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ABSTRACT

Economic policy decisions are often informed by empirical economic analysis.

While the decision-maker is usually only interested in good estimates of outcomes,

the analyst is interested in estimating the model. Accurate inference on the structural

features of a model, such as cointegration, can improve policy analysis as it can im-

prove estimation, inference and forecast e¢ciency from using that model. However,

using a model does not guarantee good estimates of the object of interest and, as it

assigns a probability of one to a model and zero to near-by models, takes extreme
1Corresponding author.
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zero-one account of the ‘weight of evidence’ in the data and the researcher’s uncer-

tainty. By using the uncertainty associated with the structural features in a model set,

one obtains policy analysis that is not conditional on the structure of the model and

can improve e¢ciency if the features are appropriately weighted. In this paper tools

are presented to allow for unconditional inference on the vector autoregressive (VAR)

model. In particular, we employ measures on manifolds to elicit priors on subspaces

de…ned by particular features of the VAR model. The features considered are cointe-

gration, exogeneity, deterministic processes and overidenti…cation. Two applications

- money demand in Australia, and a macroeconomic model of the UK proposed by

Garratt, Lee, Persaran, and Shin (2002) are used to illustrate the feasibility of the

proposed methods.

Key Words: Posterior probabilities; Laplace approximation; Structural modelling;

Cointegration; Exogeneity; Model averaging.

JEL Codes: C11, C32, C52

1 Introduction.

An important function of empirical analysis is to provide information for decision

making. This information is generally provided in the form of estimates of objects

of interest such as forecasts of endogenous variables, e¤ects of shocks measured by

impulse response functions, probabilities, elasticities or distributions. In many cases,
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the decision maker is not directly interested in the underlying model used to produce

such estimates, however, it is in the analyst’s interest to detail how the results she

provides rely upon the model. That is, the analyst, when providing the estimates of

the objects of interest, must point out “This assumes that ...” Such restrictions upon

the interpretation of the results do not aid the decision-maker in their task.

It is generally accepted, however, that to improve policy analysis it is important

to have accurate inference on the support for the alternative models considered or to

have such inference on the structural features of an encompassing model. As such,

much e¤ort is expended in investigating the empirical support for various economically

and statistically plausible features. (If we condition upon particular features that are

well supported by the data we can obtain e¢ciency gains in estimating parameters,

in inference and in producing forecasts.) Examples of features of models that are of

interest to analysts - but not necessarily decision-makers - include numbers of long run

relationships among variables, forms of these long run relationships, persistent and

predictable long run behaviours of variables, short term behaviours, and the dimension

of the system in variables or in parameters required for the problem of interest. Each

of these features implies zero restrictions on particular parameters in a general model.

If these features are supported by the data - and so are credible in the sense of

Sims (1980) - and if they hold outside the sample, then imposing them can improve

forecasts and inference, and hence policy suggestions. Unfortunately, the support
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in the data is often not clear or dogmatically for or against the restriction, and the

researcher does not have strong prior belief in the restriction. It is, however, common

to condition upon such features, e¤ectively assigning a weight of one to the model

implied by the restrictions being true and zero to all other plausible models. Even if

the support is strongly for or against a particular restriction, with only slight support

for the alternative unrestricted model, imposing the restriction ignores information

from that less likely model which, if appropriately weighted, could improve forecasts.

There is therefore a con‡ict between the analyst’s need to obtain the best model

and the decision-maker’s need for the least restrictive interpretation of the informa-

tion provided by the analyst. As an alternative to conditioning on structural features,

it is possible to improve policy analysis by presenting unconditional or averaged in-

formation. Gains in forecasting accuracy by simple averaging have been pioneered

by Bates and Granger (1969) and discussed recently by Diebold and Lopez (1996),

Newbold and Harvey (2001) and Terui and van Dijk (2002). Some explanation for

this phenomenon in particular cases was provided by Hendry and Clements (2002).

Alternatively, the weights can be determined to re‡ect the support for the model

from which each estimate derives. This requires accurately re‡ecting the uncertainty

associated with the structural features de…ning the model.

In this paper we present an approach for conducting unconditional inference on

structural features of the cointegrating vector autoregressive model. We regard the
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restrictions on the general model implied by the structural features as producing a new

model for comparison. The results will still be conditional upon the model set, but if

this set covers a wide enough range of models, possibly those the analyst would have

searched within otherwise, we see this as an improvement over conditional analysis.

We work with models that nest within an encompassing model, however this is not

a requirement as we take a Bayesian approach. We consider the joint probabilities

of cointegration, overidenti…cation, deterministic processes, and exogeneity. From

relationships among manifolds and orthogonal groups and their measures, we elicit

measures on relevant subspaces of the parameter space. From these measures we

develop prior distributions for elements of these subspaces as the parameter of interest.

Thus we choose prior speci…cation for models directly rather than on parameters that

are subsequently restricted. Further, by enabling the expression of prior beliefs on

parameters of interest, rather than on the instruments via which we obtain inference

on that parameter of interest, we present a more coherent method of investigation.

The aim of this paper is to obtain unconditional policy analysis by which we mean

we wish to obtain inference, estimates and forecasts from model averages in which

the economically and econometrically important structural features may have weights

other than zero or one. Examples of impulse responses are produced that derive from

the unconditional, but correctly weighted model space.

The structure of the paper is as follows. In the Section 2 we introduce the general
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model of interest in this paper - the vector autoregressive model, the general structural

features of interest, and the restrictions they imply. We demonstrate the approach

with two applications: a model of Australian money demand; and a macroeconomic

model of the UK economy proposed by Garratt, Lee, Persaran, and Shin (2002).

These applications with the implied restrictions are outlined in Section 3. In Section

4 we present the priors we will be considering in the paper, the likelihood and a general

expression for the posterior. The tools for inference in this paper, the Bayes factor

and posterior probabilities, are introduced and expressions derived for the speci…c

features of interest - impulse responses - in Section 5. The results of the application

are presented in Section 6 and Section 7 concludes.

2 The Vector Autoregressive Model.

We work with the vector autoregressive model in the error correction form to simplify

expressions of restrictions. The error correction model (ECM) of the 1£n vector time

series process yt; t = 1; : : : ; T; conditioning on the l observations t = ¡l +1; : : : ; 0; is

¢yt = yt¡1¯+® + dt¹+ ¢yt¡1¡1+ : : :+ ¢yt¡l¡l + "t (1)

= yt¡1¯+® + dt¹1® + dt¹2®? + ¢yt¡1¡1 + : : :+¢yt¡l¡l+ "t

= z1;t¯®+ z2;t© + "t (2)
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where¢yt = yt¡yt¡1; z1;t = (dt; yt¡1) ; z2;t = (dt;¢yt¡1; : : : ;¢yt¡l) ; © = (®0?¹02;¡01; : : : ;¡0l)
0

and ¯ =
¡
¹01; ¯+0

¢0. The matrices ¯+ and ®0 are n £ r and assumed to have rank r;

and if r = n then ¯+ = In:

The following subsections de…ne the restrictions of interest, combinations of which

de…ne di¤erent model features of interest which we may compare or weight using

posterior probabilities.

As we consider a wide range of models in this paper, we will use a consistent

notation to index each model to identify the cointegrating rank, the identifying re-

strictions, the form of exogeneity, and the deterministic processes in the model. We

will denote the rank of a model by r, where r = 0; 1; : : : ; n: The particular identifying

restrictions placed upon ¯ will be denoted by o; where o = 1; : : : ;J and o = 1 will

be understood to refer to the just identi…ed model. Partitioning yt as yt = (y1;t y2;t)

where y1;t is a 1£n1 vector, n1 ¸ r, exogeneity of y2;t will be considered with respect

to subsets of the parameters in the equation for y1;t, where will use Á1 and Á2 to

denote these subsets. The particular form of exogeneity restrictions in the model will

be denoted by e; where e = 1; : : : ; 5 and these refer respectively, to the model in which

y2;t is: not exogenous with respect to Á1 or Á2; weakly exogenous with respect to Á1;

strongly exogenous with respect to Á1; weakly exogenous with respect to Á2; and,

strongly exogenous with respect to Á2: Finally, the particular form of deterministic

processes will be denoted by i; where i = 1; : : : ; 5 and these refer to the …ve models
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detailed in the subsection on deterministic processes below.

