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Abstract

This paper analyzes nonlinear cointegrating regressions as have been recently an-
alyzed in a paper by Park and Phillips in Econometrica. I analyze the consequences
of removing Park and Phillips’ exogeneity assumption, which for the special case of
a linear model would imply the asymptotic validity of the least squares estimator for
linear cointegrating regressions. For the linear model, the unlikeliness of such an ex-
ogeneity assumption to hold in practice has inspired the “fully modified” technique,
the “leads and lags” technique, and Park’s “canonical regressions”. In this paper, a
“fully modified” type technique is proposed for nonlinear cointegrating regressions. The
mathematical tool for proving this result is a new so-called “convergence to stochastic
integrals” result. This result is proven for objects that are summations of a station-
ary random variable times an asymptotically homogeneous function of an integrated
process. The increments of the integrated process are allowed to be correlated with
the stationary random variable. This result is derived by extending a line of proof
pioneered in work by Chan and Wei.

∗The comments of Peter Phillips and Alex Maynard on an earlier version of this paper are gratefully
acknowledged.
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1 Introduction

This paper analyzes nonlinear least squares estimation of the nonlinear cointegrating regres-
sion

yt = f(xt, θ0) + ut (1)

where ut is assumed to be stationary and the scalar xt =
∑t

j=1 vt is assumed to be an inte-
grated process. For the case of a linear response function f(x, θ) = x′θ, the analysis of such
cointegrating regressions is well-established. It can be shown that if xt satisfies an exogene-
ity condition with respect to ut, mixed normality of the nonlinear least squares estimator
results. This implies that t-values, F -tests and confidence intervals will be asymptotically
correct for the linear model if the exogeneity assumption holds.
In practice however, the exogeneity assumption is very unlikely to hold. From the Granger-
Engle representation theorem, it follows that typically, no exogeneity assumption can be
expected to hold in a linear cointegrating regression. This motivates, for linear models,
three techniques that are capable of dealing with cointegrating regression errors ut that are
possibly correlated with vt. Those three techniques are the so-called “leads and lags” tech-
nique (see Saikkonen (1991), Phillips and Loretan (1991), and Stock and Watson (1993)),
the “fully modified” technique (see Phillips and Hansen (1990)), and Park’s canonical re-
gressions (see Park (1992)).
For nonlinear least squares estimation of a nonlinear cointegrating regression, asymptotic
theory under an exogeneity assumption is relatively recent. Park and Phillips (2001) have
analyzed nonlinear cointegrating regressions, using tools developed in Park and Phillips
(1999). Park and Phillips (1999) prove convergence results for objects such as

aT

T∑
t=1

F (xt) (2)

for an appropriate scaling aT and functions F (.) that are in three different function classes
(integrable, asymptotically homogeneous, and explosive functions). Note that the central
difficulty in establishing asymptotic results for the above statistic is the fact that the inte-
grated process has not been rescaled by T−1/2. These results provide the building blocks for
the development of the theory in Park and Phillips (2001). Moreover, this theory has also
been applied in Park and Phillips (2000) and Chang (2000).
One aspect of Park and Phillips’ (2001) theory is that it uses an exogeneity assumption
that for the linear model would imply validity of standard least squares inference results.
In this paper, I analyze the asymptotic consequences of the failure of the exogeneity as-
sumption, and in addition I propose a “fully modified” type technique for nonlinear least
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squares estimation of a cointegrating regression. For the special case of the linear model, the
proposed technique simplifies to the usual “fully modified” estimator as proposed by Phillips
and Hansen (1990).
The mathematical problem solved in Section 2 of this paper, that will be the key to my
results, is establishing the limit distribution for statistics of the form

T−1/2

T−1∑
t=1

ut+1H(T−1/2

t∑

l=1

vl) (3)

where H(.) is a continuously differentiable function. This result is essentially extended to
provide a limit theory for statistics such as

T−1∑
t=1

ut+1F (
t∑

l=1

vl) (4)

where F (.) is a function that is supposed to satisfy certain conditions (i.e. F (.) is supposed
to be asymptotically homogeneous, in the terminology of Park and Phillips (1999)), Evt =
Eut = 0, and ut and vt are allowed to be weakly dependent and correlated among each other.
This problem has been considered for the case of ut and vt that are uncorrelated (Park and
Phillips (1999, 2001)), but to the best of this author’s knowledge, no attempt has ever been
made to solve the more general problem that is tackled in this paper.
If the ut are independent of the vt and if (ut, vt) is i.i.d., we can intuitively reason as follows.
Define σu = Eu2

t and σv = Ev2
t . The statistic of Equation (3), conditional on the vt, may

converge to a normal with a variance σ2
uT

−1
∑T

t=1 H(T−1/2
∑t

l=1 vl)
2, which satisfies

σ2
uT

−1

T∑
t=1

H(T−1/2

t∑

l=1

vl)
2 d−→ σ2

u

∫ 1

0

H(V (r))2dr (5)

where U(.) is the limit Brownian motion of T−1/2
∑[Tr]

l=1 ul, and V (.) is the limit Brownian

motion of T−1/2
∑[Tr]

l=1 vl. Therefore, it seems reasonable to expect convergence of the above
statistic to

N(0, σ2
u)× (

∫ 1

0

H(V (r))2dr)1/2 (6)

where both terms are independent. This intuition can be formalized, and the above limit
distribution can then also be described as

∫ 1

0

H(V (r))dU(r), (7)
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which is a so-called stochastic integral. Park and Phillips (1999, 2001) analyzed nonlinear
estimators in the presence of nonlinearities, and they derive limit distributions of the above
type by formalizing the heuristic argument that I presented above, and they do not need the
total independence requirement. However, their results are unable to handle ut and vt that
are correlated, and I will show that the limit distribution of the estimator that they propose
will be different in that case.
The analytical tool used in the proof is an extension of the “convergence to stochastic
integrals” proof of De Jong and Davidson (2000) to the present situation. The proof in De
Jong and Davidson (2000) again extends a proof by Chan and Wei (1988).
In Section 3 of this paper, the result of Equation (3) is used to calculate the limit distribution
of the least squares estimator when the error is stationary and the regressor is of the form
|∑t

l=1 vl|γ - i.e., a power of an integrated process - where it is assumed that γ > 1.
In Section 4 of this paper, the result of Equation (4) is applied to the nonlinear cointegrating
regressions as studied by Park and Phillips (2001). By applying the second result described
above, I calculate the limit distribution for nonlinear least squares estimators for the case
where the long-run regression error and the increments of the integrated regressor are possibly
correlated. The limit distribution of the nonlinear least squares estimator, as in the standard
linear case, implies that standard least squares procedures will give invalid inference results
in the general case where correlation is allowed. In Section 5 of this paper, I propose a “fully
modified” type technique for nonlinear cointegrating regressions that will make it possible
to conduct valid inference in nonlinear cointegrating regressions.

