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a bulletin board). An alternative to an exchange is collateralized trade, but this alter-
native is costly because of the opportunity cost of collateral. I also show that the gains
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1 Introduction

Liquid markets where agents have limited capacity to sign exclusive contracts, as well as

imperfect knowledge of previous transactions by others, raise the following risk: An agent

can promise the same asset to multiple counterparties and subsequently default. In extreme

cases, this risk may eliminate most of the gains from trade. This paper theoretically shows

how an exchange can arise in this setting as a very simple type of intermediary that improves

welfare. It also illustrates the importance of collateral in enforcing exclusivity.

The exchange here is an entity to which pairs of agents can report the fact that they

entered a bilateral contract. The only role of the exchange is to set limits on the number

of contracts that agents can report. The main result is that such an exchange can enhance

welfare. This holds even if agents can enter contracts without reporting them to the ex-

change and even though the exchange cannot observe whether agents have entered such

contracts. Other results are as follows: (1) Without an exchange, we will see collateralized

trade, i.e., agents will put up cash as collateral. The optimal amount of collateral increases

when agents have less intangible capital (e.g., reputation) or when markets become more

liquid. (2) The gains from an exchange increase when agents have more intangible capital

or when markets become more liquid. (3) In some cases the exchange must set position

limits that are non-binding in equilibrium. For example, to implement an equilibrium in

which every agent enters exactly one contract, the exchange may need to allow each agent

to report three contracts. (4) In some cases the exchange must not reveal the exact number

of contracts that an agent has already entered. (5) Even an exchange may require that

agents post collateral, but less than what would be required without an exchange.

The basic setting is as follows: Agents invest their endowments in two-period projects.

They can benefit from bilateral trade because the interim cash flows from their projects

are negatively correlated. An agent cannot commit, however, to pay out of interim or

final cash flows. But if he defaults, it is possible to terminate his project. Each project

has a liquidation value of zero, and the amount that each agent invests in his project is

2



private information. I also assume that the project’s assets cannot be pledged exclusively.

When an agent can commit to enter exclusive contracts, the threat of losing future income

(i.e., future cash flows) is enough to induce him to make the optimal investments and pay

what he promised. Otherwise, the agent may strategically choose to enter contracts with

multiple counterparties, consume his endowment rather than invest it in his project, and

subsequently default on all the contracts he entered.

Both an exchange and collateralized trade can mitigate the problem above. Consider

first collateral. Collateral has a dual role in this paper: First, it has the standard role of

guaranteeing payments. Second, it has the role of enforcing exclusivity, thereby making

agents’ future income valuable in backing their promises. Agents in this model can, there-

fore, promise (credibly) more than the amount of cash that they post as collateral. Collateral

is costly, however, because agents forgo investing in their positive NPV projects.1

Consider now an exchange. I show that by setting position limits appropriately, the

exchange can implement the same outcome as when agents can commit to enter exclusive

contracts. I also show that an equilibrium in which all agents report all their trades to

the exchange (voluntarily) is immune to self-enforcing deviations by pairs of agents. In

particular, a pair of agents cannot gain by not reporting the fact that they entered a bilateral

contract, even if there is a small cost associated with reporting. To rule out such deviations,

the exchange must permit each member of any deviating pair enough latitude to cheat on

his partner. Therefore, in some cases we may see position limits that are non-binding in

equilibrium.

The paper relates to the theory of financial intermediation, the market microstructure

literature, and the literature on contracting with non-exclusivity. Its main theoretical con-
1Telser (1981) focuses on the role of collateral (margins) in guaranteeing payments in futures exchanges,

emphasizing its opportunity cost (agents may need to deviate from their optimal portfolio choice). Dubey,
Geanakoplos, and Zame (1997) model collateralized trade in a general equilibrium setting. Agents in their
model are not allowed, however, to pledge their future income (i.e., they do not lose it if they default), so an
agent delivers only if the value of his promises is less than the value of the collateral he put up to secure his
promises. In a model of exchange competition, Santos and Scheinkman (2001) focus on the screening role
of collateral (see also Bester, 1985), ignoring its opportunity cost. They model collateral as the amount of
an agent’s future endowment that can be seized.
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tribution is that it illustrates a very minimal role that a financial intermediary (an exchange)

can have and still improve welfare. The main difference between my paper and the related

market microstructure literature is that the latter explored how different trading systems

can enhance liquidity,2 whereas I start with markets that are already very liquid, and show

why an exchange may still be needed. In addition, when I introduce an exchange, I keep the

matching process as well as the bargaining process unchanged.3 Unlike Diamond (1984), I

do not rely on a diversification argument, and unlike Townsend (1978) the intermediary in

my setting arises when the fixed cost involved with each bilateral trade is low rather than

high.4 In the sense that my paper illustrates a negative aspect of liquidity, it also relates to

Myers and Rajan (1998).5

In a very different framework, Bizer and DeMarzo (1992) and Parlour and Rajan (2001)

study the effect of non-exclusivity on equilibrium interest rates and on the competitive

structure of a loan market.6 Bizer and DeMarzo assume that prior contracts are observable

and have a priority; so in their setting an exchange cannot improve welfare.7 In contrast,

I assume that previous transactions are not observable. Parlour and Rajan assume that

intermediaries simultaneously offer contracts and then a single borrower can accept any

subset of contracts. A similar feature between my paper and the paper by Parlour and

Rajan is the idea of a strategic default and the fact that an agent who defaults does so on
2Examples are Hagerty and McDonald (1996), Pagano and Röell (1996), Benveniste, Marcus and Wilhelm

(1992), Glosten (1989, 1994) and Seppi (1997), who focused on the role of anonymity, transparency, one
trading floor, a specialist, and a limit order book in mitigating problems of asymmetric information regarding
asset values.

3Another related work focuses on organized futures exchanges: Telser and Higinbotham (1977) discuss
the importance of standard contracts; Edwards (1984) describes the role of a clearing house as a central
counterparty that guarantees performance; Baer, France, and Moser (2001) show how a clearing house can
save on collateral through netting positions; and Brennan (1986) shows how price limits (not position limits)
may serve as a partial substitute for margins in ensuring contract performance (see also Chou and Yu, 2000,
who showed that this conclusion is not robust).

4See also Brusco and Jackson (1999), who show that a market maker can economize on the fixed costs of
trading across periods.

5They showed that greater asset liquidity can reduce the firm’s capacity to raise external finance because
it reduces the firm’s ability to commit to a specific course of action.

6See also Kahn and Mookherjee (1998), who study more general insurance contracts, and Bisin and
Rampini (2002), who suggest a motivation for a bankruptcy institution.

7 In their model additional contracts impose a negative externality on existing contracts because the
agent’s hidden effort affects the distribution of his future income.
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all the contracts he entered. In their model this can rule out entry even though competing

lenders make positive profits. In my paper, this helps sustain an equilibrium in which all

agents report to the exchange.

The exchange in this paper has some features of a clearing house, but it has a more

minimal role because it does not guarantee performance of contracts.8 The theory is consis-

tent with recent developments in the over-the-counter market for interest-rate swaps. These

swaps have evolved from a customized and illiquid product to a standardized and liquid

product (suggesting that standardization and liquidity creation can occur even without an

organized exchange). Once this over-the-counter market became liquid, the London Clear-

ing House (LCH) started clearing its products. The LCH neither provides a new trading

system, nor does it act as a broker. Instead, it allows its members to register bilaterally

negotiated contracts, and then it becomes a central counterparty that guarantees contract

performance. According to David Hardy, chief executive of the LCH, “Clearing costs are

pretty low anyway....The great benefit to users is that the amount of capital which is tied-up

can be reduced.”9 In practice, a clearing house can save on collateral by netting positions.

