar continuously distributed on
the real line.

Two things are worth noting. First, measurement error U is such that Z
and X have the same support, and this coincides with the real line. Second,
the common support of the Z distributions is not modified by the measurement
error and coincides with the common support of the X distributions (i.e. the
real line). If (2) is verified, then V ar(D|Z) > 0.

In what follows we show that measurement error bias arises in the estimation
of βp and βt since SI-X does not imply SI-Z. In other words, if participants
and non-participants are balanced with respect to Z, the two groups are not
balanced with respect to the distribution of X so that the condition X⊥D|Z
fails to hold.5 In what follows, conditions are derived for the measurement bias
to be zero (Conditions 1-3 below).

3.1 Approximate distributions

Consider FY |DZ . Direct application of the approximation for conditional dis-
tribution functions when covariates are measured with error, given in Chesher
(1991), regarding D as measured without error and X as measured with error,
and using the SI-X assumption, gives6

FY |DZ(y|d, z) ' FY |X(y|z) + σ2F ′Y |X(y|z)

(
f ′X|D(z|d)

fX|D(z|d)

)
+

σ2

2
F ′′Y |X(y|z),

where recall Y ≡ (Y0, Y1) and y ≡ (y0, y1) and A ' B indicates A = B +o(σ2).7

5Since the conditional distribution of X given D and Z can be written as

fX|DZ(x|d, z) =
fD|X(d|x)

fD|Z(d|z)
fX|Z(x|z),

fD|Z(d|z) =

∫
fD|X(d|x)fX|Z(x|z)dx,

it follows that

fX|DZ(x|d, z) = fX|Zf(x|z) ⇔ fD|X(d|x)∫
fD|X(d|x)fX|Z(x|z)dx

= 1,

which is satisfied if X⊥D.
6Throughout this paper, we will assume that the conditions stated in Chesher (1991) are

satisfied.
7For vector X and using the Einsteinian summation convention (summation over repeated

raised and lowered indices) there is

FY |DZ(y|d, z) ' FY |X(y|z) + σijF i
Y |X(y|z)


fj

X|D(z|d)

fX|D(z|d)


 +

σij

2
F ij

Y |X(y|z),

where Zk = Xk + Uk and E[UiUj ] = σij .
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Note all the above is for the joint distribution of Y1 and Y0. We have for
the marginal distribution of Yi, i ∈ {0, 1}

FYi|DZ(yi|d, z) ' FYi|X(yi|z) + σ2F ′Yi|X(yi|z)

(
f ′X|D(z|d)

fX|D(z|d)

)
+

σ2

2
F ′′Yi|X(yi|z).

Thus, locally, Y is SI-Z if

F ′Yi|X(yi|z)

(
f ′X|D(z|1)

fX|D(z|1)
−

f ′X|D(z|0)

fX|D(z|0)

)
= 0, i ∈ {0, 1}

for which a sufficient condition is either of the following

Condition 1 F ′Yi|X(yi|z) = 0 for all values of its arguments.

Condition 2 For all values of z

f ′X|D(z|1)

fX|D(z|1)
=

f ′X|D(z|0)

fX|D(z|0)
.

The former condition virtually requires Y to be independent of X, which is
not an interesting case. The latter condition requires X ⊥ D which is also unin-
teresting (the propensity score would be uninformative under this condition).8

3.2 Approximate expectations

Replacing F by f gives the approximation for density functions (if Y is contin-
uously distributed), as follows (see Chesher, 1991)

fYi|DZ(yi|d, z) ' fYi|X(yi|z) + σ2f ′Yi|X(yi|z)

(
f ′X|D(z|d)

fX|D(z|d)

)
+

σ2

2
f ′′Yi|X(yi|z).

Replacing F by E gives the result for regression functions, as follows

EYi|DZ(Yi|d, z) ' EYi|X(Yi|z) + σ2E′
Yi|X(Yi|z)

(
f ′X|D(z|d)

fX|D(z|d)

)
+

σ2

2
E′′

Yi|X(Yi|z).

As above, mean independence given Z holds if

E′
Yi|X(yi|z)

(
f ′X|D(z|1)

fX|D(z|1)
−

f ′X|D(z|0)

fX|D(z|0)

)
= 0, i ∈ {0, 1}.

