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Optimal Common Value Auctions

With Asymmetric Bidders

Abstract

How do informational asymmetries between bidders affect the outcome of com-

mon value auctions? Should the seller accept bids from bidders with more precise

information? If so, under what conditions? What effect do such asymmetries have

on the seller’s expected revenue? We analyze these questions in a simple model in

which an insider competes with an outsider. Both have some information about

the value of the asset for sale, but the insider’s information is more precise. We

derive the optimal mechanism and show that it must be biased against the in-

sider. With an optimal mechanism, the seller’s expected revenue is higher if the

bidders are more asymmetrically informed. We show how the optimal mechanism

can be implemented as a second-price sealed bid auction that lets the insider win

only if his bid is above a hurdle price.

Keywords: Auctions, Common Value Auctions, Asymmetric Bidders, Winner’s

Curse

JEL codes: D44, D82



1 Introduction

Consider the following problem. A firm has gone bankrupt, and it is decided that selling

its assets is the best way to proceed. The former manager (maybe the owner-manager)

declares a possible interest in buying the assets. Is that good or bad news? The other

potential bidders should expect the former manager to have superior information about the

value of the assets. Given that winning against a better-informed competitor may mean

that the winner overpaid (the so-called winner’s curse), the outside bidders should bid more

cautiously. Consequently, the expected sales proceeds may be lowered by the presence of

the insider. On the other hand, letting the insider participate may increase competition,

which may increase sales proceeds. We ask, what the optimal selling procedure is in this

case: should the seller let the insider participate in an auction? If so, under what conditions?

How do informational asymmetries affect the seller’s expected revenue?

These questions are relevant in many other contexts. Auctions are used to offer a va-

riety of assets to a variety of potential buyers. And some bidders will unavoidably have

more reliable sources of information about the value than others, or they may simply be

more experienced. For example, a local telephone company may be better informed about

the potential profitability of offering cellular service in its area than an operator from a

different area. Similarly, a professional car dealer will have a clearer idea about the value

of a repossessed car than the average consumer. The extant literature on auctions1 offers

little guidance on how bidder asymmetry affects auction outcomes, and a seller’s expected

revenue.

We analyze a simple common value environment with two bidders, whose information

about the value of the asset for sale is not equally precise. We call the better informed

bidder the insider, and the other bidder the outsider. We derive the optimal mechanism for

selling the asset and study how it can be implemented. A key variable in our analysis is the

degree of bidder asymmetry: at one extreme, bidders can be symmetric and receive equally

informative signals; at the other extreme, the insider may be perfectly informed about the

1 For a recent survey, see Klemperer (1999).
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asset’s value, while the outsider is uninformed; intermediate cases are those in which both

bidders have some private information, but the insider’s is more precise.

We find that the more asymmetric bidders are, the higher the seller’s expected revenue

if he uses the optimal mechanism. The key to understanding this result is that the optimal

mechanism must be biased against the insider, whose probability of winning the auction must

be smaller than the outsider’s. Given that the bidders are not symmetric, the optimal mech-

anism should not treat them symmetrically. Standard auctions treat bidders symmetrically

and are therefore not optimal in this case.

The optimal mechanism accepts bids from the insider, since letting him participate creates

competition. However, it limits this competition by being biased against the insider. This

bias has two advantages. First, the insider wins the auction only if his estimate of the asset’s

value is high enough, i.e. when his bid is sufficiently high. This makes it possible for the seller

to extract rents from the insider, in particular if his information is much better than the

outsider’s. Second, if the insider’s bid is not sufficiently high, the outsider wins the asset. In

a strongly biased mechanism, winning against the insider does not convey much information

about the insider’s signal, which reduces the winner’s curse for the outsider.

A second result is that the optimal mechanism can easily be implemented as a modified

second-price auction: the insider wins only if his bid is higher than both the outsider’s bid

and a hurdle price; if the insider’s bid is below the hurdle price, the asset is sold at a fixed

price to the outsider. The hurdle price depends on the degree of asymmetry: the better the

insider’s information relative to the outsider’s, the higher the hurdle price. The hurdle price,

thus, implements the required bias of the optimal mechanism.

Our model is most closely related to those in Bikhchandani and Riley (1991), Bulow

and Klemperer (1996, 2002) and Bulow, Huang and Klemperer (1999), who also assume

that the unknown value of an asset depends on the signals that bidders receive. These

authors focus on properties of standard auctions: Bikhchandani and Riley (1991) focus on

the properties of equilibria in ascending and second-price auctions; Bulow and Klemperer

(1996) analyze a variety of models and auctions, but focus on symmetric bidders; Bulow and
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Klemperer (2002) study ascending and first-price auctions and analyze properties “almost

common value” auctions; Bulow, Huang and Klemperer (1999) examine how toeholds affect

bidding outcomes in takeover contests. In contrast, our focus is on the study of optimal

selling mechanisms in the presence of bidder asymmetry.

We are not the first to analyze common value environments in which bidders have asym-

metric information. Earlier contributions differ from ours in two respects. First, earlier

contributions study the properties of standard auction types,2 while our focus is on optimal

selling mechanisms. Second, earlier models typically assume either that weak bidders have

no private information,3 or that one bidder is perfectly informed and others receive only

imperfect (but private) signals.4 This makes those models more tractable, but less realistic,

and an analysis of how increases in the asymmetry affect revenue or the design of the optimal

mechanism is only relevant for these limit cases. We analyze a model in which both bidders

receive noisy signals, and the insider’s signal is more informative than the outsider’s. We can

vary the degree of asymmetry, leaving the expected value of the object for sale unchanged,

and study how this affects the optimal mechanism, and the expected revenue it generates.

