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Cointegration versus Spurious Regression in Heterogeneous
Panels

Abstract

We consider the issue of cross sectional aggregation in nonstationary,
heterogeneous panels where each unit cointegrates. We first derive the as-
ymptotic properties of the aggregate estimate, and a necessary and sufficient
condition for cointegration to hold in the aggregate relationship. We also
develop an estimation and testing framework to verify whether the condi-
tion is met. Secondly, we analyze the case when cointegration doesn’t carry
through the aggregation process, investigating whether a mild violation can
still lead to an aggregate estimator that summarizes the micro relationships
reasonably well. We derive the asymptotic measure of the degree of non coin-
tegration of the aggregated estimate and we provide estimation and testing
procedures. A Monte Carlo exercise evaluates the small sample properties of
the estimator.

J.E.L. Classification Numbers: C12, C13, C23
Keywords: Aggregation, Cointegration, Heterogeneous Panel, Monte Carlo
Simulation.



1 INTRODUCTION

The effects of cross-sectional aggregation in panel data model have been ex-
plored by several contributions in the econometric literature. It is well known
that most economic theories are based on microeconomic foundations, in that
they are specified as panels where each equation represents a single agent,
household or firm. Anyway, most often data are available only as aggregates.
One may therefore wonder whether the models based on aggregated micro
relationships can still provide a good summary of the properties shared by
each equation of the panel.

Introducing cointegration within this framework is quite natural, in the
light that it may be viewed as a property that each equation of a nonstation-
ary panel data model shares. Previous contributions (see e.g. Pesaran and
Smith, 1995) have proved that when the variables in the panel data model
are integrated, cointegration in the micro level does not imply cointegration
in the aggregate relationship unless some specific conditions on the micro re-
lationships are satisfied. Spurious regression occurs when cointegration fails
to hold in the aggregate relationship, which therefore becomes meaningless.
It is well known that a sufficient condition for cointegration to carry through
the aggregation process is the panel to be homogeneous, which would match
the representative agent requirement. Anyway things get more complicated
for the heterogeneous panel case.

This aggregation issue has been investigated in a few contributions, which
provide conditions for cointegration to hold in the aggregates given that it
holds in the micro relationships. Granger (1993) considers a model where
each equation is a cointegration relationship with one explanatory variable,
and finds that a necessary and sufficient condition for cointegration to be
maintained after aggregation is that the number of stochastic common trends
that generate the nonstationary variables is equal to one. Having a greater
number of common trends therefore leads to a spurious regression after ag-
gregation. Gonzalo (1993) bases his analysis on a more complicated, mul-
tivariate model, and obtain a sufficient condition for cointegration to hold
after cointegration. According to his findings, this can be maintained when
there is enough cointegration in the model, which - like in Granger’s (1993)
analysis - happens when there is a sufficiently small number of trends to
drive the system. Ghose (1995) considers a single equation framework and
investigates the issue of aggregating a subset of regressor in a single variable
without damaging the consistency of the estimates of the parameters of in-
terest. Granger (1993) also investigates the case when the formal conditions
for cointegration to be maintained fail to hold. He considers an example
in which only few common stochastic trends are shared across all the mi-



cro series of the model, and other trends are shared by only small groups
of the series. In this case the coefficients of the shared common trends in
the aggregate regression are shown to be higher than the coefficients for the
non-shared common trends by an order of magnitude. Therefore, removing
the large trends from the aggregate regression by establishing a cointegration
relationship leaves "small” I(1) elements in the residuals that may not be
found by standard tests applied to relatively small samples. These result
suggests that when the system is described by a sufficiently low number of
dominant components, and the conditions for cointegration are only ”mildly”
violated, then the aggregate relationship ”approximately cointegrates”.

In the light of Granger’s contribution, which shows how data behaviour
can be different from the formal conditions laid out for the model, we con-
sider a heterogeneous panel data model where each equation contains several
independent variables, say p, and common stochastic trends, say k. As a
preliminary step, we provide a necessary and sufficient condition for coin-
tegration to hold in the aggregates. Second, on the basis of these formal
conditions, we develop a measure to assess the degree of departure from coin-
tegration when these conditions don’t hold, and employ it to test whether
the departure from the case of perfect cointegration leads to a completely
spurious relationship, or to a hybrid case where the presence of cointegration
is not made insignificant by the spurious element. This strategy is aimed at
formalizing the results obtained by Granger (1993).

This paper is organized as follows. The theoretical framework is presented
in Section 2, where we set up a model for panel data. We first present the
aggregate relationship and the properties of its estimate (2.1). To develop
the following statistical framework, we analyze the probabilistic structure
of the OLS estimates for both the disaggregate and the aggregate models.
Section 3 presents the conditions for the cointegration to carry through the
aggregation process, and a testing theory is developed and illustrated via a
numerical example (3.1). In Section 4 we characterize the system’s behavior
when the conditions derived in the previous section are not satisfied; we derive
a measure to assess the deviation from the case of non perfect cointegration
and apply it to a numerical example (4.1). Moreover, as the results given
in Section 2 for the aggregate estimation are only asymptotic, in Section 5
we present a Monte-Carlo examination of a small-sample distribution of the
aggregate estimate. Section 6 concludes.



2 BASIC MODEL AND ASSUMPTIONS

Consider the following data generating process:

p

Yir = Z BriThit + Wi, (1)
h=1

Thit = Q2+ Upat, (2)

Zjt = Zj—1 T €t (3)

where ¢ = 1,.m, j = 1,...k, h = 1,..,p and ay; is a k X 1 vector. The
common trends representation implied by equation (2) follows from Granger
(1993). The following notation will be employed henceforth: ¢ =n(p+ 1) +
k, By, = diag {Bu1, --Bpn}, An = [ant, .ana]’s B; = (Bu, ...,Bm)/ and I; =
[, ..., api)'. The matrices dimensions are respectively: n x n, n x k, p x 1
and p x k. With this notation, we can consider two compact forms for model

(1)-(3):

P
Yo = Z Bhran + ug, (4)
h=1

The = Anzi + Une, (5)
2t = Zy_1t+ € (6)

and
Yir = x;tﬁz + Uit (7)
ri = Lize+ v, (8)
2t = Zi-1t €. (9)
Let ¢, = [ug, Vlgs s oos Upgy eg], and consider the vector of partial sums be S; =

Z§=1 g; with So = 0; we assume that the sequence of innovations satisfies the
following assumptions:

Assumption 2.1

(2.1a) & follows an invertible M A (00) process: e, = ® (L) n, = Y72 ®;n,_;, where
n, is a zero mean wd process with finite fourth moment and E (n,n;) =
Iql,'

!The spherical covariance requirement implies that the M A(oco) representation is not
the one for the fundamental innovations, since ®q # I,.