Accordingly, either Condition 2 or the following

Condition 3 E′
Yi|X(yi|z) = 0 for all values z.

are sufficient for mean independence given Z to hold.9

8There is, for all x∫ x

−∞
∇x log fX|D(s|1)ds =

∫ x

−∞
∇x log fX|D(s|0)ds

which implies
log fX|D(s|1) = log fX|D(s|0) + κ

for all x and κ = 0 since both densities must integrate to 1.
9The development of all these approximations most elegantly starts with the approximation

for regression functions. The approximate distribution function is then obtained by noting
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3.3 Remarks

Results in this section point out that groups of individuals balanced with respect
to the distribution of Z are not balanced with respect to the distribution of X,
so that the condition X⊥D|Z fails to hold. Along the same lines, it straightfor-
wardly follows that the propensity score based on Z is not a balancing score for
X, so that the condition X⊥D|eZ is not satisfied. Accordingly, by computing
any propensity score adjustment unknowingly based on Z in place of X, one
will get biased estimates of the treatment effect.

However, it is worth noting that, regardless of the nature of the measurement
error U , eZ is a balancing score for Z, that is the condition Z⊥D|eZ is satisfied.
This results holds whatever the nature of the error is and it is a straightforward
implication of Theorem 2 by Rosenbaum and Rubin (1983). For example, along
the same lines of what derived in (6), it can be shown that

∫
EY0|DeZ

(Y0|0, e)feZ |D(e|1)de,

=
∫

EY0|DZ(Y0|0, z)fZ|D(z|1)dz.

In the next section, we will be interested in studying what happens to al-
ternative estimators of the quantities (3), (4) and (5) when Z is used instead
of X. The implication of Z⊥D|eZ stated in the last expression will allow us
to develop an unified approach to studying the asymptotic behaviour of these
estimators.

4 The effect of using mismeasured regressors

The measurement error bias is derived for βp (Proposition 1) and βt (Proposition
2). The proof of Proposition 1 is omitted because similar in spirit to the proof
of Proposition 2, which is instead reported in the Appendix.10

4.1 Effect on the population

By using Z in place of X, one will obtain consistent estimators of

Ai =
∫ ∞

−∞
EYi|DZ(Yi|i, z)fZ(z)dz, i ∈ {0, 1}

which correspond to (3) and (4) when Z is used instead of X. Limits of inte-
gration (−∞,∞) will be suppressed in what follows.

that
FY |DZ(y|d, z) = E[1[Y0≤y0∩Y1≤y1]|d, z],

and applying the formula for the approximation for regression functions. The approxima-
tion for density functions is obtained by differentiating the approximation for distribution
functions.

10The regularity conditions required in these propositions are based on the assumption∫
fX|D(x + λ|0)dz = 1, ∀λ : |λ| ≤ τ.
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Proposition 1 If SI-X holds and

lim
z→±∞

EYi|X(Yi|z)f
′
X(z) = 0,

lim
z→±∞

E
′
Yi|X(Yi|z)fX(z) = 0,

neglecting terms which are o(σ2) there is the following expression for Ai

Ai ' EYi
[Yi] + σ2Bi,

where

Bi =
∫

E
′
Yi|X(Yi|z)

f
′
X|D(z|i)

fX|D(z|i)fX(z)dz

+
∫

E
′′
Yi|X(Yi|x)fX(z)dz.

Accordingly, the estimated effect in the population differs from the true effect
(at the second order for σ) by means of the following factor

∆(βp) = σ2(B1 −B0)

=
∫ [

E
′
Y1|DX(Y1|1, z)

f
′
X|D(z|1)

fX|D(z|1)
− E

′
Y0|DX(Y0|0, z)

f
′
X|D(z|0)

fX|D(z|0)

]
fX(z)dz

+
∫ [

E
′′
Y1|DX(Y1|1, x)− E

′′
Y0|DX(Y0|0, x)

]
fX(z)dz.

4.2 Effect on the treated

Under SI-X there is

EY0|D[Y0|1] =
∫

EY0|DX(Y0|0, x)
fX|D(x|1)
fX|D(x|0)

fX|D(x|0)dx.

Someone unknowingly observing Z in place of X and computing the sample
analogue of this expression will obtain an estimator of

A =
∫

EY0|DZ(Y0|0, z)fZ|D(z|1)dz.

Proposition 2 If SI-X holds and

lim
z→±∞

EY0|DX(Y0|0, z)f ′X|D(z|1) = 0,

lim
z→±∞

E′
Y0|DX(Y0|0, z)fX|D(z|1) = 0,
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neglecting terms which are o(σ2) there is the following expression for A

A ' EY0|D[Y0|1] + σ2B, (8)

where

B =
∫

E′
Y0|DX(Y0|0, z)

(
f ′X|D(z|0)

fX|D(z|0)

)
fX|D(z|1)dz

+
∫

E′′
Y0|DX(Y0|0, z)fX|D(z|1)dz.