Our paper is also related to Hausch (1987), Laskowski and Slonim (1999), Kagel and

Levin (1999) and Campbell and Levin (2000). The first three also consider bidders with

private but differently informative signals; they place restrictions on the signals (Hausch)

or bidding strategies (Laskowski and Slonim, Kagel and Levin), to solve for the optimal

strategies in standard auctions. Campbell and Levin (2000) analyze several models with

different information structures, in which the value of the asset for sale and the signals are

binary random variables; they compute equilibrium bids and expected revenue in first-price

auctions.

Other analyses of auctions with asymmetric bidders focus on settings with private values.

While we believe that a common value environment is a better description of many auction

situations than a model with private values, a comparison is useful. Myerson (1981) discusses

2 See the references in footnotes 3 and 4.
3 See e.g. Wilson (1967), Weverbergh (1979), Milgrom and Weber (1982), Engelbrecht-Wiggans et al.

(1983), Hendricks and Porter (1988), Hendricks et al. (1994) or, partly, Campbell and Levin (2000).
4 See e.g. Ortega-Reichert (1968, Ch. VII) or Kagel and Levin (1999).
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an example showing that the seller can increase expected revenue by biasing the mechanism

against a strong bidder; but that is not the focus of his article. Maskin and Riley (2000)

focus on private value first- and second-price auctions, in which bidders are asymmetric in

different ways (see also Cantillon (2000)). They find that the first-price auction generates

higher expected revenue than the second-price auction; the reason for this is that the first-

price auction is biased in favor of the weak bidder. Maskin and Riley do not study the

properties of the optimal mechanism, however.

We conclude that bidder asymmetry is beneficial for the seller. He should want the insider

to participate in the auction. While the insider’s participation may be damaging to the less

well informed bidder, this need not have an adverse effect on the seller’s revenue: increased

bidder asymmetry increases the seller’s expected revenue.

2 The Model

A seller owns an indivisible asset that can be sold to one of two bidders, i, j ∈ {1, 2}. All

players are risk-neutral. Both bidders value the asset equally, but the value is unknown

to them. Instead, each of them privately observes a signal ti, drawn independently from

the same density function f , with support
[
t, t

]
and c.d.f. F . Denote the hazard rate by

H(ti) = f(ti)/ (1− F (ti)). The full information value of the asset is a weighted sum of the

two signals:

v(t1, t2) = ψ1t1 + ψ2t2, such that ψ1 ∈
[
1/2, 1

)
and ψ2 = 1− ψ1. (1)

ψ1 < 1 ensures that both signals are informative. Our model is similar to that introduced by

Myerson (1981), and similar to the models in Bikhchandani and Riley (1991, p. 106), Bulow

and Klemperer (1996, 2002) or Bulow, Huang and Klemperer (1999). These authors also

assume that the true value of the asset is a function of all bidders’ signals. In other words,

an asset’s value depends on what potential buyers are willing to pay for it; and that depends

on their information. An alternative way to model common values is to assume that the true
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value is given, and the bidders receive noisy information about this value. Both approaches

capture the idea that bidders value the asset equally (in a pure common value setup), and

that bidders receive informative but imperfect signals. The model we use has the advantage

that it remains tractable if bidders’ signals are not equally informative.5

We call bidder 1 the ‘insider’ and bidder 2 the ‘outsider’, since bidder 1’s signal is more

informative. To see this, examine the variance of the value of the asset, conditional on bidder

i’s signal ti. This conditional variance is ψ2
j for bidder i, and since ψ1 > ψ2, it is larger for

bidder 2.

The assumptions that the weights ψ1 and ψ2 add up to one and that the signals ti are

i.i.d. ensure that the expected value of the asset does not depend on ψ1 and ψ2: it is easy

to show that E [v (t1, t2)] =
∫ t

t
tif(ti)dti, irrespective of ψ1. This normalization allows us to

examine the effect of bidder asymmetry on the seller’s expected revenue, while keeping the

ex-ante expected value constant. This assumption may seem restrictive, but it is without

loss of generality, as we show in Section 5.

We assume that the seller’s valuation of the asset is zero, and that his only goal is to

maximize expected revenue. We assume that the lower bound t of the signals’ support

is sufficiently high, such that imposing a reserve price will turn out to be sub-optimal; a

sufficient condition is that tH(t) ≥ ψ1. We also assume that the hazard rate H is increasing

in the signal ti for both bidders. This is a standard monotone hazard rate assumption, which

is made for tractability reasons.

3 The Optimal Mechanism

From the revelation principle, we can restrict attention to direct mechanisms. For reported

signal realizations t1 and t2, let pi(t1, t2) be the probability of giving the asset to bidder i,

and let xi(t1, t2) be the payment that bidder i is required to make to the seller. Define the

5Crémer and McLean (1985) show that in the alternative model, the seller can extract all rents if bidders’
signals are correlated. However, the optimal mechanism required to do so has been criticized as being
unrealistic (see e.g. Klemperer (1999)), e.g. because it threatens bidders with large fines that must be
enforced.
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seller’s expected revenue as

R ≡
∫ t

t

∫ t

t

(x1(t1, t2) + x2(t1, t2)) f(t1)dt1 f(t2)dt2.

Notice that xi may or may not depend on pi: a bidder may be required to make a payment

even if he does not win the asset.