The vector identifying a particular model will therefore be ! = (r; o; e; i) : For

example, the least restricted model will be (n; 1; 1; 1) ; while the most restricted model

will be (0; o; 5; 5) : Note that, as will become clear, there may be no sensible order to

the models with o > 1 by degree of restriction, and models with exogeneity e = 3 and

e = 4 cannot be placed in a sensible order with respect to eachother. The models

will be identi…ed as M!: When we are considering only a particular feature such as

exogeneity, we will indicate this by referring to the model as M(:;:;e;:), and if we are

conditioning upon a particular feature, such as rank, M(ejr). Where we have averaged

across or marginalised with respect to the other features, we will indicate this byM(r);

and the marginal likelihood for a model will be m!:

Finally, we introduce the following terms to simplify the expressions in the poste-

riors. Let ezt = (z1;t¯ z2;t) ; and the (r + ki) £ n matrix B = [®0 ©0]0 : We may now

write the model as

¢yt = eztB + ": (3)

2.1 Structural features

Within the model (1), a number of structural features are commonly of interest to

economists and or econometricians. Here we detail …ve of these and the restrictions

they imply for (1). To demonstrate we use a simple, and reasonably well understood
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example: money demand. The variables, all of which appear in logarithmic form, are

de…ned as yt = (mt inct) ; wheremt is the log measure of real money and inct is the

measure of real income. The bivariate VAR has the form yt = dt¹+ yt¡1¦1 + : : :+

yt¡l¡1¦l+1+ "t: Suppose we are interested in the one step ahead forecast of mt or the

overall response path of mt to a shock in inct¡h for h = 0; 1; 2; : : : :We are interested

in estimation of the parameters determining the long and short run behaviour of mt

and in forecasts of mt, where the forecasts may also be over the long run, or both the

long run and short run. Here we regard the long run as the equilibrium relationships

to which the elements of yt would revert if all future errors were zero.

2.1.1 Cointegration

As has been observed in empirical studies, many economic variables of interest are

not stationary, yet economic theory, or empirical evidence, suggests stable long run

relationships exist between these variables. The statistical theory of cointegration

(Granger, 1983, and Engle and Granger, 1987), in which a set of nonstationary vari-

ables combine linearly to form stationary relationships, and the attendant Granger’s

representation theorem provide a useful speci…cation to incorporate this economic

behaviour into the error correction model and allows the separation of long run and

short run behaviour. For cointegration analysis of (1), of interest is the coe¢cient

matrix ¯+ (and ®) which are of rank r · n. Of particular interest then, is r as
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(n¡ r) is the number of common stochastic trends in yt, and r is the number of

I (0) combinations of the element of yt extant. In the case r < n and assuming for

now ¹1 = 0; ¯+ is the matrix of cointegration coe¢cients, yt¯+ are the stationary

relations towards which the elements of yt are attracted, and ® is the matrix of factor

loading coe¢cients or adjustment coe¢cients determining the rate of adjustment of

yt towards yt¯+:

In the money demand example, r 2 [0; 1; 2] : It is common to regard the money

demand relation as the cointegrating relation between the integrated variables in

yt s I (1) ; and supply is exogenous (see for example Johansen, 1995 and Funke,

Hall and Beeby, 1997). That is, ³t = ¯1mt + ¯2inct = yt¯+ s I (0), E (³t) = dt¹1

and possibly ¹1 6= 0: Therefore, for the analysis to make sense, we require that

cointegration should hold (and so r = 1). In this case we would have the error

correction representation for yt as

¢yt = yt¡1¯+® + dt¹+ ¢yt¡1¡1 + : : :+ ¢yt¡l¡l + "t

where ¯+ = (¯1; ¯2)
0 and ® = (®1; ®2) :

2.1.2 Exogeneity

As it is usually accepted in econometrics that there are bene…ts from parsimony,

another important issue is the dimension of the system to be estimated in terms of
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the number of equations. Recall the partition yt = (y1;t y2;t) : If the set of variables

in y2;t can be treated as exogenous for inferential purposes, a partial system may be

estimated in which no equations are estimated for these variables. This is essentially

ignoring information that contributes nothing to the inference. As an example, it is

not uncommon to assume that to estimate the income elasticity of money, a researcher

would be interested in whether an equation for income need be estimated, or could

this analysis be done with a single equation.

Under the condition of cointegration, the representation of the model in (1) will be

useful for the analysis of exogeneity. Partition ® = (®1 ®2) conformably with the di-

mensions of y1;t and y2;t: In this article we consider weak exogeneity of y2;t with respect

to the parameters in‡uencing long run behaviour of y1;t, Á1 =
¡
vec (¯)0 ; vec (®1)0

¢0 :

If our interest is in estimating or conducting inference on the subset of parameters

Á1, it may not be necessary to estimate the full set of n equations for yt: That is,

conditions may exist which allow us to condition on the variables y2;t and therefore

only model the equations for y1;t: This condition is that y2;t be weakly exogenous

with respect to Á1: As shown in Urbain (1992) and Johansen (1992) inter alia, y2;t

will be weakly exogenous with respect to Á1 if ®2 = 0: To preserve the rank of ®

requires that n1 ¸ r; which implies we cannot have more than n¡ r variables weakly

exogenous with respect to Á1: An important model in the literature which relies upon

this assumption is the triangular model (Phillips, 1991) used by Phillips (1994) in
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which n1 = r:

For a given cointegrating rank r; denote by M(ejr) the various models of exogeneity.

The model with no exogeneity restrictions imposed is e = 1 and the model with weak

exogeneity of y2;t with respect to Á1 is e = 2:Other forms of exogeneity include: strong

exogeneity of y2;t with respect to the parameters in‡uencing long run behaviour of

y1;t; Á1 (e = 3); weak exogeneity of y2;t with respect to the parameters in‡uencing

long and short run behaviour of y1;t (Á2 =
¡
Á01; vec (¡11)0 ; vec (¡21)0

¢0) (e = 4); and

strong exogeneity of y2;t with respect to the parameters in‡uencing long and short

run behaviour of y1;t (e = 5) : These imply further restrictions upon the parameters

in (1) such as Granger noncausality, however we do not explore them here as the …rst

case is su¢cient to demonstrate the approach.

If we are interested in whether we may estimate the money demand equation ³t

(and so estimate ¯+) from a single equation for mt; then this would require that the

variables inct be weakly exogenous with respect to ¯+ (e = 2) : ®1 is the adjustment

coe¢cient in the equation for ¢mt and ®2 is the same in the equation for inct such

that these parameters determine the response in yt to a nonzero value of ³t¡1: Weak

exogeneity of inct with respect to ¯+ implies ®2 = 0:
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2.1.3 Overidentifying restrictions on the cointegrating vectors

As discussed in Garratt et al. (2002), when modelling economic systems, economic

theory tends be more useful when it focuses upon the form of long run, or equilibrium,

relationships between variables and leaves the short run relations unrestricted (see

Sims 1980 for discussion about the dangers of imposing incredible restrictions on short

run dynamics). This leads us to the consideration of the direction of the cointegrating

space or the form of the cointegrating relations and to what valid linear restrictions

can be imposed on ¯, as representing the long run relations. For money demand, the

stability (in the sense that velocity is I (0) but may have deterministic trends - we

discuss this latter possibility in the following subsection) of the (log of the) inverse

velocity of money, ºt = mt¡inct is an important issue for econometric analysis. Thus

it would be sensible to allow this to be a long run relation such that ³t = º t is another

direction in the model set to be considered.

In both the classical and Bayesian approaches, to test the appropriateness of

such restrictions and to estimate the restricted model, requires a speci…cation of the

model subject to these restrictions. In the classical maximum likelihood approach,

Johansen (1995) has provided methods for estimation with, and testing of, these

restrictions. The three restrictions commonly investigated are presented in Johansen

(1995, Chapter 5) as the following hypotheses.

(o = 1) No restrictions upon ¯:
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(o = 2) H0 : ¯ =HÃ

where the dimensions of the respective matrices are: H n£ s; Ã s£ r, r · s.

(o = 3) H0 : ¯ = (b ') = (b b?Ã)

where the dimensions of the respective matrices are: b n£s; b? n£(n¡ s), Ã (n¡ s)£

(r ¡ s), s · r.

(o = 4) H0 : ¯ = (H1Ã1; H2Ã2; : : : ; HlÃl)

where the dimensions of the respective matrices are: Hi n£ si; Ãi is si £ ri, ri · si;

l · r;Pi ri = r.

The restriction in o = 1 imposes no restriction on the space of ¯; in o = 2 the

cointegrating space is completely determined: The third restriction, o = 3, restricts

the cointegrating space to pass through a known vector or set of s vectors; b; and

the remaining r ¡ s vectors, b?Ã, are unknown except that they are orthogonal to b,

such that the space of ¯ is not completely known. The …nal hypothesis, J = o = 4,

generalizes the …rst two.

2.1.4 Deterministic terms

Economists are commonly interested in the presence or absence of deterministic

processes in yt or yt¯+: For both statistical and economic reasons, the persistent

and predictable, or deterministic, component economic behaviour is important. Of

interest are questions such as whether linear or quadratic drifts are present in yt and
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whether nonzero constant terms and deterministic trends are present in yt¯+: For

example, the velocity of money in many countries has not remained stable over the

long run. For extended periods it has displayed what appears to be a clear trend. If

we were to assume the velocity was an equilibrium or long run relation of interest,

it would be important to allow for some trend in this relation. It is well known,

however, that simplistic treatment of the deterministic terms by testing whether ¹ or

some elements of ¹ are zero leads to the strange and unsatisfactory situation that very

di¤erent trending behaviour is implied in the levels of the process for di¤ering values

of r: Therefore ¹ is decomposed into ¹ = ¹1® + ¹2®? where ¹1 = ¹®0 (®®0)¡1 and

¹2 = ¹®0? (®?®0?)
¡1 such that ¹1 represents the deterministic processes associated

with yt¯+ and ¹2 represents those for yt (see Johansen, 1995 Section 5.7 for further

discussion).

