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Abstract

We propose a model-free omnibus statistical procedure to check whether the direction

of changes in an economic variable is predictable using the history of its past changes. A

class of separate inference procedures are also given to gauge possible sources of directional

predictability. They can reveal information about whether the direction of future changes is

predictable using the direction, level, volatility, skewness, and kurtosis of past changes. An

important feature of the proposed procedures is that they check many lags simultaneously,

which is particularly suitable for detecting the alternatives whose directional dependence is

small at each lag but it carries over a long distributional lag. At the same time, the tests

naturally discount higher order lags, which is consistent with the conventional wisdom that

financial markets are more influenced by the recent past events than by the remote past events.

We apply the proposed procedures to four daily U.S. stock price indices. We find over-

whelming evidence that the directions of excess stock returns are predictable using past excess

stock returns, and the evidence is stronger for the directional predictability of large excess

stock returns. In particular, the direction and level of past excess stock returns can be used

to predict the direction of future excess stock returns with any threshold, and the volatil-

ity, skewness and kurtosis of past excess stock returns can be used to predict the direction

of future excess stock returns with nonzero thresholds (i.e., large returns). The well-known

strong volatility clustering together with weak serial dependence in mean cannot completely

explain all documented directional predictability for stock returns. To exploit the economic

significance of the documented directional predictability for stock returns, we consider a class

of autologit models for directional forecasts and find that they have significant out-of-sample

directional predictive power. Some trading strategies based on these models and their com-

binations can earn significant out-of-sample extra risk-adjusted returns over the buy-and-hold

trading strategy.

Key words: Autologit models, Characteristic function, Combined forecasts, Directional pre-

dictability, Efficient market hypothesis, Generalized spectrum, Market timing, Sharpe Ratio,

Volatility clustering.
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1 Introduction

Predictability of asset returns has immediate interest for investment practitioners and far-

reaching implications for the efficacy of asset prices in allocating capitals. Focus in this litera-

ture has been on the predictability of the level or conditional mean of asset returns (e.g., Fama

1970, 1991, Jegadeesh 1990, Lo and MacKinlay 1999, Poterba and Summers 1988). In this

paper, we investigate the predictability of the direction of changes in economic variables, such

as interest rates, inflation rates, exchange rates and stock prices. The direction of changes

in economic variables may be a reasonable proxy for a utility-based measure of forecasting

performance. Leitch and Tanner (1991, 1995) find that the direction-of-change criterion is

the best proxy among several commonly used criteria for choosing forecasts of interest rates

on their ability to maximize expected trading profits. There exist important circumstances

under which the direction-of-change criterion is exactly the right one for maximizing the wel-

fare (e.g., profit) of the forecaster, as is nicely demonstrated in Granger and Pesaran (1999,

Sections 2-4) and Leitch and Tanner (1995) from a perspective of decision-making under un-

certainty. Macroeconomists and investment practitioners have been interested in forecasting

probabilities of important economic events (e.g., Diebold and Lopez 1996, Fair 1993), which,

in many cases, can be formulated as the probabilities of the direction of changes in underlying

economic variables. Central banks under pegged exchange rate systems, for example, are often

interested only in the direction of changes in the exchange rate. They might need to intervene

to support the currency if it is expected to depreciate, regardless of the size of the expected

depreciation. Over the past few years, some central banks, including the Bank of England,

have been setting the nominal interest rate according to their forecasts of the inflation rate,

increasing the interest rate if their forecast of the inflation rate exceeds a politically determined

threshold. In finance, directional predictability in asset returns has important implications for

market timing, which is crucial for active asset allocation management. In Merton’s (1981)

classical market timing model, mutual fund managers care about the direction of excess re-

turns, rather than their magnitude. Most commonly used technical trading rules in financial

markets are based on the prediction of the directions of financial returns. Profitable trading

strategies may result if one can predict return directions. Many financial institutions evaluate

forecast algorithms using the percentage of times that the algorithms predict the right-trend

(see Lequarre 1993).

The rationale behind directional forecasts is that the patterns in economic variables may

recur in the future so that the direction of changes in economic variables is predictable using

historical data. The main goal of this paper is to develop a mode-free omnibus test for di-

rectional predictability and apply it to document whether the direction of stock price changes
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is predictable using the history of past stock price changes. Most, if not all, of the existing

works in this literature are concerned with directional predictability of various models, algo-

rithms, and investment strategies. There have been a number of popular tests for the market

timing ability of these models and trading strategies (Henriksson and Merton 1981, Cumby

and Modest 1987, Pesaran and Timmermann 1992). However, the directional predictability of

an underlying data generating process is not the same as the predictive ability of a directional

forecast model or a trading strategy. There has been no model-free test available in the liter-

ature that can check directional predictability of the data, which is the key to the success of

any directional forecast model or trading strategy.

Some economic and financial theory suggests that the direction of asset returns may be

predictable. For example, the naive overreaction theory predicts price reversals after investors

overreact to certain market events such as release of firm-specific information, which implies

a negative autocorrelation in direction. More sophisticated behavioral theory (e.g., Barberis,

Sheleifer and Vishny 1998, Hong and Stein 1999) predicts a short-horizon underreaction and

then a long horizon overreaction, implying positive autocorrelations in direction over a short

horizon and negative autocorrelations in direction over a long horizon. The market conta-

gion hypothesis, on the other hand, suggests that during a turmoil period, a large adverse

price movement in one market will be more closely followed by a large adverse price move-

ment in another market, regardless of market fundamentals. This implies a stronger positive

cross-correlation in direction between two markets during the turmoil period.1 In the foreign

exchange markets, it is often argued that the exchange rate may follow long swings – it drifts

upward for a considerable period of time and then switches to a long period with downward

drift (e.g., Engle 1994, Engle and Hamilton 1990). As a consequence, there will tend to be

runs in one direction and then the other in the changes of the exchange rate. Such persistence

pattern in the direction of changes is thus predictable. From an econometric perspective, the

direction of asset returns is predictable using past returns if the conditional mean of asset

returns is time-varying (i.e., when the market is not efficient). Christoffersen and Diebold

(2002) show that even if the conditional mean is not predictable (i.e., the market is efficient),

directional predictability can be driven solely from volatility clustering, as long as the long-run

average asset return is nonzero. Breen, Glosten and Jagannathan (1989, p.1184) also point

out that given a positive expected excess return, the probability of an up market is a function

of both conditional mean and conditional variance. Some empirical works, based on various

models and technical trading rules, appear to suggest that it is easier to forecast the direction

of asset returns than the level of asset returns (e.g., Breen, Glosten and Jagannathan 1989,

1There has been no unified definition of market contagion (see, Stulz 2001). Here, we use the definition that

the link between two markets becomes stronger when contagion occurs.
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Engle 1994, Kuan and Liu 1995, Larsen and Wozniak 1995, Leitch and Tanner 1991, 1995,

Pesaran and Timmermann 1995, 2000, Satchell 1995).

The purpose of this paper is three-folds. First, we propose a model-free omnibus statistical

test and a class of separate inference procedures to check whether the direction of asset returns

is predictable using currently available information, and if so, what are possible sources of

directional predictability. The proposed procedures are based on a generalized cross-spectrum,

which extends Hong’s (1999) univariate generalized spectrum. The generalized spectrum is

the synthesis of the characteristic function and spectral analysis. Because of the use of the

characteristic function, the generalized spectrum can capture both linear and nonlinear serial

dependence in the data. This is particularly suitable for testing directional predictability

because the probability of the direction of changes in an underlying variable generally depends

on the dynamics in every conditional moment and is a highly nonlinear function of the history

of past changes. At the meantime, the generalized spectrum maintains the nice feature of

conventional power spectrum. It can check many lags simultaneously. This is very useful

when directional dependence is small at each lag but carries over a very long distributional

lag. The omnibus directional predictability test can detect a wide range of alternatives, while

the separate inference procedures can check whether the direction of changes can be predicted

using the level, volatility, skewness, and kurtosis of past asset returns.

Second, we apply the proposed procedures to a variety of daily U.S. stock price indices–

Dow Jones Industrial Averages (DJIA), S&P 500, NASDAQ, and NYSE composite index. We

find overwhelming evidence on directional predictability for the excess stock returns. We then

explore possible sources of the documented directional predictability of excess stock returns. It

is found that the levels of past returns or their directions can be used to predict the direction of

future returns with any threshold (including zero). In addition, past volatility clustering can be

used to the predict direction of large returns, although not for returns with zero threshold. The

documented directional predictability cannot be completely explained by an MA(1)-threshold

GARCH(1,1) model.

Third, to show whether the documented directional predictability is useful in practice, we

consider a class of autologit models that forecast the 1-step-ahead direction in stock price

changes using the direction, level, volatility, skewness, and kurtosis of past price changes re-

spectively. We find that trading strategies based on the 1-step-ahead combined directional

forecasts of these autologit models have significantly higher Sharpe ratios than the buy-and-

hold trading strategy.

