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Abstract

This paper presents a model studying the effect of city size on a city’s unemployment
rate. The model demonstrates that due to the thick market effect on improving the match-
ing probability between jobs and workers, larger cities have lower unemployment rates,
shorter unemployment cycles, and shallower recessions. Our empirical tests are consistent
with the predictions of the model. In particular, we find that an increase of two standard
deviations in city size lowers the unemployment rate by about a half percentage point, de-
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1 Introduction

Unemployment rates vary widely across cities in the United States. Among the 295 Primary

Metropolitan Statistical Areas (PMSAs), the average unemployment rate from 1981 to 1997

ranged from 2.4% in Columbia, Missouri (PMSA code 1740), to 19.6% in McAllen-Edinburg-

Mission, Texas (PMSA code 4880). There are two common hypotheses to explain this phe-

nomenon in the literature: the industry composition hypothesis and the risk diversification

hypothesis.

The industry composition hypothesis is very intuitive: different cities have different indus-

try compositions.1 Thus, nation-wide industry-specific shocks will have different composite

effects on unemployment rates in different cities. The second hypothesis is based on the ob-

servation that in the local labor market, prosperous industries absorb the unemployment of

those experiencing contractions. Therefore, a city with a more diversified industry structure

has a lower variance in the labor demand. As a result, the frictional unemployment rate in this

city is also lower. For example, Mills and Hamilton (1984) argue that a larger city is usually

more industrially diverse and thus has a lower unemployment rate. Neumann and Topel (1991)

provide a formal model on the effect of risk diversification.

A few empirical studies have confirmed both the industry composition hypothesis and the

risk diversification hypothesis, e.g., Simon (1988) and Neumann and Topel (1991). Simon’s

study is based on data at the 2-digit SIC level for 91 large PMSAs of the U.S. over 1977–1981.

He finds that the frictional unemployment rate declines as local industrial diversity rises. He

defines the frictional unemployment rate as the city’s aggregate unemployment rate net of the

effects of national shocks and industry composition. Using U.S. data at the state level over

1950–1985, Neumann and Topel demonstrate that after the effect of industry composition is

controlled for, the unemployment rate is significantly and persistently lower in labor markets

where the sectoral demand risk is more diversified.

This paper offers a model that provides yet another explanation of the wide difference

1In this paper, the term “city” has the same meaning as the the term “PMSA.”
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in unemployment rates across cities: the thick market effect and the agglomeration economy

associated with it. In addition to the difference in the average unemployment rate, our model

can also explain the variation in the frequency/duration, and the peak unemployment rate

fluctuations.

The intuition of our model is as follows. When number of unemployed workers and job

openings both increase, the matching probability rises due to the effect of thick market. When

market is thick enough to reach a certain size, workers expected returns from search is higher

than the cost of search, workers start to search and matches occur. Due to the thick market

effect, unemployed workers accumulate in the city until the local labor market reaches the

certain size. The larger a city’s local market, the faster for the city to reach the certain

size.2 Therefore, the local labor market becomes active at a certain frequency, which results

in cyclical fluctuations of the city’s unemployment rate. For example, job fairs in a city are

usually held at intervals instead of continuously.

In particular, the model predicts a certain type of agglomeration economy, that is, larger

cities on average have shorter unemployment cycles and shallower recessions. Because a larger

city typically generates more unemployed workers during each time period, it takes less time

for the city’s labor market to reach a large enough size. Therefore, its labor market becomes

active more frequently and its unemployment cycles are shorter on average. It also follows

that the peak unemployment rate and average unemployment rate are both lower. A lower

peak unemployment rate indicates a shallower recession. This particular type of agglomeration

economy is based on the thick market effect in the local labor market.3

Empirically, this paper tests three predictions of our model: (1) In addition to the effects

2Diamond (1982) presents a model of the thick market effect that hinges on the search cost, instead of on

the matching probability as in our model. His idea is that the more activity there is on one side of the market,

the lower the contacting costs faced by those who are looking for trading partners are on the other side. Howitt

and McAfee (1987) provide an explicit model of the labor market, in which Diamond’s thick market effect is

present.
3For a general discussion of the agglomeration economy, see Henderson (1986, 1988). In addition, Wilson

(1988) provides an empirical test for the agglomeration economy.
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of risk diversification and industry composition, the unemployment rate in a city should be

negatively correlated with city size. (2) The length of an unemployment cycle is shorter in a

larger city size. (3) The peak unemployment rate drops as city size increases.

While studying how the average and peak unemployment rates vary across cities has im-

portant policy implications, it is equally important to understand the variation in the duration

of the unemployment cycle. The duration of an unemployment cycle is the time length of the

cycle.4 Although the length of unemployment cycles is different from the mean unemployment

duration of individuals, they are positively related. In a simple version of model, a cycle of

unemployment starts with full employment. The number of unemployed workers accumulates

over time until it reaches a critical size when matches occur and everyone is employed. In this

model, if the accumulation of unemployment is linear, then the length of the unemployment

cycle is twice as long as the mean unemployment duration of individuals.