2 Mathematical results

In order to establish the results of this section, I will need assumptions on the function F (.)
and on the weak dependence structure of (ut, vt). In order to limit the amount of dependence
that will be allowed, we need the concept of near epoch dependence. An array of random
variables yTt is called near epoch dependent (NED) on wt if

sup
t,T

‖ yTt − E(yTt|wt−m, . . . , wt+m) ‖2≤ ν(m) → 0 (8)

as m → ∞. Typically, we need to make mixing (or independence) assumptions about wt

in order to be able to derive useful results such as laws of large numbers of central limit
theorems. I will not define α-mixing or φ-mixing here, but instead note that Gallant and
White (1988), Pötscher and Prucha (1991) and Davidson (1994) contain a large amount of
information about these dependence concepts.
The weak dependence assumption on (ut, vt) that I need in this section is the following:
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Assumption 1

1. (ut, vt) is stationary.

2. For some p > 2, E|ut|p + E|vt|p < ∞.

3. Eut = 0 and Evt = 0.

4. (ut, vt) is L2-NED of size −1 on wt, where wt is an α-mixing array of size −2p/(p−2),
or (ut, vt) is L2-NED of size −1 on wt, where wt is a φ-mixing array of size −p/(p−1).

Define VT (r) = T−1/2
∑[rT ]

t=1 vt and UT (r) = T−1/2
∑[rT ]

t=1 ut. I will equip D[0, 1]2 with the
uniform metric, and by the Skorokhod representation, we can without loss of generality
assume that supr∈[0,1](|VT (r)− V (r)|+ |UT (r)− U(r)|) → 0 almost surely.
The assumption on F (.) that I need is the following:

Assumption 2

1. F : R −→ R is continuous on R.

2. F (λx) = κ(λ)H(x) + R(x, λ) where H(.) is locally integrable and R(.) is such that

(a) |R(x, λ)| ≤ a(λ)P (x), where lim supλ→∞ a(λ)/κ(λ) = 0 and P (.) is locally inte-
grable; or

(b) |R(x, λ)| ≤ b(λ)Q(λx), where lim supλ→∞ b(λ)/κ(λ) < ∞ and Q(.) is locally inte-
grable and vanishes at infinity, i.e., Q(x) → 0 as |x| → ∞.

3. H ′(.) is continuous on R.

4. For any sequence δT such that δT → 0 and T →∞,

lim sup
T→∞

κ(T 1/2)−2 sup
|x|≤K

sup
x′:|x−x′|≤δT

|F (T 1/2x)− F (T 1/2x′)|2 = 0.

5. one more

To find the limit of JT , the following additional assumption is needed:

Assumption 3
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1. λF ′(λx) = κ(λ)H ′(x)+R′(x, λ), where H ′(.) is locally integrable and R′(.) is such that

(a) |R′(x, λ)| ≤ a′(λ)P ′(x), where lim supλ→∞ a′(λ)/κ(λ) = 0 and P ′(.) is locally
integrable; or

(b) |R′(x, λ)| ≤ b′(λ)Q′(λx), where lim supλ→∞ b(λ)/κ(λ) < ∞ and Q(.) is locally
integrable and vanishes at infinity, i.e., Q(x) → 0 as |x| → ∞.

2. For any sequence δT such that δT → 0 and T →∞,

T 1/2κ(T 1/2)−1 sup
x,x′:|x−x′|≤δT

|F ′(T 1/2x)− F ′(T 1/2x′)| → 0.

Park and Phillips (1999) give a wide range of examples of asymptotically homogeneous
functions. Distribution functions, polynomials, logarithmic functions and summations and
products of such functions will all be within the class of asymptotically homogeneous func-
tions. Integrable functions, periodic functions and functions with explosive behavior as the
argument goes to infinity - such as the exponential - are outside the class of asymptotically
homogeneous functions.
Let

GT = T−1/2(κ(T 1/2))−1

T−1∑
t=1

ut+1F (
t∑

l=1

vl). (9)

First, we need the following lemma; this is a partial result that that can be specialized
towards the main theorems of this paper. For a sequence kT that is to be specified later but
satisfies kT →∞ and kT /T → 0 as T →∞, define rj = j/kT and Tj = max(1, [Tj/kT ]) for
j = 1, . . . , kT .

Lemma 1 Under Assumptions 1 and 2,

GT =

∫ 1

0

H(V (r))dU(r) + JT + oP (1), (10)

where

JT = κ(T 1/2)−1

kT∑
j=1

nj−1∑
t=Tj−1

(UT ((t+1)/T )−UT (t/T ))(F (T 1/2VT (t/T ))−F (T 1/2VT (rj−1))).(11)

By finding the limit distribution of JT , the following result can be proven:
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Theorem 1 Under Assumptions 1, 2 and 3,

GT
d−→

∫ 1

0

H(V (r))dU(r) + Λ

∫ 1

0

H ′(V (r))dr (12)

and

GT − ΛT−1

T∑
t=1

H ′(VT (t/T ))
d−→

∫ 1

0

H(V (r))dU(r), (13)

where

Λ = lim
T→∞

T∑

l=1

EuT+1vl. (14)

The proof of Theorem 1 is based on finding a limit result for

T−1/2

T−1∑
t=1

ut+1H(T−1/2

t∑

l=1

vl), (15)

and therefore, in the proof of Theorem 1, the following result can be found too:

Theorem 2 Under Assumptions 1, 2, and 3,

T−1/2

T−1∑
t=1

ut+1H(T−1/2

t∑

l=1

vl)
d−→

∫ 1

0

H(V (r))dU(r) + Λ

∫ 1

0

H ′(V (r))dr (16)

and

T−1/2

T−1∑
t=1

ut+1H(T−1/2

t∑

l=1

vl)− T−1

T∑
t=1

H ′(VT (t/T ))
d−→

∫ 1

0

H(V (r))dU(r), (17)

where

Λ = lim
T→∞

T−1

T∑
t=1

t∑

l=1

Eut+1vl = lim
T→∞

T∑

l=1

EuT+1vl. (18)

