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We first point out that, using any of the current criteria for comparing information systems

in principal-agent models with moral hazard (such as Kim (1994)’s MPS criterion), it is

often impossible to contrast the value of information obtained from different policies of

contingent audits that bear the same cost. Given two such policies A and B where, say,

the lower cumulated frequencies of audits are always larger under B than under A, we

show, however, that the likelihood ratio distribution associated with A dominates the one

associated with B in the third order. A new, strictly finer, ranking of information systems

then implies that the value of information is greater under A than under B when the agent’s

negative inverse utility function exhibits some prudence. The practical upshot is that the

design of auditing policies involves somewhat more than the classical tradeoff between risk-

sharing and incentives; it also requires to balance incentives and downside risk.
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1. INTRODUCTION

An important topic in the analysis of principal-agent relationships is the comparison of

information systems that imperfectly correlate some common observables with the agent’s

hidden actions. Any classification should first lead to identify and discard information

systems under which the principal achieves a relatively lower expected payoff. A “practi-

cal” (i.e. robust) ranking criterion, however, would also rely as little as possible on specific

features of the current relationship, such as the agent’s utility function.

Starting with the seminal contribution of Holmström (1979), some orderings have suc-

cessively been studied by Gjesdal (1982), Grossman and Hart (1983), Kim (1995), Jewitt

(1997), and Demougin and Fluet (2000). One shortcoming of the suggested rankings is

that they hardly convey the actual costs of gathering and communicating the prescribed

observables (see Baker (1992)). A second weakness, which most of the literature primar-

ily addresses, is that they are incomplete and may not allow to decide in some contexts

between relevant information systems.

Among the available orderings, the “MPS criterion” introduced by Kim (1995) - which

classifies information systems according to the mean-preserving spread relation between

their respective likelihood ratio distributions - is now the one that best deals with the

latter criticism.1 This criterion embodies those that were proposed earlier; its introduction

1The MPS criterion says that (assuming the first-order approach to the considered principal-agent
problem is valid) an information system A yields a higher expected payoff to the principal than an
information system B if the likelihood ratio distribution associated with A is a mean-preserving spread of
the one associated with B, or in other words if the latter dominates the former in the sense of second-order
stochastic dominance. Alternative criteria were recently introduced and discussed by Jewitt (1997) and
Demougin and Fluet (2000), who show that these are actually equivalent to the MPS criterion.
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also constituted a radical improvement, for it allowed comparisons between information

systems which are not necessarily nested.

One significant group (both in theory and practice) of information systems, however,

largely eludes the MPS criterion: those which are induced by contingent auditing poli-

cies. An intuitive explanation of this fact would be the following. Several economically

plausible auditing policies are, for instance, upper-tailed or lower-tailed (see, e.g., Baiman

and Demski (1980), Dye (1986), Jewitt (1988), and Sinclair-Desgagné (1999)), i.e. they

prescribe that audits be triggered only by the observation of respectively high or low sig-

nals.2 A rational principal who seeks to bring about a given action by the agent would

then typically have to discriminate between compound information systems of the form

A (upper-tailed policy): use LX + LY if signal X ≥ x0, and LX otherwise; versus

B (lower-tailed policy): use LX + LY if signal X ≤ x00, and LX otherwise;

where Prob{X ≥ x0} = Prob{X ≤ x00}, i.e. the two policies entail the same frequency

of audits (hence the same cost), and LX , LY are two independent likelihood ratios.

Yet, the respective likelihood ratio distributions associated with A and B clearly have

the same mean (since both LX and LY have mean zero) and variance, so neither is a

2Baiman and Demski (1980) first found, assuming that the agent’s utility function belongs to the
HARA (hyperbolic absolute risk aversion) family, that optimal audits might often be upper-tailed or lower-
tailed. In a more general setting, Dye (1986) and Jewitt (1988) have next characterized the situations
where optimal audits are lower-tailed (Jewitt (1988) also provided sufficient assumptions for the first-
order approach to be valid). More recently, Sinclair-Desgagné (1999) showed that upper-tailed contingent
audits can help raising the power of incentives in a multitasking context.
Of course, optimal contingent audits do not need to be upper or lower-tailed. Lambert (1985) and

Young (1986), for instance, provide examples where they are in fact two-tailed - i.e. triggered only by the
observation of high or low signals. Our main results (Theorems 1 and 2) can also cope with such policies.
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mean-preserving spread of the other.

The objective of this paper is now to develop a ranking which is consistent with the

MPS criterion and allows to better select among audit-generated information systems.

The upcoming section lays out a standard principal-agent model with audits. Section

3 next contains our first key result: consider two auditing policies A and B that have the

same expected frequency of audits but where the lower cumulated frequencies are always

larger under B than under A, then the likelihood ratio distribution associated with A

dominates the one associated with B in the third order. This conclusion means that

implementing a new contingent auditing policy without changing the overall expected

frequency of audits amounts to making mean and variance-preserving transformations

of the actual information system (see Menezes et al. (1980)). It suggests, furthermore,

that choosing among various auditing policies by comparing the resulting information

systems should still be possible, provided a suitable generalization of the MPS criterion

is made available. Such a generalization is introduced in section 4. It allows indeed to

discriminate between A and B, if the sign of the third derivative of the agent’s inverse

utility function is constant. Further implications in more general settings - respectively

where the cost of audits may vary and when monitoring and auditing signals can be

correlated - are explored in section 5. All these developments suggest, finally, that in

designing a contingent auditing policy one must not only weigh the agent’s incentives and

overall risk bearing, but also the agent’s exposure to downside risk. Some conjectures

arising from this practical remark are briefly stated in the concluding section 6.
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2. THE MODEL

Consider a one-period relationship between a principal and an agent. An amount of

effort a ∈ [0,∞) is expected from the latter. This effort, however, is only imperfectly

observable through some random variables X and Y . We assume (until section 5) that

X and Y are conditionally independent, so for a given effort a the realizations x and y of

the random variables obey the conditional distributions F (x, a) and G(y, a) respectively.

