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Abstract

In this paper we consider a GARCH-in-Mean (GARCH-M) model based on the so-

called z distribution. This distribution is capable of modeling moderate skewness

and kurtosis typically encountered in financial return series, and the need to allow

for skewness can be readily tested. We apply the new GARCH-M model to study

the relationship between risk and return in monthly postwar U.S. stock market data.

Our results indicate the presence of conditional skewness in U.S. stock returns, and,

in contrast to the previous literature, we show that a positive and significant rela-

tionship between return and risk can be uncovered, once an appropriate probability

distribution is employed to allow for conditional skewness.
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1 Introduction

The presence of both conditional and unconditional skewness in financial market re-

turns, especially stock returns, has been recognized in the empirical financial literature

for decades, but only few attempts to model it have been made. In this paper we

introduce a new kind of GARCH model that allows the error term to be condition-

ally skewed. Specifically, the model imposes comovement of conditional skewness and

conditional variance, in line with the so-called volatility feedback effect (Campbell

and Hetschel (1992)) that has been used to explain the presence of conditional left-

skewness observed in stock returns. This effect amplifies the impact of bad news but

dampens the impact of good news on returns through an increase in future volatility

following all kinds of news. Under this effect also the unconditional return distribution

tends to be left-skewed.

Properly capturing conditional skewness in financial returns is important at least

for three reasons. First, unmodeled skewness may affect inference on other parame-

ters in the model, and hence, misleading conclusions may be drawn, as our empirical

application to stock returns illustrates. Second, data generating processes that accu-

rately describe the return process are required in option pricing and risk management

where simulation methods are employed. Recently Kalimipalli and Sivakumar (2003)

and Christoffersen et al. (2003) have demonstrated the importance of incorporating

conditional skewness in models used for option pricing. Finally, the results of Har-

vey and Siddique (2000) suggest that conditional skewness is also priced in the stock

market.

Probably the most prominent specification incorporating skewness and GARCH

in the empirical literature so far is Hansen’s (1994) autoregressive conditional den-

sity model with a skewed version of the t distribution. In this paper we consider a

GARCH-in-Mean (GARCH-M) model based on an alternative distribution, namely

the so-called z distribution. This distribution was studied by Barndorff-Nielsen et al.

(1982) who showed that it can be represented as a variance-mean mixture of normal
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distributions. The z distribution has an analytically simple density and its moments

can be readily obtained. The z distribution is capable of modeling moderate skewness

and kurtosis and the need to allow for skewness can be readily tested.

We apply the new GARCH-M model to study the relationship between risk and

return in monthly postwar U.S. stock market data. Theoretically the relationship

should be positive, but the voluminous empirical literature examining this issue is

not unanimous. Different GARCH-M specifications have been considered, but to

date there is very little empirical evidence of a positive relationship between risk and

return. Recently Ghysels et al. (2003) even argued that monthly data are insufficient

to accurately estimate the expected return—volatility trade-off and demonstrated the

success of their new method combining data sampled at different frequencies. Our

results indicate the presence of conditional skewness in U.S. stock returns, and, in

contrast to the previous literature, we show that a positive and significant relationship

between return and risk can be uncovered, once an appropriate probability distribu-

tion is employed to allow for conditional skewness.

The plan of the paper is as follows. In Section 2 the new GARCH-M specifica-

tion is introduced and its properties are discussed, while Section 3 briefly deals with

parameter estimation and statistical inference. In Section 4 the empirical results are

presented. Finally, Section 5 concludes.

2 Model

Consider the GARCH-M model

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + δht + h
1/2
t εt, (1)

where φ0, ..., φp and δ are real valued parameters, εt is a sequence of independent,

identically distributed (i.i.d.) random variables, and h
1/2
t is a (positive) volatility

process which describes the conditional heteroskedasticity in the observed process yt.

Independence of ht−j (j > 0) and εt is also assumed and, for stationarity, the roots of

the polynomial 1 − φ1z − · · · − φpz
p are required to lie outside the unit circle. Any

2



available model can be used to model conditional heteroskedasticity. We shall return

to this point later after discussing the distribution assumed for the error term εt.