Assuming dt = (1; t) ; then for each j = 1; 2; dt¹j = ¹j;¶ + t¹j;±: Although a wider

range of models are clearly available, the …ve most commonly considered may be
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stated as follows, where Mr;i is the ith model of deterministic terms at given rank r :

Mr;1 : dt¹= ¹1;¶®+ ¹2;¶®? +
¡
¹1;±® +¹2;±®?

¢
t

Mr;2 : dt¹= ¹1;¶®+ ¹2;¶®? + ¹1;±®t

Mr;3 : dt¹= ¹1;¶®+ ¹2;¶®?

Mr;4 : dt¹= ¹1;¶®

Mr;5 : dt¹= 0

3 Empirical example: The Garratt, Lee, Pesaran and Shin (2002) struc-

tural VAR model of the UK economy.

Garratt, Lee, Pesaran, and Shin (2002) provide an extensive model of the UK econ-

omy which focuses upon the long run relations, but incorporates useful short run

restrictions to improve modelling. In their paper, Garratt et al. highlight two di¤er-

ences in their approach from other large models. First it is developed for a small open

economy, and second it takes a new and practical approach to incorporating long run

relations while leaving short run relations largely unrestricted. The variables in the

econometric model are

yt = (rt; wt;¢pt; pt ¡ p¤t ; et; ht ¡ wt; r¤t ; w¤t ; pot) ;

where, in logarithms, pot is the price of oil, wt is UK real per capita GDP and w¤t is the

foreign (OECD) real per capita GDP, pt is the UK producer price index, p¤t is foreign
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(OECD) producer prices, et is the nominal Sterling e¤ective exchange rate, ht UK

real per capita M0 money stock, rt = 0:25 ln (1 +Rt=100) where Rt is a function of

90 day interest rates and r¤t a similar function of the US, Germany, Japan and France

90 day rates.

The long run relations which form the cointegrating relations, subject to all re-

strictions …nally imposed as a result of the analysis by Garratt, et al., are

pt ¡ p¤t ¡ et = u1;t

rt ¡ r¤t = u2;t

wt ¡ w¤t = u3;t

rt ¡ ¢pt = u4;t and

¯32 (ht ¡ wt) = ¹11;±t+ ¯22rt + u5;t

where the ui;t are I (0) with unrestricted means. Assuming the rank r = 5; these

results suggest a cointegrating space spanning the space of the matrix ¯ = (H1 ¯c2)

where

H 0
1 =

2
66666666664

0 0 0 0 1 ¡1 0 0 0 0

0 1 0 0 0 0 0 ¡1 0 0

0 0 1 0 0 0 0 0 ¡1 0

0 1 0 ¡1 0 0 0 0 0 0

3
77777777775

;
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¯c2 = H2'

H 0
2 =

2
6666664

¡1 0 0 0 0 0 0 0 0 0

0 ¡1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

3
7777775

'0 =
¡
¹11;± ¯22 ¯32

¢
:

There are three parameters2 to be estimated in ¯: In their paper, Garratt et

al. make oil prices strictly exogenous with respect to the rest of the system3. The

parameterisation they use implies weak exogeneity of oil prices with respect to ® and

¯. The restriction that there is no quadratic trend in yt implies ¹11;±® = 0. Further,

the exclusion of a trend from all long run relations except the money-income relation,

u5;t, implies the restriction upon the …rst row of ¯ is ¹1;± =
¡
0; 0; 0; 0; ¹11;±

¢
:

The combinations of restrictions implied by the above model can be denoted in
2Note that we do not use linear identifying restrictions (or normalisation) for the vector ¯c

2,

in which coe¢cients must be estimated. Instead, as discussed below, we identify ' by nonlinear

restrictions of the form '0' = 1. We do this to simplify estimation, and to avoid the potential

problem that the posterior may have no moments and possibly be improper, particularly when we

impose exogeneity.
3The concept of strict exogeneity has been criticised (Engle, Hendry and Richard 1983 and Hendry

1995) for introducing ambiguity of interpretation. The concepts of weak, strong and super exogeneity

do, however, have clear interpretations and implications. Therefore, it is fortunate that in making

oil prices strictly exogenous, Garratt et al. in fact make them weakly exogenous with respect to ¯+

and ®: The weak exogeneity of oil prices implies ®2 = 0.
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the notation of Section 2 as M! with ! = (5; 4; 2; 2) ; that is, the cointegrating rank

is 5, we employ the overidentifying restrictions on ¯ of type 4, oil prices are weakly

exogenous with respect to ® and ¯; and there is no quadratic drift in yt but there

may be a trend in yt¯:

The range of models we include in our model set are de…ned by r 2 [0; 1; : : : ; 9] ;

e 2 [1; 2] ; o 2 [1; 4] ; and i 2 [1; : : : ; 5] for a total of 200 models. As a number

of the models implied by combinations of these restrictions are either impossible or

observationally equivalent, we need only estimate 87 models. We provide only a

preliminary analysis which is not intended to be an alternative to the more complete

classical analysis of Garratt, et al. A number of issues dealt with in their full classical

analysis such as, for example, lag length determination are not taken into account in

our study as they are beyond the scope of this paper.

4 Priors and posteriors.

In this section the forms of the priors and resultant posterior are presented. We

restrict ourselves to ‡at priors where possible, although consideration is given to

informative priors when discussing the parameters of interest. For the model in (3),

assume the rows of the T £ n matrix " = ("01; "02; : : : ; "0T)
0 are "t s iidN(0;§): The

likelihood can then be written as

L
³
yj§; B; ¯; !; eZ

´
/ j§j¡T2 exp

½
¡1
2
tr

¡
§¡1"0"

¢¾
: (4)

19



4.1 The prior for (§; B; !) :

The priors for the elements of ! = (r; o; e; i) are not independent, as certain combi-

nations are either impossible, meaningless (such as, for example, r = 0 with o = 2) or

observationally equivalent to another combination (such as, for example, r = 0 with

o = 2 or r = n with i = 1 or 2). However, after excluding these combinations we

specify the remaining values of ! to be equally likely. This implies we use the prior

for the rank r as p (r) = (n + 1)¡1and for the deterministic models p (ijr) = 1=5 for

0 < r < n and i 2 [1; 2; 3; 4; 5] ; p (ijr = 0) = 1=3 for i 2 [1; 2; 4] since at r = 0 i = 2

and i = 3 are observationally equivalent as are i = 4 and i = 5; and p (ijr = n) = 1=3

for i 2 [1; 3; 5] since at r = n; i = 1 and i = 2 are observationally equivalent as are

i = 3 and i = 4. As oil prices are weakly exogenous with respect to Á1; we set y2;t = pot

and y1;t is the vector of remaining variables. The prior density for the states of exo-

geneity e 2 [1; 2] is p (ejr) = 1=2 for r < n and for the states of overidenti…cation of

¯; o 2 [1; 4] ; p (o) = 1=2: The standard di¤use prior for §; p (§) _ j§j¡(n+1)=2 is used.

As B changes dimensions across the di¤erent models of ! and each element of

the matrix B has the real line as its support, the Bayes factors for di¤erent models

will not be well de…ned if an improper prior on B; such as p (Bj¯; !) _ 1 were

used. For discussion on this point see (among many others) Lindley (1957), Bartlett

(1957), Je¤reys (1961) and more recently O’Hagan (1995). For this reason a weakly

informative proper prior for B must be used. We take the prior forB conditional upon
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(§; ¯; !) as normal with zero mean and covariance §­
³
ē0H ē

´¡1
where H = 0:1I(r+ki)

and

ē =

2
664
¯ 0

0 Iki

3
775

such that ē 0H ē = 0:1I(r+ki ):

4.2 Eliciting a prior on ¯:

In this section we outline earlier work in Bayesian cointegration analysis, focussing

on problems addressed and limitations of these approaches as they relate to the aim

of this paper. Then we present a general analysis of an alternative approach. For

speci…c applications and a less technical outline of this approach we refer to Strachan

and Inder (2003) and Strachan and van Dijk (2003).

Linear restrictions and the cointegrating space: It is well known that as ¯

and ® appear as a product in (2), r2 restrictions need to be imposed on the elements

of ¯ and ® to just identify these elements. These restrictions are commonly imposed

upon ¯ by assuming c¯ is invertible for known (r £ n) matrix c and the restricted ¯

to be estimated is ¯ = ¯ (c¯)¡1 : The free elements are collected in ¯2 = c?¯ where

c?c0 = 0: A common choice in theoretical work is c = [Ir 0] such that ¯ =
h
Ir ¯

0
2

i0
: A

prior is then speci…ed for ¯2 which is then estimated and often its value is interpreted.