To find the relationship between the unemployment rate and city size, we use a linear

regression model that includes the log of average city size as one of the explanatory variables.

One way to test the negative correlation between the length of an unemployment cycle and

city size is by using spectral analysis. If we think of the time series as compounded cycles

with different frequencies, the spectral density of a certain frequency measures how much

the cycle associated with this specific frequency contributes to fluctuations in the time series.

We consider two types of frequencies: the max-frequency and the mean-frequency. Since a

frequency is the inverse of a cycle length, our model predicts that the two types of frequencies

are positively correlated with the city size.

Another way to find out the relationship between length of unemployment cycles and city

size is by conducting a duration analysis in which we decompose a whole unemployment cycle

into two stages: the peak-to-trough stage (the expansion in the economy) and the trough-to-

peak stage (the contraction in the economy). In particular, our model predicts that the length

of the trough-to-peak is negatively related to the city size.

Testing a negative relationship between peak unemployment and city size is relatively

4A formal definition of the duration of an unemployment cycle is given in Section 5.
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straightforward. After identifying peak points in unemployment cycles, we construct an average

peak unemployment rate for each city and then find out its relationship with the log of average

city size.

The empirical results in this paper are consistent with the previous three predictions of the

model. In particular, we find that an increase of two standard deviations in city size lowers

the unemployment rate by about a half percentage point, reduces the unemployment cycle by

about one month, and lowers the peak unemployment rate by .3 percentage points.

The rest of the paper is organized as follows: Section 2.1 presents the theoretical model

that underlies the later empirical tests. Section 2.2 discusses the data. Section 3 investigates

how the level of the unemployment rate is influenced by city size. Section 4 conducts the

spectral analysis on patterns of cyclical fluctuations in unemployment rate. Section 5 carries

out the duration analysis on the average length of unemployment cycles; it also studies the

peak unemployment rates. Section 6 concludes.

2 The Model and the Data

2.1 The Model

In this section, we present a simple model that illustrates the effect of the thick market and

its associated agglomeration economy on local unemployment rate fluctuations.

Let N be the number of workers in a city who are immobile across cities, and let this be

the measure of city size. Let U be the number of unemployed workers in the city, and let V

be the job openings in the city. Both workers and jobs are heterogeneous, denoted as a for a

worker and b for a job. One may interpret a as an index for ability and b as the capital stock

invested in the job. For illustration purpose, assume each firm has only one opening.

A firm’s profit from a job opening b is given by:

π(a, b) > 0 if and only if a > b. (1)

where ∂π(a, b)/∂a > 0. The firm prefers a higher a to a lower a. Equation (1) also indicates
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a match occurs if and only if a > b. Intuitively, a certain ability is required for a match to be

productive.

An unemployed worker chooses whether to actively look for job or not. If he does, he

incurs certain search cost, c(a); otherwise, his utility is zero. If the worker participates the job

market, his utility function is given by:

W (a, b) =



w(a, b) − c(a), if matches with firm b;

−c(a), if no match.
(2)

where w(a, b) is the wage from this match. We assume w(a, b) > c(a) and ∂W (a, b)/∂b =

∂w(a, b)/∂b > 0. since a more capital intensive job typically pays more. The worker will

accept any job offer, but he prefers a more capital intensive job. The worker is uncertain if he

is going to get any offer before he starts actively searching for jobs..

The matching mechanism considered here is very simple. All job openings b’s are posted

in a centralized bulletin. All workers also list their ability a on this bulletin. Firm b is willing

to match with any a if a > b but prefers a higher a to a lower a. Worker a is willing to match

with any firm b but prefers a higher b to a lower b. A match occurs between a and b if and only

if that b is the best choice available for a and vice versa. In such a model, Gan and Li (2002)

show that the probability of matching increases when total number of workers and total of

number jobs increase. To illustrate the intuition of this result, consider the following example.

First, consider a market with one worker and one job opening. Let a and b are randomly

drawn from the same distribution. The matching probability in this case is 1/2 since Pr(a >

b) = 1/2.

Then consider a market with two workers, (a1, a2) and two openings, (b1, b2). All (a1, a2)

and (b1, b2) are randomly drawn from the same distribution. Further let a(1) > a(2) and

b(1) > b(2). Since ai and bi are from the same distribution, the order statistics a(i) and b(i) are

also from the same distribution. Given this, we have:

Pr(a(1) > b(1)) = 1/2, and Pr(a(2) > b(2)) = 1/2. (3)

If (3) were the only case that workers and openings match, the matching probability is 1/2.
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However, an additional chance exist when a(1) < b(1) and a(2) < b(2) since it is still possible

to have a(1) > b(2). This additional chance of matching is the source of the effect of a thicker

market. In fact, the matching probability in this case is 7/12.

Formally, Gan and Li (2002) present mathematical matching probabilities as both number

of workers and number of openings increase. They conclude that a thicker market has a higher

matching probability. This result holds when number of workers does not equal to number of

workers U 6= V , as long as U/V is bounded from infinity or zero as U → ∞. In the following
discussion we let U = V for simplicity.