Accordingly, the estimated effect differs from the true effect in the population
by means of the following term

∆(βt) = σ2B.

Consider the case in which fX|D(z|1) = fX|D(z|0). Then the first term in B
becomes∫

E′
Y0|DX(Y0|0, z)f ′X|D(z|0)dz =

∫
E′

Y0|DX(Y0|0, z)f ′X|D(z|1)dz,

= −
∫

E′′
Y0|DX(Y0|0, z)fX|D(z|1)dz,

the second line following on integrating by parts. Clearly in this case B = 0,
which is as it should be.

4.3 A parametric example (continued)

Using the parametric example introduced above, it is easy to show that mea-
surement error in X will make ordinary least squares estimates biased for β.
In fact, classical measurement error in X implies that using Z as a proxy for
X will partially, but only partially, control for the confounding effects of X on
the estimation of β (Wickens, 1972). Measurement error in X biases not only δ
(which is a nuisance parameter for the problem), but more importantly biases
also β (unless D and X are not correlated, which is not an interesting case).

Since zi = xi + ui, the estimation of δ based on

ỹi = δz̃i + υi

features the usual attenuation bias, so that the following parameter

σ2
x

σ2
x + σ2

δ

is estimated in place of δ. Accordingly

[E(yi|1)− E(yi|0)]− δ[E(xi|1)− E(xi|0)]
σ2

x

σ2
x + σ2

6= β.

Because of the the measurement error U , the difference in raw means for X is
only partially ‘washed out’ from the difference in raw means for Y , resulting in
biased estimates for the effect β. Note that Condition 3 here would be satisfied
if δ = 0.
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5 A bias correction procedure

The most common solution to the bias introduced by the measurement error in
linear regression models is to exploit instrumental variables. However, it is well
known that they do not yield consistent estimators of the parameters of interest
in non-linear models (see, for example, Hausman et al., 1995).

This section is along the same lines of what discussed in Chesher (2000). A
method is proposed for obtaining estimates of the treatment effects which are
purged of the major part of the effect of the measurement error. The method
uses a quantity constructed from non-parametric estimates of functionals of the
distribution of observed covariates Z. It follows that our procedure exploits
nothing but the error contaminated data and does not require any functional
assumptions on the regression of Y on D and X nor additional information
(such as instrumental variables or validation data).11

In what follows, we will discuss how our correction procedure works for βt.
In further work, we will also apply the same correction to βp.

5.1 Effect on the treated

Since X can be replaced by Z in expressions (e.g. B) multiplied by σ2 without
altering the order of the approximation error we have

A ' EY0|D[Y0|1] + σ2B∗,

where

B∗ =
∫

E′
Y0|DZ(Y0|0, z)

(
f ′Z|D(z|0)

fZ|D(z|0)

)
fZ|D(z|1)dz

+
∫

E′′
Y0|DZ(Y0|0, z)fZ|D(z|1)dz.

This corresponds to what derived in (8) when X is replaced by Z. As the last
expression can be rearranged to get

∫ [
E′

Y0|DZ(Y0|0, z)
d

dz
log fZ|D(z|0) + E′′

Y0|DZ(Y0|0, z)
]

fZ|D(z|1)dz,

it follows that B∗ can be estimated by

B̂∗ =
1
n1

n∑

i=1

(1− di)eZ(zi)
1− eZ(zi)

b(zi),

b(zi) = E′
Y0|DZ(Y0|0, zi)

d

dz
log fZ|D(zi|0)− E′′

Y0|DZ(Y0|0, zi),

from available data.
To estimate E′

Y0|DZ(Y0|0, z) and E′′
Y0|DZ(Y0|0, z) do parametric or nonpara-

metric estimation of the regression of Y0 on Z for people with D = 0 and
11As pointed out by Chesher (2000), when the error free regression function of Y on X

is linear in X, the method proposed here can be combined with conventional instrumental
variables methods.
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calculate first and second derivatives with respect to Z. To estimate the re-
maining elements one can do nonparametric density estimation for the D = 0
group (see the discussion in Chesher, 2000). Alternatively one might have a
parametric model for D given X in which case one could estimate that and
then do nonparametric density estimation of fZ(z) and then use, e.g.

f̂Z|D(z|0) =
[1− eZ(zi)]f̂Z(z)

P̂ [D = 0]
.