There exist practical problems with incorrectly selecting c: The implications for
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classical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ri-

patti and Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of

these papers examples are provided which demonstrate the importance of correctly

determining c:

Assuming that c is known, Kleibergen and van Dijk (1994, 1998) and Bauwens and

Lubrano (1996) detail remaining pathologies and features which complicate analysis

associated with the posterior for ¯2 with a ‡at prior. Kleibergen and van Dijk (1994)

demonstrate how a variable addition speci…cation - which would provide a natural

way of performing inference on r by nesting the reduced rank model within a full rank

model - results in an improper posterior distribution at reduced ranks, thus precluding

inference. For the non-nested reduced rank model, as in (2), Kleibergen and van Dijk

(1994) outline the additional issue of local nonidenti…cation which manifests itself

in the likelihood and results in asymptotes in the marginal posterior distributions,

nonexistence of moments of ¯2; and precludes the use of MCMC due to reducibility

of the chain. As a solution they propose using the Je¤reys prior as the behaviour of

this prior in problem areas of the support o¤sets the problematic behaviour of the

likelihood. Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002) use a

singular value decomposition to nest the rank r < n model within the rank n model.

Importantly, they include in the posterior the Jacobian for the transformation from

the full rank model to the parameters of the reduced rank model into the posterior.
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In this speci…cation, the Jacobian behaves in a similar way to the Je¤reys prior in

the problem areas of the support, however this approach allows freer expression of

prior beliefs than the Je¤reys prior. Use of the Je¤reys prior or the singular value

decomposition avoid the issue of local nonidenti…cation, result in proper posteriors

and allow use of MCMC, however the posterior again has no moments of ¯2.

Bauwens and Lubrano (1996) begin with the reduced rank model and provide a

study of the posterior distribution of ¯2: They use the results for the 1-1 poly ¡ t

density of Drèze (1976) to show the posterior has no moments due to a de…ciency of

degrees of freedom. Similar results have been shown for the simultaneous equations

model (Drèze 1976, Kleibergen and van Dijk 1998). Nonexistence of moments is not

commonly a concern for estimation as modal estimates exist as alternative estimates

of location. However, as the kernel of the 1-1 poly ¡ t is a ratio of the kernels of two

student¡ t densities, the posterior may be bimodal - with the modes sometimes well

apart from eachother - making it di¢cult to both locate the global mode and bringing

into question the interpretation of the mode as a measure of location.

Exogeneity is a commonly employed restriction and is important in our applica-

tion. For our application in which we combine restrictions to de…ne new models, we

have the additional problem that the posterior for ¯2 is improper when exogeneity is

imposed. As there are no published references to this results an outline of the result

is provided in Appendix 1. Nonexistence of moments or an improper posterior are
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signi…cant issues as they imply we know a priori any estimate of an object of interest,

g
¡
¯2

¢
- obtained by averaging across the set of models - will not exist (or be in…nite)

if exogeneity is imposed or if g
¡
¯2

¢
is a convex or linear function of ¯2.

Further, it is clear from the discussion on the prior for B that a ‡at prior on

¯2 cannot be employed to obtain posterior probabilities for !; since the dimensions

of ¯2 depend upon !: As argued in the introduction, an advantage of the Bayesian

approach is the ability to explicitly incorporate prior beliefs into the analysis. A

‡at improper prior is generally intended to re‡ect ignorance about the parameter of

interest, therefore the above issues with the posterior at least, may be resolved by

relinquishing this option and making use of an informative prior on ¯2: For example, a

student-t prior may be used, or inequality restrictions - such as a marginal propensity

to consume between zero and one - are often useful. Priors such as the Je¤reys prior

have been proposed which may resolve some of the above problems, however their

application is often complicated and one is suspicious that such priors are advocated

more as a …x to a problem in the likelihood and less as a representation of prior

beliefs. Further the Je¤reys prior does not allow for model averaging. Therefore, to

preserve the options of both informative and uninformative priors, to preserve the

function of the prior as a representation of prior beliefs, to simplify the application

and estimation, and as we do not see ¯2 as the parameter of interest, we diverge

at this point from much of the earlier literature in both specifying our parameter of
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interest and eliciting an uninformative prior on that parameter.

The parameter of interest: Here we explain the above comment regarding ‘the

parameter of interest’ and implications of using ¯2. We denote the space spanned by

a matrix A by sp (A). In cointegration analysis it is not the values of the elements

of ¯ that are the object of interest, rather it is the space spanned by ¯; p = sp (¯) ;

and this space is in fact all we are able to uniquely estimate. The parameter p is an

r-dimensional hyperplane in Rn containing the origin and as such is an element of the

Grassman manifold Gr;n¡r (James, 1954), p 2 Gr;n¡r . Before we derive the priors for

p we brie‡y comment on the relationship between priors for ¯2 and p: First we must

introduce some notation for matrix spaces and measures on these spaces. For a more

intuitive discussion of these concepts see Strachan and Inder (2003).

The r £ r orthogonal matrix C is an element of the orthogonal group of r £ r

orthogonal matrices denoted by O (r) = fC (r £ r) : C0C = Irg, that is C 2 O (r) :

The n£ r semi-orthogonal matrix V is an element of the Stiefel manifold denoted by

Vr;n = fV (n£ r) : V 0V = Irg, that is V 2 Vr;n: As the vectors of any V are linearly

independent (since they are orthogonal) the columns of V de…ne a plane, p, which is an

element of the (n¡ r) r dimensional Grassman manifold, that is p = sp (V ) 2 Gr;n¡r.

The cointegrating space for an n dimensional system with cointegrating rank r is an

example of an element of Gr;n¡r: Finally, let the jth largest eigenvalue of the matrix

A be denoted ¸j (A).
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As discussed in James (1954), the invariant measures on the orthogonal group,

the Stiefel manifold and the Grassman manifold are de…ned in exterior product dif-

ferential forms (for measures on the orthogonal group and the Stiefel manifold, see

also Muirhead 1982, Ch. 2). For brevity we denote these measures as follows. For

a (n£ n) orthogonal matrix [b1; b2; : : : ; bn] 2 O (n) where bi is a unit n-vector such

that ¯ = [b1; b2; : : : ; br] 2 Vr;n; r < n, the measure on the orthogonal group O (n) is

denoted dvnn ´ ¤ni=1¤nj=i+1b0jdbi, the measure on the Stiefel manifold Vr;n is denoted

dvnr ´ ¤ri=1¤nj=i+1b0jdbi, and the the measure on the Grassman manifold Gr;n¡r is

denoted dgnr ´ ¤ri=1¤nj=n¡r+1b0jdbi. These measures are invariant (to left and right

orthogonal translations).

Theorem 1 The Jacobian for the transformation from p 2 Gr;n¡r to vec
¡
¯2

¢
2

R(n¡r)r is de…ned by

dgnr = ¼¡(n¡r)r¦rj=1
¡ [(n +1 ¡ j) =2]
¡ [(r +1 ¡ j) =2]

¯̄
¯Ir + ¯ 02¯2

¯̄
¯
¡n=2 ¡

d¯2
¢

(5)

where ¡ (q) =
R 1
0 u

q¡1e¡udu for q > 0: The underscore denotes the normalised mea-

sure such that
R
Gr;n¡r

dgnr = 1:

Proof. In deriving the invariant measure on the Grassman manifold, James

(1954) presents a relationship between an element of the Stiefel manifold, V 2 Vr;n;

and element of the Grassman manifold, p = sp (¯) 2 Gr;n¡r where the r-frame ¯ 2 Vr;n

and an element of the orthogonal group, C 2 O (r). ¯ has a particular (…xed)
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orientation in p such that it has only (n¡ r) r free elements. Thus as p is permitted

to vary over all of Gr;n¡r, ¯ is not free to vary over all of Vr;n: For p = sp (V ), V

is determined uniquely given p and orientation of V in p by C 2 O (r), such that

V = ¯C: Note that as p is permitted to vary over all of Gr;n¡r, V is free to vary over

all of Vr;n: The resulting relationship between the measures is

dvnr = dgnr dvrr

or dvnr = dgnr dv
r
r: (6)

James4 obtains the volume of Gr;n¡r as

Z

Gr;n¡r
dgnr =

R
Vr;n
dvnrR

O(r) dv
r
r

= ¼(n¡r)r¦rj=1
¡ [(r + 1¡ j) =2]
¡ [(n + 1¡ j) =2] : (7)

Since the polynomial term accompanying the exterior product of the di¤erential

forms is equivalent to the Jacobian for the transformation (Muirhead 1982, Theorem

2.1.1), we can see from the expression (6) that the Jacobian for the transformation V

to (¯;C) is one.