Let a worker a’s probability of being matched be Pr(a,U). The thick market effect indicates

that ∂ Pr(a,U)/∂U > 0. The expected return from participating labor market is:

E(W ) =
∫
(Pr(a,U)w(a, b) − c(a)) fb(b)db

= Pr(a,U)w∗(a)− c(a)
(4)

where fb(b) is the distribution of b and w
∗(a) = Eb[w(a, b)].

When the number of unemployed U (and number of openings V ) increases, Pr(a,U) in-

creases. When market size is large enough, E(W ) will become positive and the worker will

participate in the job market. Let the critical size of the job market, n̄, be such that:

E(W ) = Pr(a, n̄)w∗(a)− c(a) = 0. (5)

The solution to (5), n̄(a), is a function of a. If E(W ) in (4) can be separated into two parts,

i.e., E(W ) = P (U, V ) · s(a), the critical market size does not depend on the a, i.e., n̄(a) = n̄.
In this case, all workers in the market assume the same critical market size.

More generally, we focus on the mean value of n̄(a). Let n̄∗ = E[n̄(a)]. We claim that the

the existence of such a critical minimum market size leads to the cyclical fluctuations in the

unemployment rate in the local market.5

Let us normalize the time of a clearance of the local labor market as time t = 0. Then

at the beginning of time t = 1 the unemployment in the local market is zero. Let Ut be the

5A strategic version of the current model can be found in Zhang (2002).
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number of accumulated unemployed workers by t. Let T be the number of time intervals such

that:

UT ≥ n̄∗ > UT−1. (6)

The inequalities in (6) say that T is the smallest number of time intervals such that the

accumulated number of unemployed workers in the local market will be larger or equal to the

minimum market size n̄∗. Assume that the separation rate of a worker-job pair during any

time period is ν, we have:

Ut = Ut−1 + ν(N − Ut−1), 1 ≤ t ≤ T, U0 = 0.

Solving the above difference equation, we get:

Ut = N(1− (1− ν)t), 1 ≤ t ≤ T, U0 = 0. (7)

The unemployment rate at the end of time t, denoted as ut, is thus:

ut = Ut/N = 1− (1− ν)t, 1 ≤ t ≤ T, U0 = 0. (8)

Clearly, ut increases with t, which reflects the fact that over time, as the unemployed workers

accumulate in the local market, the unemployment rate goes up. The average unemployment

rate over the time interval [1, t] is:

ūt ≡
∑t
i=1 ui
t
, 1 ≤ t ≤ T, U0 = 0, (9)

= 1− 1− ν
ν

(
1− (1− ν)t

t

)
.

From (9), ∂ūt/∂t > 0. The logic is: since ut increases as t increases, its average over t, ūt,

also goes up with t.

At time T , the number of accumulated unemployed workers just reaches the critical mini-

mum size for the labor market to clear. According to (6) and (7),

N(1− (1− ν)T ) ≥ n̄∗ > N(1− (1− ν)T−1).
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Rearrange the above inequality as follows:

T ≥ ln (1− n̄
∗/N)

ln(1− ν) > T − 1. (10)

From (10), we can see that T decreases as N increases. Intuitively, it takes less time for

a larger city to accumulate enough unemployed workers in the local labor market, given ν.

Because T measures the length of time from the trough to the peak of an unemployment cycle,

the length of unemployment cycles is therefore negatively correlated with city size.

At time T , the unemployment rate is at its highest. From (8), the peak point unemployment

rate is given by:

uT = 1− (1− ν)T . (11)

Equation (11) says that the peak unemployment rate uT increases as T increases. To relate

with city size, the peak unemployment rate decreases as city size increases.

According to (9), the average unemployment rate over the time interval [1, T ] is:

ūT = 1− 1− ν
ν

(
1− (1− ν)T

T

)
. (12)

Again, Equation (12) says that the average unemployment rate over a cycle increases as T

increases. In terms of city size, our model predicts that the average unemployment rate over

a cycle is lower for larger cities.

To better illustrate our model, we draw the unemployment fluctuation rate in two hypo-

thetical markets in Figure 1. We let the probability of separation be constant at ν = .015.

The critical size of the market n̄∗ = 5, 000. In the top graph in Figure 1, city size is 60,000. In

the bottom graph in Figure 1, city size is 30,000. From the two graphs, we see it takes longer

time for the smaller city to reach the critical size. The length of the cycle in the larger city is

5.75 while the length of the cycle in the smaller city is 12. The average unemployment rate in

the larger city is about .05, while the average unemployment rate in the smaller city is about

.10. By design, the peak unemployment rate in the larger city is 8.3%, while the smaller city’s

peak unemployment rate is 16.7%.
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In summary, the model has three testable predictions: (1) The unemployment rate in a

city should be negatively correlated with city size. (2) The length of unemployment cycles is

shorter in a larger city. (3) Larger cities have lower peak unemployment rates.

2.2 The Data

The empirical analysis utilizes a sample of 295 PMSAs in the U.S. over the years 1981–1997.

During this period, the U.S. economy experienced both recession and expansion.