The plan of the paper is organized as follows. In Section 2 we describe the hypotheses of

interest and discuss the relationship between directional predictability and the efficient mar-

ket hypothesis, volatility clustering, as well as serial dependence in higher order conditional
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moments such as skewness and kurtosis. Because directional predictability depends on the

conditional probability of asset returns exceeding a threshold, serial dependence in variance

and higher order moments may also lead to directional predictability even when the market is

efficient. In Section 3, we propose a generalized cross-spectral approach to develop a model-free

omnibus test for directional predictability and a variety of generalized cross-spectral derivative

tests to gauge possible sources of directional predictability. To assess the reliability of the

asymptotic distribution theory in finite samples, Section 4 presents a limited simulation study

on the finite sample performance of the proposed tests. In Section 5 we apply the tests to

a variety of daily stock price indices. In Section 6, we investigate out-of-sample directional

predictability of a class of autologit models and their economic significance in terms of extra

risk-adjusted trading profit over the buy-and-hold strategy. Section 7 concludes. All mathe-

matical proofs are collected in an appendix.

2 Hypotheses of Interest

Suppose {Yt} is a strictly stationary time series such as a sequence of asset returns. We are
interested in whether the directions of future asset returns are predictable using current and

past returns. Define the direction indicator function

Zt(c) = 1(Yt > c), −∞ < c <∞,

where 1(·) is the indicator function, and c is a threshold constant. Without loss of generality,

we can define c in terms of the multiples of the standard deviation σY =
p
var(Yt). When

c = 0, Zt(c) is an indicator for positive returns. When c = 1 (say), Z(c) is an indicator for

“large” positive returns. Similarly we can define the directions for negative returns and large

negative returns respectively. The later are useful in characterizing large downside risk (e.g.,

Ang and Chen 2002). The serial dependence structures for small and large returns may be

different (Sonik 2001). It is sometime believed that the strength of serial dependence between

large returns is stronger than that between small returns, as is the case of market contagion.

Investors may be more interested in directional predictability of large asset returns. They may

perceive large shocks as containing significant informational contents and small shocks as mere

background noises. Consequently, their valuations and expectations react only to large shocks.

Moreover, the fact that the number of incorrect forecasts exceeds that of correct forecasts is

not necessary to rule out profitability of a trading strategy. A profitable trading strategy may

be marked by a small number of successful forecasts for which large profits are made, and

a large number of incorrect forecasts for which small losses are incurred (e.g., Cumby and

Modest 1987, Diebold and Lopez 1996). Some technical trading rules such as filters do involve
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prediction of the direction of returns with certain threshold and their profitability depends on

the magnitude of the actual changes.

Let It−1 ≡ {Yt−1, Yt−2, ...} be the information set of asset returns available at time t − 1.
The hypotheses of interest are

H0 : Pr {E [Zt(c)|It−1] = E [Zt(c)]} = 1

versus

HA : Pr {E [Zt(c)|It−1] = E [Zt(c)]} < 1.

Note that E [Zt(c)|It−1] = P (Yt > c|It−1) and E[Zt(c)] = P (Yt > c). Under H0, the information
set It−1 is useless in predicting the direction of returns with threshold c. In other words, past

returns cannot be used to predict the direction of future returns. Under HA, the direction of

returns with threshold c is predictable using the information set It−1. Note that it is important

to specify the threshold constant c because it is possible to predict the direction of returns

with some threshold but not with another threshold; see an example below.

The null hypothesis H0 differs from the efficient market hypothesis;2 the latter is defined

as

E (Yt|It−1) = µ almost surely (a.s.) for some constant µ ∈ (−∞,∞).

When the market is efficient, the level or the conditional mean of future returns is not pre-

dictable using past returns. No systematic trading strategy can be more profitable in the

long-run than holding the market portfolio, though of course one can still temporarily beat

the market through sheer luck. Market efficiency however, does not necessarily imply that the

direction of returns is not predictable. Christoferssen and Diebold (2002) have an excellent

theoretic discussion on the relationships among market efficiency, directional predictability,

and volatility clustering in a framework where the threshold c = 0 and the unconditional mean

µ 6= 0. They focus on directional predictability under market efficiency. We now provide some
related discussion in our framework.

2.1: Directional Predictability when the Market is Inefficient

When the market is not efficient, the conditional mean E(Yt|It−1) is a function of It−1 and
the level of returns is thus predictable using past returns. In this case, it is generally possible

to predict the direction of returns. To see this, consider the following data generating process

Yt = µt +
p
htεt, (2.1)

2Like Christoffersen and Diebold (2002) as well as the majority of the financial literature (e.g., Fama 1970,

Campbell, Lo and MacKinlay 1997), our definition of market efficiency differs from general equlibrium definitions

of market efficiency. The latter may be consistent with a predictable time-varying conditional mean due to the

presence of time-varying risk premium (e.g., Lucas 1978).
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where µt = E(Yt|It−1), ht = var(Yt|It−1) and the innovation {εt} is an martingale difference
sequence with mean 0, variance 1, and conditional CDF Fε(·|It−1). Note that there may ex-
ist serial dependence in third order or other higher order moments of {εt}. This is called
the weak form volatility process in the literature.3 Example are Hansen’s (1994) autoregres-

sive conditional density model and Harvey and Siddque’s (2000) conditional skewness model

where εt follows an asymmetric Student’s t-distribution with time-varying degrees of freedom

and skewness. The functions µt and ht characterize serial dependence in the first two condi-

tional moments respectively, while Fε(·|It−1) characterizes serial dependence in higher order
conditional moments. As will be seen shortly, serial dependence in any moment may affect

directional predictability.

Under (2.1), the direction indicator Zt(c) = 1[εt > (c− µt)/
√
ht]. Thus, we have

E [Zt(c)|It−1] = 1− Fy (c|It−1) = 1− Fε

µ
c− µt√

ht
|It−1

¶
,

where Fy(·|It−1) is the conditional CDF of Yt given It−1. As long as µt is time-varying and

(c − µt)/
√
ht is not constant for all t, 4 E[Zt(c)|It−1] is a time-varying function no matter

whether the threshold c = 0, ht is a constant, or {εt} is i.i.d. Thus, the direction of returns
with any threshold c is predictable when µt is time-varying (i.e., when the market is not

efficient.) Many technical trading rules proposed in the literature, such as those based on

artificial neural network models, are based on the directional predictive ability of a conditional

mean model.

2.2: Directional Predictability Under Market Efficiency

We now investigate the relationship between the market efficiency and directional pre-

dictability. This is of practical importance because it is well-known that there exists little or

weak serial dependence in the conditional mean of high-frequency (e.g., daily) financial returns.

When the market is efficient (µt = µ for all t), the direction of returns may or may not be

predictable using the information set It−1, and both cases may be not inconsistent with the

efficient market hypothesis. Based on a Gram-Charlier expansion, Christoffersen and Diebold

(2002) show that directional dependence does not imply market inefficiency; directional depen-

dence can occur through the interaction between a nonzero unconditional mean µ and volatility

clustering.

2.2.1: Threshold c differs from the long run average return µ

First, we consider directional predictability with c 6= µ, i.e., the directional predictability

of returns with threshold c different from the long-run average return µ. This is the case
3Drost and Nijman (1993) call a GARCH with an i.i.d. noonvation sequence {εt} a “strong form GARCH,”

and a GARCH with non-i.i.d. innovations a “weak form GARCH”.
4The possibility that (c− µt)/h

1/2
t is constant for all t may arise when µt = c+ αh

1/2
t for some constant α,

a specific ARCH-in-Mean process. For ARCH-in-mean model, see Engle, Lilian and Ng (1987).
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thoroughly examined in Christoferssen and Diebold (2002) where they assume c = 0 and

µ 6= 0. As long as the gap δ ≡ c − µ 6= 0, the directional predictability E[Zt(c)|It−1] depends
on It−1 via volatility clustering:

E [Zt(c)|It−1] = 1− Fε

µ
δ√
ht
|It−1

¶
.

Thus, Zt(c) is predictable using the information set It−1, even if the innovation {εt} is i.i.d. so
that the conditional CDF Fε(·|It−1) = Fε(·) does not depend on It−1. In this case, the sources

of directional predictability solely comes from volatility clustering. Of course, directional pre-

dictability can also arise from third order or higher conditional moments of {εt}, when {εt}
is not i.i.d. The fact that directional predictability comes from the conditional variance and

other higher order conditional moments may explain why it is easier to predict the direction

than the level of the change itself, as many empirical studies usually conclude.

2.2.2: Threshold c = µ

An interesting case arises when the gap δ ≡ c− µ = 0. Here, we have

E [Zt(c)|It−1] = 1− Fε (0|It−1) .

Suppose εt is i.i.d. so that Fε(·|It−1) = Fε(·) is not time-varying. Under market efficiency,
serial dependence of returns {Yt} is completely characterized by its conditional variance. In
this case, E [Zt(c)|It−1] is not predictable, because E[Zt(c)|It−1] = 1−Fε(0) is constant for all

t. This is quite different from the case with δ 6= 0, where volatility clustering alone can lead
to directional predictability via its interaction with a nonzero δ. In fact, even if {εt} is not
i.i.d. but has a conditional symmetric distribution (i.e., Fε(−ε|It−1) = Fε(ε|It−1) for all ε),
the direction of return Yt with threshold c = µ is not predictable using It−1.