We shall assume that the distribution of the error term is a certain mixture of

normal distributions. In general, we say that the distribution of a random variable

x is a normal variance-mean mixture with a nonnegative mixing variable ξ if, for a

given ξ, the distribution of x is normal with mean µ + νξ and variance ξ. If ν =

0, the distribution is symmetric and called normal variance mixture. We refer to

Barndorff-Nielsen et al. (1982) for a discussion of variance-mean mixtures of normal

distributions.

The distribution specified for the mixing variable ξ determines the (unconditional)

distribution of the random variable x. Various special cases can be obtained. For

instance, assuming that the mixing variable is distributed as a reciprocal of a gamma

random variable gives in the symmetric case an ordinary t distribution whereas a

skewed version of the t distribution results in the asymmetric case. Another special

case is obtained by assuming an inverse Gaussian distribution for the mixing variable.

This special case has recently been applied by Andersson (2001) and Jensen and

Lunde (2001) to model conditional heteroskedasticity. These examples are special

cases of a more general specification which assumes that the mixing variable has a

generalized inverse Gaussian distribution. Except for the ordinary t distribution, the

density functions of these distributions depend on a modified Bessel function. An

analytically simpler density is obtained by a specification to be discussed below.

The distribution we are going to apply is the so-called z distribution. This dis-

tribution is also studied by Barndorff-Nielsen et al. (1982) who show that it can

be represented as a normal variance-mean mixture with the mixing distribution is

an infinite convolution of exponential distributions. The z distribution, denoted by

z(a, b, σ, µ) , is characterized by the density function

f (x) =
1

σB (a, b)

{exp [(x− µ) /σ]}a
{1 + exp [(x− µ) /σ]}a+b (x ∈ R; a, b, σ > 0; µ ∈ R) , (2)

where B (·, ·) is the beta function. Clearly, µ is a location parameter and σ is a scale
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parameter. If a = b the distribution is symmetric whereas it is positively (negatively)

skewed if a > b (b > a) . The characteristic function of the z(a, b, σ, µ) distribution is

χ (s) =
eitµB (a+ iσs, b− iσs)

B (a, b)
. (3)

It may be noted that the density function of the standard symmetric z(λ, λ, 1, 0)

distribution can also be written as

f (x) =
£
4λB (λ, λ)

¤−1
[cosh (x/2)]−2λ (x ∈ R; λ > 0) .

The reason for the name z distribution is that the z-transformation of the sample

correlation coefficient from a normal population is obtained as a special case. Another

well-known special case is the logistic distribution which is obtained by assuming

a = b = 1. Further relations to standard distributions can be obtained by observing

that if the random variable w has a beta distribution with parameters α and β then

log (w/ (1− w)) ∼ z (α, β, 1, 0). Hence, if w has an F distribution with f1 and f2

degrees of freedom then logw ∼ z
¡
1
2
f1,

1
2
f2, 1, log (f2/f1)

¢
.

Now suppose that the random variable x has a z(a, b, 1, 0) distribution. From the

characteristic function (3) it is straightforward to obtain the cumulants of x. Let

Ψ (s) = d logΓ (s) /ds signify the psi or digamma function and denote Ψ(n) (s) =

dnΨ (s) /dsn (n = 1, 2, ...) . Then, the nth cumulant of x, denoted by κn, is

κn = Ψ(n−1) (a) + (−1)nΨ(n−1) (b) , n = 1, 2, ..., (4)

where Ψ(0) (s) = Ψ (s) . From this expression and the well-known relations between

cumulants and moments one can obtain the moments of x. The first four central

moments are

Ex = Ψ (a)−Ψ (b)
def
= µ (a, b) ,

V ar (x) = Ψ0 (a) +Ψ0 (b)
def
= σ2 (a, b) ,

E (x− Ex)3 = Ψ00 (a)−Ψ00 (b) ,

and

E (x− Ex)4 = Ψ000 (a) +Ψ000 (b) + 3σ4 (a, b) .
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Because the transformed variable σx+µ has the z(a, b, σ, µ) distribution these results

can readily be extended to any values of the parameters σ and µ.