(2.1b) the sequence {j®;}72, is absolutely summable;

(2.1c) the components of €; are #id and the trends z, have unit long-run vari-
ance: limy_o T71E(22]) = I.

Assumptions (2.1a) and (2.1b) are needed for the central limit theorem
for the functional spaces to be valid?. The orthonormality requirement (2.1c)
makes the trends z;; neutral in the model so that the behavior of the system
is fully described by the coefficients 3,; and A;,. Let now 3 = Tlggo E (S75%).

Then:
Y=2rH.(0)=®(1)[®(1)] =Q+A+ A,

where
1. H.(w) is &, spectral density matrix at density w;

2. under assumption (2.1c), we write

d; 0 0
d(1)=| 0 Py 0 (10)
0 0 I

3. 0=3 720 ®;® and A=) 72 Elnpy] = 3525 > 20 ©ina O
The following Lemma holds:

Lemma 2.1 Let W* be a q-dimensional standard Brownian motion, par-
titioned as (W*)" = (W, W, W] where the three vectors are of order n,
np and k respectively. Then:

1. T725p = ®(1)W*(1);
2. T Y30, Sian, = ®(1) [W* (dW*) &'(1) + A;

3. T2, S 1S = (1) [W* (W) &/(1).

2Notice that the usual central limit theorem framework also requires ¥ to be positive
definite. According to equation (2), this will never happen, since the ;s cointegrate
among themselves. See Lazarova et al. (2003) for details.



Lemma 2.1 considers the convergence of the I(1) process Sr to a linear
combination of normally distributed variables (central limit theorem), and
of products of the process with itself and with its increments according to a
standard framework. Notice that the last k elements of ®(1)IW* are standard
Brownian motions, which will be referred to as W,. Henceforth, we will also
denote the first n elements of ®(1)WW* as Wy, and the next np ones as W.
Therefore, Wo;, i = 1, ..., n will denote the Brownian motion associated with
the disturbance of each x;; data generating process.

After describing the general framework, we now consider the issues that
arise from aggregating the equations in model (1)-(3).

2.1 The aggregate cointegration relationship

When we aggregate the regressors across units, we obtain
k
Tp = E QpjZjt + U,
j=1

where Ty = Y1) Thity Gnj = D ey Qij With ap; ; being the j-th element in
vector ay,; and Uy = Z?:l Vnit- We assume there is at least one j for which

ap; 7# 0, so that Tp, is I(1). For the dependent variable we have:

k
j=1

where 3, = Z?:l Yit, bj = 2:1 Z?:l Bricni; and 5, = Zzzl Z?:l Bhivhit +
S . Let By = [Ty, Tor, oy ) , T = Y0 Ty and b= >0, T3, then, in
vector form, the aggregate cointegration relationship may be written as

Ty = FZt‘i‘@t (11)
yt = b/Zt+§t (12)

We again assume there is at least one j for which b; # 0, so that ¥, contains
a unit root. We consider the least-squares regression equation

~/ R
Yy = BTt + e, (13)

. . 1
where [ is the OLS estimator, defined as 5 = (Zthl f@’t) (Zthl ft§t>.

When 7, and T; are cointegrated, 3 is superconsistent and converges in
probability to a vector which is the true value of the aggregation coefficient.

7



In case the aggregate series are not cointegrated, the regression is spurious
and 3 converges in distribution to a non-degenerate vector random variable.
Consider the following assumption:

Assumption 2.2
(2.2a) Vi, rank (I';) = p;

(2.2b) The number of regressors in the cointegration equations (1) is not greater
than the number of common trends, i.e. p < k for any i. Moreover,
rank (I') = min {p, k} = p.

Then the following Proposition characterizes the limiting distribution of
the estimator g for large 7" and finite n.

Proposition 1 If y; and x; are generated by (1)-(3) where the innovation
sequence {&,}3° satisfies assumption 1, and if assumption (2.2b) holds, then
in the OLS regression of y, on T; B converges to a non degenerate random
variable

B=S= {F/sz;r’} B {F/szgb] : (14)

where [ W, W, = fol W, (r) W.(r)dr and where =" denotes weak conver-
gence of the associated probability measures as T — 00.3

Remarks

(a) The proof is the same as in Park and Phillips (1988). Assumption
(2.2b) is needed for the px p term [I* [ W, W!I"] not to be a degenerate
Brownian motion - see a related discussion by Phillips (1986). Being
p < k and I' a full rank matrix, it holds that [F J WZW;F’} is almost

surely positive definite and [F IRIAUAN } ! exists almost surely;

(b) Notice that the OLS estimator B converges to a weighted average of 3,
coefficients where weights are given by the I'; coefficients. This find-
ing is consistent with the analysis of Gonzalo (1993). Hall, Lazarova
and Urga (1999) highlight this case when providing a counterexample
to the general statement of Pesaran and Smith (1995) that the aggre-
gate relationship does not cointegrate even if the individual unit do
cointegrate;

3The proof of this limiting representation can be found in Park and Phillips (1988,
1989).



(c) Assumption (2.2a) is needed for the following Lemma, which rules out
the degenerate cointegration regression case:

Lemma 2.2 If assumption (2.2a) and (2.2b) hold, then the x; in equa-
tion (8) don’t cointegrate among themselves for any i.

Proof See Appendix I.

The results obtained so far are valid for large 7. In many applications,
anyway, also the number of units n can be large. It is therefore worth inves-
tigating the limit behavior of 3 when n is large, according to the framework
provided by Phillips and Moon (1999). Consider the following preliminary
assumptions:

Assumption 2.3 With respect to model (7)-(9), the regression coeffi-
cients 8, and T'; are wid random variables across i with mean [3 and I' re-
spectively, and are assumed to be incorrelated with each other.