Next consider the transformation from V 2 Vr;n; to ¯2 2 R(n¡r)r and C 2 O (r)

presented by Phillips (1994, Lemma 5.2 and see also Chikuse, 1998) and reproduced

here:

V =
£
c0 + c0?¯2

¤ h
Ir + ¯

0
2¯2

i¡1=2
C:

4We note that the sums, §; in (5.23) of James (1954) should be products, ¦:
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The di¤erential form for this transformation is

dvnr = ¼
¡(n¡r)r¦rj=1

¡ [(n + 1¡ j) =2]
¡ [(r + 1¡ j) =2]

¯̄
¯Ir + ¯02¯2

¯̄
¯
¡n=2
d¯2

³
dvrr

´
(8)

(Phillips, 1994).

Equating (6) and (8) gives the result. Another, slightly more general proof for the

same result is presented in Chikuse (1998).¥

Thus while a uniform distribution on Gr;n¡r implies a uniform distribution on

Vr;n, this uniform distribution on Gr;n¡r implies a Cauchy distribution for ¯2: This

last result was also derived by a very di¤erent approach by Villani (2000) for the case

where c = [Ir 0] ; although it holds for general c:

This transformation of the measure is relevant in both Bayesian and classical appli-

cations. As discussed in Phillips (1994), the form in (8) which introduces Cauchy tails

into the distribution for ¯2 explains why applying linear restrictions to the maximum

likelihood estimator of Johansen, b̄ =
h
b̄ 0
1

b̄0
2

i0
results in an estimator, b̄ = b̄

2
b̄¡1
1 ;

which is occasionally unreliable. The …nite sample distribution for b̄ has Cauchy

tails and this Cauchy behaviour is a direct result of imposing the linear restrictions.

This form also provides an alternative explanation for the rather similar but Bayesian

results of Bauwens and Lubrano (1996). They show posterior Cauchy tail behaviour

of the Bayesian estimator of ¯ = ¯2¯
¡1
1 where no (additional) prior information on

the cointegrating space is employed, although they use a 1-1 poly-t argument to …nd

this result. Similar results can be found for the simultaneous equations model in
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Kleibergen and van Dijk (1998) and Drèze (1976).

Generally, estimating the cointegrating space using linear identifying restrictions

will result in Cauchy tail behaviour unless there are other terms - such as prior

information - o¤setting the e¤ect of this transformation. As one example of this

e¤ect of prior information, Bauwens and Lubrano (1996) show that overidentifying

restrictions - which therefore reduce the number of free parameters to be estimated

and, importantly, restrict the range of p within Gr;n¡r - will result in a posterior with

as many moments as overidentifying restrictions.

The Jacobian de…ned by (5) implies that a ‡at prior on p is informative with

respect to ¯2 and vice versa. This leads us to consider the implications of a ‡at prior

on ¯2 for the prior on p.

Theorem 2 The Jacobian for the transformation from ¯2 2 R(n¡r)r to p 2 Gr;n¡r is

de…ned by

¡
d¯2

¢
= ¼(n¡r)r¦rj=1

¡ [(r +1 ¡ j) =2]
¡ [(n +1 ¡ j) =2]

¯̄
Ir + (c¯)0¡1 ¯0c0?c?¯ (c¯)

¡1¯̄n=2 (dgnr )

= J dgnr : (9)

Proof. Invert (9) and replace ¯2 by c?¯ (c¯)
¡1.¥

A common justi…cation for the linear restrictions is that an economist will usually

have some idea about which variables will enter the cointegrating relations and so she

chooses c to select the rows of coe¢cients most likely to be nonzero - more generally
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linearly independent from eachother - and then normalise on these coe¢cients. This

is a necessary assumption to ensure (c¯)¡1 exists. As the next theorem shows, using

these linear restrictions, however, has the unexpected and undesirable result that the

Jacobian for ¯2 ! p places more weight in the direction where the coe¢cients thought

most likely to be di¤erent from zero are, in fact, zero (or linearly dependent).

Theorem 3 Given r; use of the normalisation ¯2 = c?¯ (c¯)¡1 results in a trans-

formation of measures for the transformation ¯2 2 R(n¡r)r ! p 2 Gr;n¡r that places

in…nite mass in the region of null space of c relative to the complement of this region.

Proof. Let ½c? be the plane de…ned by the null space of c. De…ne a ball, B, of

…xed diameter, d, around ½c? and let N0 = B \Gr;n¡r and N = Gr;n¡r ¡N0. Since

for d > 0,
R
N Jdg

n
r is …nite whereas

R
N0
Jdgnr = 1, we have

R
N0
JdgnrR

N Jdgnr
= 1:

¥

To summarise, normalisation of ¯ by choice of c with a ‡at prior on ¯2 implies

in…nite prior odds against this normalisation.

To demonstrate this result, consider a n¡dimensional system for y = (x0; z0)0

where x is a r vector. To implement linear restrictions a normalisation must begin

by …rst choosing c. Suppose it is believed that if a cointegrating relationship exists

then it will most likely involve the elements of x in linearly independent relations:
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That is in y¯ = x¯1 + z¯2 v I (0), det (¯1) is believed far from zero making it safe

to normalise on ¯1; and so choose c = [Ir 0] and estimate ¯2 = c?¯ (c¯)
¡1 :

From (9) we see as p = sp (¯) ! sp (c) ; c?¯ ! 0(n¡r)£r and c¯ ! O (r) and

J ! 1. However, as vectors in ¯ approach the null space of c, that is det(c¯) ! 0;

then (c¯)¡1 ! 1; and thus J ! 1. As a result the prior will more heavily weight

regions where det(c¯) = det(¯1) t 0; contrary to the intention of the economist. As a

trivial example, consider our money demand study with r = 1 and ³t = ¯1mt+¯2inct:

If we believe money is most likely to enter the cointegrating relation, we would choose

c = (1; 0) as we believe ¯1 6= 0: Yet the Jacobian places in…nite weight in the region

¯1 = 0 excluding mt from the cointegrating relation.

A uniform prior on the cointegrating space: There is clearly a need to

consider a new approach to eliciting priors for ¯. We wish to avoid the problems out-

lined above deriving from the use of linear restrictions with normalisation to identify

the elements of ¯ and the subsequent treatment of ¯2 as the parameter of interest.

Our recommendation is, if the economist wishes to incorporate prior beliefs about

the cointegrating relations, these should be expressed in the prior distribution for the

cointegrating space.

As we have claimed the cointegrating space to be the parameter of interest, rather

than ¯2, we propose working directly with p = sp (¯) avoiding the linear restrictions

and normalisation. Initially we present a distribution and identifying restrictions for
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¯ from the form of the uniform distribution for p over Gr;n¡r using the results of

James (1954) (see also Strachan and Inder, 2003). The identifying restrictions on ¯

follow naturally from this approach. This prior has the form

p (¯) =
1R

Gr;n¡r
dgnr

(10)

where ¯ is the r-frame with …xed orientation in p. In the proof of Theorem 1, the

measure on Gr;n¡r used in the above expression is derived from its relationship with

the spaces Vr;n and O (r) :

To avoid using linear restrictions with a normalisation to identify ¯ it is necessary

to …nd an alternative set of restrictions that do not require knowledge of c and which

avoid the issues associated with the posterior for ¯2: Fortunately the de…nition (6) and

the discussion in the proof of Theorem 1 provide a natural solution to this question.

That is use ¯ 2 Vr;ni which implies r (r + 1) =2 restrictions. The dimension of the

Grassman manifold is only (n¡ r) r while the dimension of the Stiefel manifold Vr;n

is nr¡r (r +1) =2, which exceeds that of Gr;n¡r by r (r ¡ 1) =2: In (6), these remaining

restrictions come from the orientation of ¯ in p by C 2 O (r). The prior, the posterior

(as is made clear later) and the di¤erential form for ¯ are all invariant to translations

of the form ¯ ! ¯H; H 2 O (r) : Therefore it is possible to work directly with ¯

as an element of the Stiefel manifold and adjust the integrals with respect to ¯ by
³R
O(r) dv

r
r

´¡1
as shown in (7). Note that these identifying restrictions do not distort

the weight on the space of the parameter of interest, p, and it is never necessary to
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actually specify the orientation of ¯ in p.

Thus, contrary to the situation when using linear identifying restrictions, we are

able to employ innocuous identifying restrictions, place a prior directly on the para-

meter of interest and, as we show below, we achieve a better behaved posterior about

which we know much more. Before we discuss the posterior, however, we extend this

approach to informative priors on the cointegrating space.