The data on monthly unemployment rates is collected from the Employment and Earnings

published by the Department of Labor’s Bureau of Labor Statistics (BLS). Let the city c’s

unemployment rate at time t be unemprct. The employment data by PMSA is compiled from

County Business Patterns, by summing up the city’s employment over industries. Let us denote

city c’s employment at time t be empct.

The industry employment information is obtained from the data that covers 543 industries

at the 3-digit SIC level. We use the yearly employment data in County Business Patterns to

calculate industry shares for each PMSA. We also use increments in the national employment

by industry to approximate the nationwide industry-specific shock. The data on national

employment by industry is obtained from the Bureau of Labor Statistics. Let sict denote the

employment share of industry i in city c at time t. Let 4it denote the nationwide employment
growth rate of industry i during time t. The industry composition effect on city c at time t

will then be:

INDCOMct =
∑543
i sict ×4it,

where c = 1, 2, ..., 295,

i = 1, 2, ..., 543,

and, t = 1981 : 1, 1982 : 2, ..., 1997 : 12.

(13)

Note here sict’s are the same for all the t’s in the same year, because for each city, its

industry shares do not change much over months within a year.

The other variable is the risk diversification effect, denoted as RISKct. This variable

measures uncertainty local labor demand that depends on the covariance of local labor demand
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across industries. Following Neumann and Topel (1991), we compile a variable RISK:

RISKct = s
′
ctΩsct, (14)

where sct is the vector of industry employment shares of city c at time t and Ω is the covari-

ance of nationwide industry-specific (detrended) shocks. The higher RISKct, the higher the

uncertainty in local labor demand. Because the market friction tends to be greater when the

uncertainty of the employment is higher, RISKct affects the unemployment rate in a positive

way.

Table 1 is a summary of statistics of the variables involved in the analysis of this paper.

The sample period is January 1981 – December 1997. The unemployment rate, unempr, is

measured in percentage points. The size in Table 1 is the city’s total labor force. Since variable

log(size) will be used, we list the summary statistics of the log of the average city size. Un-

employment benefits, denoted as benefit, are another important factor affecting unemployment

rates. We use the ratio of average weekly benefit to average weekly total wage to represent

unemployment benefits. The state-by-state ratio is obtained from the U.S. Department of

Labor (http://www.doleta.gov). If a PMSA is across more than one state, we assign the mean

ratio of these states to the PMSA. The national unemployment rate, nunempr, is calculated

from our sample.

Table 1 shows that both city size and unemployment rate vary significantly. The average

labor force ranges from 247,289 in Enid, Oklahoma (PMSA code 2340), to 3,532,300 in Los

Angeles-Long Beach, California (PMSA code 4480). The average unemployment rate ranges

from 2.4% in Columbia, Missouri (PMSA code 1740) to 19.6% in McAllen-Edinburg-Mission,

Texas (PMSA code 4880).

In Figure 2, we draw mean unemployment rates and log of city size. The straightline in the

figure is the fitted line. The slope of the fitted line is -.366 (.123). To ease the potential concern

about “outliers,” we delete cities that have unemployment rates larger than 15%. The fitted

slope (not shown in the figure) is still significantly negative at -.250 (.107). In the following

section, we will investigate this relationship in more detail.
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Table 1: Summary Statistics of PMSA Averages (1981–1997)

standard original

mean deviation minimum maximum data frequency

PMSA average

unempr 6.60 2.30 2.43 19.58 monthly

emp 232,110 397,482 19,931 3,262,702 monthly

size 247,289 425,347 19,931 3,532,300 monthly

log(size) 11.71 1.07 9.94 15.7 monthly

benefit .362 .047 .264 .470 yearly

INDCOM .00208 0.000506 .207 .393 monthly

RISK 0.00266 0.00134 0.000979 0.0130 yearly

INDCOM× RISK 8.2894E-6 6.938E-6 1.575E-6 .0000683 monthly

National average

nunempr 6.18 1.29 4.01 10.52 monthly

3 City Size and Mean Unemployment Rate

In this section, we examine the relationship between the average level of the unemployment

rate and city size. The basic model we are interested in is as follows:

unemprct = αc + Z(t) +Xctβ + η log(sizec) + εct, (15)

where the Xct is a vector of control variables. In particular, we consider:

Xct = {RISKct, INDCOMct, RISKct × INDCOMct, benefitct}, (16)

where the variable RISKct is constructed in (14), and the variable INDCOMct is constructed

in (13). The expected sign for RISKct is positive and for INDCOMct is negative. The

coefficient for the interaction term is unclear.

To investigate the relationship between the unemployment rate and city size, we include an

additional term log(sizec) in the model. City size is defined by the city’s average total labor

force in our sample period. The coefficient on the log of average city size, η, is expected to be

negative: the larger the city size, the lower the unemployment rate.
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In Equation (15), the term Z(t) is used to control the effect of national business cycles. We

consider two alternative specifications of Z(t). First, we let Z(t) = Zt. This is a model with a

fixed time effect. Second, we let:

Z(t) = {nunemprt, t, t2, t3}, (17)

where the time trend t is calculated by (year-1981) * 12 + month, and nunemprt is the national

unemployment rate at time t. Since a third order polynomial is included in (17), the second

specification is reasonably flexible to control any potential aggregate time effect. Z(t) in (17)

will be used again in the spectral analysis in Section 4 to control for the time trend.