The theory suggests that a clearing house may have a further advantage by being able to

require less collateral on the netted position.

The paper proceeds as follows. In Section 2, I use a simple example to illustrate why

non-exclusivity may be a problem. In Section 3, I present a formal model of trade between

two agents (where non-exclusivity is not an issue) and in Section 4, I extend the model to

include a continuum of agents (so that non-exclusivity becomes an issue). I show that the

most efficient outcome without an exchange involves collateral and illustrate its dual role.

In Section 5, I introduce an exchange and show that an equilibrium in which agents report
8Clearing houses around the world set position limits for their members. These limits are capital based

and are monitored daily or in real time. Their purpose is to ensure that members maintain positions
only within their financial capability. These “capital-based” position limits are different from “speculative”
position limits that limit the number of contracts held by a single investor or a group of investors acting
in concert. The latter position limits are set both by regulators and by exchanges in order to prevent
speculators from manipulating spot prices. In addition, traders who qualify as “bona fide hedgers” can gain
exemption.

9Source: “London Clearing House and Clearnet to Form Pan European Clearing House,” fpionline.com
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all their trades to the exchange is immune to self-enforcing deviations by pairs of agents. I

also illustrate the role of non-binding position limits and show that the exchange is not a

bulletin board. I conclude in Section 6. (The appendix contains proofs.)

2 An example of non-exclusivity

The driving force behind the results in this paper is the fact that agents cannot commit to

enter exclusive contracts. Before I present a formal model, I will illustrate with a simple

example why non-exclusivity may be a problem.

Suppose there are two possible states of nature next year, and consider an agent who is

going to receive two dollars in state 1 and zero dollars in state 2. Assume that the agent has

limited liability and that today he can enter into a forward contract according to which he

should pay one dollar in state 1 and receive one dollar in state 2. If he enters one contract,

he is fully hedged (insured) and the amount of dollars he will have next year equals one

dollar in both states.

Now suppose that the agent can enter the same contract with � different counterparties,

where � � 2. In state 2, he receives a total cash flow of � dollars from his counterparties,

so his total wealth is �. In state 1, he needs to deliver � dollars. Since he only has two, he

defaults, but because of his limited liability, his wealth cannot fall below zero. By increasing

�, the agent can increase his wealth in state 1 without decreasing it in the other state. This

means that for a wide range of utility functions, the agent can increase his utility as much

as he wants by entering multiple contracts and defaulting on all of them.

The following dialogue from the movie “The Producers” is a good illustration of the

idea above:

• Blum: “If he were certain that the show would fail, a man could make a fortune...If
you were really a bold criminal, you could have raised a million dollars, put on a

$60,000 flop, and kept the rest.”

• Bialystock: “But what if the play was a hit?”
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• Blum: “Well, then you’d go to jail...Once the play is a hit, you’d have to pay up
all the backers, and with so many backers, there could never be enough profits to go

around.”

Note that in both examples limited liability plays a crucial role. If it were possible to

impose infinite penalties (e.g., either pay or die), agents would not enter too many contracts

and penalties would not need to be imposed in equilibrium.

3 A two-agent economy

3.1 The model

I start with a simple model of trade between a pair of agents. There are two periods and

one divisible good, called cash, or simply dollars. Both agents are risk neutral and obtain

an expected utility of �(�0+ �1+ �2) from consuming �0� �1 and �2 dollars at dates 0� 1 and

2� respectively. They are also protected by limited liability, so �� ≥ 0.
At date 0, each agent can invest his endowment of one dollar in a two-period constant-

returns-to-scale project. If he invests � dollars at date 0, he receives �� dollars at date 2.

Interim (i.e., date-1) cash flows for the two projects are negatively correlated: When the

project of one agent yields a positive cash flow, the project of the other agent has a negative

cash flow: It requires an additional investment that must be made in full for the project

to continue. More specifically, there are two equal probability states, state 1 and state 2,

one of which becomes publicly observable at date 1. The project of agent � (� = 1� 2) yields

	� dollars in state �, but requires an additional investment of 	� dollars in the other state,

denoted by −�. (See Figure 1.)
The two agents can also store between date 0 and date 1 through a third party who can

commit not to divert cash (i.e., the risk-free rate is normalized to be zero percent).10 It is

assumed that � � 	� so it is efficient to make the additional investment at date 1 if cash is
10The assumption regarding the risk-free rate is a simplifying assumption. In addition, nothing would

change if we assumed that storage could also take place between date 1 and date 2.
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Figure 1: Project’s cash flows for agent i if project operates to maturity

available. It is also assumed that � � 1, so in a world without frictions both projects have

positive NPVs.

Regarding information, I assume that the amount stored (through a third party) is ob-

servable to both agents and can be contracted upon. (One can think of an escrow account.)11

However, investments in projects, as well as projects’ cash flows, are private information

and cannot be contracted upon. In particular, an agent can default even if he has enough

cash to pay what he promised.12

It is assumed that when an agent defaults, the other agent can terminate his project

(i.e., shut his business).13 Thus, agents in this model pay what they promised for fear of

losing future cash flows. It is also assumed that each project has a liquidation value of zero

at each date. This can be motivated by assuming that each project requires the human

capital of the agent who has access to it and that human capital is inalienable.

The assumptions above imply that an agent who suffers a negative liquidity shock at

date 1 (i.e., an agent who needs to make an additional investment in his project) cannot

borrow at date 1 against future cash flows.14 However, the two agents can still hedge by

entering a forward contract at date 0, according to which the agent whose project yields a

positive cash flow at date 1 transfers cash to the other agent. Of course, agents may find it

optimal not to hedge. To rule this out, I assume that 	 
 1. This is a sufficient condition to
11The results will not change if we assume that agents can also store privately and that cash that is stored

privately is unobservable (and, therefore, not contractable).
12He can always claim that the project yielded no cash flows because no investment has taken place.
13Thus, it is observable whether the project operates (i.e., whether the agent is in business), but the level

of investment is private information.
14This is similar to Holmström and Tirole (1998), who assumed that because of moral hazard, an agent

who faces a liquidity shock can only borrow against a fraction of his future income.
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ensure that hedging (and bilateral trade) is beneficial.15 To simplify proofs, I also assume

that � 
 2.

3.2 Optimal contract

A natural contract for the two agents is as follows: At date 0 agent � invests �� dollars in

his project and transfers �� dollars to a third party for storage. The total amount stored

is, therefore, � = �1 + �2. (In Subsection 3.3, I will clarify the relationship between storage

and collateral.) At date 1, if state � is realized, the project of agent � yields 	�� dollars. Out

of this amount, agent � pays � dollars to the other agent, who realizes a negative liquidity

shock. The other agent also receives the total amount stored.16 While � is restricted to be

non-negative, there is no restriction on the sign of ��, so date-0 transfers between the two

agents are not ruled out. (Later, we will see, however, that such transfers are suboptimal.)

The set of feasible contracts will be denoted by Ψ, that is, Ψ = {(�1� �2� 1� 2� �1� �2) :
0 ≤ �� ≤ 1− �� and 0 ≤ � ≤ 	�� for � = 1� 2, and � = �1 + �2 ≥ 0}� In principle, a contract
could also specify the probability ��(b�|�) that the project of agent � continues if he deliversb� when he is required to deliver �. One can show, however, that in this model, if an agent
defaults (i.e., does not pay what he promised in full), it is optimal to shut down his project

with probability 1.17 In other words,

��(b�|�) = ½ 1 �� b� = �
0 otherwise.