Assumption 2.4 Let BmT be the finite T', finite n estimator. We assume
that
lim sup P { ‘

n, T

Bn,T_SH>€}:O Ve > 0.

Lemma 2.3 Given assumptions 2.3-2.4, the following results hold

1 & _
_ZFiﬂi —p I'p.
ey

The first two equalities in Lemma 2.3 hold by weak law of large numbers, and
the last by incorrelatedness; proof is straightforward and is omitted. With
these assumptions and Lemma 2.3, the following Proposition holds:

Proposition 2 Let assumption 2.8 and 2.4 be valid and consider Phillips
and Moon’s (1999) notation. Then:

Bn,T —p B fO’I" (T7 n— Oo)seq



Bog —p B for (T,n— o)

Proof See Appendix I.
Remarks

(a) Assumption 2.4 is needed for Lemma 6(a) in Phillips and Moon (1999)
to hold in order to ensure the equivalence between joint and sequential
limit.

(b) The results in Proposition 2 refer to the probability limit. They state
that as n increases, the OLS estimate converges to the average rela-
tionship between ¢ and each of the z,s, regardless of the existence of a
cointegrating relationship between the aggregated variables.

(¢) According to Phillips and Moon (1999), the joint probability limit also
implies the convergence to the same value for all monotonic diagonal
paths (n,T (n)) — oc.

(d) An interesting characterization of n being large or small is provided in
an example in Granger (1993). Granger (1990) points out how the two
cases may lead to different results.

Given that, for large n, B will be superconsistent regardless of the exis-
tence of a cointegration relationship, henceforth we will restrict our analysis
to the case of finite n only. In the next section, we will develop an estimation
theory framework for both the aggregate and the disaggregate model.

2.2 Probability structure for OLS estimation

The estimation method we consider in this section is OLS, and the results
we obtain are a mere application of Lemma 2.2. OLS estimation will be
considered for both models (11)-(12) and (1)-(3). Henceforth, let ®11; be
the i-th row in ®41, and ®,,; is the ¢-th block of p rows in ®,,, where ®4q
and ®,, are given in equation (10). Also, let ®1;, ®,; be blocks ®1; and ®p,
in ®;, as defined in Assumption (2.1a).

As far as the aggregate model (11)-(12) is concerned, the OLS estimators

for b and I' are
) T “lrr
b= [Z thél [Z Zt@t]
t=1 t=1

10



and the following Lemma characterizes their limit distributions:

Lemma 2.4 The OLS estimators b and I' have the following limit dis-
tribution for large T

<b b l/WW’} l/WdWl " /dez 2215;} (15)

n

T(f—r) 3 {cpzzz/dwzw’} {/WW’} B (16)

=1

Having derived b and [, we now turn to the disaggregate model estima-
tion. We will estimate the ;s in equation (7) and the As in equation (5).
The OLS estimates have the following representation®

T 11

- , -

B = Tt Xy Tulir| , 1=1,..1m
t=1 ] t=1

-1

T 17T
thtzg [Zztsz] ,h=1,..p
=1 IR =

The following Lemma characterizes their limit distribution:

Lemma 2.5 Let assumption (2.2a) be valid. Then, for any i = 1,....,n
and h =1, ....p and for large T

-1
(5 B |: /WW;F;:| [Fz/Wdef 11,3 ZCI)ZJ’ g-j,i

(17)

T (Ah —Ah) = {@zz / dWQ‘Wé] { / WZWZ’] B (18)

4We have been assuming that the z;s are observable. Anyway, in order for the estima-
tion of the Ays to be feasible, this is not necessary. Ay, could be the principal component
estimator, for instance, instead of the OLS one, even though the probabilistic structure
would possibly change - we refer among others to Phillips and Ouliaris (1988), Harris
(1997) and Snell (1999) for details. Similar arguments apply to b and I estimation.

11



Proofs of both Lemmas are straightforward, and we refer to Lemma 2.1.
Assumption (2.2a) ensures that [Fi J WZW;FQ} is a non degenerate Brown-

ian motion, and therefore [Fi i WzWZ’Fﬂ ! exists almost surely. Some of the
limit distributions contain nuisance parameters. This problem can be over-
come by replacing the parameters with their estimates, such approximation
being valid for large T'.

Having set the model and the estimation theory, we will now consider the
issue of maintaining cointegration after aggregation.

3 PERFECT COINTEGRATION VERSUS
SPURIOUS REGRESSION

In this section, we discuss the conditions under which cointegration holds in
the aggregate relationship (13). According to equation (14), 5 = S. In order
to have perfect cointegration S must be a vector of constants rather than a
vector of random variables. Given that b # 0 by assumption, this means
having

I'e=10 (19)

for some nonzero ¢ € RP. In this case,

—1
S = {F/WZWZ’F’] {P/szgb} =
—1
_ {rfwzwgr/] {F/WZWQF/] c=c

and therefore cointegration holds®. Equation (19) states that b must be a
linear combination of I' rows, and therefore cointegration in the aggregate
relationship means having a nontrivial solution for the linear system (19).
According to Rouche’-Capelli’s Theorem, system (19) will have a solution if
and only if rank (I'") = rank (I | b) = p. Then

Proposition 3 Cointegration in the aggregate relationship (13) always
holds if and only if rank (I'"|b) = p.

®Incidentally, note that superconsistency ensures that c is the true value of the aggregate
relationship parameters. The linear system (19) has therefore one and only solution, if it
admits any solutions.

12



Proposition 3 implies the following Lemma, which is another formulation
of Theorem 1 in Gonzalo (1993) when the common trends in the disaggregate
system are the same across all °:

Lemma 3.1 If the number of regressors in the cointegration equations
(1) equals the number of stochastic trends (i.e. if p = k), then cointegration
in the aggregate relationship (13) will always hold.

Proof See Appendix I.

Having laid out the formal conditions for cointegration to hold in the
aggregates, in the next section we will derive a measure for the departure
from cointegration when Proposition 3 doesn’t hold, and therefore, strictly
speaking, equation (13) represents a spurious relationship.