A striking feature of the above theorems is that only Λ comes up in the limit distribution as
a measure of the correlation between the ut and the vt. Intuitively, one might have expected
that introducing nonlinearities in F (.) might cause the limit distribution of the GT statistic
to depend on measure of nonlinear correlation as well, but this turns out to be not the case.
Park and Phillips (1999,2001) derive results similar to those of Theorems 1 and 2 for the
case Λ = 0, but they use martingale difference and homoscedasticity assumptions. It is
immediate from the above result that no homoscedasticity assumptions are needed to derive
the limit distribution as long as Λ = 0, and therefore their homoscedasticity assumptions
can be removed using the above theorem.
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3 Powers of integrated processes as regressors

In this section, I consider the linear model

yt = θ0xt + ut (19)

where xt = |∑t
j=1 vt|γ for some γ > 1 and (ut, vt) is a weakly dependent but possibly

correlated process. Let θ̂T denote the least squares estimator for θ0 (assuming no constant
has been included in the regression). For this situation, the following result can be proven:

Theorem 3 Assume that (ut, vt) satisfies Assumption 1, and consider θ̂T and yt and xt as
above. Then

T 1/2+γ/2(θ̂T − θ0) =
T−1/2

∑T
t=1 ut|T−1/2

∑t
j=1 vt|γ

T−1
∑T

t=1 |T−1/2
∑t

j=1 vt|2γ

d−→
∫ 1

0
|V (r)|γdU(r) + Λγ

∫ 1

0
sgn(V (r))|V (r)|γ−1dr∫ 1

0
|V (r)|2γdr

(20)

where

Λ = lim
T→∞

T−1

T∑
t=1

t∑

l=1

Eutvl. (21)

From the above theorem, it can be concluded that it is incorrect in general to use regressors
that are powers of integrated processes as regressors and still assume standard inference
will remain valid. Of course, this fact is well-known for the case where the regressor is an
integrated process.
The conjecture presents itself that the above result will remain valid for all γ > 0. The prob-
lem with the proof of that result is the requirement in Theorem 2 that H ′(.) be continuous,
which in the setting of the above theorem translates into the requirement that γ|x|γ−1 be
continuous, and this will only hold for γ ≥ 1. The author expects however that it will turn
out to be possible to prove such a result.

4 Nonlinear regression with integrated regressors

In linear cointegrating relations, the result of Theorem 2 for H(x) = x can be used, and
the standard results for deriving the mathematics of linear cointegrating regressions can be
obtained. Then, the observation can be made that if somehow the correlation between the
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error and the regressor can be made to disappear asymptotically, the limit distribution will be
mixed normal, implying that standard least squares is valid. This is the basis of techniques
such as the “fully modified” technique by Phillips and Hansen (1990), Park’s “canonical
regressions”, and by the so-called leads-and-lags technique. The goal of this section is to
obtain a similar technique in the situation of a nonlinear cointegrating regression

yt = f(xt, θ0) + ut. (22)

Examples of such nonlinear cointegrating regressions can be found in Park and Phillips
(2001); one simple example is the case where

yt = θ01 + θ02a(xt) + ut. (23)

For example, setting a(x) = x2, using the analysis below, it is straightforward to analyze a
linear cointegrating regression when the regressor itself is not I(1), but instead the regressor
equals the square of an I(1) process.
In order to analyze nonlinear cointegrating relations, it will be necessary to borrow several
results and definitions from Park and Phillips (2001). The treatment below uses the ma-
chinery from Park and Phillips, except that the limit theorem proven in this paper is now
applied to Park and Phillips’ setting. The first definition I need is that of H-regularity:

Definition 1 Let

F (λx, π) = κ(λ, π)H(x, π) + R(x, λ, π) (24)

where κ is nonsingular. We say that F is H-regular on Π if:

(a.) H is regular on Π,

(b.) R(x, λ, π) is of order smaller than κ(λ, π) for all π ∈ Π.

We call κ the asymptotic order and H the limit homogeneous function of F . If κ does not
depend upon π, then F is said to be H0-regular.

For the definition of “regular” and “of order smaller than” the reader is referred to Park and
Phillips (2001).
Define

ḟ = (∂f(x, θ)/∂θi), f̈ = (∂2f(x, θ)/∂θi∂θj) (25)

to be all vectors, arranged by the lexicographic ordering of their indices, analogously to
Park and Phillips (2001). Let ḣ denote the limit homogeneous function of H-regular ḟ .
The asymptotic orders of ḟ and f̈ are denoted by κ̇ and κ̈ respectively. Using the above
definitions and assumptions, the following theorem easily follows:
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Theorem 4 Let Assumptions 1 and 2 hold, and let F be specified as in Definition 1. If F
is H-regular on a compact set Π, then as T →∞

T−1κ(T 1/2, π)−1

T∑
t=1

F (xt, π)
as−→

∫ 1

0

H(V (r))dr (26)

uniformly in π ∈ Π. Moreover, if F (., .) is H-regular, then

T−1/2κ(T 1/2, π)−1

T∑
t=1

F (xt, π)ut
d−→

∫ 1

0

H(V (r), π)dU(r) + Λ

∫ 1

0

H ′(V (r), π)dr (27)

as T →∞, where H ′(v, r) denotes (∂/∂v)H(v, r).

Using the above theorem as a tool and invoking the results of Park and Phillips (2001), the
following result for the nonlinear least squares estimator can be shown:

Theorem 5 Let Assumption 1 hold. Assume

a. f is H0-regular on Θ with asymptotic order κ and limit homogeneous function h. In
addition, assume that κ(λ) is bounded away from zero as λ → ∞ and that for all
θ 6= θ0 and δ > 0,

∫
|s|≤δ

(h(s, θ)− h(s, θ0))
2ds > 0;

b. ḟ and f̈ are H-regular on Θ;

c. ‖ (κ̇⊗ κ̇)−1κκ̈ ‖< ∞, and

d.
∫
|s|≤δ

ḣ(s, θ0)ḣ(s, θ0)
′ds > 0 for all δ > 0.

Then

T 1/2κ̇(T 1/2)′(θ̂T − θ0)

d−→ (

∫ 1

0

ḣ(V (r), θ0)ḣ(V (r), θ0)
′dr)−1(

∫ 1

0

ḣ(V (r), θ0)dU(r)+Λ

∫ 1

0

(∂/∂V )ḣ(V (r), θ0)dr)(28)

as T →∞.