An optimal contract is a feasible contract that maximizes the sum of agents’ utilities,

subject to the constraint that each agent invests and delivers according to what the contract

says. To find it, we first need to derive an expression for ��(b���b� |�), which is the utility
for agent � if he invests b�� ∈ [0� 1 − ��] and delivers b� ∈ [0� 	b��], given that he entered the
contract � ∈ Ψ, and given that his counterparty, denoted by −�� behaves according to the
15This is not a necessary condition. A condition that is both necessary and sufficient is given in the proof

of Lemma 3.
16This is without loss of generality. In other words, if in state �� �� is transferred to agent � and �− �� is

transferred to the other agent, then there exists an optimal contract such that �� = 0.
17 It is assumed that it is possible to commit to this continuation/closure policy.
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contract, i.e., invests �−� and delivers −��

The amount that agent � consumes at date 0 follows from his budget constraint and is

given by �0� = 1 − �� − b��. The total amount that he consumes at dates 1 and 2 depends
on the state. If state � is realized, agent � can consume 	b�� − b� + ��(b�|�)�b��� If the other
state is realized, the agent can continue his project only if he has enough cash, so the total

amount that he consumes at dates 1 and 2 equals �+ −� + (�− 	)b��� if �+ −� ≥ 	b��, and
�+ −� otherwise. The agent’s utility is, therefore,

��(b���b� |�) ≡ 1− �� − b��
+
1

2
[	b�� −b� + ��(b�|�)�b��]

+
1

2
[�+ −�] +

1

2
��(b���b� |�)(�− 	)b��

where ��(b���b� |�)½ 1 if �+ −� ≥ 	b��
0 otherwise.

In the special case in which the agent behaves according to the contract, i.e., (b���b�) =
(��� �), I will denote ��(b���b� |�) simply by ��(�).

To find an optimal contract, we need to solve the following problem:

max
�∈Ψ

2X
�=1

��(�)

subject to the following incentive constraint:

(��� �) ∈ arg max
(b���b	�)∈
�(�)

��(b���b� |�) for � = 1� 2� (IC-1)

where ��(�) denotes the set of feasible choices of b�� and b� for agent �. The solution to

the problem above will be referred to as the second best. The solution to the unconstrained

problem, i.e., the same problem, but without the incentive constraint, is the first best.

One can easily verify that the first-best contract is given by �1 = �2 = 0, 1 = 2 = 	,

and �1 = �2 = 1� In other words, at date 0 each agent invests one dollar in his positive

NPV project. Then at date 1, the agent whose project yields a positive cash flow transfers
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	 dollars to the other agent, so that the latter will have enough cash to continue his project.

This way each agent obtains an expected utility �.

We are now ready to solve for the second-best contract. Two useful observations are as

follows:

ob1: An agent will either deliver everything that he promised to deliver or nothing. In

addition, if he has enough cash to pay, he will not default.

ob2: If an agent chooses to deviate from the optimal contract, the best thing for him is

to invest nothing in his project (and subsequently default when he needs to make a

payment).

The logic behind the first observation is that if an agent makes a partial payment, he

still loses his project. Therefore, he is better off not paying at all and keeping what he has

to himself. In addition, when an agent’s project yields 	� and he needs to pay  ≤ 	�, he is

better off paying in full, because otherwise he can keep , but he loses ��, which is more

than 	� (and ). To see why the second observation follows, note that if an agent defaults,

he obtains 	� from his project in one state and at most (�− 	)� in the other state.18 The

assumption � 
 2 implies that 1
2	� +

1
2(� − 	)� = 1

2�� 
 1, so the agent is better off

consuming his initial endowment rather than investing.

The second observation implies that we can replace constraint IC-1 with

��(�) ≥ � �(�) for � = 1� 2� (IC-1’)

where � �(�) = ��(0� 0 |�)�

Proposition 1 If � ≥ 1 + 1
2	, the second-best contract equals the first best. Otherwise, it

is (uniquely) given by �1 = �2 = 1 − �, 1 = 2 = (2 + 	)� − 2 and �1 = �2 = � where

� = 1
2+ 1

2
�−� 
 1�

18We can focus without loss of generality on deviations in which the agent defaults.
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The idea behind the proof is as follows: First, the optimal contract is symmetric and can

be denoted simply by � = (�� � �)� This follows from the symmetric nature of the problem.

Second, since it is possible to store and consume at date 1, the contract can be designed so

that no consumption takes place at date 0. Therefore,

�+ � = 1� (1)

Third, since the contract is entered for hedging purposes, it should be designed so that each

agent will have enough cash to continue his project when he realizes a negative shock. In

other words, the contract should satisfy

�+  = 	�� (2)

It follows that the utility for agent � (if everyone follows the contract) is given by

��(�) = 1 + (�− 1)�� (3)

and the highest utility that agent � can obtain if he deviates from what the contract says is

� �(�) = 1 +
1

2
� (4)

Now, one can use equations (1) and (2) (plus the fact that � = 2�) to express � and  as a

function of �, and then use the incentive constraint IC-1’ and equations (3) and (4) to find

the optimal level of investment �.

The reason why the first best may not be achieved is that the incentive constraint limits

the amount of cash that an agent can credibly promise out of his project’s cash flows. In

particular, if we substitute equations (1) and (2) in the incentive constraint, we obtain

 ≤ 2(�− 1)��

If 	 ≤ 2(� − 1), which is equivalent to � ≥ 1 + 1
2	, the first best can be achieved, because

an agent who invests � = 1 can credibly promise  = 	. Otherwise, agents need to satisfy

some of the demand for liquidity at date 1 by storing cash between date 0 and date 1, and

the first-best outcome cannot be achieved.
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3.3 Collateral

Denoting �� = �� and �� = ��+ �, one can interpret a contract as follows: Agent � promises

to pay �� dollars at date 1 if state � happens. When he enters the contract, he also puts up

�� dollars as collateral. At date 1, in the state in which the agent does not need to deliver,

he receives his collateral back. Otherwise, the collateral is automatically transferred to the

other agent. Thus, agent � can default only on the amount �� − ��.

Since �� = 1− ��, equation (3) can be rewritten as

��(�) = �− (�− 1)��� (5)

The first term represents the first-best utility, and the second term represents the opportu-

nity cost of collateral: By posting collateral, agents forgo investing in their positive NPV

projects.

4 Decentralized trade with a continuum of agents

4.1 Trading environment

To create an environment where non-exclusivity may be an issue, I extend the model from

the previous section to include a continuum of agents, half of which are type 1 and half of

which are type 2, where type � ∈ {1� 2} corresponds to agent � from the previous section.

Trade takes place at date 0 during an infinite (but countable) number of rounds. One

can think of many points of time during a trading day. Each round, a continuum of agents

arrives to trade for the first time, with an equal mass of both types. Agents can also stay

for subsequent rounds, but once an agent leaves the trading process, he cannot come back.

Agents who are present in each round are pairwise matched according to their types. Each

pair includes one agent of each type.19 (If the mass of type-1 agents does not equal the

mass of type-2 agents, some agents remain unmatched.) After being matched, the two

agents offer contracts simultaneously. If they both offer the same contract, they enter this
19Thus, the type of each agent is observable.
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contract. Otherwise, they do not enter a contract. Finally, after all rounds of trade have

ended, agents store through third parties and make date-0 transfers simultaneously. Then

each agent makes his individual date-0 investment and consumption decisions.

To have some measure of liquidity, I assume that there is some positive cost � associated

with every match, except for the first one. The lower this cost, the more liquid the market.

It is assumed, for simplicity, that � is not paid in cash. Instead, it is measured in utility

terms. It could represent the time and effort involved in entering a contract. I assume that

each agent is endowed with one unit of utility that he can spend on entering contracts, so

an agent can enter at most 1+ 1
 contracts. This guarantees that the mass of agents present

in each round is finite.