To get an idea of the possible shapes of the z distribution, consider the symmetric

z(λ, λ, 1, 0) distribution and note that the function Ψ(n) (s) has the series representa-

tion Ψ(n) (s) = (−1)n+1n!P∞
j=0 (s+ j)−n−1 (n = 1, 2, ...) (see Abramowitz and Stegun

(1972, result 6.4.10)). Using this result and the preceding expression of the fourth

central moment of the z(a, b, 1, 0) distribution it is not difficult to show that the excess

kurtosis of the z(λ, λ, 1, 0) distribution is a decreasing function of λ and approaches

three as λ approaches zero. In the asymmetric case the situation is different, however.

Arguments similar to those in the symmetric case show that, for a fixed value of the

parameter b, the excess kurtosis of the z(a, b, 1, 0) distribution is a decreasing function

of a and approaches six as a approaches zero. The same result is obtained if the roles

of the parameters a and b are reversed. In a similar way it can also be seen that the

coefficient of skewness can be at most two in absolute value. Thus, data sets which

require very strong kurtosis or skewness cannot be modeled by z distributions.

As already mentioned, we shall assume that the error term εt in (1) has a z

distribution. Because εt is an error term we want it to have zero mean and, as

common in GARCH and GARCH-M models, unit variance. Thus, we shall assume

that

εt ∼ z (a, b, 1/σ (a, b) ,−µ (a, b) /σ (a, b)) . (5)

Using the moments obtained for the z distribution above it is easy to check that this

assumption really implies that Eεt = 0 and V ar (εt) = 1. Thus, the model we wish to

consider is defined by (1) and (5). An alternative possibility to define the model is to

specify the conditional distribution of yt given its past. The result can be obtained

from (1) and (5). In symbols we have

yt | Ft−1 ∼ z
³
a, b, h

1/2
t /σ (a, b) , µt (ϕ)− h

1/2
t µ (a, b) /σ (a, b)

´
, (6)

where Ft−1 = {yt−1, yt−2, ...} and µt (ϕ) = φ0 + φ1yt−1 + · · · + φpyt−p + δht with

ϕ =
£
φ0 · · · φp δ

¤0
. Clearly, µt (ϕ) and ht are the conditional mean and variance of
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yt, respectively. To make the specification complete, we still have to specify a model

for conditional heteroskedasticity.

As already mentioned, any available model can be used to model conditional

heteroskedasticity. In this paper we shall consider a slight extension of the standard

GARCH model given by

ht = ω +
rX

j=1

βjht−j +
qX

j=1

αju
2
t−j, (7)

where

ut = yt − µt (ϕ)− κh
1/2
t

with κ a real valued parameter. As usual, the parameters in (7) are supposed to satisfy

ω > 0, βj ≥ 0 and αj ≥ 0. Because µt (ϕ) is the conditional mean of yt the choice
κ = 0 corresponds to the standard GARCH specification. The motivation to allow

for other possibilities is that in the case of skewed distributions is may not be clear

whether the conditional mean provides the best way to center the observed series.

For instance, choosing κ = −µ (a, b) /σ (a, b) means that the centering is performed
by using the location parameter of the employed z distribution (see (6)). Compared

to the standard specification ut = yt − µt (ϕ) this choice of κ shifts the distribution

of ut to the left when the skewness is negative, implying that negative values of ut

contribute more to conditional heteroskedasticity than in the standard case. When

the skewness is positive the opposite happens. Of course, one can also specify κ as a

free parameter and let the data decide its most appropriate value.