Next, suppose the gap δ = 0 but Fε(·|It−1) is time-varying and is not asymmetric about
zero. This suggests that there exists serial dependence in third order and/or higher order

conditional moments of {εt}. In this case, the direction of Zt(c) is predictable using It−1 and

the source of predictability comes from higher order dependence rather than volatility clustering

(e.g., conditional skewness and kurtosis). Hansen (1994) and Harvey and Siddque (1999, 2000)

find that the conditional skewness of asset returns is time-varying and therefore predictable.

This can be another deriving force for the directional predictability of asset returns.

To sum up, (i) when the market is not efficient (i.e., there exists serial dependence in

conditional mean), the direction of returns with any threshold c is generally predictable using

past returns. (ii) When the market is efficient but there exists serial dependence in such higher

order conditional moments as skewness and kurtosis, the direction of returns with any threshold

c is also predictable using It−1. (iii) When the market is efficient and serial dependence is

completely characterized by volatility clustering, the direction of return Yt is predictable using
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It−1 except for threshold c = µ. As long as c 6= µ, volatility clustering is a driving force for

directional predictability.

3 Tests for Directional Predictability

The above analysis shows that the dynamics of directional predictability of asset returns is

highly nonlinear, because it essentially depends on all time-varying conditional moments. We

now extend Hong’s (1999) generalized spectrum to construct a model-free test for directional

predictability. The generalized spectrum of Hong (1999) is particularly suitable for nonlinear

time series analysis, thanks to the use of the characteristic function.

Once predictability of the direction of asset returns is documented, it will be interesting

and important to gauge possible sources of directional predictability. In particular, one may

like to ask whether the direction, level, volatility, skewness, and kurtosis can be used to predict

the direction of asset returns. This will provide very useful information for modelling and

forecasting the direction of returns. The generalized spectrum can be differentiated to yield

such separate inference procedures. This is made possible because the characteristic function

can be differentiated to give various moments. We now discuss this econometric methodology.

3.1 Generalized Spectrum

To capture generic serial dependence of a strictly stationary process {Yt} and to explore the
pattern of serial dependence of {Yt}, Hong (1999), in an univariate time series context, proposes
a generalized spectrum as an analytic tool for linear and nonlinear time series. The basic idea

is to transform {Yt} via a complex-valued exponential function

Yt → exp(iuYt), u ∈ (−∞,∞), i = √−1,

and then consider the spectrum of the transformed series. Let

ϕ(u) ≡ E
³
eiuYt

´
be the marginal characteristic function of {Yt} and let

ϕj(u, v) ≡ E
h
ei(uYt+vYt−|j|)

i
, j = 0,±1, ...

be the pairwise joint characteristic function of (Yt, Yt−|j|), where j is a lag/lead order. Define

the covariance function between the transformed variables eiuYt and eivYt−|j| :

σj(u, v) ≡ cov(eiuYt , eivYt−|j|), u, v ∈ (−∞,∞). (3.1)
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Straightforward algebra yields σj(u, v) = ϕj(u, v)−ϕ(u)ϕ(v). Because ϕj(u, v) = ϕ(u)ϕ(v) for

all u, v ∈ (−∞,∞) if and only if Yt and Yt−|j| are independent, σj(u, v) can capture any type of
pairwise serial dependence over various lags in {Yt}, including those with zero autocorrelation.
It is well-known that many high-frequency financial time series display little serial correlation

but persistent volatility clustering and other higher order dependence.

Under suitable conditions, the Fourier transform of σj(u, v) exists and is given by:

fZZ (ω, u, v) ≡
1

2π

∞X
j=−∞

σj(u, v)e
−ijω, ω ∈ [−π, π], (3.2)

where ω is frequency. Like σj(u, v), fZZ (ω, u, v) can capture any type of pairwise serial depen-

dencies in {Yt} over various lags (i.e., dependence between Yt and Yt−j for any j 6= 0). Unlike
the power spectrum and higher order spectra (e.g., bispectrum),5 the generalized spectrum

fZZ (ω, u, v) does not require any moment condition on {Yt}. In other words, {Yt} may not be
weakly stationary (e.g., when {Yt} is an integrated GARCH process; see Bollerslev and Engle
1986). This is appealing in finance because it is often argued (e.g., Pagan and Schwert 1990)

that certain moments like the unconditional variance of some high frequency financial time

series may not exist.

When var(Yt) = σ2Y exists, the conventional power spectrum of {Yt} can be obtained by
differentiating fZZ (ω, u, v) with respect to (u, v) at (0, 0) :

hY Y (ω) ≡
1

2π

∞X
j=−∞

cov(Yt, Yt−|j|)e−ijω = −
∂2

∂u∂v
fY Y (ω, u, v)

¯̄
(u,v)=(0,0) .

For this reason, fY Y (ω, u, v) is called a “generalized spectral density” of {Yt}.
When all the moments of {Yt} exist, we can decompose, by a Taylor series expansion, the

generalized spectrum as follows:

fY Y (ω, u, v) =
∞X

m=1

∞X
l=1

im+l

m!l!

 1
2π

∞X
j=−∞

cov(Y m
t , Y l

t−|j|)e
−ijω

umvl,
where (u, v) is near (0, 0). This indicates that fY Y (ω, u, v) can captures various correlations

between Y m
t and Y l

t−|j| for all m, l > 0. Of course, fY Y (ω, u, v) does not require existence of

moments of {Yt}.
The introduction of transform parameters (u, v) provides much flexibility for fY Y (ω, u, v)

to capture serial dependence in {Yt}. For example, the supremum generalized spectrum

sY Y (ω) ≡ sup−∞<u,v<∞ |fY Y (ω, u, v)| can be viewed as the maximum serial dependence of

5For conventional power spectral analysis, see (e.g.) Priestley (1981). For bispectral analysis, see (e.g.) Sub

Rao and Gabr (1984).
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{Yt} at frequency ω. This can be used to identify business cycles, seasonalities (e.g., calen-

der effects), or other forms of periodicities caused by linear or nonlinear dependence (e.g.,

persistent volatility clustering).

The generalized spectrum is a synthesis of spectral analysis and the characteristic function.

Spectral analysis is not uncommon in economics and finance (e.g., Durlauf 1990, Granger

1969, Watson 1993). An advantage of spectral analysis is that it includes information of all

lags simultaneously in a natural manner. On the other hand, the characteristic function can

capture linear and nonlinear dependencies (including those with zero autocorrelation), thus

overcoming the drawback of the conventional power spectrum. As a consequence, generalized

spectrum is particularly suitable for analyzing complex and nonlinear economic and financial

systems. We note that there has been an increasing interest in using the characteristic function

in economics and finance. Among them are Hong and Lee (2003), Jiang and Knight (2002),

Knight and Yu (2002), Pinkse (1998), and Singleton (2001).

3.2 Generalized Cross-Spectrum

The generalized spectrum fY Y (ω, u, v) of {Yt} is useful in exploring how Yt depends on its

own past history It−1. It cannot, however, be directly applied to investigate whether the

direction of returns, Zt(c) ≡ 1(Yt > c), is predictable using the information set It−1. For this

purpose, we have to expend Hong’s (1999) univariate generalized spectral analysis to a bivariate

generalized cross-spectral analysis. Suppose {Zt, Yt} is a bivariate strictly stationary time series
process with marginal characteristic functions φ

Z
(u) = E(eiuZt) and φ

Y
(u) = E(eiuYt). In this

subsection, we permit but do not require Zt = Zt(c). Define the generalized cross-covariance

function

σZY ,j(u, v) ≡ cov
³
eiuZt , eivYt−|j|

´
, j = 0,±1, ... . (3.3)

Straightforward algebra shows

σZY ,j(u, v) = φ
ZY ,j(u, v)− φ

Z
(u)φ

Y
(v),

where φ
ZY ,j(u, v) ≡ E[ei(uZt+vYt−|j|)] is the joint characteristic function of (Zt, Yt−|j|). Because

σZY ,j(u, v) = 0 for all u, v ∈ (−∞,∞) if and only if Zt and Yt−|j| are independent, σZY ,j(u, v)

can capture any type of cross-dependence between Zt and Yt−|j|.

Analogous to the univariate generalized spectrum fY Y (ω, u, v), we may call the Fourier

transform of σZY ,j(u, v),

fZY (ω, u, v) ≡
1

2π

∞X
j=−∞

σZY ,j(u, v)e
−ijω, ω ∈ [−π, π], (3.4)
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the “generalized cross-spectral density” between {Zt} and {Yt−j , j > 0}. Like σZY ,j(u, v),

fZY (ω, u, v) can capture any type of pairwise cross-dependence between Zt and Yt−|j|. It can

be used to explore how Zt depends on the entire past history of {Yt}. In particular, it can be
used to examine various linear and nonlinear Granger causalities from lagged variables {Yt−|j|}
to Zt.6 Note that no moment condition on {Yt} and {Zt} is needed for fZY (ω, u, v).