The practical implication of the above theorem is that, like in the linear case, a nonlinear
cointegrating regression will not yield valid inference results when the nonlinear regression
is treated in the “naive” way (i.e., assuming that the integration property of the regressor is
of no consequence). We cannot assume that standard errors and F -tests will remain valid in
the absence of exogeneity assumptions. This is because Λ appears in the expression for the
asymptotic variance and because the U(.) and V (.) processes are not independent Gaussian
processes. Therefore, it is desirable to find a “fully modified” type technique for nonlinear
cointegrating regressions, as is developed in the next section.
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5 Fully modified estimation for nonlinear cointegrating

regressions

The “fully modified” procedure for linear cointegrating regressions consists of two elements.
One element in the proof of the asymptotic validity of the “fully modified” procedure is to
essentially make the limiting Brownian motions of the error process and the regressor process
independent, while the second element is to make the expression involving Λ in Equation
(28) disappear. To achieve the first goal, let

Σ∗ =
∞∑

k=−∞

(
Eutut−k Eutvt−k

Eut−kvt Evtvt−k

)
=

(
Σ∗

11 Σ∗
12

Σ∗
21 Σ∗

22

)
. (29)

If we now define

y†t = yt − Σ∗
21(Σ

∗
22)

−1vt = f(xt, θ0) + (ut − Σ∗
21(Σ

∗
22)

−1vt), (30)

and treat y†t as our “new” y variable (note that y†t is observable), it follows that the “new
error” in the above equation has become

αt = ut − Σ∗
21(Σ

∗
22)

−1vt. (31)

Letting AT (r) = T−1/2
∑[rT ]

t=1 αt, then for this αt we have

EAT (r)UT (r) = ET−1

[rT ]∑
t=1

[rT ]∑
s=1

αtvs

= ET−1

[rT ]∑
t=1

[rT ]∑
s=1

(ut − Σ∗
21(Σ

∗
22)

−1vt)vs −→ rΣ∗
21 − rΣ∗

21(Σ
∗
22)

−1Σ∗
22 = 0. (32)

Therefore, the limit Brownian motions generated by partial sums of the αt and the vt are
asymptotically independent. Analogously to the linear case however, it is not sufficient to
simply use y†t instead of yt in the nonlinear least squares minimization objective function.
This is because by Theorem 4,

T−1/2κ(T 1/2, π)−1

T∑
t=1

F (xt, π)αt
d−→

∫ 1

0

H(V (r), π)dA(r) + Λ

∫ 1

0

H ′(V (r), π)dr (33)

where

Λ = lim
T→∞

T−1

T∑
t=1

t∑

l=1

Eαtvl =
∞∑

k=0

Eαtvt−k, (34)
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and note that while by construction,

∞∑

k=−∞
Eαtvt−k = 0, (35)

it is not necessary that Λ =
∑∞

k=0 Eαtvt−k = 0. Therefore, I propose the nonlinear fully

modified least squares estimator θ̃T that results from solving

0 = T−1/2κ̇(T 1/2)′
T∑

t=1

(y†t − f(xt, θ))(∂/∂θ)f(xt, θ) + Λ̂T−1

T∑
t=1

(∂/∂θ)f ′(xt, θ̂T ), (36)

where θ̂T is the standard nonlinear least squares estimator for θ and Λ̂ is some heteroscedas-
ticity and autocorrelation consistent covariance matrix estimate for Λ. Note that for the
standard linear cointegrating regression with a scalar x variable we have f(x, θ) = θ1 + θ2x,
implying that the above problem simplifies to solving

0 = T−1

T∑
t=1

[(y†t − θ1 − θ2xt)(1, xt) + (0, Λ̂), (37)

which returns the “fully modified” estimator as proposed in Phillips and Hansen (1990). For
the “nonlinear fully modified” estimator θ̃T , the following result can be obtained:

Theorem 6 Under the assumptions of Theorem 5,

T 1/2κ̇(T 1/2)′(θ̃T − θ0)

d−→ (

∫ 1

0

ḣ(V (r), θ0)ḣ(V (r), θ0)
′dr)−1(

∫ 1

0

ḣ(V (r), θ0)dA(r)) (38)

as T →∞.

The above theorem implies that the nonlinear fully modified estimator θ̃T produces asymp-
totically valid inference results. This is because A(.) and V (.) are independent Gaussian
processes, and therefore θ̃T and its t-values and F -tests are asymptotically normally dis-
tributed conditional on V (.).
While the above result shows that the fully modified technique can be extended towards
nonlinear cointegrating regressions, it remains an open question whether or not the same
can be done with the “leads and lags” technique and/or Park’s canonical regressions.
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Mathematical appendix

Proof of Lemma 1:

Recall that by assumption,

sup
r∈[0,1]

(|VT (r)− V (r)|+ |UT (r)− U(r)|) ≤ δT = o(1) (39)

almost surely, where δT is a deterministic sequence. It is assumed that the sequence kT

satisfies kT →∞, kT /T → 0, and

kT κ(T 1/2)−2 sup
|x|≤K

sup
x′:|x−x′|≤δT

|F (T 1/2x)− F (T 1/2x′)|2 = o(1). (40)

Note that Assumption refassont.4, kT can actually be chosen in such a way as to satisfy (40).
In addition, define

I1 =

∫ 1

0

H(V (r))dU(r),

I2 = κ(T 1/2)−1

∫ 1

0

F (T 1/2V (r))dU(r),

PT = κ(T 1/2)−1

kT∑
j=1

∫ rj

rj−1

F (T 1/2V (rj−1))dU(r) =

kT∑
j=1

F (T 1/2V (rj−1))(U(rj)− U(rj−1)),

and

G∗
T = κ(T 1/2)−1

kT∑
j=1

F (T 1/2VT (rj−1))(UT (rj)− UT (rj−1)).

Write

GT = (GT −G∗
T ) + (G∗

T − PT ) + (PT − I2) + (I2 − I1) + I1.

I first argue that

|I2 − I1| p−→ 0 (41)

and then that

|PT − I2| p−→ 0. (42)
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Then, I show that

|G∗
T − PT | p−→ 0 (43)

and then the lemma is completed by observing that

UT (rj)− UT (rj−1) =

Tj−1∑
t=Tj−1

(UT ((t + 1)/T )− UT (t/T ))

and therefore

GT = κ(T 1/2)−1

kT∑
j=1

Tj−1∑
t=Tj−1

F (T 1/2VT (t/T ))(UT ((t + 1)/T )− UT (t/T ))

implying that

GT −G∗
T

= κ(T 1/2)−1

kT∑
j=1

Tj−1∑
t=Tj−1

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT (rj−1))) = JT .