Another term αc in (15) represents the unobserved city heterogeneity. Since the variable

log(sizec) does not change over time, we cannot use a fixed city effect model. Instead, we let

αc be a random variable, such that E(αc|Xit, log(sizec)) = 0. This specification represents a
random city effect model. For comparison purposes, we estimate models that do not include

the term log(sizec).

Table 2 lists the regression results from alternative specifications of (15). The first two

columns are the estimation results from a time fixed-effect model, and the last two columns

list results from a model that uses Z(t) in (17) to control for the time effect.

Column (1) and Column (3) do not have the thick market effect, while Column (2) and

Column (4) include the thick market effect. In all four specifications, the coefficients for the

variable INDCOM are significantly negative, and the coefficients for the variable RISK are

significantly positive, as predicted. These results support the two previous hypotheses of local

unemployment: the industry composition hypothesis and the risk diversification hypothesis.

More importantly, in the regression results reported in Columns (2) and (4), the log of

city size has a significantly negative effect on a city’s unemployment rate. In Column (2),

where the fixed time effect is used, the coefficient for the log(size) is -.237 (.117). In Column

(4), where the time trend and national unemployment rate are used, the coefficient for the

log(size) is -.292 (.117). The first prediction of our model is supported: a larger city has a

lower unemployment rate.
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Table 2: Unemployment Rate Mean Regression Results

Variables (1) (2) (3) (4)

time fixed effect yes yes no no
city random effect yes yes yes yes
INDCOM -28.3 -28.3 -8.92 -8.92

(2.01) (2.01) (.966) (.966)
RISK 231.4 229.6 163.9 161.6

(13.7) (13.7) (13.6) (13.6)
INDCOM× RISK -371.7 -358.2 -894.8 -879.7

(323.5) (323.5) (295.8) (295.9)
unemployment benefit 10.42 10.40 10.51 10.49

(.286) (.285) (.282) (.282)
national unempr .910 .910

(.0075) (.0075)
(time trend/100) 2.62 2.62

(.178) (.178)
(time trend/100)2 -3.38 -3.38

(.164) (.164)
(time trend/100)3 1.00 1.00

(.046) (.046)
log(mean labor force) -.237 -.292

(.117) (.117)

R2 .261 .275 .153 .162
No. of Obs. 51274 51274 51274 51274
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To compare the magnitude of the effects of all three hypotheses, we calculate the changes

in the unemployment rate given an increase of two standard deviations on each of the three

variables INDCOM , RISK, and log(size). If we apply the estimates from Column (4), the

unemployment rate would decrease by .015 percentage points if INDCOM increases, increase

by .43 percentage points if RISK increases, and decrease by .60 percentage points if city size

increases. The effect of the thick market is significant and has roughly the same magnitude as

the effect of risk diversification.

4 City Size and the Frequency of Unemployment Fluctuations

— a Spectral Analysis

Our focus in this section is on the relationship between the frequency of fluctuations in a city’s

unemployment rate and its size.

We conducted the spectral analysis on three samples. The first sample consists of 139

PMSAs in the U.S. during 1981–1997. The unemployment rate data is monthly. For each

PMSA, the number of observations of the unemployment rate is at least 200, indicating at

most 4 missing values in the monthly unemployment rate. The second sample contains 168

PMSAs in the U.S. during 1983–1997. For each PMSA, the number of observations of the

unemployment rate is at least 176, again indicating at most 4 missing values. As for the third

sample, the period is 1986–1997; and there are 204 PMSAs. For each PMSA, the number

of observations of the unemployment rate is at least 140. Because we allow for each PMSAs

at most 4 missing values in the monthly unemployment rate, as the sample period becomes

longer, there are fewer qualified PMSAs remaining in the sample. We can see that any one of

the three sample periods experienced both recession and expansion in the U.S. economy. Each

sample contains PMSAs of all sizes. Since the spectral analysis on the three samples all show

similar results, for convenience, in this paper we only present the regression results based on

the first sample; that is, the one with the longest sample period (i.e., January 1981–December

1997).
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We run regressions of the unemployment rates unemprct on Xct in (16) to to control for the

effect of industry composition and risk diversification, and on Z(t) in (17) to control for the

effect of the time trend. Different from the regression in (15), here the regression is conducted

city by city.6 Our objective in this section is to conduct the spectral analysis in the frequency

domain of the residuals city by city.

4.1 The Band Spectrum Regression and Filtering

The regression to be carried out here is called a band spectrum regression. It is conducted in

the frequency domain. Since we want to examine the frequency of the unemployment rate, it

is natural to use a regression in the frequency domain to control for the effects of the trend

variables on the frequency of the unemployment rate. The band spectrum regression method

adopted here follows Corbae, Ouliaris and Phillips (2002).

We divide the frequency domain into three bands. Band 1 consists of frequencies that

correspond to cycles with a length from 2 to 4 months. This is a high frequency band. Band 2

includes frequencies associated with cycles longer than 4 months but shorter than 18 months.