We now consider a special case relevant to our interest of directional predictability. Suppose

Zt is independent of It−1. Then the generalized cross-spectrum fZY (ω, u, v) becomes a flat

generalized cross-spectrum:

fZY ,0(ω, u, v) ≡
1

2π
σZY ,0(u, v), ω ∈ [−π, π]. (3.5)

Thus, one can test independence between Zt and {Yt−j , j > 0} by comparing fZY (ω, u, v) and
fZY ,0(ω, u, v). Any significant difference between them will indicate the dependence of Zt on

the past history of {Yt}.
Just as the characteristic function can be differentiated to generate various moments (when

they exist), fZY (ω, u, v) can be differentiated to capture various cross-dependencies between

Zt and {Yt−j , j > 0}. Consider the following generalized cross-spectral density derivative

f (0,m,l)
ZY

(ω, u, v) ≡ ∂m+l

∂um∂vl
fZY (ω, u, v) =

1

2π

∞X
j=−∞

σ
(m,l)

ZY ,j
(u, v)e−ijω, m, l ≥ 0. (3.6)

Such a derivative exists provided E|Zt|2m <∞ and E|Yt|2l <∞. To check E(Zt|It−1) = E(Zt)

a.s., as is the hypothesis of interest H0 in testing directional predictability (with Zt = Zt(c)),

we can use the (1, 0)-th order generalized cross-spectral derivative

f (0,1,0)
ZY

(ω, 0, v) =
1

2π

∞X
j=−∞

σ
(1,0)

ZY ,j
(0, v)e−ijω, ω ∈ [−π, π], (3.7)

where σ(1,0)
ZY ,j

(0, v) =cov(iZt, e
ivYt−|j|). This (1, 0)-derivative essentially checks whether

E(Zt|Yt−|j|) = E(Zt), j = 0,±1, ...

because σ(1,0)zy,j (0, v) = 0 if and only if E(Zt|Yt−|j|) = E(Zt) a.s. under suitable conditions. The

latter is similar in spirit to the null hypothesis H0 when Zt = Zt(c).
7 Intuitively, σ(1,0)

ZY ,j
(0, v)

can capture correlations between Zt and all moments of Yt−|j|, thus exploiting all implications

of E(Zt|Yt−|j|) = E(Zt). Therefore, with Zt = Zt(c), we can use f (0,1,0)ZY
(ω, 0, v) to check the

directional predictability hypotheses H0 versus HA.

6For general Granger causality, see Granger (1980).
7See Bierens (1982) and Stinchcombe and White (1998) for related discussion and proof in a different context.

Bierens (1982) and Stinchcombe and White (1998) consider specification for regression models where Zt is the

regression model error and Yt is the regressor vector.
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Once directional predictability is documented using f (0,1,0)
ZY

(ω, 0, v), one may like to further

explore possible sources for directional predictability. In particular, is directional predictability

caused by conditional mean dynamics? Or is it caused by volatility clustering? Or is it caused

by conditional skewness or other higher order conditional moment? Such information will be

very helpful for making inferences on the nature of directional predictability and providing

useful guidance in constructing directional forecast models.

To gauge possible reasons of directional predictability, we can use higher order generalized

cross-spectral derivative

f (0,1,l)
ZY

(ω, 0, 0) =
1

2π

∞X
j=−∞

σ
(1,l)

ZY ,j
(0, 0)e−ijω, ω ∈ [−π, π], (3.8)

where σ(1,l)
ZY ,j

(0, 0) =cov
£
iZt, (iYt−|j|)l

¤
, l ≥ 1. For l = 1, 2, 3, 4, σ(1,l)

ZY
(0, 0) will be proportional to

cross-covariances cov(Zt, Y
l
t−|j|). As a consequence, we can use f

(0,1,l)
ZY

(ω, 0, 0) to check whether

Zt is predictable using the level of past changes {Yt−j}, past volatility {Y 2t−j}, past skewness
{Y 3t−j} and past kurtosis {Y 4t−j} respectively. Below, we will develop a unified framework that
includes all of these tests using various generalized cross-spectral derivatives.

3.3 Generalized Cross-Spectral Tests for Directional Predictability

Suppose we have a random sample of asset returns {Yt}Tt=1 of size T. Define the empirical

generalized cross-covariance function between {Zt(c)} and {Yt}

σ̂ZY ,j(u, v) = φ̂
ZY
(j, u, v)− φ̂

ZY
(j, u, 0)φ̂

ZY
(j, 0, v), (3.9)

where

φ̂
ZY
(j, u, v) = (T − |j|)−1

TX
t=|j|+1

ei(uZt(c)+vYt−|j|), j = 0,±1, ...,±(T − 1),

is the empirical joint characteristic function for {Zt(c), Yt−|j|}. To estimate the generalized
cross-spectral density fZY (ω, u, v) in (3.4), we use a smoothed kernel estimator:

f̂ZY (ω, u, v) =
1

2π

T−1X
j=1−T

(1− |j|/T )1/2k(j/p)σ̂ZY ,j(u, v)e
−ijω. (3.10)

Here, k(·) is a kernel function that assigns weights to various lags. It can have bounded

support. An example is the Bartlett kernel k(z) = (1− |z|)1 (|z| ≤ 1) , which is popular in
econometrics (cf. Newey and West 1987). In this case, p is the maximum lag truncation

order. The kernel k(·) can also have unbounded support. An example is the Daniell kernel
k(z) = sin(πz)/(πz),−∞ < z <∞. In this case, p is no longer a lag truncation number but a
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smoothing parameter that governs the smoothness of the spectral estimator f̂ZY (ω, u, v). We

can view that p is an effective lag order because lags much larger than p receive little weights.

The factor (1 − |j|/T )1/2 in (3.10) is a finite sample correction factor. It could be replaced
by unity without affecting consistent estimation of the generalized cross-spectrum fZY (ω, u, v),

but it gives better finite sample performance for the proposed tests below. Under proper

conditions on the kernel k(·) and the lag order p, as well as on serial dependence of {Yt}, it
can be shown that the estimator fZY (ω, u, v) is consistent for fZY (ω, u, v).

8 The generalized

spectral approach has at least three appealing features: First, f̂ZY (ω, u, v) employs many lags

simultaneously because it is usually required that p ≡ p(T ) → ∞ as T → ∞. In particular,
when k(·) has infinite support, all T −1 lags available in the sample are used. This is expected
to have good power in detecting cross-dependence that decays to zero slowly as the lag order

j increases. Second, the kernel function k(·) provides a natural weighting scheme for various
lags. Typically, higher order lags are discounted, which may enhance the power of the proposed

tests in practice because financial markets are more influenced by the recent events than by the

remote events remote past events. Third, one can choose a lag order p via suitable data-driven

methods. For example, we can select a data-driven p that minimizes the integrated mean

squared error of the generalized cross-spectral density estimator f̂ZY (ω, u, v). See Hong (1999)

for more discussion in the context of univariate generalized spectrum.

To check directional predictability and its possible sources, we shall compare the generalized

cross-spectral derivative estimators

f̂ (0,1,l)
ZY

(ω, 0, v) =
∂1+l

∂u∂vl
f̂ZY (ω, 0, v) (3.11)

and

f̂
(0,1,l)

ZY ,0
(ω, 0, v) =

∂1+l

∂u∂vl
f̂ZY ,0(ω, 0, v), (3.12)

where f̂ZY ,0(ω, u, v) ≡ (2π)−1σ̂ZY ,0(u, v) is a consistent estimator for fZY ,0(ω, u, v); the latter
is a flat cross-spectrum implied by the null hypothesis H0 of no directional predictability. A
significant difference between f̂ (0,1,l)

ZY
(ω, 0, v) and f̂

(0,1,l)

ZY ,0
(ω, 0, v) will indicate directional pre-

dictability. To measure the discrepancy between f̂ (0,1,l)
ZY

(ω, 0, v) and f̂
(0,1,l)

ZY ,0
(ω, 0, v), we can use

a convenient quadratic form

Q̂(1, l) = πT

Z Z π

−π
|f̂ (0,1,l)

ZY
(ω, 0, v)− f̂

(0,1,l)

ZY ,0
(ω, 0, v)|2dωdW (v)

=
T−1X
j=1

k2(j/p)(T − j)

Z
|σ̂(1,l)

ZY ,j
(0, v)|2dW (v), (3.13)

8See Hong (1999, Theorem 1). Although the present context is a bivariate framework while Hong (1999)

considers a univariate process; the proof and regularity conditions are similar.
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whereW (·) is a positive and nondecreasing weighting function with bounded total variation and
the unspecified integral is taken over the support of W (·). An example of W (·) is W (·) = Φ(·),
the N(0,1) cdf, commonly used in the empirical characteristic function literature. Note that

there is no need to calculate the integration over frequency ω, but we still need to calculate

the integration over v. The integral over v can be calculated using numerical integration meth-

ods, such as Gauss-Quadrature, available in most statistical software. For accurate numerical

integration, we can truncate the N(0,1) CDF on a bounded support, say [-3,3]. There is no

requirement that W (v) be integrated to 1.