Define bidder i’s probability of winning the asset, conditional on reported signal ti, as

Qi(ti) ≡
∫ t

t

pi(ti, tj)f(tj)dtj.

A bidder’s expected payoff depends on both the realized and the reported signal; his expected

net payoff, conditional on signal ti and announcement t̂i, is defined as

Ui(t̂i|ti) ≡
∫ t

t

(
v(ti, tj)pi(t̂i, tj)− xi(t̂i, tj)

)
f(tj)dtj.

If bidder i truthfully reveals his signal, we have t̂i = ti; for this case, we will use the notation

Vi(ti) ≡ Ui(ti|ti) to denote the expected payoff of a bidder with a realization ti.

The seller solves the following optimization problem:

max
x1,x2∈IR,p1,p2∈[0,1]

∫ t

t

∫ t

t

(x1(t1, t2) + x2(t1, t2)) f(t1)dt1 f(t2)dt2 (2)

s.t.

Vi(ti) ≥ 0 ∀ti, i = 1, 2 (3)

Vi(ti) ≥ Ui(t̂i|ti) ∀t̂i, ∀ti, i = 1, 2 (4)

p1 (t1, t2) + p2 (t1, t2) ≤ 1 ∀t1, ∀t2. (5)

The optimal mechanism maximizes the seller’s expected revenue, subject to the constraints

that all parties are willing to participate (3), and they have no incentive to misrepresent their
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information, (4). The optimization problem (2)–(5) is quite involved. In the next lemma we

show that the IC constraint (4) can be replaced by a more tractable condition, which allows

us to obtain a closed form solution for the optimal mechanism.

Lemma 1 The truthtelling constraint (4) is satisfied iff ∂Vi(ti)
∂ti

= ψiQi(ti) and ∂Qi(ti)
∂ti

≥ 0.

Proof: The proof is standard (see Myerson (1981)); it is provided in the Appendix for

completeness.

We can now write down the seller’s optimization problem as follows:

max
p,x

∫ t

t

∫ t

t

{x1(t1, t2) + x2(t1, t2)} f(t1)dt1f(t2)dt2 (6)

subject to

Vi(ti) = Vi(t) + ψi

∫ ti

t

Qi(si)dsi for i = 1, 2 (7)

Q′
i(ti) ≥ 0 for i = 1, 2 (8)

Vi(t) ≥ 0 for i = 1, 2 (9)

p1(t1, t2) + p2(t1, t2) ≤ 1 (10)

pi(t1, t2) ≥ 0 for i = 1, 2. (11)

Using Lemma 1 it is easy to see that conditions (7) and (8) are equivalent to (4). The

constraints (7)–(9) together imply that (3) is satisfied for all ti. The last two conditions

are the feasibility constraints. Tedious but straightforward algebra shows that (6) can be

rewritten as

max
pi,Vi(t)

∑
i=1,2

{
−Vi(t) +

∫ t

t

∫ t

t

[
v(t1, t2)− ψi

H (ti)

]
pi(t1, t2)f(t1)dt1 f(t2)dt2

}
. (12)

To obtain (12) from (6) we substitute for xi (t1, t2) from (7) and simplify. Details of the

manipulations required can be found in the Appendix. The objective function (12) leads
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to the well-known Revenue Equivalence Theorem (see e.g. Myerson (1981) or Riley and

Samuelson (1981)): In any selling mechanism with independent signals the seller’s expected

revenue from an incentive-compatible mechanism is completely determined by Vi(t) and the

probability functions pi. The transfers xi are determined implicitly by (7). So any incentive

compatible auction that gives the same rent to bidders with the lowest signal and uses the

same allocation rules pi yields the same expected revenue.

Proposition 1 The optimal mechanism sets V1(t) = V2(t) = 0,

p1(t1, t2) =





1 if ψ1

H(t1)
≤ 1−ψ1

H(t2)

0 otherwise
(13)

and p2(t1, t2) = 1− p1(t1, t2). The transfer payments xi (t1, t2) are implicitly given by (7).

Proof: Clearly, there is no need to set Vi(t) > 0, and setting Vi(t) < 0 violates bidder i’s

participation constraint (9). The assumption that tH(t) ≥ ψ1 and the monotone hazard

rate assumption together imply that the term in square brackets in (12) is positive for all

(t1, t2). Thus, it is never optimal to set p1(t1, t2) = p2(t1, t2) = 0, i.e. there is no reserve

price. The monotone hazard rate assumption also implies that for the solution in (13), a

higher signal ti makes it more likely that bidder i wins the object, thus satisfying (8). The

allocation rule can be derived by comparing the term in square brackets in (12) for a given

(t1, t2) and setting p1 (t1, t2) = 1 if
(
v(t1, t2)− ψ1

H(t1)

)
≥

(
v(t1, t2)− ψ2

H(t2)

)
. An alternative

way to derive (13) is the approach developed in Bulow and Roberts (1989) or Bulow and

Klemperer (1996): the term in square brackets in (12) is sometimes referred to as a bidder’s

‘marginal revenue,’ and the optimal mechanism allocates the asset to the bidder with the

higher marginal revenue.