4 A MEASURE OF NON COINTEGRATION

This section is aimed at assessing the degree of non cointegration for system
(4)-(6) when Proposition 3 doesn’t hold, and the aggregate relationship (13)
is a spurious regression equation. Here will consider the case p = 17. If p = 1,
the aggregate cointegration relationship for model (4)-(6) becomes

Yo = BT + Uy = 'z + Uy +
and the OLS estimate of [ is
T —
. Zt:l yt$t
=&tme e
D=1 7

Under the case of a single common trend (k = 1), S = b1/a; = S1, which is
a constant. Therefore the aggregate relationship always cointegrates. Let i,
be an n-dimensional vector of ones. Provided the a; = 0 condition is ruled

out for at least one j, when k£ > 1 S is a constant and (13) is not a spurious
relationship, if and only if there exists a d € R such that

Z;;l a; (B; —d) =0

b

STy o (B, — d) = 0

6Notice that the condition given by Proposition 3 is necessary and sufficient, and there-
fore in principle one could employ it to test whether formally cointegration can hold or
not in the aggregate relationship.

"The case of p > 1 is reported in Appendix II due to its algebraic complexity.

13



i.e. if, in vector form, there exists a vector v = di, such that, for 7 =

[ﬂb t Bn]/

A (t—~)=0.
Let: Sj = bj/(lj,
1
W= — - ,
D i=1 D=1 @i Wi
and
Wi o . Wia
. W,
W =
Wia Wik—1

Then a convenient way to express the deviation from the case of perfect
cointegration (i.e. S collapsing to a constant) is the following decomposition
(its derivation is reported in Appendix):

k

1 *
S_S]':;z;[fj (Sj—Sl)} (20)
j:
where f is the j-th element in f* = [a2 Y a;Wiz2, a3 ) aiWiz...ar ) a;Wi]'8.
Also, let @ = diag{ay,as, ...ax} and s = [(S2 — S1), ..., (Sx — S1)]. Then
equation (20) can be expressed as

S—-5 = w {a [I-1 ® (i, A)] vec (W) }/ s =

= w [vec (W)]/ [[i1® (i, A) as = wf'as

where f = [I;_1 ® (i), A)] vec (W) Now, the main problem associated with

(20) is its being a weighted average of the distances (S; — S1). The following
steps will lead towards a suitable transformation of equation (5) that will be
of use in order to rule out the presence of different weights in (20).

Notice first that each element of f, namely f;, is a random variable re-
sulting from the linear combination (with weights given by the elements on
the j-th row of I, ®1! A) of k — 1 functionals of Brownian motions distrib-
uted as [ W;W; and one distributed as [ W2. The f;s will have the same
distribution across j if, for some non trivial constant r, i, A = ri;. In scalar

form this means
k k
E Qyp = E Qg
i=1 i=1

8Sums go from i = 1 to k.

14



for I # q =1,...,k. Consider now the k-dimensional rotation matrix M =
M (¥4, ...0¢_1), ¥; being a rotation angle. By orthogonality

T = Az + v, = AMM 2 + v, = A%, + vy,

and the covariance matrix of Z; is still equal to Ix. The k — 1 angles we need
are those that satisfy i, AM = ri) or, defining M j-th column as m;, the
system of k — 1 (nonlinear) equations

Z%Aml = Z%Amz

Z%Amz = Z%Amg

i;Amk_l = Z%Amk
in £ — 1 unknowns, whose solution will be referred to as M*. If this holds,
—1
plain algebra shows that a = rl;_;. Also w = <7“2 Z?:l Z§=l mﬂ') -
w*/r?, so that

1 / .
§—51 = 5w fvec(W)] [la @ rig] rliogs =

= W vec W) [licr @ in] s = Y ¢ (S; — S1)

IR

Jj=2

where ¢, = w* 25:1 W;; and they are identically distributed but non inde-
pendent random variables. Last

S=51+> ¢; (5 —5). (21)

=2

Following the presentation of the theoretical framework, we now present
a measure of non cointegration and a testing strategy. To get equation (21),
we need first to find M*, as defined above. Then transform equation (5) as

follows
ry =AM MYz 4+ v, = A"z 4+ v
with A* = AM*. After this transformation, the system parameters can be
estimated and equation (21) computed.
Such decomposition allows one to obtain a statistical framework to test
the null hypothesis of cointegration. Define the vector h; (fori=2,....,k) as

YN dy Y day

15
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Then

k k
Var (S) = o? {Z (S; — 51)° + %pw DD S = S1) (S5 - sl)]} =

i=2 J=2 i#j

_ 2||T||{ [ cos? (7.5) +

1 ~ ~ ~
—1—5,% hj|| cos (7‘, hi> cos (7‘, hj)}

where 0 = Var (p;) and p, = Corr (apl, cp]) for any 7 # j. These are both
scalars, and can be evaluated via simulation; p, depends on k only, so that
p, = p, (k). Table 2 reports some simulation results for p, for different
values of k:

Py i k]l p k Po
-0.49610 || 9 | -0.10996 || 15 | -0.07888 || 50 | -0.01651
-0.32662 || 10 | -0.12686 || 20 | -0.06221 ||| 60 | -0.03107
-0.25423 ||| 11 | -0.07933 ||| 25 | -0.04761 ||| 70 | 0.02490
-0.18790 ||| 12 | -0.08673 || 30 | -0.03339 || 80 | -0.01002
-0.17044 || 13 | -0.08194 || 35 | -0.0269 90 | -0.00890
-0.16912 || 14 | -0.07101 ||| 40 | -0.01813 ||| 100 | -0.01319

Table 2: Values of p,, for different number of trends.

00 J O Ul = W=

From Var (S), which is a measure of the spread of S distribution, we can
derive the following descriptive measure

d(s) = |2 { cos( hi) +
—l—%,% - jl| cos (T,ﬁi) COoS (T,ﬁj)}

or, to make it invariant to |||, we rewrite it as

D(S):W{gw) ' %zzw)( )}. )

J=2 i#j

9The simulations were performed with GAUSS and the routine is available upon re-
quest. The number of replications we employed for each experiment was 10000, given that
higher values did not bring any significant changes in the results.
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This statistics assumes values in the interval [0, +00); the larger, the less the
system is close to the case of perfect cointegration, which holds for D (S) = 0.