If the value of the parameter κ is nonzero the usual stationarity conditions of

the GARCH process are not directly applicable. However, because ut = h
1/2
t (εt − κ)

appropriate stationarity conditions can be readily concluded from results of Carrasco

and Chen (2002). For simplicity, consider the important special case p = q = 1 and

assume that

E
¡
β1 + α1 (εt − κ)2

¢k
< 1, k ≥ 1, (8)

where k is an integer. Then, from Corollary 6 of Carrasco and Chen (2002) it follows
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that the process ht (t = 1, 2, ...) can be given an initial distribution which makes it

stationarity and strong mixing (or even β-mixing) with geometrically decaying mixing

numbers. From the same result one also obtains that Ehkt <∞ and that the process

ut is stationary with Eu2kt < ∞. This implies that yt can be treated as a stationary

process with E |yt|k < ∞. It is also near epoch dependent in Lk-norm and of any

finite size (cf. Davidson (1994, Example 17.3.)). Thus, for k ≥ 2, usual laws of large
numbers and central limit theorems apply.

3 Parameter Estimation and Statistical Inference

ML estimation of the parameters of the model defined by equations (1), (5) and

(7) is, in principle, straightforward. Suppose we have an observed time series yt,

t = −l + 1, ..., T where l = max (p, q) . Then the conditional density of yt (t ≥ 1)
given the past values of the series can be obtained from (2) and (6). The result is

ft−1 (yt; θ) =
σ (a, b)

h
1/2
t B (a, b)

n
exp

h
σ (a, b) (yt −mt (θ)) /h

1/2
t

ioa
n
1 + exp

h
σ (a, b) (yt −mt (θ)) /h

1/2
t

ioa+b ,
where, for simplicity, mt (θ) = µt (ϕ) − µ (a, b) h

1/2
t /σ (a, b) and θ = [ϕ0 γ0 a b]0 with

γ = [ω β1 · · · βr α1 · · · αq κ]
0 . Here κ is treated as a free parameter. The restric-

tions discussed after equation (7) can be handled in an obvious way. Conditional on

the initial values y−l+1, ..., y0, the logarithm of the likelihood function can thus be

written as

lT (θ) =
TX
t=1

log ft−1 (yt; θ) .

The maximization of lT (θ) is, of course, a highly nonlinear problem but can be carried

out by standard numerical algorithms.

By the stationarity and near epoch dependence properties of the processes yt and

ht discussed at the end of the previous section it is reasonable to apply conventional

large sample results of ML estimation. Thus, a ML estimator of the parameter θ,

denoted by bθ, can be treated as approximately normally distributed with mean value
7



θ and covariance matrix -(∂2lT (θ) /∂θ∂θ
0)−1 . Approximate standard errors of the

components of bθ can therefore be obtained by taking the square roots of the diagonal
elements of -

³
∂2lT (bθ)/∂θ∂θ0´−1 . Likelihood ratio, Wald, and Lagrange multiplier tests

with approximate chi square distributions can also be performed in the usual way.

4 Application to U.S. Stock Returns

To illustrate the properties of the model presented in the previous section, we consider

an application to U.S. stock returns. Several studies have examined the relationship

between expected return and conditional variance with Mertons’s (1973) Intertempo-

ral Capital Asset Pricing Model (ICAPM) as a starting point. According to this model

the expected excess return on the stock market depends positively on its conditional

variance:

Et (Rt+1) = δVart (Rt+1) , (9)

where δ is the coefficient of relative risk aversion of the representative agent.

The empirical literature examining the expected return—volatility relationship is

vast. Typically GARCH-M models have been employed, and depending on the mar-

ket, the sample period, and the exact model specification, conflicting results have been

obtained. For instance, using monthly U.S. data French et al. (1987) and Campbell

and Hentschel (1992) found a predominantly positive but insignificant relationship,

while Glosten et al. (1993) found a negative and significant relationship employing

an extended GARCH-M model that allows negative and positive shocks to have dif-

ferent effect on the conditional variance. Recently, Ghysels et al. (2003) argued that

monthly data are insufficient to accurately estimate the expected return—volatility

trade-off and succeeded in uncovering a significantly positive relationship through a

new method combining data sampled at different frequencies. Their mixed data sam-

pling (MIDAS) estimator is, however, rather complicated, and as our empirical results

below show, also models confined to monthly data can produce results in support of