The optimal mechanism asks the bidders to announce their privately observed signals

and allocates the asset based on the simple rule (13). The bidders’ transfers xi(ti, tj) are

defined implicitly, and we will discuss them in Section 4, where we also show how the optimal

mechanism can easily be implemented.
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It will be convenient to define the cut-off signals, z1(t2) and z2(t1), as follows:

z1(t2) ≡ H−1

(
ψ1

1− ψ1

H(t2)

)
(14)

z2(t1) ≡




H−1
(

1−ψ1

ψ1
H(t1)

)
if 1−ψ1

ψ1
H(t1) ≥ H(t)

t otherwise
(15)

where H−1 is the inverse of the hazard function. Notice that z1 is invertible and its inverse

is z2. In contrast, z2 is only invertible if t1 is high enough, such that H(t1) ≥ ψ1

1−ψ1
H(t). In

this region, the inverse of z2 is indeed z1.

We can use these cut-off signals to rewrite the allocation rule (13) as

p1(t1, t2) =





1 if t1 ≥ z1(t2)

0 otherwise
(16)

-

t2 6

t1

t

t

t

t z1(t)

Figure 1: The optimal allocation rule

The optimal mechanism is biased against the insider: he wins the asset only if his signal

is sufficiently higher than the outsider’s. The threshold is z1(t2), which in turn is higher

than t2 (this follows from (14), recalling that H ′ > 0). Figure 1 sketches how the optimal
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mechanism allocates the asset, depending on the signal realizations. The square box contains

all signal combinations that are possible. The upward sloping solid curve separates signal

pairs for which the insider wins (the shaded area on the lower right) from those for which the

outsider wins (the remaining area, top left). For any t1, this curve determines the threshold

z2(t1); conversely, going in the other direction, it traces z1(t2) for all t2. Notice that the bias

is extreme for low values of t1. If t1 < z1(t), the insider will certainly not win the asset,

irrespective of the realization of t2.

An increase in ψ1 increases the bias in the optimal mechanism. Notice that z1 is increasing

in ψ1 (see (14), and recall that H ′ > 0). Thus, the higher ψ1 is, the more the insider’s signal

must exceed the outsider’s, in order to win. The curve in Figure 1 moves counterclockwise

around
(
t, t

)
, if ψ1 increases, and the threshold z1(t) also increases; the insider’s probability

of winning the auction decreases. In the extreme, as ψ1 → 1, we have z1(t) → t, and the

insider’s probability of winning goes to zero. However, for smaller values of ψ1, the insider’s

probability is positive. We can therefore conclude:

Corollary 1 It is optimal to let the insider participate.

Biasing the mechanism agains the insider increases competition between the bidders, by

forcing the insider to submit high bids if he wants to win. One would expect this bias to

somewhat mitigate the adverse effect that increased bidder asymmetry has on the seller’s

expected revenue. In fact, the optimal mechanism achieves more than that:

Proposition 2 The seller’s expected revenue is increasing in ψ1.

Proof: See the Appendix.

The proof consists of two steps. Starting with a given ψ1 and the corresponding op-

timal mechanism, consider a small increase in ψ1. In the first step, we construct a new

mechanism that is incentive compatible and satisfies the participation constraint for both

bidders. With this changed mechanism and the higher value of ψ1, the seller’s revenue is

higher. In constructing the new mechanism, we do not alter the allocation rule, i.e. pi and
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Qi remain unchanged. Because of this constraint, the changed mechanism is generally not

optimal for the higher value of ψ1; in the second step of the proof we argue that expected

revenue generated by the optimal mechanism for the higher ψ1 can only be higher.

4 The Optimal Mechanism as a Standard Auction

The discussion of the optimal mechanism in Section 3 did not include the bidders’ transfers

to the seller. Many different transfer schemes may be feasible for the same allocation rule.

Here, we discuss one that makes the optimal mechanism resemble a somewhat modified

second-price auction. This allows us to discuss the properties of the optimal mechanism

and, more importantly, present a simple way to implement the optimal mechanism.

Consider bidding strategies

bMSP
i (ti) = ψiti + ψjzj(ti) for i 6= j,

a hurdle price

b1 = ψ1z1 (t) + (1− ψ1)t

and a price

x2 = ψ1E
[
t1

∣∣ t1 < z1 (t)
]
+ (1− ψ1)t.

Proposition 3 (Modified second-price auction) The seller can obtain the same expected

revenue as with an optimal mechanism by using a second-price auction, with a hurdle price

for the insider: if b1 < b1, the outsider wins the asset and pays a fixed price x2. The bidding

functions bMSP
i constitute a Bayesian Nash Equilibrium for this modified second-price auction.

Proof: See the Appendix.

The mechanism described in Proposition 3 is a second-price auction, since the price that

the winner pays is the second-highest bid. It is not a standard second-price auction, since

the winner did not necessarily submit the highest bid: the outsider may win with a lower
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bid if the insider’s bid is below the hurdle price b1. This bias corresponds to the bias in

the optimal allocation rule described in Proposition 1, which lets the insider win only if his

signal is sufficiently higher than the outsider’s.

It is interesting that simply introducing a hurdle price for one bidder is sufficient to turn

a standard auction into an optimal mechanism. This increases expected revenue in the same

way a reserve price operates: shading bids is made less profitable, since low bids make it

less likely that the asset is won, and the profit (value minus payment) enjoyed. The key

difference is that a hurdle price is less costly to use than a reserve price: if the threat has to

be carried out, the asset is not simply withdrawn (and destroyed, say) but instead sold to

the outsider, who is willing to pay for it. A hurdle price is thus more efficient than a reserve

price; however, it increases revenue only if the bidders’ signals are not equally informative.