To show the result of Equation (41), note that

E(I1 − I2)
2 = E(

∫ 1

0

(F (T 1/2V (r))κ(T 1/2)−1 −H(V (r)))dU(r))2

= E(κ(T 1/2)−1

∫ 1

0

R(V (r), T 1/2)dU(r))2

= κ(T 1/2)−2

∫ 1

0

ER(V (r), T 1/2)2dr

≤ κ(T 1/2)−2

∫ 1

0

a(T 1/2)2P (V (r))2dr
p−→ 0

by Assumption 2a; in case of Assumption 2b,

E(I1 − I2)
2 = E(

∫ 1

0

(F (T 1/2V (r))κ(T 1/2)−1 −H(V (r)))dU(r))2

14



= κ(T 1/2)−2

∫ 1

0

ER(V (r), T 1/2)2dr

≤ ((b(T 1/2)/κ(T 1/2))2)

∫ 1

0

Q(T 1/2V (r))2dr

= ((b(T 1/2)/κ(T 1/2))2)

∫ ∞

−∞
L(1, s)Q(T 1/2s)ds

= ((b(T 1/2)/κ(T 1/2))2)

∫ ∞

−∞
L(1, s)Q(x)dx

where L(., .) denotes the local time of the Brownian motion process V (.), and by Assumption
2b, the last term goes to 0 as T →∞. To show the result of Equation (42), first note that,
for all δ > 0,

lim sup
T→∞

P (|PT − I2| > δ)

≤ lim sup
K→∞

(lim sup
T→∞

P (|PT − PTK | > δ/3) + lim sup
T→∞

P (|PTK − ITK | > δ/3)

+ lim sup
T→∞

P (|ITK − I2| > δ/3)),

where for arbitrary small η > 0,

ITK = κ(T 1/2)−2

kT∑
j=1

∫ rj

rj−1

F (T 1/2V (r))

×I( sup
r∈[rj−1,rj ]

|V (r)− V (rj−1)| ≤ k
−1/2+η
T )I( sup

r∈[rj−1,rj ]

|V (r)| < K)dU(r)

and

PTK = κ(T 1/2)−2

kT∑
j=1

∫ rj

rj−1

F (T 1/2V (rj−1))

×I( sup
r∈[rj−1,rj ]

|V (r)− V (rj−1)| < k
−1/2+η
T )I( sup

r∈[rj−1,rj ]

|V (r)| < K)dU(r).

15



This is because

lim sup
K→∞

lim sup
T→∞

P (|PT − PTK | > 0)

≤ lim sup
K→∞

lim sup
T→∞

P ( sup
r,r′:|r−r′|≤maxj |rj−rj−1|

|V (r)− V (r′)| ≥ k
−1/2+η
T )

+ lim sup
K→∞

P ( sup
r∈[0,1]

|V (r)| ≥ K) = 0

where the last result follows because

sup
r,r′∈[0,1]:|r−r′|≤δ

|V (r)− V (r′)| ≤ 74δ1/2| log(δ)|1/2 almost surely.

See Pollard (1994, page 146) for this last result. A similar argument holds for |ITK − I2|.
Next, note that

|PTεK − ITεK |

= κ(T 1/2)−1

kT∑
j=1

∫ rj

rj−1

(F (T 1/2V (rj−1))− F (T 1/2V (r)))I( sup
r∈[rj−1,rj ]

|V (r)− V (rj−1)| < k
−1/2+η
T )

×I( sup
r∈[rj−1,rj ]

|V (r)| < K)dU(r),

and therefore

E|ITεK − PTεK |2

= κ(T 1/2)−2

kT∑
j=1

∫ rj

rj−1

E(F (T 1/2V (r))− F (T 1/2V (rj−1)))
2

×I( sup
r∈[rj−1,rj ]

|V (r)− V (rj−1)| < k
−1/2+η
T )I( sup

r∈[rj−1,rj ]

|V (r)| < K)dr

≤ κ(T 1/2)−2 sup
|x|≤K

sup
x′:|x−x′|<k

−1/2+η
T

|F (T 1/2x)− F (T 1/2x′)|2 → 0

as T →∞ by Assumption 2.4.
In order to show the result of Equation (43) and thereby complete the proof of this lemma,
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set aj = κ(T 1/2)−1T (T 1/2VT (rj)), αj = κ(T 1/2)−1F (T 1/2V (rj)), bj = UT (rj), and βj = U(rj),
and note that by summation by parts, as in Davidson (1994),

G∗
T − Pn =

kT∑
j=1

(aj−1 − αj−1)(bj − bj−1) + αk(bk − βk)−
kT∑
j=1

(bj − βj)(αj − αj−1).

It will be shown that all three terms converge to 0 in probability. For the first term, we have

[

kT∑
j=1

(aj−1 − αj−1)(bj − bj−1)]
2

= [κ(T 1/2)−1

kT∑
j=1

(F (VT (rj−1))− F (V (rj−1)))(UT (rj))− UT (rj−1))]
2

≤ κ(T 1/2)−2

kT∑
j=1

(F (VT (rj−1))− F (V (rj−1)))
2

kT∑
j=1

(UT (rj))− UT (rj−1))
2.

Next, note that

E

kT∑
j=1

(UT (rj))− UT (rj−1))
2 = O(1)

because Assumption 1 implies that E(UT (rj))− UT (rj−1))
2 ≤ C(rj − rj−1), and therefore it

suffices to show that

κ(T 1/2)−2

kT∑
j=1

(F (T 1/2VT (rj−1))− F (T 1/2V (rj−1)))
2 = oP (1).

The latter result holds because supr∈[0,1] |VT (r)| = OP (1) and therefore with arbitrarily large
probability,

κ(T 1/2)−2

kT∑
j=1

(F (T 1/2VT (rj−1))− F (T 1/2V (rj−1)))
2

≤ kT κ(T 1/2)−2 sup
|x|≤K

sup
x′:|x−x′|≤δT

|F (T 1/2x)− F (T 1/2x′)|2 = o(1)
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by the definition of kT . A similar argument holds for

kT∑
j=1

(bj − βj)(αj − αj−1).

Finally, note that

αk(bk − βk) = κ(T 1/2)−1F (T 1/2V (1))(UT (1)− U(1)) = OP (δT ) = oP (1),

which completes the proof of this lemma. ¤

Next, I state two lemmas that will be needed to complete the proof of Theorem 1.