5.2 A parametric example (continued)

It follows from (7) that

E(Y |d, z) = βd + δz − δE(U |d, z),

since E(εi|di, xi) = 0. The last expression qualifies the bias induced by mea-
surement error as an omitted variable problem. The regression of Y on D and Z
fails to identify the parameter of interest β because the term E(U |d, z) is omit-
ted from the regression. Chesher (2000) shows that the following approximation
holds

E(Y |d, z) ' βd + δz − δσ2g(d, z),

where g(d, z) is a term that can be estimated from observed data (i.e. it is
function of Z and D only). The augmented regression including the g(d, z)
term can be used to get a ‘bias reduced’ estimate of β. Note that, as long as
g(d, z) is not linear in Z (which would be true if U was normally distributed),
then σ2 could also be estimated from observed data.

6 More than one covariate, just one with error

In the expressions above, differentiation is with respect to the error contami-
nated covariate and the density fX|D becomes fX∗|X∗D where X∗ is the error
contaminated covariate and X∗ contains the remaining covariates.

7 Example

This example is artificial, but rather convenient. Throughout this section nor-
mality will be assumed for the error U . Moreover, suppose that the regression
function of Y on X for the D = 0 group is linear (as in Rubin, 1977)

EY0|DX(Y0|0, x) = α0 + β0x

and that
X|D = d ∼ N(dµ1 + (1− d)µ0, dλ2

1 + (1− d)λ2
0),
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for d ∈ {0, 1}.
Assume that βt is of interest to the analyst. According to what presented

in the previous section, we wish to approximate

A =
∫

EY0|DZ [Y0|0, z]fZ|D(z|1)dz,

which is what people will unwittingly estimate if they ignore measurement error.
Three quantities are derived for the example considered in this section: the
approximation to the measurement error bias in Proposition 2 is in (9); the
exact expression for this bias (that is, the expression in terms of the unobserved
X) is in (10); finally, the bias resulting from our correction procedure is in (11).

7.1 Approximation to the bias

The approximation as derived above, that is the right hand side of (8), is as
follows

Aa
X ≡ α0+β0µ1+σ2

∫ [
E′

Y0|X(Y0|z)

(
f ′X|D(z|0)

fX|D(z|0)

)
+ E′′

Y0|X(Y0|z)

]
fX|D(z|1)dz,

where we stress the dependence from distributions and expectations involving
X by writing Aa

X . Since

E′
Y0|DX(Y0|0, z) = β0

E′′
Y0|DX(Y0|0, z) = 0

f ′X|D(z|0)

fX|D(z|0)
= − 1

λ2
0

(z − µ0),

we have

Aa
X = α0 + β0µ1 − β0

σ2

λ2
0

(µ1 − µ0),

so that
bias(Aa

X) = −β0 (µ1 − µ0) σ2

λ2
0
. (9)

Although the approximation Aa
X is not exact, the approximation error is of

order O(σ4).12

7.2 Exact expression for the bias

The exact expression for A is as follows. First consider the expectation in the
expression for A. We have, conditional on D = 0

[
X
Z

]
|D = 0 ∼ N

([
µ0

µ0

]
,

[
λ2

0 λ2
0

λ2
0 λ2

0 + σ2

])
,

and so

X| (Z ∩D = 0) ∼ N

(
µ0 +

λ2
0

λ2
0 + σ2

(z − µ0) , λ2
0 −

λ4
0

λ2
0 + σ2

)
.

12It is the symmetric distribution of U which causes O(σ3) terms to disappear.
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Therefore, for the expectation appearing in A there is (remember that Y0⊥Z|X)

EY0|DZ(Y0|0, z) =
∫

EY0|DZX(Y0|0, z, x)fX|ZD(x|z, 0)dx,

=
∫

(α0 + β0x) fX|ZD(x|z, 0)dx,

= α0 + β0µ0 +
β0λ

2
0

λ2
0 + σ2

(z − µ0) ,

which exhibits the usual attenuation, and since Z|D = 1 ∼ N(µ1, λ
2
1 + σ2)

A = α0 + β0µ0 +
β0λ

2
0

λ2
0 + σ2

(µ1 − µ0) ,

= α0 + β0µ1 − β0 (µ1 − µ0)
σ2

λ2
0 + σ2

.

The final term gives the exact bias caused by measurement error13

bias(A) = −β0(µ1 − µ0)
(

σ2

λ2
0+σ2

)
. (10)

The accuracy of the approximation is understood by considering

A−Aa
X = β0(µ1 − µ0)

σ4

λ2
0(λ

2
0 + σ2)

.