Our test statistic is a standardized version of the cumulative sum of Q̂(1, l) :

MZY (1, l) =

Q̂(1, l)− ĈZY (1, l)
T−1X
j=1

k2(j/p)

 / hD̂ZY (1, l)
i1/2

, (3.14)

where the integer l ≥ 0, the centering and scaling factors

ĈZY (1, l) = λ̂(c)[1− λ̂(c)]

Z
|σ̂(l,l)

Y Y ,0
(v,−v)|2dW (v),

D̂ZY (1, l) = 2λ̂
2
(c)[1− λ̂(c)]2

T−2X
j=1

T−2X
τ=1

k2(j/p)k2(τ/p)

ZZ
|σ̂(l,l)

Y Y ,j−τ (v, v
0)|2dW (v)dW (v0),

λ̂(c) = T−1
PT

t=1 Zt(c) is the sample proportion for {Yt > c}, and σ̂Y Y ,j(v, v
0) is the empirical

generalized autocovariance function of {Yt}; namely,

σ̂Y Y ,j(v, v
0) = φ̂

Y Y ,j(v, v
0)− φ̂

Y Y ,j(v, 0)φ̂Y Y ,j(0, v
0)

and φ̂
Y Y ,j(v, v

0) = (T − |j|)−1PT
t=|j|+1 e

i(vYt+v0Yt−|j|). Note that the factors ĈZY (1, l) and

D̂ZY (1, l) have taken into account generic serial dependence within {Yt}, which is present
even when H0 holds. Intuitively, f̂ZY ,0(ω, 0, v) is an efficient estimator for fZY (ω, u, v) under
H0, and f̂ZY (ω, u, v) is an inefficient but consistent estimator for fZY (ω, u, v) under HA. Thus,

our test is similar in spirit to Hausman’s (1978) test.

Under suitable regularity conditions, we can show that as the lag order p ≡ p(T ) →
∞, p/T → 0, M̂ZY

(1, l) converges in distribution to N(0,1) under H0 and generally diverges to
positive infinity under HA (see the appendix for the asymptotic theory). Appropriate critical

values are the upper-tailed N(0,1) critical values (e.g., 1.65 at the 5% level).

When l = 0, MZY (1, 0) is an omnibus test for H0, because essentially check correlations
between Zt(c) and Y l

t−|j| for all l and j. On the other hand, the separate tests MZY (1, l) with

l ≥ 1 and W 0(v) = δ(v), the Dirac delta function, can reveal useful information about possible

sources for directional predictability.9 The use of the Dirac delta function implies that we focus

9The Dirac delta function δ(·) is defined as follows: δ(u) = 0 for all u 6= 0 and R δ(u)du = 1.
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all weight mass at v = 0. As noted earlier, for l = 1, 2, 3, 4, σ(1,l)zy (0, 0) will be proportional to

the cross-covariances cov[Zt(c), Y
l
t−|j|]. Thus, we can use MZY (1, l) to check whether Zt(c) is

predictable using the level of returns {Yt−j}, past volatility {Y 2t−j}, past skewness {Y 3t−j} and
past kurtosis {Y 4t−j} respectively.

On the other hand, one may also like to check if the directions of past returns are helpful

in predicting the direction of future returns. This is of interest, for example, when one likes

to check if price reversals exist. To test this, we can use the univariate generalized spectral

density function of the direction indicator series {Zt(c)},

fZZ (ω, u, v) =
1

2π

∞X
j=−∞

σZZ ,j(u, v)e
−ijω, (3.15)

where the generalized covariance function

σZZ ,j(u, v) = cov
³
eiuZt(c), eivZt−|j|(c)

´
. (3.16)

Because Zt(c) is a Bernoulli random variable taking value 0 or 1, it is straightforward to show

that when Zt(c) is not predictable using It−1, Zt(c) is independent of It−1. One important

implication of this is that the sequence of direction indicators, {Zt(c)}, is an i.i.d. Bernoulli
sequence. Thus, one could test directional predictability by testing i.i.d. for {Zt(c)}. If evidence
against i.i.d. is found for {Zt(c)}, one can conclude that the direction of returns is predictable
using the past history of the return directions {Zt−1(c), Zt−2(c), ...}.

We can test i.i.d. for {Zt(c)} by using the generalized spectral density fZZ (ω, u, v) of

{Zt(c)}. Because {Zt} is an i.i.d. Bernoulli sequence under H0, the generalized spectrum
fZZ (ω, u, v) becomes a flat spectrum with respect to frequency ω:

fZZ ,0(ω, u, v) =
1

2π
σZZ ,0(u, v), ω ∈ [−π, π]. (3.17)

To test whether the directions of past returns can be used to predict the directions of future

returns, we can compare a consistent kernel estimator for f
ZZ
(ω, u, v) and a consistent estima-

tor for fZZ ,0(ω, u, v), defined in the same way as f̂ZY (ω, u, v) and f̂zZY ,0(ω, u, v) in (3.10) and

(3.11) respectively. The associated test is

MZZ (0, 0) =

T−1X
j=1

(T − j)k2(j/p)

Z
|σ̂ZZ ,j(u, v)|2dW (u)dW (v)− ĈZZ (0, 0)

T−1X
j=1

k2(j/p)


÷
2D̂ZZ (0, 0)

T−1X
j=1

k4(j/p)

1/2 , (3.18)
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where the centering and scaling factors

ĈZZ (0, 0) =

·Z h
1− |φ̂

Z
(v)|2

i
dW (v)

¸2
,

D̂ZZ (0, 0) =

·ZZ h
φ̂
Z
(v + v0)− φ̂

Z
(v)φ̂

Z
(v0)

i
dW (v)dW (v0)

¸2
,

and φ̂
Z
(v) = T−1

PT
t=1 e

ivZt(c) is the empirical characteristic function of {Zt(c)}. The test
statistic MZZ (0, 0) is a special case covered in Hong (1999). It is asymptotically N(0,1) under

H0. Also, the upper-tailed N(0,1) critical values should be used. A particularly appealing

feature of this test is that the validity of the asymptotic distribution of MZZ (0, 0) does not

require stationarity of {Yt}. Even if {Yt} is not strictly stationary, {Zt} will be still a sequence
of i.i.d. Bernoulli random variables under H0.

An important common feature of the MZY (1, l) and MZZ (0, 0) tests is that the lag order j

is weighted by k2(j/p). Typically, k(z) gives the largest weight at z = 0 and smaller weights as

|z|→∞. Thus, higher order lags are discounted. This is expected to enhance power when the

current returns are more affected by recent information than by remote information as economic

agents digest information available. Another important feature of our spectral approach is that

we consider many lags simultaneously by requiring p→∞ as T →∞. This is desirable when
the dependence of Zt(c) on Yt−|j| decays to zero slowly as the lag order j →∞. To implement

the test MZY (1, l) or M̂ZZ (0, 0), one has to choose a lag order sequence p. Another advantage

of the spectral approach is that the lag order can be chosen via some data-driven methods.

Hong (1999) discusses how to choose p via an integrated mean squared error criterion, which

trades off between the variance and squared bias of the generalized spectral density estimator.

This method still involves the choice of a preliminary “pilot” lag order p̄, but the impact of

choosing p̄ is much smaller. The sampling variation of the data-driven p unavoidably induces

additional noises into the test statistics. This adversely affects the size of the tests but it is

expected to enhance good power for the tests. We will use it tailored to the present context in

both our simulation and empirical applications. Simulation studies show that the performance

of the tests are more or less robust to the choice of p̄.

4 Finite Sample Performance

The asymptotic N(0,1) distribution of the proposed tests is convenient to use in practice.

Before real data applications, however, we need to make sure that it provides reasonable

approximations in finite samples. Any inference and conclusion based on a poor asymptotic

distribution theory will be misleading about directional predictability of financial time series.

For example, suppose a test rejects the correct null hypothesis too often at a given significance
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level. Then, when applied to a real data, a significant test statistic would be not reliable

because we do not know whether it is due to the poor performance of the test or the true

feature of the data.

To assess the finite sample performance, we consider two data generating processes (DGP).

DGP1 is an i.i.d.N(0,1) process, and DGP2 is a GARCH(1,1)-i.i.d.N(0,1) process,
Yt = h

1/2
t εt,

ht = 0.05 + 0.8ht−1 + 0.15Y 2t−1
εt ∼ i.i.d.N(0,1),

where the GARCH parameter values are the typically empirical estimates for high-frequency

financial series (e.g., Bollerslev 1987). Under DGP1, there is no serial dependence in every

conditional moment of {Yt}. Thus, the direction of returns with any threshold c is not pre-

dictable. This allows us to examine the size performance of all the tests for the direction of

returns with any threshold c. Under DGP 2, serial dependence exists only in the conditional

variance of {Yt}. Thus, the direction of returns with threshold c = 0 is not predictable using the
past returns. However, the directions of returns with nonzero thresholds are predictable under

DGP2, due to volatility clustering. Hence, our tests should have nontrivial power whenever c

is nonzero.

To compute the statistics MZY (1, 0) and MZZ (0, 0), we use the weighting function W (·) =
Φ(·), the N(0,1) CDF truncated on [-3,3]. We scale both {Yt}Tt=1 and {Zt(c)}Tt=1 respectively
so that they have a unit sample standard deviation. We also use the Bartlett kernel for k(·).
To choose a lag order p, we use a procedure analogous to Hong’s (1999) plug-in method that

is based on the integrated mean squared error criterion of the generalized spectral density

estimator. This method also involves the choice of a kernel function and a preliminary lag

order p̄. We use the Bartlett kernel again. To examine the impact of the choice of preliminary

lag order p̄, we choose p̄ from 11 to 61. This covers a rather wide range of lag orders.