The key feature of the optimal mechanism is that it is biased against the insider: he is

less likely to win the asset, and he wins only if his signal (and bid) is sufficiently high. The

optimal mechanism generates higher revenue through cherry-picking: it sells the asset to the

insider if and only if his signal is very high, forcing him to pay a high price. The outsider

receives the asset otherwise. The outsider’s willingness to pay may be low if b1 < b1, since he

can infer that the insider’s signal was low. But this loss is smaller than the gain from selling

to the insider: the outsider would have earned a large profit by paying an average price for

a high-value asset; and given that the insider needs a high bid to win the asset, he has little

scope to shade his bid and earn a large rent.

In Proposition 2 we show that the optimal mechanism generates expected revenue that is

increasing in ψ1. It is instructive to examine the modified second-price auction in the limit,

as ψ1 approaches 1.

Corollary 2 In the limit as ψ1 ↑ 1, the modified second-price auction extracts all rents: the

payoff is zero for both bidders, and the seller’s revenue is equal to the expected value of the

asset.

Proof: In the limit as ψ1 ↑ 1, we have z1 (t2) = t for all t2. It follows that b1 = t and
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x2 = E [t1], cf. the definition of b1 (recalling that ψ1 + ψ2 = 1). Bidder 2 is certain to win;

he pays the expected value of the asset and, thus, gets no rents.

The optimal mechanism encourages competition between the bidders and yet is biased

against the insider. This becomes clear if we consider the limits of ψ1. If ψ1 = 1/2, the

bidders are symmetric: the cut-off signal for the insider is z1 (t) = t, and the hurdle price

is b = t; the optimal mechanism can be implemented as a standard second-price auction.

In contrast, in the limit as ψ1 ↑ 1, we have z1 (t) ↑ t, i.e. the insider cannot win the asset.

This is reflected in the hurdle price, which is b = t, equal to the highest possible valuation of

the asset. The optimal mechanism extracts all rents since the price that the outsider pays

is x2 = E [t1], the unconditional expected value of the asset. Thus, if ψ1 ↑ 1, the optimal

mechanism mimics an exclusive sale offer to the outsider: it is as biased as possible against

the insider. In contrast, if ψ1 = 1/2, it mimics a standard auction and is not biased at all. For

intermediate values of ψ1, it is somewhat biased and generates higher revenue than either a

standard auction or an exclusive sale offer to the outsider.

5 An Alternative Model of Bidder Asymmetry

One of the assumptions we make in the analysis so far is the normalization of the weights ψi,

which add up to one, cf. (1). This is a convenient assumption, since we can vary the relative

informativeness of the bidders’ signals without changing the expected value of the asset. This

in turn simplifies comparisons of different auctions, or comparisons of auctions for different

bidder types, since we can focus on the level of expected revenue that is generated.

However, one may wonder how restrictive an assumption this is. Specifically, changes in

ψ1 imply changes in ψ2 in the opposite direction — if the insider becomes better informed, the

outsider automatically becomes less informed. In the limit, as the insider becomes perfectly

informed, and the outsider becomes totally uninformed. In this section we discuss a model

in which we can vary ψ1 and leave ψ2 unchanged. We show that the results are unchanged.

The reason is that the value of the outsider’s information changes if we vary ψ1, even if ψ2
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remains unchanged. A simultaneous change in the informativeness of both bidders’ signals is

unavoidable: if the insider’s information becomes more reliable, the outsider’s must become

less valuable, compared with the insider’s. And it is the relative informativeness of the signals

that is relevant for our results.

Consider the following model, which differs from ours only in the definition of the asset’s

value, depending on the bidders’ signals. In (1), the weights ψi added up to one. We now

assume that ψ2 remains constant, and we study the effects of varying ψ1:

v(t1, t2) = ψ1t1 + ψ2t2, such that ψ1 ≥ ψ2.

The insider’s signal remains more informative than the outsider’s, since ψ1 ≥ ψ2. Adapting

the definitions, results and proofs to the modified model is straightforward. When deriving

the optimal mechanism, the cut-off signals can be defined as

ẑ1(t2) ≡ H−1

(
ψ1

ψ2

H(t2)

)

ẑ2(t1) ≡




H−1
(

ψ2

ψ1
H(t1)

)
if ψ2

ψ1
H(t1) ≥ H(t)

t otherwise,

and the optimal mechanism sets

p̂1(t1, t2) =





1 if t1 ≥ ẑ1(t2)

0 otherwise.

The only significant changes concern the statement and proof of Proposition 2, in which

we show that expected revenue is increasing in ψ1. The result itself is unchanged: expected

revenue in an optimal mechanism is increasing in ψ1 if ψ1 and ψ2 do not add to one. However,

this is not a meaningful result, since the expected value of the asset (ψ1 + ψ2) E [ti] is also

strictly increasing in ψ1. We therefore consider the ratio of expected revenue to expected

value, which measures the degree of rent extraction:

14



Proposition 4 Rent extraction is increasing in ψ1.

Proof: See the Appendix.

Relaxing the assumption that the weights ψ1 and ψ2 add up to one does not simplify the

analysis, and it does not add any new insights; nor does it change any of our results. Relaxing

the assumption also does not seem a very natural way to study how the asymmetry of bidders’

information affects auction outcomes: the model then implies that the better informed the

insider, the more valuable the asset becomes, and it is not clear why bidder asymmetry

should affect the ex-ante expected value of an asset. Overall, there is no advantage from

using this seemingly more general model.