the ICAPM relationship.
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In what follows we show that conditional skewness has a central role to play in

uncovering the expected return—volatility relationship. The presence of conditional

and unconditional skewness has been documented in a number of previous empirical

studies.1 Campbell and Hentschel (1992) and Harvey and Siddique (1999) also in-

corporated conditional skewness in various GARCH-M specifications to examine the

expected return—volatility trade-off. Theoretically the conditional skewness can be

explained by the so-called volatility feedback effect (Campbell and Hentschel (1992))

that relies on volatility persistence and a positive intertemporal relation between ex-

pected return and conditional variance. This effect arises as follows. Because of

persistence, a large piece of news increases not only present but also future volatility,

which in turn increases the required rate of return on stock and, hence, lowers the

stock price. This effect amplifies the impact of bad news but dampens the impact of

good news, and therefore, large negative stock returns tend to occur more frequently

than large positive ones when volatility is high. As a result, also the unconditional

return distribution tends to be left-skewed.

Of the studies mentioned above, the paper by Harvey and Siddique (1999) comes

closest to our approach. Also their models allowed for time-varying conditional skew-

ness in a GARCH-M model for stock returns, but they failed to find a significantly

positive relationship between expected returns and conditional variance in U.S. data.

Harvey and Siddique (1999) employed variants of Hansen’s (1994) autoregressive con-

ditional density model with a skewed version of the t distribution specified for the

error term. The model extends the standard GARCH-M model by allowing the condi-

tional skewness and degrees of freedom of the skewed t distribution to depend linearly

on functions of lagged error terms. In our model, in contrast, the conditional skewness

is directly dependent on conditional variance in line with the volatility feedback effect

discussed above.
1Also theoretical asset pricing models explicitly incorporating conditional or unconditional skew-

ness have been presented. See, e.g. Harvey and Siddique (2000) and references therein.
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4.1 Empirical Results

We test the implication of the ICAP model given by equation (9) using monthly

excess U.S. stock returns from January 1946 to December 2002. As a proxy for the

market return we use the value-weighted CRSP index and the three-month Treasury

bill rate as the risk-free interest rate. All the models for the excess return rt to be

estimated are obtained from the following general specification:

rt = δht + κh
1/2
t + ut

ht = ω + α1u
2
t−1 + β1ht−1 + γ1I (εt−1 < 0) u

2
t−1, (10)

where ut = h1/2t (εt − κ), I(·) is an indicator function and γ1 deviates from zero only

in the GJR-GARCH (Glosten et al. (1993)) specification where positive and negative

shocks are allowed to have different effects on conditional variance. The innovation

εt is assumed to follow either the t distribution with ν degrees of freedom or the z

distribution (5). In the former case κ is set equal to zero, but in the case of the skewed

z distribution, a nonzero κ centers the observed series such that δht can be interpreted

as the conditional mean of rt. In other words, in the case of the z distribution we set

κ = −µ (a, b) /σ (a, b) (see Section 2). We also estimated the model with κ as a free

parameter, but its estimate turned out to be very close to −µ (a, b) /σ (a, b) and the
results hardly changed otherwise either (the p-value of a LR test for this restriction

was 0.233). As far as the symmetric distributions are concerned, we also experimented

with the standard normal distribution and the conclusions were qualitatively the same

as with the t distribution, but the latter is preferred because of its ability to better

capture the fat tails. As discussed in Section 2, the z distribution is not usable if

kurtosis is extreme. This should not be any kind of limitation here, especially as

we are dealing with monthly data; the excess kurtosis implied by the estimated t

distribution barely exceeds unity and the corresponding figure for the z distribution

is about 0.8.

Table 1 contains the estimation results of three GARCH-M specifications cor-

responding to equation (9). Note that in line with the theoretical ICAPM model,
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the specifications have no intercept in the conditional mean equation; models with

a nonzero intercept were also estimated, but the additional parameter turned out

to be insignificant at any reasonable significance level in all cases. The results for

the GARCH-M-t and the corresponding asymmetric GJR-GARCH-t models confirm

the findings in the previous literature. The estimates obtained for δ are positive

as expected but, due to huge standard errors, clearly insignificant. In contrast, for

the GARCH-z specification we obtain a positive and significant coefficient (p-value

0.0002 based on asymptotic normality). The magnitude of the estimate, 3.377, also

falls within the range previously obtained for the coefficient of relative risk aversion

of the representative agent (see, for instance, Hall (1988) and references therein).