Figures 1 and 2 reports the empirical rejection rates, as a function of p̄, of the tests for

the direction indicators Zt(0) = 1(Yt > 0),1(Yt > 1) and 1(Yt > 1)− 1(Yt < −1) respectively,
under DGP1. Two significance levels, 10% and 5%, with two sample sizes T = 500, 1, 000,

are considered. Overall, the proposed tests perform reasonably well at both the 10% and

5% levels. There are some (but not excessive) overrejections at the 5% level, particularly for

Zt(0) = 1(Yt > 0) and 1(Yt > 1). The tests with Zt = 1(Yt > 1) − 1(Yt < −1) have slightly
better performance in many scenarios. In general, the sizes of the tests are robust to the choice

of p̄.

Figures 3 and 4 report the empirical rejection rates of the tests under DGP2 with T =

500, 1, 000 respectively. First, we consider c = 0. Under DGP2, there exists no directional
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predictability when and only when c = 0. The rejection rates of all the tests are close to

the nominal levels of 10% and 5% respectively in this case. We observe that there are more

overrejections than under DGP1, but these overrejections are not excessive, particularly in

views of our nonparametric time series testing approach with a data-driven lag order selection,

which induces additional noise into test statistics. For nonzero thresholds c, all the tests

are expected to have power under DGP2 for sufficiently large sample size T because Zt(c)

has directional predictability via the interaction between time-varying volatility and nonzero

threshold c. This is indeed the case as shown in Figures 3 and 4. Note that both size and

power are relatively robust to the choice of the preliminary lag order p̄.

Overall, the simulation evidence shows that the proposed tests have reasonable sizes in

finite sample sizes, and have good power against directional predictability.

5 Directional Predictability of Stock Returns

5.1 Data

We now apply our generalized cross-spectral tests to examine directional predictability of a

variety of U.S. daily stock price indices, which is essential for macroforecasting and market

timing. The stock price indices include Dow Jones average index (DJIA), S&P 500 index

(S&P500), NASDAQ composite index (NASDAQ), and NYSE composite index (NYSE). We

mainly focus on the directional predictability of excess stock return series:

Yt = 100 ln(Pt/Pt−1)− rt,

where Pt is the daily closing stock price, and rt, a re-scaled risk-free daily interest rate, is the

3-month treasury bill rate divided by 252, the average trading days in a year. All the stock

data are obtained from Datastream, and the 3-month T-bill rates are downloaded from the

website www.fed.org. Table 1 summarizes some basic statistics for the excess returns of all

stock indices, which have the same ending date, December 31, 2001, but may have different

starting dates for the samples. DJIA and S&P 500 have the largest samples (from February

1, 1962), with 10,043 observations. The sample means of the excess returns of all the indices

are nonnegative, but they are very small or close to zero. All excess returns have excessive

kurtosis, indicating non-Gaussian features.

5.2 Directional Predictability of Stock Returns
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We first check whether the directions are predictable for excess stock returns. Specifically, we

consider the predictability of each of the following direction indicators:

Z1t(c) = 1(Yt > c),

Z2t(c) = 1(Yt < −c),
Z3t(c) = sign(Yt, c) = 1(Yt > c)− 1(Yt < −c),

for c = 0, 0.5, 1, 1.5, in units of sample standard deviation of {Yt}. The dynamics of directional
predictability can be different between up and down stock markets, and between large and

small changes. 10

Table 2 reports the test statisticsMZY (1, l) for l = 0, 1, 2, 3, 4 andMZZ (0, 0). For the results

in all test statistics, we use the Bartlett kernel and a preliminary lag order p̄ = 21.11 First, the

omnibus testMZY (1, 0) examines whether the sign (two-sided) direction, positive direction and

negative direction respectively, using past excess returns {Yt−|j|}, are predictable. For sign,
positive and negative directions, MZY (1, 0) is very large for all threshold c (including c = 0),

essentially implying a zero p-value. There exists overwhelming evidence on the directional

predictability for the four indices. For the sign direction, there seems no clear evidence that

the direction of large excess returns is easier to predict than the direction of small excess returns.

For one-sided (i.e., positive or negative) directions, however, there does exist stronger evidence

on the directional predictability of large excess returns than small excess returns (particularly

for NASDAQ index), although the MZY (1, 0) statistic value is not monotonically increasing in

threshold c. This suggests that the serial dependence between returns with nonzero thresholds

is stronger than the serial dependence between returns with zero threshold. On the other

hand, there seems to be a weak evidence that the direction of large positive returns is easier

to predict than the direction of large negative returns, using past returns.

We also consider the directional predictability of gross stock returns (i.e., daily price changes

100ln(Pt/Pt−1) without demeaned by the interest rate rt); the results (not reported) are very

similar to those for the excess returns.

5.3 Sources of Directional Predictability

The finding that the direction of the excess returns of stock indices is predictable using past

excess returns is important. However, the omnibus MZY (1, 0) statistic does not provide any

constructive information about possible sources of directional predictability. For this purpose,

10Mcqueen, Pinegar and Thorley (1996, p.892), for example, find evidence of different autocorrelation in

returns between up and down stock markets.
11We also use preliminary lag orders p̄ from 11 to 61. The results, which are available from the authors upon

request, are similar.
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we can use MZZ (0, 0) and the derivative tests MZY (1, l) for l = 1, 2, 3, 4. These tests check

whether the direction of future excess returns can be predicted using the direction, level,

volatility, skewness and kurtosis of past excess returns.

The MZY (1, 1) statistic examines whether the direction of excess returns can be predicted

by the level of past excess returns Yt−|j|. For all four indices, the direction of excess returns

with any threshold c is predictable using the level of past excess returns. Among other things,

the fact that the direction of excess returns with zero threshold can be predicted using the

level of past excess returns suggests that a driving force for directional predictability may be

a possibly time-varying conditional mean. This is consistent with Lo and MacKinlay (1988)

finding that there exists weak serial dependence in the level of stock returns.

There is no clear evidence that large excess returns are easier to predict than smaller ones

in direction, using the level of past excess returns. In fact, as threshold c increases, the sign

direction of NASDAQ becomes harder to predict when using the level of past excess returns.

On the other hand, there exists some evidence that it is easier to predict the direction of large

negative excess returns than the direction of large positive excess returns, using the level of

past excess returns.

The results of MZY (1, 2) examines whether past volatility can be used to predict the di-

rection of future excess returns. For all indices, the direction of the excess returns with zero

threshold is not predictable using past volatility. For the excess returns with large thresholds

(c = 1, 1.5), however, past volatility can be used to predict the direction in most cases. These

results are consistent with stylized fact that there exists persistent volatility clustering for

stock returns, while there exists little or weak serial dependence with very small unconditional

mean.12 Except for NASDAQ index, MZY (1, 2) is monotonically increasing in threshold level

c. The larger the threshold, the more predictable the direction of excess returns using past

volatility. There exists strong evidence that one-sided directions are easier to predict than the

sign direction using past volatility. Furthermore, the direction of positive excess returns are

easier to predict than that of negative excess returns, using past volatility.

The statistic MZY (1, 3) examines whether skewness of past excess returns is useful in pre-

dicting the direction of future excess returns. Table 6 reports the values of statistic MZY (1, 4),

which examines whether kurtosis of past excess returns can be used to predict the direction

of future excess returns. The results for MZY (1, 3) and MZY (1, 4) are similar to those for

MZY (1, 2). For all four indices, there exists strong evidence that the direction of positive ex-

cess returns with large thresholds (c = 1 or 1.5) is predictable using skewness and kurtosis of

past excess returns. It is easier to predict the direction of large positive returns than of large

12Recall that volatility clustering can generate directional predictability when δ = c− µ is nonzero. Table 1

shows that for most stocks, the long-run average return µ is very small.
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negative returns, using past skewness and kurtosis.

Finally, the statistic MZZ (0, 0) checks whether the direction of past excess returns can be

used to predict the direction of future excess returns. This can tell us to what extent the

direction of past returns contains useful information about the direction of future returns. For

all four indices, the direction of future excess returns, with any threshold c, is predictable using

the direction of past excess returns. The statistic MZZ (0, 0) is very large in most cases. This

striking evidence differs from Christoffersen and Diebold’s (2002) conjecture that directional

dependence may not be likely to be found via analysis of directional autocorrelation for high-

frequency (e.g., daily) financial data. This suggests that the directional dynamics of stock

returns may be more complicated than the model considered in Christoffersen and Diebold’s

(2002). In general, it is easier to predict the direction of large one-sided excess returns than

that of small one-sided ones, using the direction of past excess returns. And it is easier to

predict the direction of large negative excess returns using the direction of past negative excess

returns than to predict the direction of large positive returns using the directions of past large

positive excess returns.