An informative prior on the cointegrating space: If an economist believes

a parameter is likely to have a particular value, to incorporate this prior belief she

places more prior mass around this likely point. When considering the cointegrating

space p, we will denote our desired location or the likely value as pH = sp (H·) (as in

the Garrett et al. case) where H 2 Vs;n is a known n£ s (s ¸ r) matrix, H? 2 Vn¡s;n

its orthogonal complement and · is an s£ r full rank r matrix. To obtain H in Vs;n,

…rst specify the general matrix Hg with the desired coe¢cient values. One might

consider as an example the matrix H2 presented in Section 3. Next map this to Vr;n

by the transformation H = Hg (Hg0Hg)¡1=2 :

At the extreme, a dogmatic prior for p could be speci…ed by letting ¯ = H·V;

V 2 O (r) : Next de…ne ·V = V· 2 Vr;s and specify the prior in (10) for V·: This

resulting prior which assigns unit probability mass to p = pH :

Next we specify an informative, nondogmatic, prior for p centered at p = pH but

with positive mass elsewhere in Gr;n¡r:
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Let the random scalar ¿ have E (¿ ) = 0 and E (¿2) = ¾2: The value of ¾ will

control the tightness of the prior density around pH . Next construct

P¿ = HH 0 +H?H 0
?¿

= [H H?]

2
664
Ir 0

0 In¡r¿

3
775

2
664
H 0

H 0
?

3
775

and let the elements of the n£ r matrix Z be independently distributed as standard

normal, N (0; 1) : The matrix X = P¿Z can be decomposed as X = ¯¤· where

¯¤ 2 Vr;n and · is an r £ r upper triangular matrix. For ¿ 6= 0 and j¿ j < 1; the

space of ¯¤; p = sp (¯¤) ; is a direct weighted sum of the spaces pH and pH? with the

weight determined by ¿ :

At ¿ = 0 and ¿ = §1; p is respectively pH and pH?. It is for this reason that

we chose E (¿ ) = 0 such that with respect to ¿, the space will on average be pH :

One choice for ¿ is N (0; 1) and the form of the resultant density for ¯¤ and the

hyperparameter ¿ is

p (¿; ¯) = ¿¡(n¡r)r exp
½

¡¿
2

2

¾ ¯̄
¯ 0P¡1¿ 2 ¯

¯̄¡n=2 cr (11)

where cr = 2¡r¡1=2¼r(r¡1)=4¡(n+1)r=2¦rj=1¡ [(n + 1¡ j) =2] : This prior treats the point

pH?; which occurs at ¿ = 1; as an improbable (practically impossible) event re-

gardless of the choice of ¾. This is desirable since at ¿ = 1 the dimension of the

cointegrating space, dim (p) ; would become dim
¡
pH?

¢
= min (p¡ r; r) rather than r:
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As an alternative, if the researcher would prefer to assign more weight in the

direction of pH? but preserve dim (p) = r with probability one, she may choose

P¿ = HH 0 (1¡ ¿ 2)1=2 + H?H 0
?¿ with ¿ 2 [¡1; 1] : Again the choice of E (¿) = 0

would make sense and E (¿ 2) = ¾2 controls the tightness of the density around pH .

A possible choice of a distribution for ´ = ¿ + 1 may be Beta over ´ 2 [0; 2] which

allows some mass to be distributed around pH? by appropriate choice of parameter

values.

4.3 The posteriors.

Using the priors speci…ed above, the general form of the posterior is then

p (B;§; ¯; r; ijy) / p (¯) j§j¡(T+n+ki+r+1)=2

£ exp
½

¡1
2
tr§¡1

·
TS +

³
B ¡ eB

´0
V

³
B ¡ eB

´¸¾
(12)

£ (2¼)¡n(ki+r)=2 100n(ki+r)=2

= k (B;§; ¯; !jy)

where S = S00 ¡ S01¯ (¯ 0S11¯)¡1 ¯ 0S10; eB =
·

e®0 e©0
¸0

, e® = (¯ 0S11¯)¡1 ¯0S10; e© =

S¡122 S20; and V = ē 0 ¡§Tt=1z0tzt +H
¢ ē where zt = (z1;t z2;t). The values for the Sij are
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de…ned as

TMij = hij + §Tt=1z0i;tzj;t for i and j = 1; 2;

hij = 0 if i 6= j and hii = 0:01I;

TM20 = §Tt=1z02;t¢yt; TM10 = §Tt=1z01;t¢yt;

TM00 = §Tt=1¢y
0
t¢yt and so

Sij = Mij ¡Mi2M¡1
22 M2j for ij = 0; 1; 2,

except i = j = 2 where

S22 = M22 ¡M21M¡1
11 M12 and

S20 = M20 ¡M21M¡1
11 M10:

For later use we also de…ne D0 = D1 ¡D2; D1 = S11 and D2 = S01S¡111 S10:

For B 2 R(ki+r)n and § positive de…nite (denoted § > 0), to estimate the rele-

vant Bayes factors, Bjl =
mj
ml

, for the models of interest, estimates of the marginal

likelihoods, e.g.

mj =
X

!

Z

R(ki+r)n

Z

§>0

Z

Gr;n¡r
kµ (B;§; ¯; !jy) (dgnr ) (d§) (dB) ; (13)

are required. To perform the integration in (13) of µ = (§; B; ¯) ; we …rst analytically

integrate (12) with respect to (§; B) as these parameters have conditional posteriors

of standard form. This integration gives us the following.
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Theorem 4 The marginal posterior for (¯; !) is

p (¯; !jy) _ g! jS00j¡T=2 jM22j¡n=2 j¯ 0D0¯j¡T=2 j¯ 0D1¯j(T¡n)=2 p (¯) (14)

where in this case g! = T ¡nr=2¼¡(ni¡r)r=2100n(ki+r)=2:

Proof. See, for example, Zellner (1971).¥

Remark: It is from the expression (14) that we see that not only is dgnr invariant

to ¯ ! ¯C for C 2 O (r), but so is k (¯) and thus the posterior.

Next we need to integrate (14) with respect to ¯ to obtain the posterior for !:

Since g! is …nite for the class of priors considered, that the Bayes factor is …nite

requires the integral with respect to ¯ to be …nite. The following are some general

results with respect to this integral.

Theorem 5 The marginal posterior density for ¯ conditional upon ! has the same

form for each model considered:

p (¯j!; y) _ j¯0D0¯j¡T=2 j¯ 0D1¯j(T¡n)=2 (15)

= k¯ (¯)

where k¯ (¯) = j¯0D0¯j¡T=2 j¯ 0D1¯j(T¡n)=2 :

Theorem 6 The marginal posterior density for ¯ conditional upon (r; i) in (15) is

proper and all …nite moments exist.
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Proof. Denote by bij any element of ¯: The proof follows from the result that

the integral

M¯ =
Z

Vr;n
jbijjm k¯ (¯)dvnr

form = 0; 1; 2; : : : is bounded above almost everywhere by the …nite integralM
R 1
¡1 jbijjm dbij.

As the elements of ¯, bij, have compact support, it is only necessary for this proof

to show that k¯ (¯) dvnr is bounded above almost everywhere by some …nite constant

function over Vr;n (note the adjustment to the integral over Gr;n¡r simply requires

division by the …nite volume of O (r) ; thus we only need consider the integral over

Vr;n). As demonstrated in the proof to Theorem 1 in Section (4.2), dgnr is integrable

and therefore bounded above almost everywhere by some …nite constant, M1.

The eigenvalues ¸j (Dl) for l = 0; 1; will be positive and …nite with probability

one. By the Poincaré separation theorem, since ¯ 2 Vr;n; then

¦rj=1¸n¡r+j (Dl) · j¯ 0D1¯j · ¦rj=1¸j (Dl)

and so k¯ (¯) is bounded above (and below) by some positive …nite constant, M2.

Thus k¯ (¯)dgnr has a …nite upper bound, M = M1M2: With the compact support

for bij; these conditions are su¢cient to ensure the posterior for ¯ will be proper and

all …nite moments exist (see Billingsley 1979, pp. 174 and 180).¥

The importance of Theorem 6 becomes evident when we consider that economic

objects of interest to decision-makers are often linear or convex functions of the cointe-

grating vectors. As discussed in a previous section, with linear identifying restrictions
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expectations of such objects are not de…ned unless overidentifying restrictions are im-

posed or an informative prior is used. Further, the result in Theorem 6 holds even

when exogeneity is imposed - again in contrast to when linear identifying restrictions

are used.

To obtain the posterior distribution of ! = (r; o; e; i) ; p (!jy) ; it is necessary to

integrate (14) with respect to ¯ and so obtain an expression for

p (!jy) =
Z
p (¯; !jy) dgnr : (16)

The marginal density of ¯ conditional on ! in (15) is not of standard form. Al-

though one may exist, we do not currently know of a simple, general analytical solution

for c! =
R
Vr;n
k¯ (¯)dgnr and so we estimate c! .

Two possible approaches to estimating c! are either to use Markov Chain Monte

Carlo (MCMC) methods or to use deterministic methods to approximate the inte-

gral. Kleibergen and van Dijk (1998) develop a MCMC scheme in the simultaneous

equations model and Kleibergen and Paap (2002) extend this to the cointegrating

error correction model. Bauwens and Lubrano (1996) demonstrate an alternative

approach. In each of these applications a method is presented to evaluate integrals

using MCMC when ¯ has been identi…ed using linear restrictions rather than those

used in this paper. Strachan (2003) demonstrates the MCMC approach when ¯ has

been identi…ed using restrictions related to those of the ML estimator of Johansen

(1992). An approach commonly used in classical work to approximate integrals over
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Vr;n; is to use the Laplace approximation which is computationally much faster than

MCMC. Strachan and Inder (2003) present the Laplace approximation to (16).