To capture the idea of a trading environment in which agents cannot observe previous

transactions of their counterparties, I add the following informational assumptions:

1. An agent does not know in what round he arrived to trade. He only knows in how

many rounds he was present.

2. Agents do not observe the history of other agents. In particular, an agent cannot

observe contracts that other pairs of agents have already entered.

3. Agents cannot observe whether and how much other pairs of agents have stored

through third parties.20

I also assume that

4. Project’s assets cannot be posted as collateral. In other words, the right to terminate

an agent’s project cannot be promised exclusively.

20Thus, storage through a third party is not equivalent to public storage that is observable to all.
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4.2 Equilibrium

I analyze the trading process above as an extensive-form game with imperfect information.

I focus on symmetric (perfect Bayesian) equilibria in pure strategies.21 Given the first

assumption, it is natural to assume that the same contract is entered in every round. I will

refer to this contract as the equilibrium contract. In addition, Lemma 5 in the appendix

shows that without loss of generality, we can restrict attention to equilibria whose outcome

is that every agent enters the equilibrium contract exactly once.

Consider such an equilibrium. Since an agent who is matched does not know previous

transactions of his counterparty, he needs to form beliefs. The only beliefs consistent with

the equilibrium path are that “my counterparty has just arrived to trade.” This is because

“all agents who appeared in previous rounds must have entered the equilibrium contract

and left.” Consequently, when entering a bilateral contract, an agent need not worry about

contracts that his counterparty might have entered in the past, but he may need to worry

about contracts that his counterparty may enter in the future. In particular, if the cost �

of being matched is small enough and the equilibrium contract does not require too much

collateral, an agent can stay for additional rounds and enter the equilibrium contract with

multiple counterparties. To rule out such a deviation, the equilibrium contract must be
21The outcome of the game is the set of contracts entered, the amount that each agent invests, and the

amount that each agent delivers. (Contracts that were offered but not entered are not included because they
do not affect payoffs.) The payoff for each agent is his utility. In particular, consider a type-� agent who
has entered the sequence of contracts � ≡ (�1� �2� � � � � ��), where �� = (��1� �

�
2� �

�
1� �

�
2� 	

�
1 � 	

�
2). Suppose that

he invests b	� and delivers a total amount b��, and that his 
0� counterparty delivers b��−�. The agent’s utility

is ��(b	��b�� | P�

�=1
b��
), where b��

denotes the contract �� in which the element ��−� is replaced with b��−�.
A strategy for a type-� agent is a pair of functions (��� �)� where ��(�) specifies what contract to offer

(or whether to leave) and �(�) specifies how much to invest and how much to deliver. A belief function
��(�) specifies a distribution function on sequences of contracts that each agent of type −� present in a given
round has already entered.
Denote by � the strategy space, and by � �(��� �−� | �� ��) the expected payoff for a type-� agent if he

follows strategy �� and all the agents of the other type follow the strategy �−�. The profile of strategies
�∗ = (�∗� )�=1�2 and the system of beliefs �∗ = (�∗� )�=1�2 are a perfect Bayesian equilibrium if for every type
� and for every �, the following holds

�
�(�∗� � �

∗
−� |�� �∗� ) ≥ �

�(b�� �∗−� | �� �∗� ) for every b� ∈ ��

In addition, the beliefs should be consistent with the equilibrium path (i.e., if possible, they should be derived
using Bayes’ rule).
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such that each agent would find it optimal to enter it only once, rather than many times.

As in the previous section, we can assume without loss of generality that an agent who

plans to deviate by entering more than one contract will subsequently default on all of

them. Such an agent will invest nothing in his project and enter as many contracts as he

can. Therefore, the equilibrium contract � = (�1� �2� 1� 2� �1� �2) must satisfy incentive

constraint IC-1’, as well as the following incentive constraint

��(�) ≥ � �(b���)− (b�� − 1)� for � = 1� 2� (IC-2)

where b��� denotes the aggregate contract, i.e., the contract (b���1� b���2� b��1� b��2� b���1� b���2)�

and b�� is the largest integer smaller than or equal to min( 1�� � 1 +
1
 ).

To solve for the most efficient equilibrium, we need to find a feasible contract � ∈ Ψ
that maximizes the sum of agents’ utilities subject to constraints IC-1’ and IC-2. A solution

to this optimization problem will be referred to as third best.

To avoid some technical problems that may arise, I drop the restriction that �� be

an integer.22 As in the previous section, the (unique) optimal contract is symmetric and

satisfies equations (1) and (2). Therefore, we can express both � and  in terms of �. If

the second-best contract satisfies the additional incentive constraint, i.e., constraint IC-2,

the third-best contract equals the second-best; otherwise, the amount � can be found from

constraint IC-2.

Proposition 2 If either � ≥ 1+ 1
2	 and � ≥ �

2�−� or � 
 1+ 1
2	 and � ≥ �−1

2+ 1
2
�−� , the third-

best contract equals the second-best. Otherwise, it is (uniquely) given by �1 = �2 = 1 − �,
22A microeconomics foundation for this is as follows: Assume that instead of one economy, there is an

infinite number of economies corresponding to the interval (0� 1], and that agents in economy � ∈ (0� 1]
have an initial endowment of �. The economy to which each agent belongs and his endowment are private
information. In the first round agents must trade in their original economy, but afterward agents can switch
back and forth among the different economies. The only restriction is that an agent who has an endowment
� can trade in economy � only if � ≤ � (i.e., an agent can say that he has less than what he has, but he
cannot say that he has more). The cost of being matched in economy � is scaled to be ��. Then if �� is
the equilibrium contract in economy �� it is possible to enter it � times, where � is not restricted to be an
integer.
If � is restricted to be an integer, an optimal contract might not exist because the set of feasible contracts
that satisfy constraint IC-2 might be open.
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1 = 2 = (2+	)�−2 and �1 = �2 = � where � = 1
4(�−1)

³
2(�− 2)− �+

p
8�+ (2�− �)2

´
and � = 	− 2�.

Proposition 3 There exists an equilibrium whose outcome is that every agent enters the

third-best contract, leaves after one round, and does not default. This equilibrium cannot be

Pareto dominated by any other symmetric equilibrium in pure strategies, in which the same

contract is entered in every round.

4.3 The role of collateral

The next proposition shows that when markets become very liquid, collateral becomes

essential for trade.

Proposition 4 If � = (�� � �) is an equilibrium contract that specifies no collateral (i.e.,

� = 0), then when markets become liquid (i.e., � approaches zero), the amount  that an

agent can promise credibly out of his project’s cash flows goes to zero.

The proof is as follows: It follows from equations (1) and (2) that constraint IC-2 can

be rewritten as follows:

 ≤ 2(�− 1)�
�

+ 2� − 2�
�
� (6)

where � = min( 1� � 1+
1
 ). In the limit case, when there is no collateral (� = 0) and no cost of

entering contracts (� −→ 0), � approaches infinity and the right-hand side of constraint (6)

goes to zero. The intuition is simple: When an agent can enter multiple contracts, either

because of low cost of being matched, or low margin requirements, his future income � has

little value in backing his promises because it is “shared” among many counterparties.

To illustrate the role of collateral, consider the case in which � = 0 (i.e., markets are

very liquid), and denote � = � and � = � + , as in subsection 3.3. Constraint (6) then

becomes

� ≤ � +
2(�− 1)�
(1��)

�
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It shows that collateral requirements can increase the amount of cash that agents can

promise (credibly) for two reasons: First, an agent cannot default on the amount of cash

he posted as collateral (first term). Second, collateral requirements limit the number of

contracts he can enter, thereby making his future income valuable in backing his promises

(second term). Consequently, agents in this model can promise more than the amount of

cash they put up as collateral.