This is a medium frequency band. Since a typical waiting period in the job search process falls

within this band, studying this band may reveal important information on the average waiting

period in the job search process.7 Band 3 is a low frequency band, consisting of frequencies

corresponding to cycles longer than 18 months. This band includes the national business cycle

frequencies, since according to National Bureau of Economic Research definitions, a business

cycle in the U.S. at the national level has a length of between 18 and 96 months.

Let W denote a discrete Fourier transformation such that for any time series y of length T ,

W is a T × T matrix and Wy is the discrete Fourier transformation of y. The T fundamental
frequencies in Wy are 0, 2π/T, 4π/T, ..., 2π(T − 1)/T . Let Aj be a T ×T diagonal matrix with
value 1 at the k-th row if 2π(k − 1)/T lies within Band j as previously defined, and which

6Therefore, a fixed time effect is not applicable here.
7The mean unemployment duration of individuals is 3.8 months during 1994–2000 (Abraham and Shimer,

2001). According to our discussion in Section 1, the length of an unemployment cycle is roughly twice as long

as the mean unemployment duration.
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otherwise has a value of 0. In other words, by taking the product of Aj and Wy, we can zero

out all the fundamental frequencies in Wy that lie outside of Band j.

The regression model specifies:

Wunemprct = A1WZα1c +A
2WZα2c +A

3WZα3c

A1WXcβ
1
c +A

2WXcβ
2
c +A

3WXcβ
3
c +Wuc

(18)

where αic, β
i
c, and i = 1, 2, 3 are parameters to be estimated and which vary by city. Note that

Equation (18) allows parameters to be different in different bands, capturing the possibility that

the relationship between unemployment rates and control variables is frequency-dependent.

After the regression, we take the residuals for each city c and conduct the inverse Fourier

transformation. The resulting time series is an estimate of the detrended unemployment rate,

denoted {uct}.
Before we conduct the spectral analysis, there is one more step to go. We need to smooth

the irregular high frequency fluctuations in uct. Also, we want to control for the effect of

national business cycles on the fluctuations of uct. For these two reasons, our only interest is

the frequencies within Band 2. As we stated above, this band consists of frequencies associated

with cycles longer than 4 months but shorter than 18 months. We use Corbae and Ouliaris

(2002)’s filter to remove all frequencies that lie in either Band 1 or Band 3. Corbae and

Ouliaris’s frequency domain filter also controls for any stochastic trend of unit root and involves

no set up of parameter values.

After filtering {uct}, we obtain a new time series for each city c, denoted u∗ct. Our spectral
analysis is conducted on the frequency domain of {u∗ct}.

4.2 Spectral Analysis

The spectral analysis reveals how cycles with different frequencies account for the fluctuations

in a city’s unemployment rate. A frequency of ω is associated with a cycle of length of 2π/ω.

Let sy(ω) be the power spectral density at ω of a time series y;
∫ 2π
0 sy(ω)dω is the total energy

contained in fluctuations in y, denoted Gy. Thus,
∫ ω+δ
ω−δ sy(f)df represents the portion of the
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energy that is attributed to frequencies that lie within the δ-interval of frequency ω. This

reflects how much frequencies within that interval contribute to fluctuations in y.

We estimate the power spectrum density for each city. For city c and a given δc, we find

a frequency ω whose δc-interval contributes the most to the energy of {u∗ct}. This frequency
contributes more to the fluctuation in the city’s unemployment rate than any of the other

frequencies.

Formally, we define city c’s max-frequency as:

ωmaxc = arg max
δc≤ω≤π−δc

∫ ω+δ
ω−δc

θ(|ω − f |)su∗c (f)df,

where θ(·) is a weight function. We let:

θ(f) =



0, if |f − w| > δc;

0.82|f−w|/δc∫ ω+δc
ω−δc 0.8

2|f−w|/δcdf
, if |f − ω| ≤ δc.

This weight function has the property that the closer the frequency f is to ω, the larger

the weight assigned to this frequency is.

Selecting an appropriate δc depends on how smooth the power spectral density curve of

time series {u∗ct} is and what method is used to estimate the power spectral density. A smaller
δc implies less robustness but more accuracy in calculating the max-frequency. After some

experiments, we choose δc = .049, which is 3% of the whole spectral domain [0, π]. Another

frequency we are interested in is given by:

ωmeanc =

∫ π
0

su∗c (f)

Gu∗c
fdf.

The variable ωmeanc is called the “mean-frequency” since it is a weighted average of frequen-

cies over the frequency domain where the weight of each frequency is its (normalized) power

spectral density. The higher the mean-frequency, the more contributions from high frequency

cycles to unemployment fluctuations there are.

Table 3 is a summary of statistics of the frequency variables. The max-frequency and

mean-frequency are .631 and .793, corresponding to 10.0 months and 7.9 months, respectively.