We have found that the directions of excess returns with any threshold is predictable. The

level, volatility, skewness, and kurtosis and direction of past excess returns can be used to

predict the direction of excess returns. It is well-known that there exists persistent volatility

clustering in stock returns, and there may also exist weak serial dependence in the level of

stock price changes, which violates the efficient market hypothesis. These well-known stylized

facts may contribute to the directional predictability of stock returns. To check whether the

directional predictability can be solely explained by persistent volatility clustering and mild

serial dependence in mean, we fit the following MA(1)-Threshold GARCH(1,1) model via

maximum likelihood estimation (MLE) to each excess stock return series:
Yt = α0 + α1ut−1 + ut,

ut = h
1/2
t εt,

ht = β1 + β2ht−1 + u2t−11(ut−1 < 0) + β+3 u
2
t−11(ut−1 ≥ 0)

{εt} ∼ i.i.d.N(0,1).

Here, the MA(1) component is the commonly used model to capture weak serial dependence

in mean for daily stock returns. It is well-known that the GARCH model can capture per-

sistent volatility clustering. The different coefficients β−3 and β+3 allow to capture asymmetry

in volatility, such as the leverage effect. This is the well-known threshold GARCH model,

introduced in Glosten et al. (1993).

We use our tests to check the directional predictability for the fitted standardized residuals

{ε̂t}, and find that the directions of sign, positive and negative ε̂ are significantly predictable
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for most thresholds c (including zero), although the test statistic values are much smaller than

those based on the raw return series. This indicates the MA(1)-Threshold GARCH model

cannot completely explain the directional predictability of excess stock returns.

6 Out-of-Sample Forecasts and Trading Profit

We now examine whether the documented directional predictability can be exploited to yield

significant out-of-sample economic outcomes via a class of autologit forecast models. Out-

of-sample evaluation is important to alleviate the problem of overfitting the data and obtain

spurious results.

We use two out-of-sample evaluation measures for the directional forecast models–directional

forecast accuracy and risk-adjusted profitability of model-based trading rules. For the former,

we consider two statistical measures–the Quadratic Probability Score (Brier 1950, QPS) and

the ratio of correct forecast directions. For the latter, we consider model-based trading rules

against the most commonly used benchmark– the buy-and-hold strategy; we compare their

risk-adjusted returns, including Sharpe’s (1966) ratios.

6.1 Forecast models and Combined Forecasts

For comparison, we use four stock indices–DJIA, NYSE, SP500 and NASDAQ, with the same

sample period from 01/02/1973 to 12/31/2001. To examine robustness of our results, we

consider three sample periods–the whole sample, and two sub-sample periods: the pre-Black

Monday period (from 01/02/1973 to 10/16/1987) and the post-Black Monday period (from

10/19/1987 to 12/31/2001). Each sample is divided into two subsets: the in-sample data,

used to estimate model parameters; and the out-of-sample data, used to evaluate forecast

performances. Table 3 lists each sample horizon and sample sizes for four stock indices.

Table 3. The horizon and total observations of three sample periods

In-sample Out-of-sample
Total observation

(In/Out)

Whole Sample
from 01/02/1973

to 12/31/1993

from 01/03/1994

to 12/31/2001

7324

(5309/2015)

Pre-Black Monday
from 01/02/1973

to 12/30/1983

from 01/03/1984

to 10/16/1987

3738

(2779/959)

Post-Black Monday
from 10/19/1987

to 12/31/1997

from 01/02/1998

to 12/31/2001

3584

(2580/1004)
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We use a class of auto-logistic models, first introduced in Cox (1958) and considered in

Rydberg and Shephard (2003). The autologit model extends the logit model to allow lagged

dependent variables as explanatory variables. For the zero threshold (c = 0), we model the

binary dependent variable Zt(c) by incorporating the sources of directional predictability doc-

umented earlier. We assume that Zt(c) depends on m most recent history of some explanatory

variables:

P [Zt(c) = 1|It−1] = 1

1 + exp(θ0Xt)
, (6.1)

where θ is a parameter vector and Xt ≡ (1,Xt−1,Xt−2, ...,Xt−m)0 ∈ It−1. This model directly

yields a probability forecast for the event Zt(c). A probability forecast for the event ‘Zt(0) = 1’

issues a likelihood that the stock price will rise, while a probability forecast for the event

‘Zt(0) = 0’ issues a likelihood that the stock price will fall.

For a nonzero threshold c, we need to define a new direction indicator Zt(c):

Zt(c) =


2, if Yt > c,

1, if − c ≤ Yt ≤ c,

0, if Yt < −c,

and use an auto-multinomial logit model:

P [Zt(c) = s|It−1] = exp(θsXt)P2
s=0 exp(θsXt)

, s = 0, 1, 2. (6.2)

Based on the results of directional predictability documented in Section 5, for both (6.1)

and (6.2), we consider the following five models:

θ(k)s Xt =



θ
(1)
s0 +

Pm
j=1 θ

(1)
sj Zt−j if k = 1 (using past directions)

θ
(2)
i0 +

Pm
j=1 θ

(2)
sj Yt−j if k = 2 (using past levels),

θ
(3)
s0 +

Pm
j=1 θ

(3)
sj Y

2
t−j if k = 3 (using past volatilities),

θ
(4)
s0 +

Pm
j=1 θ

(4)
sj Y

3
t−j if k = 4 (using past skewness),

θ
(k)
s0 +

Pm
j=1 θ

(5)
sj Y

4
t−j if k = 5 (using past kurtosis),

where s = {0, 1} for c = 0 and s = {0, 1, 2} for c = 0.5. All models are estimated via MLE

using the in-sample observations {Yt}T1t=1 of size T1. For each model, we first set a maximal lag
order 30 for m and then use the BIC criterion to select a suitable m.

For each c, we also consider a probability forecast procedure by combining all five forecast

models:

P̂CB
t (c) =

5X
k=1

wktP̂kt(c),
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where P̂kt(c) is the 1-step-ahead probability forecast for event Zt(c) using model k, and the

weights {wkt} are selected using the rule: (i) equal weighting wkt =
1
5 for all k and t, or

(ii) time-varying weighting wk,t = 1[Ĉkt(c) = 1]/
P5

k=1 1[Ĉkt(c) = 1].13 Here, Ĉkt(c) is the

correct directional forecast indicator, which equals 1 when model k at t− 1 correctly forecasts
the direction of changes at t, and equals 0 otherwise. This gives a penalty when a model

performs poorly. On the other hand, equal weighting is simple and most commonly used in

practice. Like a portfolio, a combined forecast procedure is expected to yield more robust

forecast results than a single forecast model (see Bates and Granger 1969 and Granger 2001

for more discussion.)

In order to determine Ĉkt(c), we need to use some decision rule to translate P̂kt(c) for event

Zt(c) into an event forecast. We use the following simple rule: if the forecast probability P̂kt(c)

is higher than a prespecified probability threshold, then we predict that event Zt(c) will occur.

Because we consider different thresholds c, we use the in-sample proportion for the event Zt(c)

as the probability threshold.

We consider two event forecasts:

D̂+
kt(c) =

(
1 if P̂k(Yt > c|It−1) > f

+
(c),

0 otherwise,

and

D̂−kt(c) =

(
1 if P̂k(Yt < −c|It−1) > f

−
(c),

0 otherwise,

where f̄+(c) = T−11
PT1

t=1 1(Yt > c) and f̄+(c) = T−11
PT1

t=1 1(Yt < −c) are the in-sample
proportions for the events Zt(c) = 1(Yt > c) and Zt(c) = 1(Yt < −c) respectively.

Given the event forecast indicators D̂+
kt(c) and D̂−kt(c), we can define the correct forecast

indicator

Ĉkt(c) =

(
1 if D̂+

kt1(Yt > c) = 1 or D̂−kt1(Yt < −c) = 1
0 otherwise.

The benchmark–the buy-and-hold trading strategy, is a commonly used long-term invest-

ing strategy without revising one’s asset position until the end of the investment horizon. This

trading strategy is equivalent to a constant probability forecast over time:

P̂BH(Yt > c|It−1) = 1 and P̂BH(Yt < −c|It−1) = 0 for all c, t.

As a result, D̂+
BHt(c) = 1 and D̂−BHt(c) = 0 for all t and all c.

13When the denominator in the time-varying weighting rule is zero, (i.e.,
P5

k=1 1[Ĉkt(c) = 1] = 0), we use

equal weighting to each model instead.
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6.2 Model Evaluation Measures

We consider both statistical and economic evaluation measures for our forecast models. A

popular quantitative measure for out-of-sample probability forecast accuracy is the Quadratic

Probability Score (QPS), which is analogous to the Mean Squared Error:

QPSk =
1

T2

TX
t=T1+1

2[P̂kt(c)− Zt(c)]
2,

where P̂kt(c) is the ex ante probability forecast for event Zt(c) using model k, Zt(c) is the

ex post observed direction indicator, and T2 ≡ T − T1 is the size of the out-of-sample data.

QPS ranges from 0 to 2, and becomes closer to zero when a model gives a more accurate

directional forecast (see Diebold and Rudebusch 1989 for more discussion). Corresponding to

events Zt(c) = 1(Yt > c) and Zt(c) = 1(Yt < −c), we compute QPS for probability forecasts
for both positive (+) and negative (-) changes. We also report directional forecast correctness

ratio, which is the ratio of correct directional forecasts for event Zt(c) to the total number of

occurrence of event Zt(c). Specifically, we consider positive and negative directional correctness

ratios, and the overall directional correctness ratio which includes forecasts of both directions.