Lemma 2 Assume that xt ∈ Ft, and assume that for l ≥ mT and 1 ≤ t ≤ n, xt satisfies

‖ E(xTt|Ft−l) ‖2≤ aT γT (l)

and

(θ2T − θ1T )a2
T

∞∑

l=0

γT (l)2(log(l + 1))2 → 0. (44)

Then if

m2
T

T∑
t=1

Ex2
Tt → 0,

we have

θ2T∑

t=θ1T

xTt
p−→ 0.
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Proof of Lemma 2:

Note that for all positive sequences mT such that mT →∞ as n →∞,

T∑
t=1

xTt =
T∑

t=1

(xTt − E(xTt|Ft−mT
)) +

T∑
t=1

E(xTt|Ft−mT
),

and by Lemma 2.1 of Hall and Heyde (1980),

‖
T∑

t=1

E(xTt|Ft−mT
) ‖2

2≤ C(θ2n − θ1n)a2
T

∞∑

l=mT

γT (l)2(log(l + 1))2 → 0

by assumption. Also,

‖
T∑

t=1

(xTt − E(xTt|Ft−mT
)) ‖2=‖

mT−1∑
j=0

T∑
t=1

(E(xTt|Ft−j)− E(xTt|Ft−j−1)) ‖2

≤
mT−1∑
j=0

‖
T∑

t=1

(E(xTt|Ft−j)− E(xTt|Ft−j−1)) ‖2

≤ 2mT (
T∑

t=1

Ex2
Tt)

1/2 → 0

by assumption. ¤

Lemma 3 If zt = (ut, wt) is L2-NED on an α-mixing sequence vt such that E(zt|vt, vt−1, . . .) =
zt, |zt| ≤ BT , and with NED sequence ν(m), then for m ≥ 0

‖ E(utwt|Ft−2m)− Eutwt ‖2≤ 4BT ν(m) + 6BT ‖ ut ‖p α(m)1−1/p.
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Proof:

Define V t
t−m = σ({vt, . . . , vt−m}), and note that

E(utwt|Ft−2m) = E((ut − E(ut|V t
t−m))wt|Ft−2m)

+E(E(ut|V t
t−m))(wt − E(wt|V t

t−m)|Ft−2m) + E(E(ut|V t
t−m)E(wt|V t

t−m)|Ft−2m),

and therefore

‖ E(utwt|Ft−2m)− Eutwt ‖2

≤ 2 ‖ (ut − E(ut|V t
t−m))wt ‖2 +2 ‖ (wt − E(wt|V t

t−m))E(ut|V t
t−m) ‖2

+ ‖ E(E(wt|V t
t−m)E(ut|V t

t−m)|Ft−2m)− E(E(wt|V t
t−m)E(ut|V t

t−m)) ‖2

≤ 2BT ν(m) + 2BT ν(m) + 6BT α(m)1/2−1/p,

where the last inequality follows by noting that E(wt|V t
t−m)E(ut|V t

t−m) is alpha-mixing and
by Theorem 17.5 of Davidson (1994). For the uniform mixing case, a similar result holds,
but for this case we need the inequality for uniform mixing processes from Theorem 17.5 of
Davidson (1994). ¤

Proof of Theorem 1:

Given the result of Lemma 1, it suffices to determine the limit distribution of JT . Given
a kT sequence that satisfies kT = o(T 1/2) and the earlier conditions, we can always find a
positive integer-valued sequence mT such that mT → ∞, yet increases slowly enough such
that kT mT = o(T 1/2) and mT ≤ min1≤j≤kT

(Tj − Tj−1 − 1) = T/kT − 1. Because of that last
requirement, we can write, for T large enough,

JT =

kT∑
j=1

Tj−1∑
t=Tj−1

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT (rj−1)))

=

kT∑
j=1

Tj−1+mT−1∑
t=Tj−1

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT (rj−1)))
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+

kT∑
j=1

Tj−1∑
t=Tj−1+mT

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT ((t−mT )/T ))− F (T 1/2VT (rj−1)))

+

kT∑
j=1

Tj−1∑
t=Tj−1+mT

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT ((t−mT )/T )))

= S1 + S2 + S3,

say. In order to find the limit distribution of S1 + S2 + S3, we need the following lemma’s:

Lemma 4 Under Assumptions 1 and 2,

S1
p−→ 0.

Proof of Lemma 4:

Note that we can choose a Kε such that

lim sup
T→∞

P ( sup
r∈[0,1]

|VT (r)| ≤ Kε) > 1− ε,

and also note that for T large enough, by Equation (39) and the modulus of continuity for
Brownian motion,

|VT (t/T )− VT (rj−1)| ≤ |VT (t/T )− V (t/T )|+ |V (t/T )− V (rj−1)|+ |VT (rj−1)− VT (rj−1)|
≤ 2δT + k

−1/2+η
T .

Therefore, with arbitrarily large probability,

S1 = κ(T 1/2)−1

kT∑
j=1

Tj−1+mT−1∑
t=Tj−1

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT (rj−1)))

≤ κ(T 1/2)−1T−1/2

kT∑
j=1

Tj−1+mT−1∑
t=Tj−1

|ut+1| sup
|x|≤Kε

sup
x′:|x−x′|≤2δT +k

−1/2+η
T

|F (T 1/2x)− F (T 1/2x′)|

= oP (mT T−1/2kT ) = oP (1)

because kT mT = o(T 1/2) by assumption. ¤

For S2, we have the following result:

Lemma 5 Under Assumptions 1 and 2,

S2
p−→ 0.
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Proof of Lemma 5:

Assume that, in addition to the earlier requirements on mT , mT diverges slowly enough to
give, for all K > 0,

κ(T 1/2)−2m2
T sup
|x|≤K

sup
x′:|x−x′|≤2δT +k

−1/2+η
T

|F (T 1/2x)− T (T 1/2x′)|2 → 0.