The Laplace approximation is a second order asymptotic approximation to the

marginal likelihood. There is an alternative, simpler, …rst order asymptotic approxi-

mation to the marginal likelihood which assumes dominance by the likelihood. That

is, we may treat the Bayesian information criteria of Schwarz (1978) (BIC) as an

asymptotic approximation to ¡T=2 times the log marginal likelihood, c!, for each

model. Thus we are able to obtain estimates of the posterior probabilities of the

models. In the Applications section we employ both the Laplace and the BIC ap-

proaches.

As we wish to obtain estimates of economic objects of interest averaged across

models we need to be able to obtain draws of ¯ from the posterior. The next sub-

section outlines an approach to obtaining MCMC draws from the posterior with the

uniform prior used in this paper.

Obtaining MCMC draws fromthe posterior with an uninformative prior

on the cointegrating space: As demonstrated in Strachan and Inder (2003), the

mode of the marginal posterior for ¯; ē;is relatively straight forward to obtain. Denote

this point by H: This gives us a method of developing a candidate density for the

posterior with mass in the same location as the posterior by using an approach similar

to that used to develop the informative prior in the previous section.
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First, specify a distribution for ¿ which includes specifying ¾: Let H = ē: Take

a draw of ¿ and construct P¿ ; then draw Z from the multivariate standard normal.

Next, construct X = P¿Z and then ¯¤ from the decomposition X = ¯¤·: ¯¤ is then

a draw from the candidate density for p with location pH = sp
³
ē
´
: Each of these

steps is explained in the previous section.

Acceptance for a Metropolis Hastings scheme or weighting in an Importance sam-

pling method will be determined by a function the ratio of the posterior to the can-

didate - an example of which is provided in (11) with H = ē.

Finally, a word about dispersion. For the candidate density to more closely match

the posterior in form, the value of ¾ could be calibrated to a desired level of dispersion,

preferably to match that of the posterior. This can be achieved by using (MC)MC

draws and the span variation measure (sv) of Villani (2000). This measure of variation

can be used to express the degree of variation in a distribution as a proportion of the

variation under the uniform distribution. The uniform distribution is an appropriate

reference as it implies equal variation in every direction.

5 Applications

In this section we provide some preliminary results for the applications to two eco-

nomic models. The …rst is relatively simple and involves only rank and exogeneity

restrictions in a small model. The second involves rank, exogeneity, trend and overi-
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dentifying restrictions.

5.1 Australian money demand.

We consider a simple study of Australian money demand. The variables, all of which

appear in logarithmic form, are de…ned as

yt = (mt pt inct) ;

where mt is the measure of money - either M1, M3 or broad money (BM), pt is the

price level, such that mt ¡ pt measures real money, and inct is real gross national

income. The data are quarterly observations from September 1976 to December 2002

and were sourced from the web site of The Australian Bureau of Statistics, speci…cally

tables D03, G09 and G02.

We are interested in estimation of the parameters determining the long and short

run behaviour of mt and in forecasts of mt, where the forecasts may be over the long

run, or both the long run and short run. Here we do not regard the long run as the

true long run path of mt, rather the equilibrium relationships to which the elements

of yt would revert if all future errors were zero.

If we are interested in whether we may estimate the money demand equation

zt = ¯1mt + ¯2pt + ¯3inct = yt¯

from a single equation formt; then this would require that the variables (pt inct) be

weakly exogenous with respect to ¯: As is commonly done (see for example Johansen,
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1995 and Funke, Hall and Beeby, 1997), we regard the money demand relation as the

cointegrating relation between the variables in yt: Therefore, for the analysis to make

sense, we require in addition that cointegration hold (and so r = 1 or 2). In terms

of the posterior probabilities, these joint conditions imply (e = 2; r = 1) : The same

condition is said to hold for strong exogeneity of (pt inct) with respect to ¯:

We can determine the values of other conditional probabilities as well. Note that

strong exogeneity implies weak exogeneity, and exogeneity with respect to Á2 implies

exogeneity with respect to Á1: Further, for (pt inct) to be exogenous with respect to

¯; this implies ®2 = 0 and so the rank of ¦ can be at most 1. These results imply

that the probabilities of exogeneity conditional on all ranks above 1 will be zero.

The posterior probabilities of the ranks are reported in Table 1. These indicate

that there is strong support for the requirement of r = 1 with some support for r = 0.

bp (rjy)

r M1 M3 BM

0 0.268 0.588 0.316

1 0.732 0.412 0.684

2 0.000 0.000 0.000

3 0.000 0.000 0.000
Table 1: Posterior probabilities of the ranks for money demand study.

For each money series (pt inct) is weakly exogenous with respect to the parame-
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ters determining the long run behaviour of money (Á1) with probability one. This

implies the …gures in Table 1 are the marginal probabilities of the ranks, the joint

probabilities of the ranks and weak exogeneity and also the conditional probabilities

of the ranks given weak exogeneity p (rjy) = p (r; e = 2jy) = p (rje = 2; y).

There is clearly strong support for weak exogeneity of prices and income with

respect to the long run parameters, (¯; ®1), in the regression equation for M1 and

broad money and these features imply the rank of the system is one. Thus single

equation estimation of money demand relations for Australian data is an appropriate

method. On the question of whether the velocity of money appears to be a stable

relation, we found no support for this model within the model set and this agreed

with the classical results for this data set.

5.2 Structural model of the UK economy

Analysing their macroeconomic model within (1), Garratt, et al. …nd support for

r = 5 using Johansen’s trace test. They also …nd support for the overidentifying

restrictions and trend restrictions using a log-likelihood ratio test, where they used

bootstrap estimates of critical values. They do not appear to test support for the

weak exogeneity of oil prices. Below we present the posterior probabilities of the

various models (zeros or near zeros are suppressed or omitted) where e = 2 implies

weak exogeneity of oil prices.
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bp (r; i; e = 1jy)

r i = 1 i = 2 i = 3 i = 4 i = 5

0

1 0.0101 0.0008 0.0324 0.0128

2 0.0004 0.0001 0.0040 0.0190

bp (r; i; e = 2jy)

r i = 1 i = 2 i = 3 i = 4 i = 5

0

1 0.0213 0.0085 0.2507 0.1262

2 0.0001 0.0002 0.0756 0.4376

3 0.0001
Marginal Probabilities

bp (ijy) i = 1 i = 2 i = 3 i = 4 i = 5

0.0000 0.0320 0.0096 0.3626 0.5958

bp (rjy) r = 0 r = 1 r = 2 r = 3 r = 4

0.4628 0.5371 0.0001

The posterior probabilities for the rank suggest support for a rank of one or

two with P (r = 1jy) = 0:4628 and P (r = 2jy) = 0:5371. We also …nd marginal

probabilities of no deterministic processes (i = 5) of 0:5958 and of an intercept in the

cointegrating relations (i = 4) of 0:3626: The posterior probability that the oil prices
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are weakly exogenous is 0:9203 providing strong support for this restriction. The

combined restrictions of overidenti…cation, exogeneity, four stochastic trends and a

linear trend in the long run money-income relation had a joint probability of e¤ectively

zero within this model set.

With the overidentifying restrictions, the only coe¢cients to be estimated in the

long run relations, ignoring the intercepts, are in the money market equilibrium con-

dition given by

ht ¡ yt = ¹21;¿ t+ ¯22rt + u4;t:

Estimating the coe¢cients in this relation subject to the restrictions proposed by

Garratt, et al., we obtain

ht ¡ yt = ¡0:0070t ¡ 43:2148rt + u4;t

which compares with the classical estimate of Garratt et al. of

ht ¡ yt = ¡0:0073t¡ 56:0975rt + u4;t:

Both results suggest a downward trend in the money-income ratio which may be

attributed to technological innovations in the …nance sector (Garratt, et al. 2002).

Although there is a clear modal model, M(r;o;e;i) =M(2;1;2;5); there is just as clearly

some support for nearby models such as M(1;1;2;4) and M(1;1;2;5). We would like to

incorporate the information value of these models for decision making and one way

to achieve this is through averaging the economic object of interest. As an example
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of an averaged output which can be used as an input for decision making, Figure 1

presents the higher posterior density regions (hpds) for the impulse response function

over 60 months for a response in relative UK prices, pt ¡ p¤t , to a shock in oil prices,

pot . This output is averaged across all models and was produced from 100,000 draws

from the full posterior. The intervals plot the boundaries of the 20%, 40%, 60% and

80% hpds. The UK during the period of the sample was a net oil exporter and we

see the e¤ect of this re‡ected in the …gure as the distribution of the response path

indicates initially that the rest of the world experiences a larger response to an oil

price shock than the UK, after which the UK appears to catch up slightly. However,

the greater impact on world prices relative to UK prices seems to persist as after 60

months the path is centred around a slightly negative mode just above negative 1%.