6 Conclusion

We have analyzed a simple common value model in which bidders receive signals that are not

equally informative. Our aim was to study the properties of optimal selling mechanisms. We

found that an optimal mechanism always accepts bids from an insider, but is biased against

him: the more asymmetric the bidders’ information, the smaller the probability that the

insider wins the asset. He wins the asset only if he has very optimistic information about its

value, and is therefore willing to bid highly; otherwise, the outsider wins the asset. The more

asymmetric bidders are, the more biased the optimal mechanism is. This helps to reduce

the winner’s curse for the outsider, thereby enhancing his willingness to pay, which benefits

the seller.

A second focus of our analysis was on the implementation of the optimal mechanism.

Standard auctions — sealed bid first-price or sealed bid second-price — treat all bidders in

a symmetric fashion and, consequently, do not implement the optimal mechanism. However,

we show that a slightly modified second-price auction is an optimal mechanism, i.e. it gen-

erates the highest possible expected revenue. The slight modification is that the insider can

win only if his bid is above a hurdle price; if it is below, the asset is sold to the outsider at a

15



pre-specified price. This is a welcome result: more often than not, optimal mechanisms are

too complex to be implemented in practice.

The main task for the seller is to estimate how asymmetric the bidders are, and to use

this estimate to specify a hurdle price for the stronger bidder. The seller’s estimate may be

imprecise, of course: she may not know with certainty how asymmetric bidders are, or how

asymmetrically informed bidders feel. She will then have to determine an optimal hurdle

price given noisy information about ψ1, a problem we leave for future research.
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Appendix: Proofs

A.1 Proof of Lemma 1

=⇒: The following identity will be useful:

U1

(
t1, t̂1

) ≡
∫

Tj

[
v (ti, tj) pi

(
t̂i, tj

)− xi

(
t̂i, tj

)]
fj (tj) dtj

=

∫

Tj

[
v

(
t̂i, tj

)
pi

(
t̂i, tj

)− xi

(
t̂i, tj

)]
fj (tj) dtj

+

∫

Tj

[
v (ti, tj) pi

(
t̂i, tj

)− v
(
t̂i, tj

)
pi

(
t̂i, tj

)]
fj (tj) dtj

= Vi

(
t̂i
)

+

∫

Tj

[
v (ti, tj)− v

(
t̂i, tj

)]
pi

(
t̂i, tj

)
fj (tj) dtj

= Vi

(
t̂i
)

+ ψi

∫

Tj

(
ti − t̂i

)
pi

(
t̂i, tj

)
fj (tj) dtj

= Vi

(
t̂i
)

+ ψi

(
ti − t̂i

)
Qi

(
t̂i
)
. (A1)

(4) then implies

Vi (ti) ≥ Ui

(
ti, t̂i

)
= Vi

(
t̂i
)

+ ψi

(
ti − t̂i

)
Qi

(
t̂i
)

Vi

(
t̂i
) ≥ Ui

(
t̂i, ti

)
= Vi (ti) + ψi

(
t̂i − ti

)
Qi (ti)

so

Vi (ti)− Vi

(
t̂i
) ≥ ψi

(
ti − t̂i

)
Qi

(
t̂i
)

Vi

(
t̂i
)− Vi (ti) ≥ ψi

(
t̂i − ti

)
Qi (ti) .

Rearranging we have

ψi

(
ti − t̂i

)
Qi (ti) ≥ Vi (ti)− Vi

(
t̂i
) ≥ ψi

(
ti − t̂i

)
Qi

(
t̂i
)
.

20



W.l.o.g., let ti > t̂i. Divide by
[
ti − t̂i

]
,

ψi Qi (ti) ≥
Vi (ti)− Vi

(
t̂i
)

[
ti − t̂i

] ≥ ψi Qi

(
t̂i
)

i.e. Qi must be weakly increasing in ti. Taking the limit we have the result:

ψi Qi (ti) ≥ ∂Vi (ti)

∂ti
≥ ψi Qi (ti)

∂Vi (ti)

∂ti
= ψi Qi (ti) .

⇐=: Show that if
∂Vi (ti)

∂ti
= ψi Qi (ti)

and Q′
i (ti) ≥ 0 then

Vi (ti) ≥ Ui

(
ti, t̂i

) ∀ti, t̂i.

From ∂Vi(ti)
∂ti

= ψi Qi (ti) we get,

Vi (ti) = Vi

(
t̂i
)

+

∫ ti

t̂i

∂Vi (t)

∂t
dt = Vi

(
t̂i
)

+

∫ ti

t̂i

ψi Qi (si) dsi. (A2)

From (A1) above we have,

Ui

(
ti, t̂i

)
= Vi

(
t̂i
)

+ ψi

(
ti − t̂i

)
Qi

(
t̂i
)
.

Substituting for Vi

(
t̂i
)

in (A2),

Vi (ti) = Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)

+

∫ ti

t̂i

ψi Qi (t) dt. (A3)

If ti > t̂i, then since Q is weakly increasing, we can substitute for the lower bound on Qi (si)
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to obtain the following inequality:

Vi (ti) ≥ Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)

+

∫ ti

t̂i

ψi Qi

(
t̂i
)

dt

= Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)

+ ψi Qi

(
t̂i
) (

ti − t̂i
)

= Ui

(
ti, t̂i

)
.