Note that for all K > 0, S2 is asymptotically equivalent to

κ(T 1/2)−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

(UT ((t + 1)/T )− UT (t/T ))×

(F (T 1/2VT ((t−mT )/T ))− F (T 1/2VT (rj−1)))I1tmT jI2tmT j

where

I1tmT j = I(|VT ((t−mT )/T )− VT (rj−1)| ≤ 2δT + 74k
−1/2+η
T )

and

I2tmT j = I(|VT ((t−mT )/T )| ≤ K)I(|VT (rj−1)| ≤ K)

because

sup
t∈[Tj−1+mT ,Tj−1],j∈[1,kT ]

|VT ((t−mT )/T )− VT (rj−1)|

≤ sup
r,r′:|r−r′|≤maxj |rj−rj−1|

|VT (r)− VT (r′)|

≤ sup
r,r′:|r−r′|≤k−1

T

|V (r)− V (r′)|+ 2δT

≤ 2δT + k
−1/2+η
T

for T large enough by the modulus of continuity for Brownian motion. Also,

lim sup
T→∞

P (∃t ∈ [1, n] : |VT (t/T )| > K) = lim sup
T→∞

P ( sup
r∈[0,1]

|VT (r)| > K) → 0

as K →∞. Next, define

Ft = σ({(wt, vt), (wt−1, vt−1), . . .}),
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and note that the summands

κ(T 1/2)−1(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT ((t−mT )/T ))− F (T 1/2VT (rj−1)))I1tmT jI2tmT j

satisfy

‖ κ(T 1/2)−1E[(Wn((t + 1)/T )−Wn(t/T ))(F (T 1/2VT ((t−mT /T ))− F (T 1/2VT (rj−1)))×
I1tmT jI2tmT j|Ft−l] ‖2

=‖ κ(T 1/2)−1(F (T 1/2VT ((t−mT )/T ))− F (T 1/2VT (rj−1)))×
I1tmT jI2tmT jE[(UT ((t + 1)/T )− UT (t/T ))|Ft−l] ‖2

≤ 2T−1/2κ(T 1/2)−1 sup
|x|≤K

sup
x′:|x−x′|≤2δT +k

−1/2+η
T

|F (T 1/2x)− T (T 1/2x′)|ψ(l)

for l ≥ mT , where the ψ(l) sequence denotes the L2-mixingale sequence of wt - which by
Assumption 1 is of size -1/2 - and because I1tmT j ∈ Ft−mT

and I2tmT j ∈ Ft−mT
. Now, by

Lemma 2, it follows that S2
p−→ 0 because the requirement of Equation (44) is met and in

addition,

κ(T 1/2)−2m2
T

kT∑
j=1

Tj−1∑
t=Tj−1+mT

E(UT ((t + 1)/T )− UT (t/T ))2×

(F (T 1/2VT ((t−mT )/T ))− F (T 1/2VT (rj−1)))
2I1tmT jI2tmT j

≤ κ(T 1/2)−2m2
T T−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

sup
|x|≤K

sup
x′:|x−x′|≤2δT +74k

−1/2
T | log(k−1

T )|1/2

|F (T 1/2x)− F (T 1/2x′)|2Ew2
t+1

≤ κ(T 1/2)−2m2
T sup
|x|≤K

sup
x′:|x−x′|≤2δT +k

−1/2+η
T

|F (T 1/2x)− T (T 1/2x′)|2Ew2
t → 0

as n →∞ by assumption. ¤

In view of the above lemmas, the result of the following lemma now suffices to complete the
proof of Theorem 1:

Lemma 6 Under Assumptions 1 and 2,

S3
p−→ Λ

∫ 1

0

T ′(U(r))dr.
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Proof of Lemma 6:

Assume that in addition to the earlier requirements, mT also satisfies

mT κ(T 1/2)−1T 1/2 sup
|x|≤K

sup
x′:|x−x′|≤4δT +k

−1/2+η
T

|F ′(T 1/2x)− F ′(T 1/2x′)| → 0

for all K > 0. Note that by the Taylor series expansion,

κ(T 1/2)−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

(UT ((t + 1)/T )− UT (t/T ))(F (T 1/2VT (t/T ))− F (T 1/2VT ((t−mT )/T )))

= κ(T 1/2)−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

(UT ((t + 1)/T )− UT (t/T ))×

T 1/2(VT (t/T )− VT ((t−mT )/T ))F ′(T 1/2ṼTtmT
),

where |VT (t/T )− ṼTtmT
| ≤ |VT (t/T )− VT ((t−mT )/T )|. The last statistic is asymptotically

equivalent to

S ′2 = κ(T 1/2)−1T 1/2

kT∑
j=1

Tj∑
t=Tj−1+m+1

(UT ((t + 1)/T )− UT (t/T ))×

(VT (t/T )− VT ((t−mT )/T ))F ′(T 1/2VT (rj−1)).

To see this, note again that for T large enough,

|VT (rj−1)− ṼTtmT
| ≤ |VT (rj−1)− VT (t/T )|+ |VT (t/T )− VT ((t−mT )/T )|

≤ 2 sup
r,r′:|r−r′|≤maxj |rj−rj−1|

|VT (r)− VT (r′)| ≤ 4δT + k
−1/2+η
T

almost surely by the same argument as in the proof of Lemma 5. With the above result,
again noting that

sup
r∈[0,1]

|VT (r)| ≤ Kε

with arbitrarily large probability, it follows that

|S2 − S ′2|
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≤ κ(T 1/2)−1T 1/2

kT∑
j=1

Tj−1∑
t=Tj−1+mT

|UT ((t + 1)/T )− UT (t/T )||VT (t/T )− VT ((t−mT )/T )|×

|F ′(T 1/2ṼTtmT
)− F ′(T 1/2VT (rj−1))|

≤ 2κ(T 1/2)−1T 1/2 sup
x,x′:|x−x′|≤4δT +k

−1/2+η
T

|F ′(T 1/2x)− F ′(T 1/2x′)|×

kT∑
j=1

Tj−1∑
t=Tj−1+mT

|UT ((t + 1)/T )− UT (t/T )||VT (t/T )− VT ((t−mT )/T )|, (45)

and the second term in Equation (45) is OP (mT ) because

E

kT∑
j=1

Tj−1∑
t=Tj−1+mT

|UT ((t + 1)/T )− UT (t/T )||VT (t/T )− VT ((t−mT )/T )|

= ET−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

|ut+1|
mT∑

k=0

|vt−k| ≤ mT ‖ ut ‖2‖ vt ‖2

and therefore, the expression from Equation (45) converges to zero in probability because
by assumption,

mT κ(T 1/2)−1T 1/2 sup
x,x′:|x−x′|≤4δT +k

−1/2+η
T

|F ′(T 1/2x)− F ′(T 1/2x′)| → 0.