7.3 Bias correction

Our bias correction procedure proposes subtracting from a consistent estimator
of A a consistent estimator of σ2B∗, where B∗ is defined as follows

B∗ =
∫ [

E′
Y0|DZ(Y0|0, z)

(
f ′Z|D(z|0)

fZ|D(z|0)

)
+ E′′

Y0|DZ(Y0|0, z)

]
fZ|D(z|1)dz.

The value of B∗ is now derived for this example. Since

E′
Y0|DZ(Y0|0, z) =

β0λ
2
0

λ2
0 + σ2

,

E′′
Y0|DZ(Y0|0, z) = 0,
(

f ′Z|D(z|0)

fZ|D(z|0)

)
= − 1

λ2
0 + σ2

(z − µ0) ,

it follows that

B∗ = − β0λ
2
0

(λ2
0 + σ2)2

(µ1 − µ0).

Using our proposed procedure produces a consistent estimator of

Acor ≡ A− σ2BZ = α0 + β0µ1 − β0(µ1 − µ0)
σ4

(λ2
0 + σ2)2

.

13Note, just to check, that when σ2 = 0 (that is when Z = X) this reduces to A =
α0 + β0µ1 = EY0|D[Y0|1].
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So, after our correction procedure, the bias in (10) is replaced by a bias equal
to

bias(Acor) = −β0(µ1 − µ0)
(

σ2

λ2
0+σ2

)2

. (11)

8 Conclusions

This paper proposes a method for bias reduction in estimation of treatment
effects based on ignorable assignment given a set of covariates, with one covariate
subject to measurement error. Our procedure exploits nothing but the error
contaminated covariate data.

In further work, we will look at exact calculations designed to investigate the
performance of the proposed procedure. Moreover, we will apply the approach
described here to real data.
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Appendix

Proof of Proposition 2

Proof. Using the approximation to EY0|DZ(Y0|0, z) and the approximation

fZ|D(z|1) ' fX|D(z|1) +
σ2

2
f ′′X|D(z|1)

gives

A '
∫ (

EY0|X(Y0|z) + σ2E′
Y0|X(Y0|z)

(
f ′X|D(z|0)

fX|D(z|0)

)
+

σ2

2
E′′

Y0|X(Y0|z)

)

×
(

fX|D(z|1) +
σ2

2
f ′′X|D(z|1)

)
dz

and neglecting terms which are o(σ2) there is the following expression for A:

A ' EY0|D[Y0|1] + σ2B

where

B =
∫

E′
Y0|DX(Y0|0, z)

(
f ′X|D(z|0)

fX|D(z|0)

)
fX|D(z|1)dz

+
1
2

∫
E′′

Y0|DX(Y0|0, z)fX|D(z|1)dz

+
1
2

∫
EY0|DX(Y0|0, z)f ′′X|D(z|1)dz.

Consider the final term in this expression. On integrating by parts once we
have

∫ ∞

−∞
EY0|DX(Y0|0, z)f ′′X|D(z|1)dz =

[
EY0|DX(Y0|0, z)f ′X|D(z|1)

]∞
−∞

−
∫ ∞

−∞
E′

Y0|DX(Y0|0, z)f ′X|D(z|1)dz

and if14

lim
z→±∞

EY0|DX(Y0|0, z)f ′X|D(z|1) = 0

there is
∫ ∞

−∞
EY0|DX(Y0|0, z)f ′′X|D(z|1)dz = −

∫ ∞

−∞
E′

Y0|DX(Y0|0, z)f ′X|D(z|1)dz.

Integrating by parts a second time gives

−
∫ ∞

−∞
E′

Y0|DX(Y0|0, z)f ′X|D(z|1)dz = −
[
E′

Y0|DX(Y0|0, z)fX|D(z|1)
]∞
−∞

+
∫ ∞

−∞
E′′

Y0|DX(Y0|0, z)fX|D(z|1)dz

14This condition will be satisfied if for example EY0|DX(Y0|0, z) is a polynomial function
of z and the tails of fX|D(z|1) decrease at an exponential rate.
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and if
lim

z→±∞
E′

Y0|DX(Y0|0, z)fX|D(z|1) = 0

there is
∫ ∞

−∞
EY0|DX(Y0|0, z)f ′′X|D(z|1)dz =

∫ ∞

−∞
E′′

Y0|DX(Y0|0, z)fX|D(z|1)dz

and then

B =
∫

E′
Y0|DX(Y0|0, z)

(
f ′X|D(z|0)

fX|D(z|0)

)
fX|D(z|1)dz

+
∫

E′′
Y0|DX(Y0|0, z)fX|D(z|1)dz.
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