With the interpretation that � represents intangible capital (e.g., reputation, or future

profits), the next proposition shows that the level of collateral, as well as the ratio of

collateral to the amount promised, decreases when an agent has more intangible capital

and increases when markets become more liquid.

Proposition 5 The optimal level of collateral, as well as the ratio of collateral to the

amount promised, increases when markets become more liquid (i.e., � decreases) or when

agents have less intangible capital (i.e., � decreases).

5 An equilibrium with an exchange

5.1 The role of an exchange

I now introduce an exchange. The exchange here has a very minimal role: It only sets a

limit on the numbers of contacts that agents can report (voluntarily). More formally, before

trading begins, the exchange sets a position limit � ∈ {1� 2� � � �}. The trading game is as
before, but now when an agent offers a contract, he also needs to specify whether he wants

to report it to the exchange. The contract is entered only if both agents agree on whether

to report. The only restriction that the exchange imposes is that an individual agent can

report at most � contracts. Thus, a pair of agents can report a contract only if both agents

have entered less than � contracts.23

23 In principle, agents can report even if they don’t enter a contract, or if they enter a contract different
from the equilibrium contract. Doing so will be suboptimal, however.
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Proposition 6 If the exchange sets a position limit � = 1, there is an equilibrium in which

every agent enters the second-best contract and reports it to the exchange.

The idea behind the proof is simple: First, since all agents choose to report their con-

tracts, an agent cannot gain by unilaterally offering not to report. Second, since an agent

can report at most one contract, he cannot gain by staying for more than one round.

Since the most efficient outcome without an exchange is the third best, and the exchange

can implement the second best, the exchange can improve welfare if and only if the third

best cannot achieve the second best. It follows from Proposition 2 that

Proposition 7 An exchange can improve welfare if either � ≥ 1 + 1
2	 and � 
 �

2�−� or

� 
 1 + 1
2	 and � 
 �−1

2+ 1
2
�−� �

The benefit from an exchange is ��(��	) − ��(��	) where ��	 denotes the second-best

contract and ��	 denotes the third-best contract. The next proposition says that this benefit

increases when agents have more intangible capital (i.e., � increases) and/or when markets

become more liquid (i.e., � decreases).

Proposition 8 The benefit from an exchange increases when markets become more liquid

(i.e., � decreases) or when agents have more intangible capital (i.e., � increases).

5.2 Pair-proofness and non-binding position limits

One way to test whether the equilibrium in Proposition 6 is robust is to ask the following

question: “Suppose there was some small cost � involved in reporting a contract to the

exchange, could a pair of agents gain by not reporting?” To answer this question we first

need to refine the equilibrium concept. A formal definition is in the appendix. An informal

definition is as follows:

Definition 1 An equilibrium is pair-proof if there does not exist a bilateral deviation that

is both beneficial and self-enforcing.
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The idea is as follows: When a pair of agents jointly deviates, they need to agree on the

contract they enter and whether to report it, but they also need to coordinate their moves

afterward (e.g., agree that none of them stays for additional rounds). The joint deviation

is self-enforcing if neither agent wants to undo it by subsequent unilateral deviations. The

deviation is beneficial if both agents gain (at least one agent gains strictly). It is assumed

that when calculating utilities, both agents take the equilibrium strategies of all other

agents as given. In addition, they do not revise their beliefs (regarding other agents as well

as regarding one another). In particular, an agent does not automatically assume that his

counterparty is a “bad type” (say, he has already entered many contracts) if he offers to

deviate.24

Note that the fact that I chose a very simple bargaining process of simultaneous offers

does not weaken the results. For example, if I changed the bargaining process to “one agent

offers a contract, and the other agent can either accept or reject,” I could easily rule out

potential deviations (and obtain an equilibrium) by defining out-of-equilibrium beliefs that

say that “if my counterparty offers a contract different from the equilibrium contract (or if

he offers not to report the contract), I believe that he has already entered many contracts

and he is going to default.” The definition of pair-proofness restricts the set of sensible

beliefs by requiring that an agent does not update his beliefs after his counterparty has

made an out-of-equilibrium offer.25

Is the equilibrium from Proposition 6 pair-proof? The answer is not necessarily. The

reason is that by setting limits too low (e.g., � = 1), the exchange may permit a pair of

agents to deviate without permitting either agent to undo the joint deviation by subsequent

unilateral deviations. The next example illustrates this.

Example 1 Suppose that � � 1 + 1
2	, so the second-best contract does not involve collat-

24 In some sense pair-proofness is a special case of the coalition proof notion a la Bernheim, Peleg, and
Whinston (1987) because it deals with coalitions of two agents. As far as I know, however, the existing liter-
ature does not define the notion of coalition proofness for extensive-form games with imperfect information.
In such games one may want to specify whether and how agents who deviate update their beliefs.
25With the restriction that new beliefs must be consistent with the equilibrium path, the results below

would hold even if I allowed a deviating pair to change their beliefs.
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eral. In particular, assume that � = 1�6 and 	 = 0�3. Suppose, that � = 1, and that when

an agent reports a contract to the exchange, he incurs a small cost of � units of utility. To

save � , a pair of agents can deviate by entering the second-best contract without reporting

it to the exchange. They can also agree not to enter additional contracts afterward. Obvi-

ously, this deviation is beneficial to both agents, because they save the cost of reporting. Is

such a deviation self-enforcing? The answer is yes. While it is true that given the equilib-

rium strategies of all other agents, the two agents cannot enter additional contracts without

reporting, it is also true that if they do not report the current contract, each one of them

can then enter one additional contract and report it to the exchange. An agent who does

so (i.e., enters a total of two contracts - one reported and one that is not) and subsequently

defaults can obtain a utility of 1 + 1
2(2	)− � − � = 1�3− � − �. But this is less than �, so

the agent cannot gain by undoing the joint deviation. Since the deviation is both beneficial

and self-enforcing, the equilibrium is not pair-proof.

Can an exchange implement the second-best outcome through an equilibrium that is

pair-proof? The answer is yes. To do so, the exchange may need to set position limits that

are non-binding in equilibrium. For example, it may need to set � = 4, even though every

agent enters only one contract in equilibrium. The reason is that the exchange must permit

each member of any deviating pair enough latitude to cheat on his partner, so that the

initial joint deviation is unprofitable. The following example illustrates this.

Example 2 Go back to Example 1 and suppose the exchange sets � = 4. Now after a pair

of agents enters a contract without reporting, each one of them can enter four additional

contracts that are reported to the exchange, for a total of five contracts. Therefore, an agent

who undoes the joint deviation can obtain a utility of 1+ 1
2(5	)− 4� − 4� = 1�75− 4� − 4�.

When � and � are small enough, this is more than �. This means that the original deviation

is not self-enforcing. Also note that while a position limit of � = 4 rules out joint deviations,

it also rules out unilateral deviations in which an agent enters too many contracts and

subsequently defaults. The reason is that if an agent enters four contracts and defaults, he
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can obtain 1 + 1
2(4	) − 4� = 1�6 − 4� , but this is less than the utility of 1�6 − � that he

obtains if he enters only one contract and reports it to the exchange.