Defining

S ′′2 =

kT∑
j=1

Tj∑
t=Tj−1+mT +1

(UT ((t + 1)/T )− UT (t/T ))(VT (t/T )− VT ((t−mT )/T ))H ′(T 1/2VT (rj−1)),

we have that |S ′2 − S ′′2 |
p−→ 0 because

|S ′2 − S ′′2 |

≤ |
kT∑
j=1

Tj∑
t=Tj−1+mT +1

(UT ((t + 1)/T )− UT (t/T ))(VT (t/T )− VT ((t−mT )/T ))×
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(T 1/2κ(T 1/2)−1F ′(T 1/2VT (rj−1))−H ′(T 1/2VT (rj−1)))|

≤ |
kT∑
j=1

Tj∑
t=Tj−1+mT +1

|UT ((t + 1)/T )− UT (t/T )||VT (t/T )− VT ((t−mT )/T )|×

κ(T 1/2)−1|R(VT (rj−1), T
1/2)|,

and the last term converges to zero for mT diverging slowly enough under Assumption 3.
Next, note that

S ′′2 =

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(UT ((t + 1)/T )− UT (t/T ))(VT ((t− k)/T )− VT ((t− k − 1)/T ))

= T−1

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(ut+1vt−k − Eut+1vt−k)

+T−1

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

Eut+1vt−k. (46)

The first term converges to 0 here. To see this, note that for n large enough, we have

T−1

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(ut+1vt−k − Eut+1vt−k)

= T−1

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(uBT
t+1v

BT
t−k − EuBT

t+1v
BT
t−k) + oP (1)

where

uBT
t = utI(|ut| ≤ BT ) + BT I(ut > BT )−BT I(ut < −BT )

and

vBT
t = vtI(|vt| ≤ BT ) + BT I(vt > BT )−BT I(vt < −BT ),
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and BT = m
1/(p−2)+η
T for some η > 0, and mT is assumed to satisfy, in addition to the earlier

requirements,

m
3+2/(p−2)+2η
T kT T−1 = m3

T B2
T kT T−1 → 0.

This is because supr∈[0,1] |H ′(VT (r))| = OP (1) and

ET−1

kT∑
j=1

|
Tj−1∑

t=Tj−1+mT

mT−1∑

k=0

ut+1vt−k − uBT
t+1v

BT
t−k|

≤ T−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

‖ ut+1I(|ut+1| > BT ) ‖2‖ vt−kI(|vt−k| > BT ) ‖2

≤ T−1

kT∑
j=1

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(E|ut+1|pB2−p
T )1/2(E|vt−k|pB2−p

T )1/2

≤ mT B2−p
T (E|vt|p)1/2(E|ut|p)1/2 = O(m

η(2−p)
T ) = o(1)

by assumption. In order to show that the first term in Equation (46) converges to zero, it
now only remains to show that

T−1

kT∑
j=1

H ′(VT (rj−1))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(uBT
t+1v

BT
t−k − EuBT

t+1v
BT
t−k)

p−→ 0.

To show this, it suffices to show that

‖ kT T−1

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

(uBT
t+1v

BT
t−k − EuBT

t+1v
BT
t−k) ‖2≤ cT → 0. (47)

Now, it is well-known that (uBT
t , vBT

t ) is again near epoch dependent with the same ν(m)
sequence as (ut, vt). Therefore, by Lemma 3,

‖ kT T−1

mT−1∑

k=0

E(uBT
t+1v

BT
t−k|Ft−l)− EuBT

t+1v
BT
t−k ‖2

≤ 4kT T−1mT BT ν(l −mT ) + 6kT T−1BT mT ‖ ut ‖p α(l −mT )1/2−1/p
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for l ≥ mT , implying that we can set γT (l) = α(l − mT )1/2−1/p + ν(l − mT ) and aT =
CkT mT T−1BT for Lemma 2, and note in addition that

‖ kT T−1

mT−1∑

k=0

uBT
t+1v

BT
t−k ‖2≤ kT T−1mT BT ‖ vt ‖2 .

Therefore,

(n/kT )a2
T

∞∑

l=mT

γT (l)2(log(l + 1))2

= (n/kT )(CmT kT T−1BT )2

∞∑

l=mT

(α(l −mT )1/2−1/p + ν(l −mT ))2(log(l + 1))2

≤ C2nkT m2
T T−2B2

T (log(mT ))2

∞∑

l=1

(α(l)1/2−1/p + ν(l))2(log(l + 1))2

= O(T−1kT m2
T (log(mT ))2B2

T ) = o(1)

by assumption, noting that the summation is finite by Assumption 1.4. In addition,

mT

Tj−1∑
t=Tj−1+mT

Ex2
Tt = O(mT (T/kT )(kT T−1mT BT )2) = O(m3

T kT B2
T T−1) = o(1)

by assumption, implying that the conditions of Lemma 2 are satisfied (note that Lemma 2
provides a cn sequence (as defined in Equation (47)) that does not depend on j). This leaves

T−1

kT∑
j=1

H ′(VT (rj))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

Eut+1vt−k.

Define ρ(k) = Eutvt−k (which is possible by stationarity), and note that
∑∞

k=0 |ρ(k)| < ∞
by Assumption 1. Then the last statistic equals

T−1

kT∑
j=1

H ′(VT (rj))

Tj−1∑
t=Tj−1+mT

mT−1∑

k=0

ρ(k + 1)
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= T−1

kT∑
j=1

T ′(UT (rj))(Tj − Tj−1 −mT )

mT−1∑

k=0

ρ(k + 1)

= T−1

kT∑
j=1

T ′(UT (j/kT ))(T/kT −mT )

mT−1∑

k=0

ρ(k + 1)

= oP (1) + k−1
T

kT∑
j=1

T ′(UT (j/kT ))
∞∑

k=0

ρ(k + 1)
p−→ Λ

∫ 1

0

T ′(U(r))dr

where the last result follows from the continuous mapping theorem. ¤

Proof of Theorem 2:

Theorem 2 is a special case of Theorem 1 for the case R(., .) = 0.

Proof of Theorem 3:

Theorem 3 follows from a simple application of Theorem 2.

Proof of Theorem 4:

Theorem 4 combines Theorem 1 with Theorem 3.3 of Park and Phillips (2001).

Proof of Theorem 5 and Theorem 6:

Theorems 5 and 6 are consequences of the fact that all conditions for obtaining the limit
theory of Park and Phillips (2001) are satisfied, with the one modification to the limit
distribution as directed by Theorem 1. For Theorem 6, it is easy to inspect that the analysis
of Phillips and Hansen (1990) goes through with minor modifications.
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