In the light that we are interested in testing for the null hypothesis of
cointegration versus the alternative of non cointegration, in what follows we
derive the distributional counterpart for D (S). Let 6 = [/, vec’ (A)]' and 6
its OLS estimator, whose limit distribution for large 7" is derived in section
2.2. The main result for testing is in the following Theorem, whose proof is
omitted:

—_

Proposition 4 Let D (S) be the OLS counterpart for D (S). Then, under
the null hypothesis of cointegration D (S) =0 and

T |D(S) - D(S)| =TD(S) = [J (0)]' Lo, (23)
where the n (k+ 1) x 1 vector J () is defined as
_9D(9)
J(0) = 50

Remarks

(a) Equation (23) is an application of the Delta method for nonlinear trans-
formation of statistics - see Greene (1993).

(b) A closed form expression for the Jacobian J () is not available, as this
depends upon unknown functions of the 3;s and «a;;s. These functions
are the k — 1 rotation angles (1, ...0x—1) in M* = M* (91, ...0¢_1).

—

(¢) The limit distribution of T'D(S) depends upon unknown quantities, i.e.
the elements of vector J (6), since these are functions of the true values

of the system parameters. This problem is solved employing J (9),
also, J <é> —, J ().

(d) Notice that Proposition 5 holds for finite n. For large n, sequential limit
theory as developed in Proposition 2 holds for the aggregate relation-
ship estimator, and therefore the testing framework developed within
this section is no longer valid.

The hypothesis testing framework is therefore:

Ho:D(S) =0
{lep(5)>o (24)

and the statistics we will employ is TD/@ ).

17



4.1 A numerical example

The practical use of the measure of departure from cointegration D (S) and
its testing framework as in (23) can be illustrated with the following example.
Consider a panel of data with five units (n = 5), where the number of trends
k has been found to be 3 and the three largest principal components among
the independent variables are estimated. Also, for the sake of simplicity,
we assume ¢; ~ N(0,I,), being ¢ = 13. Suppose further that appropriate
tests lead to the conclusion that all the series contain a unit root and that
individual units cointegrate with coefficients

?:(0.046 0.037 0.254 0.53 0.807 ),

In the next step, regression of independent variables on the principal com-
ponents is performed. Let the estimated coefficients be

!/

R 098 0.76 0.60 0.61 0.60
A= 049 038 030 043 0.38
045 0.39 0.35 0.53 0.44

From the coefficient matrices 7 and A, we have ||7] = 1,
hy = ( —0.0285 —0.0221 —0.0175 0.0453 0.0229 )/ and

/};3 = ( —0.0677 —0.0335 —0.0397 0.1126 0.0378 )/. Matrix M can be
defined as

[ cos¢p —sing 0 cosf 0 sinf

M = sing cos¢ O 0 1 0 =
0 0 1 —sinf 0 cosf

cospcosf) —sin¢g cos@sinb

= singcosf) cos¢ singsinf

—sinf 0 cosf

The rotation angles we need are, in radiants, ¢* = 2.573 and 6* = 1.711, so

that
0.118 —0.538 —0.834

M*=1| —-0.0752 —0.843 0.533
—0.990 0 —0.140

and

!/

R R —-0.367 —0.325 —-0.298 —0.485 -0.393
A*=M"A=| —-0941 —-0.729 —0.576 —0.691 —0.643
—-0.619 —0.48 —0.390 —-0.354 —0.360
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Using the last outcome, sy = ( 0.0664 0.0298 0.0012 —0.0666 —0.0308 )’

and hy = ( 0.0842 0.0461 0.0168 —0.0994 —0.0477 )'. Gathering the re-
sults, we see that the departure from cointegration is

—_

D(S) = 0.00744.

Here too we ran two simulations, for 7' = 30 and 7" = 100. The simulations
gave the following results':

T | p-value
30 | 0.7954
100 | 0.4174

Table 3: P-values for the null hypothesis of cointegration.

Such p-values would both lead to accept the null hypothesis (presence of
cointegration).

5 SMALL SAMPLE PROPERTIES

The results about the distribution of B were obtained under the large sample
hypothesis in section 2.1, and were therefore valid only asymptotically. In this
section we would like to see how well the asymptotic distribution characterizes
the real small sample distribution.

__ In order to examine the small sample properties of the OLS estimator
[ we evaluate data generated by the system described by equations (1)-(3),
setting p = 1 as having a higher number of covariates in the regression
equation didn’t change the results very much. We consider sample sizes of
T = 30 and T" = 100 for their being representative of the range of annual and
quarterly data in empirical applications. In our experiments we choose the
values of 7 and A such that M = I;_;, and 7'h; = 1 for any 4, and we then
generate the parameters A and 7 randomly subject to these constraints. Let
1o = E (p); then

B(S—81) = (k—1)p,

1
2
Var (S) = o5, (k—1) [1 + 5Pe (k — 2)}
We considered n = 5 and k = 3, obtaining
E (S —S1) =0.659

10The simulations were performed with GAUSS and the routine is available upon re-
quest. The number of replications we chose for each experiment was 50000.
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Var(S)=0.301

Different, finite n didn’t change much the results, and also simulations for
higher values of k& didn’t result in great changes''. The number of replications
in all experiments is 50000. All innovations in each experiment of the simula-
tion are set to follow processes of the ARMA (1,1) form where the noise terms
are independent standard normal. The set of values for both autoregres-
sive parameter p and moving average parameter ¢ is {—0.9, —0.3,0,0.3,0.9}
where the values +0.3 represent a moderate departure from non autocor-
relation and 40.9 represent a nearly nonstationary or nearly non-invertible
processes. In correspondence with the underlying model, we generate the
stochastic trends z by summing the ARMA errors and then we scale them
by the square root of their long-run variance A = (1 + 9)?/(1 — p)2. To
keep the variance of the innovations comparable across the experiments
with different ARMA parameters, we normalize the stationary errors in
the equations generating z; and y; by the square root of their variance
0% = (0% +209p +1)/(1 — p?). To identify the effect of the serial correla-
tion in different parts of the system, we distinguish four cases.