Our ultimate goal is to examine profitability of our forecast models. For this purpose, we

define two trading rules based on model k:

Ŝ
(1)
kt (c) =


1 (= “buy”) if D̂+

kt(c) = 1,

−1 (= “Sell”) if D̂−kt(c) = 1,

0 (= “no action”) otherwise,

and

Ŝ
(2)
kt (c) =

(
1 (= “buy”) if D̂+

kt = 1,

0 (= “no action”) otherwise,

t = T1 + 1, ..., T − 1, where D̂+
kt(c) and D̂−kt(c) are the event forecasts. The first trading rule

allows short sales but the second one does not.14 The out-of-sample trading return generated

from model k using trading rule r is

R̂
(r)
kt =

1

T2

TX
t=T1+1

Ŝ
(r)
kt (c)Yt, r = 1, 2.

While most studies on technical trading rules (e.g., Allen and Karjalainen 1999, Brock,

LaKonishok and LeBaron 1992, Lo, Mamaysky and Wang 2000, Sullivan, Timmermann and

White 1999) generally evaluate raw excess returns, Brown, Goetzmann and Kumar (1998) and

Neely (2003) emphasize that it is important to consider risk-adjusted returns in comparing the

14Note that, for the ‘buy and hold’ strategy, we have S(1)BHt(c) = Ŝ
(2)
BHt(c) = 1 for all t and c, respectively.
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usefulness of trading rules, because different rules involve different levels of risk. To take this

into account, we use two risk-adjusted return measures: one is the mean/standard deviation

ratio, and the other is the most commonly used Sharpe’s (1966) ratio, which is the uncondi-

tional expected return per unit of risk and is usually expressed in annual terms (See Sharpe

1994 for a survey):

SP(r)k =
R
(r)
k −Rf

σ̂
R̂
(r)
k

, r = 1, 2,

where R
(r)
k is the average returns of model k using trading rule r, Rf is the average of risk-free

rates, and σ̂
R̂
(r)
k

is the sample standard deviation of the returns R̂(r)k . This measure is higher

with a higher return and/or a lower volatility. Like most studies using the Sharpe ratio, we

ignore transaction costs, which are a complicated issue.

To assess statistical significance of the difference of risk-adjusted returns between a model

and the buy-and-hold strategy, we use the popular Diebold and Mariano’s (1995) test. Sup-

pose d̄T2 denotes the difference in out-of-sample average risk-adjusted returns between a fore-

cast model/trading strategy and the benchmark. Then under the null hypothesis that the

model/strategy performs the same as the buy-and-hold strategy, Diebold and Mariano’s (1995)

test statistic DM ≡ √T2 dT2/
q
2πf̂d(0)→ N(0, 1) in distribution, where 2πf̂d(0) is a Bartlett

kernel-based estimator of the asymptotic variance of
√
T2d̄T2 .

6.3 Empirical Findings

Tables 4—7 report the out-of-sample results of various forecast models for DJIA, SP500, NYSE

and NASDAQ. Each table includes three sample periods–two sub-sample periods and the

whole sample. The top and bottom panels in each period correspond to the results of the

autologit model (for c = 0) and the auto-multinomial logit model (for c = 0.5) respectively.

The first two sections in Tables 4—7 report directional forecast accuracy measures–QPS(+),

QPS(-) and forecast correctness ratios for positive direction (+), negative direction (−) and
both directions (overall). In terms of QPS, all forecast models perform more or less similarly.

The combined forecast models, with either time-varying weighting or equal weighting, consis-

tently give the smallest or close to the smallest QPS for both thresholds (c = 0, 0.5), all the

sample periods, and all stock indices. This indicates the merit of combined forecasts. Inter-

estingly, for all forecast models, the magnitudes of QPS are closer to zero at c = 0.5 than at

c = 0, except for NASDAQ in some periods. This is consistent with the earlier findings using

the generalized cross-spectral tests that there is stronger evidence for directional predictability

with nonzero thresholds. The QPS results also suggest that the directions of stock indices re-

turns are more predictable during the pre-Black Monday period than the post-Black Monday

26



period.

In terms of directional forecast correctness ratios, the forecast model using the directions

of past returns have consistently high overall correctness rations in all scenarios. The forecast

model using the levels of past returns also perform well. Models using past volatilities, skewness

and kurtosis do not have robust overall correctness ratios, which can be the highest or lowest

among all individual forecast models. The combined forecast models generally do not have the

highest correctness ratio, but they are robust and have relatively high correctness ratios. Like

QPS, there is evidence that the direction of stock returns with threshold c = 0.5 is easier to

predict than the direction of stock returns with threshold c = 0.

We now turn to the risk-adjusted returns–the mean/standard deviation ratio and the

Sharpe ratio, which is our ultimate goal of comparing our forecast models and the buy-and-hold

strategy. Consistent with the patterns for overall directional correctness ratios, the forecast

models using the directions and levels of past returns have relatively robust and high risk-

adjusted returns in many cases, while the forecast models using past volatilities, skewness

and kurtosis do not have robust risk-adjusted returns. Interestingly, the combined forecast

models, with either time-varying weighting or equal weighting, yield robust and high (sometime

highest) risk-adjusted returns in all scenarios. The combined forecast model with time-varying

weighting performs a bit better than the combined forecast model with equal weighting. In

all scenarios the combined forecast models outperform the but-and-hold strategy, and the

differences in the magnitudes of risk-adjusted returns between the combined forecast models

and the buy-and-hold strategy are significantly at the 5% level in many cases.

Although the forecast model with highest directional correctness ratio does not necessarily

give the highest risk-adjusted returns, the forecast models with low direction correctness ratios

always give low risk-adjusted returns, and the forecast models with relatively high risk-adjusted

returns usually have high directional correctness ratios. There is some evidence that directional

forecast correctness and risk-adjusted returns are positively related to certain degree, indicating

a positive relationship between directional forecast accuracy and performance of trading rules

in many cases, as Leitch and Tanner (1991) argue. Moreover, all forecast models usually have a

higher risk-adjusted returns during the pre-Black Monday period than the past-Black Monday

period.

Figures 5-8 depict the out-of-sample cumulative daily returns of the combined forecast

models with time-varying weighting for each threshold c, each trading rule, and each sample

period, relative to the buy-and-hold strategy. These equity curves can better describe compet-

itive positions of our model-based trading rules over time against the buy-and-hold strategy.

In all scenarios, the combined forecast model with time-varying weighting achieves not only

a higher cumulative return at the terminal time but also a noticeably smoother increase of
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returns than the buy-and-hold strategy. The differences in cumulative returns between the

combined forecast model and the buy-and-hold strategy are economically significant in many

cases, particularly for the whole sample period and the post-Black Monday period. On the

other hand, a roughly linear rise of the equity curve indicates that the combined forecast model

can continue to earn a positive return even in a bear market, which is in sharp contrast to

the buy-and-hold strategy, as can be easily seen in Figures 5-8 (E) and (F). Relatively to the

buy-and-hold strategy, the combined forecast model performs better in the post-Black Monday

period than the pre-Black Monday period. There is evidence of out-of-sample predictive ability

of the trading rules based on directional forecast models. We also note that in most cases, the

trading rule with short sales gives a higher cumulative return at the terminal time than the

trading rule with no short sales. All of these graphical features are more or less consistent with

the Sharp ratio results.

To sum up, we have found that combined forecast models yield robust and significantly

higher risk-adjusted returns than the buy-and-hold strategy in all cases. There is significant

evidence that the combined directional forecast models have some out-of-sample predictive

power for the directions of stock returns.

7 Conclusion

We have proposed a rigorous model-free statistical procedure to check whether the direction

of the changes of an economic time series variable is predictable using the past history of its

changes. A class of separate inference procedures are also given to gauge possible sources

for directional predictability. In particular, they can reveal information about whether the

direction of future asset returns is predictable using the direction, level, volatility, skewness,

and kurtosis of past asset returns. The proposed procedures provide reasonable references in

finite samples. They have good power because they employ many lags simultaneously and

discount higher order lags via the kernel function, which is consistent with the conventional

wisdom that financial markets are more influenced by the recent events than by the remote

events.

We have applied the proposed procedures to four daily U.S. stock price indices. We find

overwhelming evidence that the direction of excess stock returns is predictable using the past

history of excess stock returns. The evidence is stronger for the predictability of the direc-

tional predictability of large excess stock returns–both positive and negative. In particular,

the direction and level of past excess stock returns can be used to predict the direction of

future excess stock returns with both zero and nonzero thresholds, and the volatility, skewness

and kurtosis of past excess stock returns can be used to predict the direction of future excess
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stock returns with nonzero thresholds. The well-known weak serial dependence in mean and

persistent volatility clustering in stock returns cannot explain all documented directional pre-

dictability. We finally examine the out-of-sample profitability of a class of autologit models for

directional forecasts. Trading rules based on these forecast models, particularly their combi-

nations, can earn significantly higher risk-adjusted returns than the buy-and-hold strategy.
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Figure 5: Cumulative Daily Returns (%) of Dow Jones



Figure 6: Cumulative Daily Returns (%) of S&P500



Figure 7: Cumulative Daily Returns (%) of NYSE



Figure 8: Cumulative Daily Returns (%) of Nasdaq