Furthermore, this result is in line with the recent MIDAS estimates of Ghysels et

al. (2003), indicating that a significantly positive relation between risk and return

in the stock market can be uncovered even from merely monthly data once the error

distribution is appropriately specified.

Because the null hypothesis a = b is clearly rejected by the LR test (p-value 3.123e-

8) our model implies significant conditional skewness which increases with conditional

volatility. Moreover, because ba > bb the conditional skewness is negative as expected
based on the discussion on the volatility feedback effect above the point estimate of

the coefficient of skewness of the error term εt was —0.428. Thus, the GARCH-z model

captures the feature that large negative shocks, and hence returns, are more likely

than positive ones when conditional variance is high.2

2In a related application to daily U.S. stock returns from 1885 through 1997, significant negative

skewness was also found by Jensen and Lunde (2001). These authors used a model based on the

normal inverse Gaussian distribution (cf. section 2) but their model for conditional mean was

different form ours. Instead of the conditional variance used here, it contained the conditional

standard deviation whose estimated effect on expected returns turned out to be negative. This

result is consistent with the fact that the sign of the related parameter is determined by the skewness

of the conditional distribution and it can probably be attributed to the specification used for the

conditional mean. From economic point of view, the obtained result cannot be interpreted in the

same way as our result because the conditional mean was specified differently and because pure
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The coefficient γ1 is positive and significant (at the 5% level) in the GJR-GARCH

specification, indicating that negative shocks have stronger impact on the conditional

variance than positive shocks. Although perhaps not so obvious, the GARCH-z model

is also capable of capturing similar asymmetry, which can be seen by examining the

news impact curve (NIC) implied by the model. Originally Engle and Ng (1993)

defined the NIC as

E (ht+1|ht = h, ut = λ) ,

i.e., the expectation of the conditional variance next period conditional on a current

shock of size λ, where the shock is taken to be the error term ut. Using this definition

we could write the NIC of the GARCH-z model as

NIC (ht+1|ht = h, ut = λ) = ω + α1λ
2 + β1h,

i.e., similar to the NIC of the GARCH-t model. However, we find it more natural to

define the shock as the innovation εt in which case the NIC of the GARCH-z model

becomes

NIC (ht+1|ht = h, εt = θ) = ω + αh (θ − κ)2 + β1h.

This expression shows that if the innovation is defined as news, this NIC is asymmetric

in the same way as that of the GJR-GARCH model. The news impact curves of the

three estimated model specifications computed with εt as the shock are depicted in

Figure 1. The NIC’s of the GARCH-t and GJR-GARCH models are as expected with

negative shocks having greater impact on volatility in the asymmetric specification.

The shape of the NIC of the GARCH-z model is similar but the difference between

the effects of large negative and positive shocks is even greater than in the GJR-

GARCH specification. Moreover, the NIC does not take minimum at zero but at 0.8,

potentially suggesting that slightly positive news is required for the market to be as

tranquil as possible while ’no news’ causes higher volatility.

returns instead of excess returns were used. (The fact that Jensen and Lunde (2001) used a different

specification for the conditional variance is hardly of any major importance in this respect.)
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The dynamics of the different GARCH models can be studied by computing their

cumulative impulse response functions

IRF (h, s, θ) = E(ht+s|ht = h, εt = θ)− E(ht+s|ht = h),

i.e., the effects of a shock of size θ s periods ahead for different values of s. These

are depicted in Figure 2 for a unit shock (θ = 1). For comparison, also the impulse

responses of Hansen’s (1994) skewed-t model are graphed.3 For the symmetric spec-

ifications the IRF’s are simple to compute recursively while for the skewed models

simulation methods are required. Furthermore, in the latter case the functions are

dependent on the initial level of conditional variance and in the case of the GARCH-z

model on the sign of the shock as well. For these models we consider three different

values of h: 0.001, 0.005 and 0.01 are close to the minimum, average and maximum of

the conditional variance implied by the estimated GARCH-M-z model, respectively.