If ti < t̂i, then rewrite (A3) as

Vi (ti) = Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)−

∫ t̂i

ti

ψi Qi (t) dt

and we have (since Q is weakly increasing)

Vi (ti) ≥ Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)− ψi

∫ t̂i

ti

Qi (ti) dt

= Ui

(
ti, t̂i

)− ψi

(
ti − t̂i

)
Qi

(
t̂i
)− ψi

(
t̂i − ti

)
Qi

(
t̂i
)

= Ui

(
ti, t̂i

)

i.e. (4) is satisfied.
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A.2 Derivation of (12) from (6)

Rewrite (6) as

max
pi,xi

∑
i=1,2

∫ t

t

∫ t

t

v(t1, t2)pi(t1, t2)f(t1)dt1f(t2)dt2 (A4)

+
∑
i=1,2

∫ t

t

∫ t

t

{xi(t1, t2)− v(t1, t2)pi(t1, t2)} f(t1)dt1f(t2)dt2.

The summands in the last term of (A4) can be rewritten (for i 6= j) as:

∫ t

t

(∫ t

t

{xi(t1, t2)− v(t1, t2)pi(t1, t2)} f(tj)dtj

)
f(ti)dti

= −
∫ t

t

Vi(ti)f(ti)dti

= −
∫ t

t

Vi(t)f(ti)dti −
∫ t

t

(
ψi

∫ ti

t

Qi(si)dsi

)
f(ti)dti

= −Vi(t)− ψi

∫ t

t

(∫ t

si

f(ti)dti

)
Qi(si)dsi

= −Vi(t)− ψi

∫ t

t

(1− F (si))

(∫ t

t

pi(si, tj)f(tj)dtj

)
dsi

= −Vi(t)− ψi

∫ t

t

∫ t

t

(1− F (ti)) pi(ti, tj)f(tj)dtjdti

= −Vi(t)− ψi

∫ t

t

∫ t

t

[
1− F (ti)

f(ti)
pi(ti, tj)

]
f(tj)dtjf(ti)dti.

Substituting into (A4), the objective function can be rewritten as

max
pi,Vi(t)

∑
i=1,2

∫ t

t

∫ t

t

v(t1, t2)pi(t1, t2)f(t1)dt1f(t2)dt2

+
∑
i=1,2

(
−Vi(t)− ψi

∫ t

t

∫ t

t

[
1− F (ti)

f(ti)
pi(ti, tj)

]
f(tj)dtjf(ti)dti

)

which can be rearranged to yield (12).
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A.3 Proof of Proposition 2

Consider the optimal mechanism for a given ψ1. The seller’s expected revenue is given by

E [v (t1, t2)]−
∫ t

t

V1 (t1) f (t1) dt1 −
∫ t

t

V2 (t2) f (t2) dt2

= E [v (t1, t2)]− ψ1

∫ t

t

∫ t1

t

Q1 (s1) ds1 f (t1) dt1 − (1− ψ1)

∫ t

t

∫ t2

t

Q2 (s2) ds2 f (t2) dt2.

For ε satisfying 0 < ε < 1− ψ1, this is strictly less than

E [v (t1, t2)]− ψ1

∫ t

t

∫ t1

t

Q1 (s1) ds1 f (t1) dt1 − (1− ψ1)

∫ t

t

∫ t2

t

Q2 (s2) ds2 f (t2) dt2

+ ε

∫ t

t

∫ t

t

(Q2 (s)−Q1 (s)) ds f (t) dt,

since for a given signal s, the insider’s probability of winning Q1 (s) is smaller than the

outsider’s, Q2 (s). We can rewrite this as

E [v (t1, t2)]− (ψ1 + ε)

∫ t

t

∫ t1

t

Q1 (s1) ds1f (t1) dt1 − (1− ψ1 − ε)

∫ t

t

∫ t2

t

Q2 (s2) ds2f (t2) dt2.

This term describes the seller’s expected revenue if the true parameter is ψ1 + ε, but he

uses the allocation rule that would be optimal if the true parameter was ψ1 < ψ1 + ε (while

maintaining incentive compatibility: the transfers xi (t1, t2) are implicitly determined by (7)).

Thus, expected revenue can be increased if ψ1 increases, without changing the allocation rule.

By switching to the optimal allocation rule, the seller may additionally increase expected

revenue.
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A.4 Proof of Proposition 3

We first show that the strategies form an equilibrium. Denote by βMSP
i the inverse of bMSP

i .

The equilibrium payoffs are

V MSP
1 (t1) =





0 if t1 < z1(t)
∫ βMSP

2 (b1(t1))

t
(ψ1t1 + (1− ψ1)t2 − b2 (t2)) f (t2) dt2 if t1 ≥ z1(t)

=





0 if t1 < z1(t)

ψ1

∫ βMSP
2 (b1(t1))

t
(t1 − z1(t2)) f (t2) dt2 if t1 ≥ z1(t)

V MSP
2 (t2) =

∫ z1(t)

t

(ψ1t1 + (1− ψ1)t2 − b1 (t1)) f (t1) dt1

+

∫ βMSP
1 (b2(t2))

z1(t)

(ψ1t1 + (1− ψ1)t2 − b1 (t1)) f (t1) dt1

=

∫ z1(t)

t

(ψ1t1 + (1− ψ1)t2 − ψ1t1 − (1− ψ1)t) f (t1) dt1

+

∫ βMSP
1 (b2(t2))

z1(t)

(ψ1t1 + (1− ψ1)t2 − ψ1t1 − (1− ψ1)z2(t1)) f (t1) dt1

= (1− ψ1)

∫ z1(t)

t

(t2 − t) f (t1) dt1 + (1− ψ1)

∫ βMSP
1 (b2(t2))

z1(t)

(t2 − z2(t1)) f (t1) dt1.