18



Table 3: Summary Statistics of Frequency Variables

mean std dev minimum maximum

max-frequency 0.631 0.235 0.368 1.520

mean-frequency 0.793 0.0985 0.616 1.030

4.3 Results from Summary Regressions

In order to understand the spectral analysis conducted in this section, we present an example

comparing the {unemprt}, {u∗t }, and the power spectrum of {u∗t } of two cities. The first city,
Monroe, Louisiana (PMSA code 5200), is relatively small and has an average labor force figure

of 52,589. The other city is Los Angeles (PMSA code 4480), with an average labor force figure

of 3,532,300.

The example is illustrated in Figure 3. The first row in Figure 3 depicts the unemployment

rate unemprct for Monroe and Los Angeles. The average unemployment rate in Monroe is

8.30%; in Los Angeles, the average unemployment rate is 7.69%. This is consistent with the

first prediction of our model.

The detrended and filtered unemployment rates u∗ct are illustrated in the second row figures.

We will come back to these figures in Section 5. In the third row, we draw the power spectrum

of u∗ct for both cities. The max-frequency in Monroe is .44, corresponding to a cycle of 2π/.44 =

14.3 months. For Los Angeles, its max-frequency occurs at 1.08, which corresponds to a cycle

of around 6 months. The larger city has shorter cycles than the smaller city, consistent with

the second prediction of our model.

We use simple regressions of the variables of max-frequency and mean-frequency on the log

of city size to summarize the relationships. The results are shown in Table 4. As predicted

by the model in Section 2, both the max-frequency and mean-frequency are significant and

positively correlated with city size. To assess the magnitude of the effect of city size, consider

an increase of two standard deviations in the log of city size. The max-frequency increases

by 0.1. If the initial max-frequency is 0.631, which equals the mean of the max frequency

across cities, the corresponding unemployment cycle will be shortened by 1.4 months. As to
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Table 4: Frequency Regression Results

dependent variable max-frequency mean-frequency

constant .707 .833
(.035) (.014)

log(city size) 0.050 .026
(.019) (.0077)

R2 0.050 0.076
No. of obs. 139 139

the mean-frequency, it increases by 0.052. If the initial mean frequency is 0.793, which equals

the mean of the mean-frequency across cities, the corresponding unemployment cycle will be

shortened by .6 months. In summary, the results in this section support the second prediction

of our model: a larger city has a shorter unemployment cycle.

5 The Duration Analysis

In this section we carry out a different experiment: we investigate the duration of cyclical

fluctuations in the unemployment rate city by city. Following Diebold and Rudebusch (1990),

“duration” here refers to the length of each cycle, while a “cycle” is the time length between

two consecutive turning points of an unemployment rate. We will define the turning points

later in this section.

The duration analysis differs from the spectral analysis in two aspects. First, in duration

analysis, identifying turning points of a cycle depends on the subjective rule we use. In the

spectral analysis, a cycle is defined in the strict sense of periodicity. Thus, the results of the

spectral analysis do not depend on the rule used to identify the turning points of a cycle.

Second, the results from the spectral analysis are concerned with a whole cycle. Thus, it is

impossible to discern different behaviors at different stages of a cycle. In contrast, the duration

analysis reveals the relationship between city size and the length of both trough-to-peak cycles

and peak-to-trough cycles.
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5.1 Duration of Unemployment Cycles

We examine the duration of cyclical fluctuations of {u∗ct}, for each city c, where {u∗ct} is the
detrended and filtered unemployment rate defined in the previous section. A cycle of {u∗ct}
is the time length between two consecutive turning points of {u∗ct}. The following are some
useful definitions.

• A trough point is the point where an upturn is about to start. Because we are considering
the unemployment rate, an upturn in {u∗ct} signals a downturn in the economy.

• A peak point is the point with the highest value of {u∗ct} between two consecutive trough
points.

• A trough-to-trough duration is the length between two consecutive trough points.

• A trough-to-peak duration is the length between a trough point and the first peak point
right after it.

• A peak-to-trough duration is the length between a peak point and the first trough point
right after it.

The key issue, then, is how to identify an upturn in {u∗ct}. The classic criterion for identify-
ing a downturn in business cycles is the “two consecutive declines” rule associated with GDP.

Here, we apply a similar criterion (with a slight modification) to determine unemployment

cycles. Specifically, an upturn is signaled either by two consecutive periods of growth in the

unemployment rate or by three consecutive time periods where each has a higher unemploy-

ment rate than the preceding; moreover, there should be at least two periods of growth in the

unemployment rate in these three time periods. The modification made here is to control for

small noises in the time series.
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Table 5: Summary Statistics of Duration Variables

mean std dev min max

trough-to-trough 7.01 1.01 5.27 10.9

trough-to-peak 3.4 0.43 2.56 4.95

peak-to-trough 3.6 0.71 2.57 6.89

trough rate -0.613 0.383 -3.21 -0.172

peak rate 0.61 0.375 0.188 2.76

According to the above criterion, time t is a trough point of {u∗ct} if and only if:


(
u∗ct−2 > u∗ct, u∗ct−1 > u∗ct

)
and

u∗ct+1 > u∗ct and

u∗ct+2 > u∗ct+1 or
(
u∗ct+2 > u∗ct, u∗ct+3 > u∗ct+2

)
.