In general, to implement an equilibrium that is pair-proof, the exchange needs to pay

attention to two things: First, it needs to make sure that each agent would rather enter the

second-best contract only once (and report it) rather than � times (and report all). That

is,

�(��	) ≥ �(���	)− (�− 1)(� + �)� (7)

Second, the exchange needs to make sure that a bilateral deviation in which a pair of agents

enters the second-best contract without reporting is not self-enforcing. In particular, each

agent should gain if he cheats on his counterparty by entering � additional contracts that

he reports. That is,

�(��	) 
 �(��	 + ���	)− �(� + �)� (8)

The next proposition shows that if � is low enough, the two conditions above are not only

necessary but also sufficient.

Proposition 9 If � is small enough, an equilibrium in which every agent enters the second-

best contract and reports it to the exchange is pair-proof if and only if the position limit �

satisfies conditions (7) and (8).

Interestingly, the exchange in this paper is not a “bulletin board.” In other words, in

some cases it should not make reported trades public. The logic is as follows: When position

limits must be non-binding in equilibrium (as is the case in the examples above), an agent

who has already reported a contract but has not exhausted his limit should be allowed to

enter additional contracts even though he is going to default. Since no agent would enter a

contract knowing that his counterparty is going to default, the exchange should not reveal

information about the exact number of contracts an agent has entered.
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Proposition 10 When position limits are non-binding in equilibrium, the exchange should

not reveal the exact number of contracts an agent has already reported. It should reveal only

whether the limit was reached or not.

Remark 1 One can show that the equilibrium from Proposition 3 is pair-proof. This is

because ��	 solves the problem max�∈Ψ
P2

�=1 ��(�) subject to ��(�) ≥ � �(�+����	)−���

for � = 1� 2 where �� = min(
1−��
���

� 1 ).

6 Conclusion

I developed a theory of an exchange showing that it can increase welfare even if its only role

is to limit the number of contracts that agents can report to it voluntarily. I also illustrated

the role of collateral in enforcing exclusivity and showed how it can make other types of

assets valuable in backing promises even though these assets cannot be pledged exclusively.

While putting up cash as collateral may have an economic cost (e.g., in my model, agents

forgo investing in their positive NPV projects), collateral may be essential when agents

cannot commit to enter exclusive contracts and punishments for default are finite. One

can think of the number of contracts agents are allowed to report to the exchange as a

special form of collateral created by the exchange, and the exchange can be viewed as a

mechanism that provides agents with “cheap” collateral. In my setting, since an agent can

make his future income worthless by his hidden action (he can choose not to invest), the

exchange may also require that agents put up cash as collateral, so that they will have a

future income, which, in turn, will induce them to pay what they promised.

I showed that an equilibrium in which agents report all their trades to the exchange

is immune to self-enforcing deviations by pairs of agents and that, to implement such an

equilibrium, the exchange may need to set position limits that are non-binding in equilib-

rium. The idea is that to rule out bilateral deviations, the exchange needs to permit each

member of any deviating pair enough latitude to cheat on his partner, so that the initial

joint deviation is unprofitable. I also showed that the exchange is not a “bulletin board.”
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In other words, it should not reveal the exact number of contracts an agent has entered.

I showed that the benefits from an exchange increase when markets become more liquid

or when agents have more intangible capital. The theory is consistent with the evolution

of the over-the-counter market for interest rate swaps. Once this market became liquid,

the London Clearing House started clearing its products without becoming a broker or

providing a new trading system.
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Appendix

Proof of Proposition 1: Denote the second-best contract that is given in Proposition 1

by ��	 = (��	� �	� ��	). We need to show that ��	 is an optimal solution to the following

problem (referred to as �1):

max
�∈Ψ

2X
�=1

��(�)

s.t. ��(�) ≥ � �(�) for � = 1� 2 (IC-1’)

Consider problem � 01 that is defined as follows:

max
�∈Ψ0

2X
�=1

��(�)

s.t.
2X

�=1

��(�) ≥
2X

�=1

� �(�) (9)

where Ψ0 = {� = (�1� �2� 1� 2� �1� �2) :
P2

�=1 �� +
P2

�=1 �� ≤ 2�
P2

�=1 �� ≥ 0, and
P2

�=1 �� ≥
0}�

It is easy to verify that Ψ ⊂ Ψ0, and that every � ∈ Ψ that satisfies constraint IC-1’

satisfies also constraint 9. In addition ��	 ∈ Ψ. Therefore, to show that ��	 is optimal for

�1, it is enough to show that it is an optimal solution for � 01.

Lemma 1 There exists an optimal solution to � 01 that satisfies the following properties:

1. �+
P2

�=1 �� = 2�

2. Either �+ −� ≥ 	�� for � ∈ {1� 2}, or �+ −� 
 	�� for � ∈ {1� 2}.
3. �1 = �2� 1 = 2 and �1 = �2�

Proof. After simple algebra, we obtain
P2

�=1 � �(�) = 1 +
1
2(1 + 2) and

2X
�=1

��(�) = 2− 2(�1 + �2) +
1

2
(�+ 	)(�1 + �2)

+
1

2
(�− 	)�1�1(b�1�b1 |�) + 12(�− 	)�2�2(b�2�b2 |�)
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where ��(b���b� |�)½ 1 if �+ −� ≥ 	b��
0 otherwise.

Suppose that � = (�1� �2� 1� 2� �1� �2) is an op-

timal solution to � 01.

1. If � +
P2

�=1 �� 
 2, one can increase � by increasing either �1 and/or �2. The contract

remains in Ψ0, does not violate the incentive constraint, and does not decrease the value of

the objective function.

2. Suppose by contradiction that there exists � ∈ {1� 2} such that � + −� ≥ 	�� but

� + � 
 	�−�. Consider the contract �0 = (�01� �02� 01� 02� � 01� � 02) that is defined as follows:

�01 = �1, �02 = �2, 0� = �−∆, 0−� = −�+∆, � 0� = ��+
∆
� and � 0−� = �−�− ∆

� � Let �
0 = �01+�02.

Note that �0+ 0−� ≥ 	� 0�, �
0+ 0� 
 	� 0−�, �

0
1+ � 02 = �1+ �2, and � 0� � ��. Thus,

P2
�=1 ��(�

0) �P2
�=1 ��(�)� In addition,

P2
�=1 � �(�

0) =
P2

�=1 � �(�)� so the incentive constraint still holds.

Finally, �0 ∈ Ψ0. This contradicts the fact that the contract � is optimal.
3. Consider the contract �0 = (�01� �02� 01� 02� � 01� � 02) that is defined as follows: �01 = �02 =

�1+�2
2 , 01 = 02 =

	1+	2
2 and � 01 = � 02 =

�1+�2
2 . Let �0 = �01 + �02. First, since � ∈ Ψ, it follows

that �0 ∈ Ψ0� Second, if �+ 2 ≥ 	�1 and �+ 1 ≥ 	�2, it follows that �0 + 	1+	2
2 ≥ 	( �1+�2

2 );

if �+ 2 
 	�1 and �+ 1 
 	�2, it follows that �+ ( 	1+	2
2 ) 
 	( �1+�2

2 ). Therefore, because

� 01 + � 02 = �1 + �2, there is no change in the value of the objective function. Finally, since

01+ 02 = 1+ 2, it follows that
P2

�=1 � �(�
0) =

P2
�=1 � �(�), so the incentive constraint still

holds. Therefore, �0 is an optimal solution.

Lemma 1 implies that when solving � 01, we can restrict attention to symmetric contracts

of the form (�� � �), where � = 1− � and � ≥ 0.