Both are nonnegative. Now consider different possible deviations:

1. Deviations from bMSP
1 (t1) to bMSP

1 (t′1) for t1, t
′
1 ≥ z1(t).

(a) Deviations b+
1 > bMSP

1 (t1). In many cases, this will not affect the insider’s payoff.

The only changes arise if he now wins the auction but would have lost it by

bidding bMSP
1 (t1). That happens if

t2 ∈
(
βMSP

2

(
bMSP
1 (t1)

)
, βMSP

2

(
b+
1

)]
.

The value in the integral in V MSP
1 is decreasing in t2, so it is sufficient to show
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that

t1 = z1(β
MSP
2

(
bMSP
1 (t1)

)
),

since then the payoff is negative for all higher signals t2, those for which the insider

now wins. Transform that equation,

z2 (t1) = z2

(
z1(β

MSP
2

(
bMSP
1 (t1)

)
)
)

z2 (t1) = βMSP
2

(
bMSP
1 (t1)

)

bMSP
2 (z2 (t1)) = bMSP

1 (t1)

Substitute on the left-hand side,

bMSP
2 (z2 (t1)) = (1− ψ1)z2 (t1) + ψ1z1(z2 (t1))

and since z2 is the inverse of z1, we can rewrite it as

bMSP
2 (z2 (t1)) = (1− ψ1)z2 (t1) + ψ1t1

= bMSP
1 (t1).

So the extra payoffs are indeed negative.

(b) Deviations b−1 < bMSP
1 (t1). In many cases, this will not affect the insider’s payoff.

The only changes arise if he now loses the auction but would have won it by

bidding bMSP
1 (t1). That happens if

t2 ∈
(
βMSP

2

(
b−1

)
, βMSP

2

(
bMSP
1 (t1)

)]
.

We know from above that the payoff with t2 = βMSP
2

(
bMSP
1 (t1)

)
is zero, and

positive for smaller t2. So the forgone payoffs are positive.
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2. Deviations from bMSP
1 (t1) to bMSP

1 (t′1) for t1, t
′
1 < z1(t). One way or another, the insider

does not win, so this cannot affect his payoff.

3. Deviations from bMSP
1 (t1), for t1 ≥ z1(t) to bMSP

1 (t′1), for t′1 < z1(t). With the equilibrium

bid, the insider’s payoff would be positive; with the deviation, he loses the auction,

losing a positive payoff.

4. Deviations from bMSP
1 (t1), for t1 < z1(t) to bMSP

1 (t′1), for t′1 ≥ z1(t). Instead of losing for

sure, the insider now may win the auction. This is the case if t2 ≤ βMSP
2 (b1 (t′1)). The

insider’s payoff if he wins (by deviating to bMSP
1 (t′1)) is t1 − z1(β

MSP
2 (b1 (t′1))). This is

negative: by definition we have t1 < z1(t), and we must have βMSP
2 (b1 (t′1)) ≥ t.

5. Deviations from bMSP
2 (t2). Similar to part 1 and therefore omitted.

For any signal pair (t1, t2), the allocation generated by the modified second-price auction

is identical to that generated by the optimal mechanism (cf. Proposition 1). Both bidders

expect zero revenue if their signal is t, so from the Revenue equivalence theorem (cf. (12)),

the two mechanisms generate the same expected revenue.

A.5 Proof of Proposition 4

The proof consists of two steps. The first step is similar to the proof of Proposition 2,

the only change being that we divide all terms by the expected value of the asset for the

respective levels of ψ1. In other words, we consider rent extraction, and not the nominal

level of expected revenue. The result of this first step is that an increase in ψ1 by some ε > 0

and a simultaneous decrease in ψ2 by the same ε increases rent extraction (and expected

revenue). In the second step, we show that increasing both ψ1 and ψ2 by the same factor

γ > 1 does not change the degree of rent extraction. Notice that multiplying both ψi by a

factor γ leaves the cut-off values ẑ1(t2) and ẑ2(t1) unchanged, and therefore the Qi (ti) are

also unchanged. Let the superscripts ψ and γψ refer to values of the respective variables for
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values ψi and ψiγ.

Rψ

E [vψ (t1, t2)]

=
E

[
vψ (t1, t2)

]− ∫ t

t
V ψ

1 (t1) f (t1) dt1 −
∫ t

t
V ψ

2 (t2) f (t2) dt2

E [vψ (t1, t2)]

=
(ψ1 + ψ2) E [t]− ψ1

∫ t

t

∫ t1
t

Qψ
1 (s1) ds1f (t1) dt1 − ψ2

∫ t

t

∫ t2
t

Qψ
2 ds2f (t2) dt2

(ψ1 + ψ2) E [t]

=
(γψ1 + γψ2) E [t]− γψ1

∫ t

t

∫ t1
t

Qγψ
1 (s1) ds1f (t1) dt1 − γψ2

∫ t

t

∫ t2
t

Qγψ
2 ds2f (t2) dt2

(γψ1 + γψ2) E [t]

=
E

[
vγψ (t1, t2)

]− ∫ t

t
V γψ

1 (t1) f (t1) dt1 −
∫ t

t
V γψ

2 (t2) f (t2) dt2

E [vγψ (t1, t2)]

=
Rγψ

E [vγψ (t1, t2)]

With a suitable choice of γ, for a given ε,

γ =
ψ2

ψ2 − ε

the two steps show that increasing ψ1 and leaving ψ2 unchanged increases rent extraction.
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