(19)

5.2 City Size and Durations of Unemployment Cycles

We first identify each city’s peak and trough points of unemployment cycles according to (19).

Next we calculate each city’s average trough-to-trough duration, trough-to-peak duration,

peak-to-trough duration, peak unemployment rate and trough unemployment rate. Table 5

provides a summary of statistics of these variables. The average length of cycles, measured by

the average trough-to-trough duration, is 7.01 months. Note, in Table 3, the mean-frequency

is .793, corresponding to a length of 7.9 months. The difference between the two measures

arises from the fact that different methods are used to measure the cycles.

Table 6 lists results from some simple regressions that summarize the relationships between

the log of city size and the unemployment cycles. In the first column, the trough-to-trough

duration, i.e., the length of a whole cycle, is significantly and negatively correlated with city

size. In particular, an increase in two standard deviations of the log of city size will result

in a decrease in the duration of unemployment cycles by .66 months. If we decompose the

entire cycle into two parts, Table 6 shows that the trough-to-peak duration is significantly and
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Table 6: Regression Results of Duration Analysis

trough-to-trough trough-to-peak peak-to-trough

constant 6.49 3.19 3.30

(.145) (.062) (.103)

log(city size) -0.308 -0.110 -0.198

(.078) (.033) (.055)

R2 0.102 0.073 0.087

No. of obs. 129 129 129

Table 7: Regression Results of Peak Unemployment Rate

peak rate trough rate

constant .423 -.434

(.055) (.055)

log(city size) -.121 .116

(.029) (.030)

R2 .101 .115

No. of obs. 129 129
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negatively correlated with city size, while the peak-to-trough duration is also significantly and

negatively correlated with city size.

The test results are consistent with the thick market model presented in Section 2. Accord-

ing to the second prediction of our model, a larger city in general has a shorter trough-to-peak

duration. Due to the thick market effect, a city’s unemployed workers accumulate before the

local labor market reaches a large enough size to have workers actively search for jobs. A larger

city typically needs less time to reach that market size, which implies a shorter trough-to-peak

duration.

It is worth pointing out that there is a significant negative correlation between the peak-to-

trough duration and city size. Our model has not yet considered precisely how the matching

between firms and workers proceeds after the minimum critical size n̄∗ is reached. The expla-

nation of this fact is an interesting topic for future research.

As to the relationship between city size and peak unemployment rates, it is clear from Table

7 that the peak unemployment rate is significantly and negatively correlated with city size.

This result supports the third prediction of the model in Section 2. A lower peak unemployment

rate in a larger city indicates a shallower recession in that city. In particular, an increase in

two standard deviations in the log of city size drops the peak unemployment rates by .26

percentage points. Table 7 also shows a significant and positive correlation between the trough

point unemployment rate and city size. This means that in general a larger city has a milder

expansion than a smaller city. This interesting phenomenon merits further investigation. In

summary, the difference between the peak unemployment rate and the trough unemployment

rate is smaller in a larger city than in a smaller city. In particular, an increase of two standard

deviations in the log of city size results in a decrease of the difference by .5 percentage points.

Figure 3 graphically shows the durations in unemployment cycles; the second row graphs

in Figure 3 show how the peak unemployment rate is negatively related to city size. The city

of Monroe, Louisiana has much a larger peak unemployment rate than that of the much larger

city of Los Angeles. The average peak rate in Monroe is .801, while the average peak rate in

Los Angeles is .451. Moreover, the average length of cycles is also longer in Monroe than those
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of Los Angeles.

6 Conclusion

This paper explores the relationship between city size and the pattern of unemployment rate

fluctuations. We present a model of the local labor market in which in a thicker market, when

more workers are looking for jobs and more job openings are available, the matching probability

between jobs and workers is better. Workers incur search cost if they actively search for for

jobs. A higher matching probability makes searching for jobs more desirable. Unemployed

workers accumulate in a local market until the market reaches a critical size such that the

expected wage is higher than the search cost. Since a given shock produces more unemployed

workers in a larger city during a given time period, it takes less time for a larger city to reach

the critical size described above. As a consequence, the model predicts: (1) Unemployment

rates are lower in larger cities. (2) The length of unemployment cycles decreases as city size

increases. (3) The peak unemployment rate is negatively correlated with city size.

Our empirical analysis utilizes data that covers 295 PMSAs in the U.S. over the years 1981–

1997. After controlling for the effects of industry composition and risk diversification, we find

that city size has a significantly negative effect on the mean unemployment rate. In particular,

if city size increases by two standard deviations, the unemployment rate will be lowered by

roughly a half percentage point. We also find that larger cities have shorter unemployment

cycles. In particular, the unemployment cycle will be shortened by roughly one month if city

size increases by two standard deviations. Finally, we find shallower recessions for larger cities.

All these empirical results are consistent with the predictions of the model.
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Figure 1: Illustration of the Thick Market Effect on Unemployment Fluctuations
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Figure 2: Logarithm of City Size and
Mean Unemployment Rates
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Figure 3: Patterns of Unemployment Rates in Monroe, LA, and Los Angeles, CA
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