Lemma 2 If � 01 has an optimal solution (�� � �) that satisfies � +  ≥ 	�, it also has an

optimal solution that satisfies �+  = 	��

Proof. Suppose �+  � 	�. If � 
 	�, one can decrease  so that �+  = 	�. If � � 	�,

one can choose  = 0 and decrease � so that � = 	�. In both cases, the contract remains

feasible, the value of the objective function does not change, and no constraint is violated.
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Lemma 3 ��	 is an optimal solution to � 01�

Proof. By the previous lemmas, we can compare between two cases:

Case 1: �+  
 	� : In this case it is optimal to choose � =  = 0 and � = 1. The utility for

each agent is ��(�) =
1
2(�+ 	)�

Case 2: �+  = 	� : Since � = 2� = 2(1− �), it follows that  = (2 + 	)� − 2. In addition,
��(�) = 1+ (�− 1)� and � �(�) = 1+

1
2. Thus, to find an optimal solution to � 01, we need

to solve max�∈Ψ0 � subject to

1 + (�− 1)� ≥ 1 + 1
2
[(2 + 	)� − 2] (10)

Since � ≥ 0, we must have � ≤ 1. If we substitute � = 1 in constraint 10 and simplify, we

obtain � ≥ 1 + 1
2	. Therefore, when � ≥ 1 + 1

2	, it is optimal to choose � = 1. Otherwise,

we obtain that � ≤ 1
2+1

2
�−� � Therefore, the optimal solution is �∗ = min(1� 1

2+1
2
�−�) =(

1 �� � ≥ 1 + 1
2	

1
2+ 1

2
�−� ���� !���� and the utility for each agent is ��(�) = 1 + (�− 1)�∗.

To choose between the two cases we need to compare utilities. When �∗ = 1, it follows

(since � � 	) that 1 + (� − 1)�∗ = � � 1
2(� + 	), so the second case is optimal. Suppose

now that �∗ 
 1. Since 2 + 1
2	 − � 
 1 + 	, it follows that �∗ ≥ 1

1+� and 1 + (� − 1)�∗ ≥
1 + (�− 1) 1

1+� =
�+�
1+� . The assumption 	 
 1 guarantees that this is more than 1

2(�+ 	).

Note that a necessary and sufficient condition for case 2 to be optimal is 1 + (� −
1) 1
2+ 1

2
�−� ≥ 1

2(� + 	), which is equivalent to 1
2
4−2�−4�+��+2�2−�2

4+�−2� ≥ 0. Since �̇ 
 1 + 1
2	

implies that 4+ 	− 2� � 0, the condition is equivalent to 4− 2	− 4�+�	+2�2− 	2 ≥ 0.

It follows that � is an optimal solution to �1. To show uniqueness, denote ��	 = 2��	,

and consider another contract (�1� �2� 1� 2� �1� �2). To achieve the optimal value for the

objective, the contract must satisfy �+−� ≥ 	�� for � = 1� 2, and �1+�2 = 2�
∗. In addition,

feasibility implies that � ≤ 2 − (�1 + �2) = 2 − 2�∗ = ��	. Suppose that �1 = �∗ − ∆
and �2 = �∗ + ∆, where ∆ � 0. To satisfy � + 1 ≥ 	�2 for � ∈ {1� 2}, we must have
1 ≥ 	�2 − � ≥ 	�∗ + 	∆− ��	 = �	 + 	∆. But then the incentive constraint for agent 1 is
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violated.

Proof of Proposition 2:

Lemma 4 The third-best contract is symmetric and satisfies � = 1−� and  = (2+	)�−2.

Proof. Follow the same logic as in Proposition 1, but add the constraint
P2

�=1 ��(�) ≥P2
�=1 � �(b��) − 2(b�− 1)� to problem � 01, where b� = min( 1

min(�1��2)
� 1 + 1

 ). Also, in step 3

of Lemma 1, use the fact that 1
min(�1��2)

≥ 1
�1+�2

2

.

Denote the second-best contract by ��	 = (��	� �	� ��	). The third-best contract equals

the second-best contract if and only if ��	 satisfies constraint IC-2.

Assume first that � ≥ 1 + 1
2	. Substituting ��	 = (0� 0� 1) in constraint IC-2, we obtain

� ≥ 1 + 1
2(1 +

1
 )	− (1 + 1

 − 1)�. This is equivalent to � ≥ 1
2(
1
 + 1)	, which is equivalent

to � ≥ �
2�−� .

Assume now that � 
 1 + 1
2	. Then ��(��	) = � �(��	). In addition, ��	 
 1, so

min( 1��� � 1 +
1
 ) � 1. Now note that

� �(����	)− (�� − 1)�
= 1 +

1

2
���	 − (�� − 1)�

= � �(��	) + (�� − 1)(1
2
�	 − �)

= ��(��	) + (�� − 1)(1
2
�	 − �)�

Thus, it follows that constraint IC-2 can be satisfied if and only if 12�	 − � ≤ 0. This

condition is equivalent to � ≥ 1
2�	 =

1
2 [(2 + 	)��	 − 2] = 1

2(2 + 	) 1
2+1

2
�−� − 1 = �−1

2+ 1
2
�−� .

Suppose now that ��	 does not satisfy constraint IC-2. The optimal level of investment

� can be found from constraint IC-2. We can assume without loss of generality that 1
� ≤

1+ 1
 , because otherwise one could decrease �, thereby increasing the value of the objective

function without violating the constraints. Therefore, since  = (2 + 	)� − 2 and � =

min( 1� � 1 +
1
 ) =

1
� , constraint IC-2 can be written as follows:

1 + (�− 1)� ≥ 1 + 1
2

1

�
[(2 + 	)� − 2]− (1

�
− 1)�
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After substituting � = 1− � and doing some simple algebra, we obtain:

2(�− 1)�2 + (4 + 	− 2� − 2�)� − 2 ≤ 0

Solving for �� we obtain

1

4 (�− 1)
³
2(�− 2)− �−

p
8�+ (2�− �)2

´
≤ � ≤ 1

4 (�− 1)
³
2(�− 2)− �+

p
8�+ (2�− �)2

´
where � = 	−2�. Therefore, it is optimal to choose � = 1

4(�−1)
³
2(�− 2)− �+

p
8�+ (2�− �)2

´

Proof of Proposition 3: For � = (�1� �2� � � � ��), denote by "�(�� �
0) the highest

utility that an agent who has already entered the sequence of contracts � can obtain if he

enters the contract ��	 with �0 additional counterparties, given that none of his counterpar-

ties defaults, and denote by #�(�) = {�0 ≥ 0 :
P�

�=1 �
�
� + �0��	�� ≤ 1� (�+ �0 − 1)� ≤ 1} the

set of feasible choices of �0. Let �∗� (�) = argmax�0∈��(�) "�(�� �
0) and let (� 0�(�)� 

0
�(�)) =

argmax
(b���b	�)∈
�(

P�
�=1 �

�)
��(b���b� | P�

�=1 �
�)�

Consider the following strategy for a type � agent: In the first round offer ��	. Then given

that the sequence of contracts � was entered and �∗� (�) = 0, leave and choose � 0�(�)� 0�(�).

Otherwise, stay and offer ��	.

One can verify that if all agents follow the strategies above, the outcome of the game is

that each agent enters the third-best contract, leaves after one round, and then chooses �∗�
and ∗� . Thus, the only beliefs consistent with the equilibrium path are that “my counter-

party has just arrived for trade.”

One can also verify that the strategies are optimal for each agent given the beliefs and

given that his counterparties follow the equilibrium strategies. In particular, note that since

all other agents offer the third-best contract, there is no point to offer a different contract,

and that entering the third-best contract is preferred to autarky. Pareto dominance follows

from the definition of the third-best contract and from Lemma 5 below.
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Lemma 5 An equilibrium in which each agent enters more than one contract cannot im-

prove welfare.