As expected, the influence of a shock is very persistent in the GARCH-t and GJR-

GARCH-t models and also in Hansen’s (1994) skewed t model. The initial impact of

a shock does not depend on the initial conditional variance in Hansen’s (1994) model,

but different values of h yield somewhat different impulse response functions. For

the GARCH-z model the decay of the impulse response functions is clearly faster,

with the impact of the shock being very close to zero after 30 months. For a positive

shock, the initial impact is the higher the smaller the conditional variance initially

is, whereas the reverse holds for a negative shock. Moreover, a negative shock always

has a higher initial impact than a positive shock so that a negative shock in turbu-

lent times has the greatest impact, while a positive shock in turbulent times has the

smallest impact. The level of initial conditional variance has little effect on the speed

of decay of the impulse response function, though.

3We ended up with a specification where the degrees of freedom parameter is time-varying while

the skewness parameter is constant. In this specification the estimate of the coefficient of relative

risk aversion (corresponding to δ in (10)) equals 3.499 with standard error 0.939. Detailed estimation

results are available upon request.
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5 Conclusion

This paper has clearly demonstrated the importance to allow for conditional skewness

when modeling stock returns. The standard GARCH-M-t model and its asymmetric

GJR-GARCH-t counterpart were totally incapable of uncovering the expected positive

relationship between monthly excess U.S. stock returns and risk. A different result

was obtained when a GARCH-M model based on a probability distribution capable

of allowing for skewness was applied. Then the expected positive relationship was

significant at all conventional significance levels and significant conditional skewness

was also found.

In this paper skewness was modeled by using the z distribution which can be

thought of as an analytically simple special case of the family of a variance-mean mix-

tures of normal distributions. As in Andersson (2001) and Jensen and Lunde (2001),

one may also consider other members of this family. Care is needed in the speci-

fication of the conditional mean, however, because different specifications can lead

to very different results and conclusions. Our specification for the conditional mean

was guided by the ICAPM model whereas Jensen and Lunde (2001) used another

specification and did not obtain results with economically meaningful interpretation.
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Figure 1: News impact curves of the GARCH(1,1)-M-z (solid line), GARCH(1,1)-M-t

(long dashes) and GJR-GARCH(1,1)-M-t (short dashes) models.
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Figure 2: Impulse reponse functions implied by different GARCH models.
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Table 1: Results of the GARCH(1,1)-M-z and GARCH(1,1)-M-t models for the excess

stock return series.
GARCH(1,1)-M-z GARCH(1,1)-M-t GJR-GARCH(1,1)-M-t

δ 3.377 4.584 3.936

(0.966) (87.88) (47.46)

ω 0.0002 0.0001 0.0002

(0.0001) (6.483e-5) (8.942e-5)

α1 0.076 0.091 0.076

(0.021) (0.028) (0.029)

β1 0.761 0.834 0.762

(0.065) (0.050) (0.074)

γ1 0.041

(0.019)

a 1.564

(0.599)

b 3.128

(1.197)

ν 10.218 11.731

(3.158) (3.776)

log likelihood 1222.54 1209.53 1216.65

AR(1)a 0.852 0.189 0.373

ARCH(10)b 0.420 0.520 0.232

The figures in the parentheses are standard errors computed from the inverse of the final

Hessian matrix. The figures reported for the diagnostic tests are marginal significance levels.
aThe alternative model is the corresponding AR(1)-GARCH(1,1)-M model, and under the null

hypothesis of no remaining autocorrelation the coefficient of the AR(1) term equals zero. The

test is robustified against misspecified conditional variance following Wooldridge (1990, Example

3.3).
bA test for remaining ARCH of order 10. For details see Lundbergh and Teräsvirta (2002).
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