First, the trends are generated as ARMA processes and no noise is as-
sumed in the processes generating z; and y;. The results for the case T' = 30
are reported in Table 3a. We notice that the mean of the asymptotic dis-
tribution is a good guide even in sample of this size, even if it results to be
slightly upwardly biased for any couple (p,d). With very few exceptions,
the variance increases monotonically with respect to both autoregressive and
moving average parameters. When both ARMA parameters are negative and
large, the small sample variance found to be about 5 times smaller than the
asymptotic value; when instead the MA process approaches a non invertible
one, the observed variance is nearly twice the true one. Such discrepancy
means that the asymptotic value is not a precise guide. Nonetheless, in the
case of negative parameters the spread of the distribution is actually much
better than what we would conclude from the limiting distribution. On the
other hand, for the samples of this size the variance will be at most three
times bigger than the asymptotic variance.

1 Simulation for £ > 3 and any n, and the GAUSS code to perform them, are available
upon request.
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[0 ] 09 -0.3 0.3 0.9

P mean var mean var mean var mean var mean var
-0.9 | 0.666 | 0.054 | 0.667 | 0.057 | 0.668 | 0.091 | 0.669 | 0.137 | 0.669 | 0.197
-0.3 | 0.666 | 0.028 | 0.669 | 0.127 | 0.669 | 0.174 | 0.670 | 0.200 | 0.670 | 0.214
0 | 0.666 | 0.047 | 0.669 | 0.161 | 0.669 | 0.200 | 0.670 | 0.219 | 0.670 | 0.228
0.3 [ 0.666 | 0.083 | 0.669 | 0.202 | 0.670 | 0.232 | 0.670 | 0.246 | 0.670 | 0.252
0.9 | 0.665 | 0.546 | 0.668 | 0.568 | 0.670 | 0.598 | 0.671 | 0.620 | 0.671 | 0.626

Table 4a: Mean and variance of the simulated distribution of B, T = 30.

The experiments for 7' = 100 are given in Table 3b. The results are
qualitatively almost the same as in the previous case, even though the over-
prediction for variance is now more shrunk towards the true value.

[0 ] 09 -0.3 0 0.3 0.9

P mean var mean var mean var mean var mean var
20.9 | 0.667 | 0.019 | 0.669 | 0.072 | 0.670 | 0.124 | 0.670 | 0.166 | 0.670 | 0.197
-0.3 | 0.667 | 0.026 | 0.670 | 0.164 | 0.670 | 0.188 | 0.670 | 0.198 | 0.670 | 0.201
0 | 0.667 | 0.046 | 0.670 | 0.182 | 0.670 | 0.198 | 0.670 | 0.203 | 0.670 | 0.205
0.3 | 0.667 | 0.078 | 0.670 | 0.198 | 0.670 | 0.208 | 0.670 | 0.211 | 0.670 | 0.212
0.9 | 0.668 | 0.349 | 0.672 | 0.347 | 0.672 | 0.350 | 0.671 | 0.349 | 0.671 | 0.349

Table 4b: Mean and variance of the simulated distribution of B, T = 100.

The second set of experiments is carried out within same setting with
addition of white noise errors into the equations generating z; and y;. Table
4a reports the experiment for the case of T' = 30. In this case, the mean of
the short sample distribution tends, with few exceptions, to underestimate
its asymptotic counterpart. The bias decreases with both p and . The
variance of the sample distribution is now on average closer to the asymptotic
value than in the previous case. Moreover, the small sample variance is now
always smaller than the asymptotic value except for values of p close to 1.
That means that the real variance will be actually more favorable than its
asymptotic prediction. In the case of T'= 100 (see Table 4b), the pattern of
the sample variances is preserved. The small sample values are now closer to
the limiting values though the speed of convergence is perhaps not as fast as
would be expected.
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[0 ] -09 -0.3 0 0.3 0.9

P mean var mean var mean var mean var mean var
-0.9 | 0.662 | 0.054 | 0.639 | 0.056 | 0.633 | 0.086 | 0.630 | 0.126 | 0.635 | 0.177
-0.3 | 0.653 [ 0.028 | 0.625 | 0.117 | 0.629 | 0.157 | 0.634 | 0.180 | 0.643 | 0.196
0 | 0.0650 | 0.047 | 0.628 | 0.146 | 0.634 | 0.180 | 0.640 | 0.197 | 0.648 | 0.210
0.3 | 0.648 | 0.081 | 0.634 | 0.181 | 0.641 | 0.209 | 0.646 | 0.223 [ 0.652 | 0.234
0.9 | 0.646 | 0.493 | 0.644 | 0.474 | 0.650 | 0.508 | 0.654 | 0.532 | 0.659 | 0.558

Table 5a: Mean and variance of the simulated distribution of B, T = 30.

[ 9]

-0.9

-0.3

0

0.3

0.9

p

mean

var

mean

var

mean

var

mean

var

mean

var

-0.9

0.663

0.019

0.654

0.070

0.654

0.119

0.655

0.158

0.658

0.188

-0.3

0.655

0.025

0.651

0.154

0.655

0.178

0.658

0.188

0.662

0.195

0

0.654

0.045

0.654

0.172

0.658

0.189

0.661

0.195

0.663

0.199

0.3

0.653

0.076

0.658

0.189

0.661

0.201

0.663

0.205

0.665

0.208

0.9

0.660

0.336

0.668

0.339

0.669

0.343

0.669

0.344

0.669

0.345

Table 5b: Mean and variance of the simulated distribution of B, T = 100.

In the third set of experiments, the innovations generating the trends z
are white noise while we now allow the errors in x and y to follow ARMA
processes. The values of parameters p and ¢ in Tables 5a and 5b now refer
to the noise in the variables instead in the trends. In this setting, the asymp-
totic variance predicts the small sample variance remarkably better, even
though the prediction is always downwardly biased. The underprediction
however doesn’t exceed 30 percent for the case of T" = 30; this performance
is only slightly improved for the case of 7' = 100. The mean of the sam-
ple distribution is underpredicted for T' = 30 by up to 5 percent, but this
underprediction vanishes quickly as the sample size increases.