Proof. Consider an equilibrium in which each agent enters the contract � with �

different counterparties, so each agent obtains a utility ��(��)−(�−1)�. As in Proposition
2, we can assume without loss of generality that � is symmetric and is given by (�� � �)

where �� � � satisfy equations (1) and (2). We can also assume without loss of generality

that 1
� ≤ 1 + 1

 , because otherwise one could decrease �, thereby increasing the value

of the objective function without violating the constraints. Suppose that ��(��) − (� −
1)� � ��(�

∗) where �∗ = (�∗� ∗� �∗) denotes the third-best contract. Consider the contractb� = �� = (��� �� ��)� It is easy to verify that b� ∈ Ψ. In addition, if it is possible to enterb� with �0 counterparties, it is possible to enter � with ��0 counterparties. This is because

�0(��) ≤ 1 implies that ��0 ≤ 1
� ≤ 1+ 1

 . Since � is entered in equilibrium � times, it must

be the case that b� satisfies the two incentive constraints IC-1’ and IC-2. But then the fact
that ��(b�) = ��(��) � ��(�

∗) contradicts the optimality of �∗.

Proof of Proposition 5: When the third best achieves the second best, � = min(1� 1
2+ 1

2
�−�),

and it is easy to see that ��
�� � 0. Assume now that the third best does not achieve

the second best. It follows from the proof of Proposition 2 that � solves the equation

$(���� �) = 0 where $(���� �) = 2(�− 1)�2 + (4 + 	− 2� − 2�)� − 2, so by the envelope
theorem, ��

�� = −�����
����� and

��
� = −����

����� . Since  ≤ 	 and 1
2 − � � 0, it must be the

case that 	 � 2�. In addition, it follows from the proof of Lemma 3 that � ≥ 1
1+� , and

since 	 
 1, it follows that � ≥ 1
2 . Therefore,

��
�� = 4(� − 1)� + (4 + 	 − 2� − 2�) ≥

4(� − 1)12 + (4 + 	 − 2� − 2�) = 	 − 2� + 2 � 0, ��
�� = 2�2 − 2� = 2�(� − 1) 
 0 and

��
� = −2� 
 0� It follows that ��

�� � 0 and ��
� � 0. Since � = � = 1 − �, it follows that

��
�� 
 0 and ��

� 
 0. Since  = (2 + 	)� − 2, it follows that �	
�� � 0 and �	

� � 0. Finally, let

% = �
� =

�
�+	 =

1
1+ �

	

. Then it follows that ��
�� 
 0 and ��

� 
 0.
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Proof of Proposition 8: Suppose that ��	 6= ��	. The benefit from an exchange is

$(�� �) ≡ ��(��	)− ��(��	) = (�− 1)��	 − (�− 1)��	
= (�− 1)min(1� 1

2 + 1
2	−�

)− 1
4

³
2(�− 2)− �+

p
8�+ (2�− �)2

´
where � = 	− 2�.

Sensitivity to � : ��
� 
 0 because ��

� = ��
��

��
� �

��
�� = 1

4 [1 − 4−(2�−�)√
8�+(2�−�)2 ] � 0� and

��
� 
 0�

Sensitivity to � :

Case 1: � ≥ 1+1
2	. In this case,$(�� �) = (�−1)−14

³
2(�− 2)− �+

p
8�+ (2�− �)2

´
and ��

�� = 1− 1
2

√
(8�+4�2−4��+�2)+2�−�√

(8�+4�2−4��+�2)
=

√
8�+(2�−�)2−(2�−�)

2
√
(8�+4�2−4��+�2)

� 0�

Case 2: � 
 1+ 1
2	. In this case $(�� �) = (�−1)(��	− ��	) where ��	 is the solution to

2(�−1)�2+(4+	−2�−2�)�−2 = 0 and ��	 is the solution to (�−1)�− 1
2(2+	)�−1 = 0�

Since � � 1 and ��	 � ��	, to show that ��
�� � 0, it is enough to show that ����

�� �

����
�� . From the envelope theorem, ����

�� = ���
2+ 1

2
�−� and ����

�� = − 2�2
��
−2���

4(�−1)���+(4+�−2−2�) =
���(1−���)

2(�−1)���+(2+1
2
�−−�) . Since ��	(1 − ��	) 
 ��	, it remains to show that 2(� − 1)��	 + (2 +

1
2	− � −�) � 2 + 1

2	−�. This is equivalent to 2(�− 1)��	 − � � 0 which follows from the

incentive constraint and the fact that � 
 �	�

A definition of pair-proofness

Consider a profile of strategies &∗ = (&∗1� &∗2) and a system of beliefs '∗ that are a

perfect Bayesian equilibrium. Consider a pair of agents, say agent 1 and agent 2, who were

matched, and suppose that agent � (� = 1� 2) has already entered the sequence of contracts

��. The pair (&∗� '∗) and the individual histories (�1� �2) induce an extensive form game,

referred to as Υ(&∗� '∗� �1� �2), in which the only players are agent 1 and agent 2. Denote

by " �(&1� &2 |&∗� '∗� ��) the utility for agent � in this game if he follows the strategy &� and

the other agent follows the strategy &3−� (given the beliefs '∗).

Definition 2 A deviation for agents 1 and 2 is a pair of strategies (&1� &2).
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Denote by ((&∗) the set of individual histories (�1� �2) that are consistent with &∗ and

with the fact that agents 1 and 2 were matched.

Definition 3 A deviation (&1� &2) is beneficial given (&∗� '∗) and given (�1� �2) ∈((&∗)

if it satisfies the following inequalities

1. " 1(&1� &2 |&∗� '∗� �1) � " 1(&∗1� &∗2 |&∗� '∗� �1)

2. " 2(&1� &2 |&∗� '∗� �2) � " 2(&∗1� &∗2 |&∗� '∗� �2)

Definition 4 A deviation (&1� &2) is self-enforcing given (&∗� '∗) and given (�1� �2) ∈
((&∗) if the following two conditions hold:

1. " 1(&1� &2 |&∗� '∗� �) ≥ " 1(b&1� &2|&∗� '∗� �) for every b&1 ∈ ) and for every � that

starts with �1.

2. " 2(&1� &2 |&∗� '∗� �) ≥ " 2(&1� b&2|&∗� '∗� �) for every b&2 ∈ ) and for every � that

starts with �2.

Definition 5 A perfect Bayesian equilibrium (&∗� '∗) is pair-proof if there does not exist

a pair of strategies (&1� &2) and histories (�1� �2) ∈((&∗) such that (&1� &2) is a deviation

that is both self-enforcing and beneficial given (&∗� '∗) and given (�1� �2)�

Proof of Theorem 9. First note that if � satisfies condition (7), there is an equilibrium

in which every agent enters the second-best contract and reports it to the exchange. As

shown in the text, if the equilibrium is pair-proof, condition (8) needs to be satisfied as

well. To show that the two conditions are sufficient, it is enough to show that the best

bilateral deviation that is self-enforcing is not beneficial. Suppose that the two agents enter

� without reporting. The deviation is self-enforcing if

��(�) ≥ � �(� + ���	)− �(� + �) for � = 1� 2, (11)
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and the best deviation solves: max�
P2

�=1 ��(�) subject to constraint (11). As before,

the optimal contract is symmetric and satisfies equations (1) and (2). Denote it by �∗ =

(�∗� ∗� �∗). Inequality (8) implies that the second-best contract violates constraint (11).

Therefore, ��(�
∗) 
 ��(��	)� The equilibrium is pair-proof if the deviation is not beneficial,

i.e., if ��(�
∗) ≤ ��(��	) − � for � = 1� 2� This holds when � is small enough. Finally, note

that if the two agents report, the best thing is to enter ��	.
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