This is not a surprising result given the likely exchange rate adjustment in the pound.

********** Figure 1 around here **********

It should be pointed out that these intervals are not comparable with the usual

classical con…dence intervals as they incorporate variable uncertainty, parameter un-

certainty and model uncertainty. With this extra uncertainty it is sensible then that

the intervals containing a given mass will be wider and the mass in any particular re-

gion does not have the same interpretation. Trimming the model set of unreasonable

models would likely produce smaller intervals. However, the results we present are

more informative on the question ‘What will happen to relative prices in the UK if
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there is an oil price shock?’ as they do not require the addendum: ‘... if this model

and these parameter values are correct?’.

Figure 2 plots the hpds for the impulse response function over 60 months for a

response in UK in‡ation, ¢pt, to a shock in oil prices, pot , again produced from 100,000

draws from the posterior. The median response after 60 months shows a moderate

increase in the level of in‡ation of around 2.5% and so the median impulse response

is about where we would expect it and the 20% and 40% hpds are reasonable.

********** Figure 2 around here **********

An interesting feature of both …gures are the long tails at low lags. This tail

behaviour is due entirely to the set of 40 models (out of 97 models) in which oil prices

are not constrained to be weakly exogenous. Although these models are given a small

(but not negligible) posterior probability (around 8%), their implied response paths

are so extreme that they have a noticeable in‡uence upon the marginal distribution

of the response.

It is to demonstrate this rather strange behaviour that we have reported the

results using the BIC approximation to the posterior probabilities. The same plots

of the hpds for the impulse response paths when we used the Laplace approximation

or the MCMC estimation do not demonstrate such an extreme diversion in the tail

and look similar to what we obtain if we use BIC but exclude the models in which

oil prices are not exogenous (e = 1). The reason for this is that the Laplace and
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MCMC methods tend to concentrate the mass of the density for the models on fewer

models and attribute no mass to the models with e = 1. The behaviour in Figure 2

demonstrates the risks of conditioning on particular models, but also the risks - also

inherent in our approach - of not using a su¢ciently well considered model set.

6 Conclusion.

In this paper we have presented an approach to obtaining inference on the structural

features of the vector autoregressive model that are of interest to researchers and

for policy analysis. This approach allows the incorporation of uncertainty about the

‘true state of nature’ into the conduct of policy analysis by producing output averaged

across models rather than output conditional upon a particular model. The output

produced this way allows policy recommendations to be made that are not conditional

on a particular model, and thus this model averaging approach provides an impor-

tant alternative to the more commonly used model selection approach. Speci…cally

we provide techniques for estimating marginal likelihoods for models of cointegration,

deterministic processes, exogeneity, and overidentifying restrictions upon the cointe-

grating space. These estimates are derived using a mixture of analytical integration

and MCMC or asymptotic approximations to integrals. Two applications of these

tools are provided. First for a simple example of a model of Australian money de-

mand and, second, a more complete macroeconomic model of the UK proposed by
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Garratt, et al..

Very natural extensions of our approach are to include inequality conditions in

the parameter space of the structural VAR or forms of nonlinearity in the model

itself. For instance, in using a SVAR for business cycle analysis one may use prior

information on the length and amplitude of the period of oscillation. An example of

a possible nonlinear structure that may prove useful is presented in Paap and van

Dijk (2003). Systematic use of inequality conditions and nonlinearity implies a more

intense use of MCMC algorithms.
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9 Appendix

9.1 Posterior distribution of ¯2 given exogeneity:

In this section we show the marginal likelihoods are not well de…ned for ¯2 when weak

exogeneity is imposed. The following results apply for a wide class of priors. To con-

sider weak exogeneity with respect to ¯; we partition the matrix ® as ® =
µ
®1 ®2

¶

such that the exogeneity restriction is implied by ®2 = 0 and derive the marginal dis-

tribution of (®2; ¯) : Next we set ®2 = 0 in p (®2; ¯jy) : If
R
p (¯j®2 = 0; y) (¯ 0d¯) = 1,

then the posterior does not integrate to a …nite constant and Bayes factors are not

de…ned. Thus by demonstrating that the above integral is not …nite when linear re-

strictions are imposed on ¯; such that ¯ = [Ir ¯ 02]
0 and ¯2 2 R(n¡r)r; we show the

marginal likelihoods are not …nite.

The marginal, joint posterior distribution for (®; ¯) given r = p2; is

p (®; ¯jr; y) _
¯̄
TS + (® ¡ b®)0 ¯ 0S11¯ (®¡ b®)

¯̄¡(º+r)=2 :

such that

p (®; ¯jr; y) _
¯̄
TS + (® ¡ b®)0 ¯ 0S11¯ (®¡ b®)

¯̄¡(º+r)=2

=
¯̄
¯(¯ 0S11¯)¡1+ T¡1 (® ¡ b®) S¡1 (®¡ b®)0

¯̄
¯
¡(º+r)=2

£ jTS j¡(º+r)=2 j¯ 0S11¯j¡(º+r)=2 :
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Let ¾22 denote the last p2 rows and columns of TS and partition TS as

TS =

2
664
S11 S12

S21 ¾22

3
775 :

Next, denote the p2 £ p2 matrix made up of the last p2 rows and columns of S00 by

S00;22; and note that ¾22 = S00;22 ¡ b®02¯ 0S11¯b®2: Next, we integrate with respect to

a1: The conditional distribution of aj¯ is

p (®j¯; y) _
¯̄
¯(¯ 0S11¯)¡1 + T ¡1 (® ¡ b®) S¡1 (® ¡ b®)0

¯̄
¯
¡(º+r)=2

=
¯̄
¯(¯ 0S11¯)¡1 + g1 (®2) + g2 (®1)

¯̄
¯
¡(º+r)=2

where

g1 (®2) = (®2 ¡ b®2) ¾¡122 (®2 ¡ b®2)0

g2 (a1) =
³
®1 ¡ b¢

´¡
S11 ¡ S12¾¡122 S21

¢¡1 ³
®1 ¡ b¢

0́
:

Integrating with respect to ®1 gives us the marginal distribution of (®2; ¯) as

p (®2; ¯jr; y) _
¯̄
¾22 + (®2 ¡ b®2)0 ¯ 0S11¯ (®2 ¡ b®2)

¯̄¡(º¡p+r+p2)=2

£ j¯0S11¯j¡(p¡p2)2 j¾22j(º¡p+p2)=2 jSj¡º=2 :

Since S00;22 = ¾22+ b®02¯0S11¯b®2 = ¾22+S01;2¯ (¯0S11¯)
¡1 ¯ 0S10;2, then evaluating this

expression at ®2 = 0 and rearranging we have

p (¯j®2 = 0; r; y) _ j¯ 0D¯j¡º=2 j¯ 0D0;2¯j(º¡p+p2)=2
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where D0;2 = S11 ¡ S10;2S¡100;22S01;2; S10;2 = S 001;2 is the last p2 rows of S10: If we

partition D and D0;2 conformably as

D =

2
664
D11 D12

D21 d

3
775 and D0;2 =

2
664

¢11 ¢12

¢21 ±

3
775

use the linear restrictions ¯ = [¯02 Ir]
0 ; then let ds = d ¡ D21D¡111 D12; ±s = ± ¡

¢21¢¡1
11¢12; b̄2 =D¡1

11 D12 and ē
2 = ¢¡1

11 ¢12;

p (¯2j®2 = 0; r; y) _
¯̄
¯̄ds+

³
¯2 ¡ b̄

2

0́
D11

³
¯2 ¡ b̄

2

´¯̄
¯̄
¡l0

£
¯̄
¯̄±s+

³
¯2 ¡ ē

2

´0
¢11

³
¯2 ¡ ē

2

´¯̄
¯̄
l1

:

Thus we have the 1-1 poly-t form for the posterior of ¯j®2 = 0: As the posterior is

integrable only if 2 (l0 ¡ l1)¡ (p ¡ r) > 0. In this case, then, since p2 = r

° = 2 (l0 ¡ l1) ¡ (p¡ r) = º ¡ º + p¡ p2 ¡ p+ r = 0

and the posterior is clearly not integrable. Note that is is possible to take p2 > r

provided p1 > p ¡ r: In this case ° = r ¡ p2 < 0; again producing an improper

posterior.

Taking strong exogeneity with respect to ¯ will result in p2 being replaced by

k2 = p2 + lp giving

2 (l0 ¡ l1)¡ (p ¡ r) = º ¡ º + p¡ k2 ¡ p + r

= ¡p2 ¡ lp+ r < 0

and the posterior is not proper in any situation.
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10 Figures.
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Figure 1: Higher posterior density regions for the impulse response of relative UK

prices (pt ¡ p¤t) to a shock in oil prices. The x-axis spans zero to sixty months.
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Figure 2: Higher posterior density regions for the impulse response of relative UK

in‡ation (¢pt) to a shock in oil prices. The x-axis spans zero to sixty months.
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