[ 0 ]

-0.9

-0.3

0

0.3

0.9

p

mean

var

mean

var

mean

var

mean

var

mean

var

-0.9

0.640

0.182

0.640

0.181

0.639

0.181

0.638

0.181

0.630

0.178

-0.3

0.634

0.176

0.634

0.177

0.635

0.179

0.635

0.180

0.635

0.183

0

0.634

0.176

0.634

0.178

0.635

0.181

0.636

0.183

0.636

0.185

0.3

0.634

0.177

0.635

0.180

0.636

0.184

0.637

0.187

0.638

0.189

0.9

0.631

0.181

0.648

0.207

0.651

0.211

0.651

0.212

0.652

0.213

Table 6a: Mean and variance of the simulated distribution of B, T = 30.
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| 0 | -0.9 | -0.3 | 0 | 0.3 | 0.9

P mean var mean var mean var mean var mean

var

-0.9 1 0.659 | 0.189 | 0.659 | 0.189 | 0.659 | 0.189 | 0.659 | 0.189 | 0.658 | 0.188

-0.3 1 0.658 | 0.188 | 0.658 | 0.188 | 0.658 | 0.189 | 0.658 | 0.189 | 0.658 | 0.189

0 |0.658 | 0.188 | 0.658 | 0.189 | 0.658 | 0.189 | 0.659 | 0.189 | 0.659 | 0.189

0.3 | 0.658 | 0.188 | 0.658 | 0.189 | 0.659 | 0.189 | 0.659 | 0.190 | 0.659 | 0.190

0.9 | 0.658 | 0.189 | 0.661 | 0.194 | 0.661 | 0.195 | 0.662 | 0.196 | 0.662 | 0.196

Table 6b: Mean and variance of the simulated distribution of B, T = 100.

Finally, in the last set of experiments we let all the innovations in the
system to follow an ARMA process with identical parameter values. The
mean of the small sample distribution behaves in similar way to the case in
which the innovations in x; and y; variables follow only a white noise process.
The mean is again underpredicted for the smaller sample sizes but the value
of the mean becomes closer to the asymptotic value in larger samples, with
the worst underprediction being observed for p = —0.9. The variance, on
the other hand, follows the pattern of the case where there is no noise in the
variables z; and y;. The variance again slowly converges to the asymptotic
values.

| 0 | -0.9 R | 0 | 0.3 | 0.9

P mean var mean var mean var mean var mean

var

-0.9 1 0.345 | 0.251 | 0.434 | 0.154 | 0.502 | 0.124 | 0.565 | 0.127 | 0.631 | 0.176

-0.3 | 0.440 | 0.053 | 0.575 | 0.107 | 0.616 | 0.150 | 0.635 | 0.180 | 0.645 | 0.199

0 | 0.491 | 0.054 | 0.610 | 0.139 | 0.635 | 0.181 | 0.646 | 0.203 | 0.650 | 0.215

0.3 | 0.544 | 0.074 | 0.635 | 0.182 | 0.648 | 0.217 | 0.653 | 0.233 | 0.655 | 0.241

0.9 | 0.646 | 0.492 | 0.662 | 0.555 | 0.664 | 0.588 | 0.665 | 0.605 | 0.667 | 0.616

Table 7a: Mean and variance of the simulated distribution of B, T = 30.

| 9 | -0.9 | -0.3 | 0 | 0.3 | 0.9

P mean var mean var mean var mean var mean

var

-0.9 1 0.338 | 0.090 | 0.487 | 0.078 | 0.564 | 0.106 | 0.617 | 0.143 | 0.658 | 0.188

-0.3 1 0.450 | 0.032 | 0.626 | 0.143 | 0.650 | 0.175 | 0.658 | 0.189 | 0.662 | 0.195

0 | 0.507 | 0.042 | 0.646 | 0.167 | 0.658 | 0.189 | 0.662 | 0.197 | 0.664 | 0.200

0.3 | 0.564 | 0.065 | 0.658 | 0.189 | 0.664 | 0.203 | 0.665 | 0.207 | 0.666 | 0.208

0.9 | 0.660 | 0.335 | 0.670 | 0.345 | 0.670 | 0.348 | 0.670 | 0.348 | 0.670 | 0.347

Table 7b: Mean and variance of the simulated distribution of B, T = 100.

According to the four experiments, the small sample mean seems to be
affected by the presence of noise in the processes generating x; and y;. The
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degree of misprediction does not depend very much on the structure of the
noise, which suggests that the presence of autocorrelation does not make
the results worst. The variance of the small sample distribution, on the
contrary, is mainly influenced by the presence of autocorrelation and moving
average components in the innovation generating z;. Finally, both mean and
variance of the small sample distribution approach the asymptotic values as
T increases.

The main issue that we wanted to pursue with these experiments was
whether the asymptotic distribution of 5 was a valuable guide for the small
samples case. The conclusion from the experiments is that at worst the vari-
ance in the small sample is five times smaller even for relatively large positive
values of both autoregressive and moving average parameters. Furthermore,
if the degree of autocorrelation is only moderate, the small sample variance
is actually lower than the asymptotic value. This leads us to the conclusion
that the knowledge of the limiting distribution of 3 is of use in order to
estimate the upper bound of the degree of non-cointegration in real data.

6 CONCLUSIONS

In nonstationary heterogeneous panels where each unit cointegrates, the ag-
gregate relationship in general does not cointegrate unless a large number
of conditions are satisfied. To satisfy aggregation conditions, literature has
shown that a necessary and sufficient condition is that the micro regres-
sors share a single common stochastic trend in a single covariate regression
equation framework. Alternatively, a sufficient condition that applies to coin-
tegration relationships with more than one covariate is that the amount of
cointegration in each micro relationship is enough to preserve the existence
of a long-run relationship in the aggregate equation as well.

The main contribution of this paper is twofold. First, we derive necessary
and sufficient conditions to ensure the validity of the aggregate cointegra-
tion equation, by evaluating the limit distribution of the aggregate estimate,
proving that this tends to a constant, thus implying the validity of the su-
perconsistency property of the estimator.

Second, we derive the asymptotic measure of the distance, D(S), between
the case of perfect cointegration (D(S) = 0) and that with very heteroge-
neous response of the system (|D(S)| > 0). This statistics is derived from
the variance of the limit distribution of the aggregate estimate when coin-
tegration does not hold. In addition, we derive an estimation theory and a
testing strategy to assess the degree of departure from perfect cointegration.
This stage is aimed at verifying whether the violation of the necessary and
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sufficient condition is mild enough to preserve cointegration.

Finally, we conducted a series of Monte Carlo simulations in order to eval-
uate whether the asymptotic distribution of the [ estimator was a valuable
guide for the small samples case. Both mean and variances show values dif-
ferent from the limiting distribution counterparts. However, the mean and
variance of the limiting distribution are good approximations of the small
sample case. Moreover, the small sample mean seems to be affected by the
presence of noise in the processes generating the variables x; and y;, while
the degree of misprediction does not depend very much on the structure
of the noise. The variance of the small sample distribution, on contrary,
is mainly influenced by the presence of autocorrelation and moving average
components in the innovation generating z;.

Our paper is a further and formal support to the view that even if the
aggregation conditions are ’slightly’ violated, the aggregate regression is still
useful in characterizing the macro relationship.
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Appendix I: proofs and derivations

Proof of Lemma 2.2
Proof is immediate. Consider equation (8)
wi = Lize + v

The z;; cointegrate among themselves if and only if there exists a vector

¢; € RP\ {0} s.t.
Giie = GLize 4+ Guie = o ~ 1(0),

i.e. if and only if !I'; = 0. This means that in order for a non trivial ¢; to
exist, the space spanned by the columns of I'; must have smaller dimension
than p. Requiring I'; to have full rank rules out this possibility.

Proof of Proposition 2
The proof follows from Phillips and Moon (1999):

-1
s o] ]

:{Znﬁwuqubm/mmimﬂ

where the sums are for ¢ from 1 to n. According to assumption 2.3 and
Lemma 2.2:

{Z T, / WZWZ’ZFQ] B {Z I, / WZW;ZFQ@] —p

-1
.%F/mmﬂ F/mmm}ﬂ.

Also, according to Lemma 5(a) on pg. 11 of Phillips and Moon (1999), under

assumption 2.4 the joint and the sequential limit are equivalent.

Proof of Lemma 3.1

The proof follows from Proposition 3. If I is a k x k matrix rank (I') = k
under full rank assumption, and rank (I" | b) = k as well. This is sufficient
for a non trivial ¢ to exist. Another, different proof can be found in Gonzalo
(1993).
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Derivation of (20)

The derivation of equation (20) is a simple algebraic manipulation of

o g > Xy @b Wiy by
5 = _
Sy Yoy @ia; Wiy G

The following passages lead to equation (20):

Y e abiWiy by a1 iy =g i Wiy = by Y0y 3 aa; Wiy

Sy YWy @ a1 Y=y Y=y @i Wi
Zf:1 Z?zz [ara;b; — bra;a;] Wi
- a1 Yy Yy aia; Wy N
i1 Y= [aibj — bl] Wi
B Sy Y=g aia Wi N
S Y iy [Z—i - 2—1] Wi

k k
D=1 D j=n @i Wi

and, recalling the definition of S

: K
— a;W;
S — Sl = E kZz—lka’ i (Sl - Sl)
D=1 D=1 @ia; Wi

=2

which is equation (20) for

L L 1= JI
D=1 D=1 @ia; Wi

Also, it is immediate to derive the useful relationship (S; — S1) = 7'h;:

b; b1 Z?:l ﬂiaij Z?:l Blalj
(Si=51) = ——— == - <= =
a;  ay Zj:l Qij Zj=1 a1
T'A; A
= oy a — ) 1 — T/hi.

D=1 Qi D=y O

where A ; denotes A’s i-th column. QED.

Appendix II: the measure D(S) for
p>1
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This Appendix considers the generalization of the measure D (S) to the
case p > 1. The framework we consider is similar to that which leads up to
the measure D(S) when the numer of covariates p is equal to 1.

First, we recall that the difference between the finite n, large 7' OLS
estimator /3 and its true value f is

B—B— [[B| ' [B][b—TI'5

where, for notational simplicity, B = [WW’. According to the theory
developed within our framework, such difference is a random variable, and it
collapses to a vector of numbers if and only if there is cointegration. Hence,
the covariance matrix of the p-dimensional vector § — 3 is a null matrix if
and only if cointegration is maintained after aggregation. Henceforth, this

p X p matrix will be referred to as X3 = Var (B — B). Since a matrix is

null if and only if its rank is equal to zero, and since Xz is a semipositive
definite matrix, Y3 rank will be equal to zero if and only if its trace is zero.
Therefore, the testing framework, analog to (24) is

Hy:tr(35) =0
Hy:tr(3g) >0 -

Now, consider the k£ x k rotation matrix N. We may write
T, =Tz+0,=TN'Nz+ 0, =T"2 + v,
G=bzu+5=0UNNz+35=0"2+5
and, noticing that Var (z;) = Var () = Iy
B—p— [C*BT] " [I"B] b = T3] (25)

Now, let N be such that I'* = [I,| O], where O is a p x (k — p) matrix of
zeroes. The random variables I*BI' = B, and I'*B = B,;, are both made
of standard brownian motions, and their moments can be obtained once and
for all via simulation for every couple (p, k). Equation (25) can be rewritten
as

B -8 — Bngpk (0" — F*/ﬁ) = Bppk (0" — F“ﬁ) = Byprd.

The following passages lead to a suitable formulation for ¥z. First, since
Byprd = Vec (Bpprd), we have X5 = Var [Vec (Bypd)]; now

Vec (Bprd) = (d' @ 1)) Vee (Bppk) -
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Therefore

Ys = Var|[Vec(Bypd)| =
= (d®L)Var[Vec(Byw)] (d @ 1,) .

Letting Var [Vec (By)] =V, and since (d' ® 1) = d ® I, we get

tr(Xg) = tr{(d®IL,)V(d®I,) =
= tr((d® L) (d®L)V]=
= tr{(dd ®I,) V].
Therefore, the null hypothesis becomes

tr[(dd' ® I,) V] = 0.

The first order approximation of the distribution of this statistics can be
obtained by employing the Delta method, as in Proposition 5. However, this

would lead to a pretty awkward formulation, and as a feasible alternative we
suggest bootstrap.
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