Those distributions have respective densities f(x, a) and g(y, a) that exhibit constant

supports (noted ΓX and ΓY ) and are twice continuously differentiable in a for all x, y.

The likelihood ratios associated with X and Y will now be respectively denoted

LX(x, a) =
fa(x, a)

f(x, a)
and LY (y, a) =

ga(y, a)

g(y, a)
.3 A standard assumption is that these ratios

share the Monotone Likelihood Ratio Property (MLRP), that is: LX(x, a) and LY (y, a)

increase in x and in y respectively, for every a. Clearly, LX and LY are themselves ran-

dom variables, and their respective distribution - called a likelihood ratio distribution -

constitutes a formal representation of an information system.4 It is well known that all

likelihood ratio distributions have the same mean EX [LX ] = EY [LY ] = 0. The variance

of, say, LX is then given by V ar(LX) = E[(LX)2]; it is often denoted IX and called the

“Fisher information index” associated with X.5

3Throughout this paper the subscript a refers to the partial derivative with respect to a.

4Actually, it is the density functions f and g themselves which are usually interpreted as information
systems. But since there is a one-one relationship between these and their associated likelihood ratio
distributions, we deem that also calling the latter an information system will not create confusion.

5The Fisher information index is well-known to statisticians and econometricians (see Gouriéroux and
Monfort (1989), for example). Note that EX [(LX)2] = EX [−∂LX

∂a ], so this index measures the sensitivity
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The risk neutral principal routinely observes the value of X. Based on this, she may

either compensate the agent immediately according to a wage schedule w(X), or she may

audit the agent at a constant cost K - thereby also gathering signal Y - and pay him

according to a sharing rule s(X,Y ). We suppose that the principal can commit to a

probability m(x) of making an audit upon observing X = x. Her expected cost when the

agent delivers effort a is therefore given by

EC =

Z
ΓX

Z
ΓY

{(1−m(x))w(x) +m(x)s(x, y)}dF (x, a)dG(y, a) (1)

+K

Z
ΓX

m(x)dF (x, a).

The latter integral M(a) =
R
ΓX
m(x)dF (x, a) gives the expected probability of an audit

(or the overall frequency, or the intensity of audits) under a policy m(X).

The agent’s preferences are assumed to be additively separable in effort and wealth.

The cost of effort is scaled so that its first-order derivative is equal to 1. The agent’s

attitude with respect to uncertain variations of his wealth exhibits risk aversion and is

represented by a positive, strictly concave and three-times continuously differentiable Von

Neumann-Morgenstern utility index u(·). The agent’s expected utility after putting an

effort a under a contract [w, s,m] is then given by

EU =

Z
ΓX

Z
ΓY

{(1−m(x))u(w(x)) +m(x)u(s(x, y))}dF (x, a)dG(y, a)− a. (2)

of the likelihood ratio with respect to a (or the informational content of X about a). For a compelling
illustration of the usefulness of this index in principal-agent analyses, see Dewatripont et al. (1999).
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In the upcoming sections, we let ϕ = u−1 denote the inverse of u(·).

A rational principal will select an auditing policym(X) and wage schedules w(X) and

s(X,Y ) that implement a given effort a at a minimal cost, provided the agent thereby

achieves his reservation utility level U and is also willing to deliver the expected effort

level. Formally, this amounts to minimize (1), subject to participation and incentive

compatibility constraints given respectively by

EU =

Z
ΓX

Z
ΓY

{(1−m)u(w) +mu(s)}dFdG− a ≥ U, (3)

a = argmax
e

Z
ΓX

Z
ΓY

{(1−m)u(w) +mu(s)}dF (x, e)dG(y, e)− e. (4)

The latter constraint involves a continuum of inequalities and is thus not generally

tractable. In what follows, we replace it by a friendlier one which requires that the effort

level a be an interior stationary point of the agent’s expected utility function, that is:

Z
ΓX

Z
ΓY

[fa(x, a)g + fga(y, a)]{(1−m(x))u(w(x) +m(x)u(s(x, y))}dxdy − 1 ≥ 0. (5)

We assume that this so-called “first-order approach” always yields a solution that consti-

tutes an incentive compatible allocation (hence which solves the initial problem as well).6

6Suitable sufficient conditions for the validity of the first-order approach in the present context -
conditions that do not put further a priori restrictions on the agent’s utility function - can be found in
Sinclair-Desgagné (1994).
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3. SORTING INFORMATION SYSTEMS

If someone wants to distinguish among various auditing policies, at least two natural

features come to mind. First, a policy exhibits an overall intensity M , which determines

its total cost K ·M . Second, a contingent auditing policy mA can be described as rel-

atively more upper-tailed than another contingent policy mB if the latter exhibits larger

cumulated auditing frequencies (or larger downside intensities) than the former, that is:Z x

InfΓX

mBdF ≥
Z x

InfΓX

mAdF for all x. The question we now ask is whether those features

can be used to infer some characteristics of the induced information systems.

Accordingly, consider a contingent auditing policym(X) of intensityM and associated

likelihood ratio Lm. Clearly, the event {Lm ≤ l} is the same as7

{LX(X, a) ≤ l and there is no audit}∪{LX(X, a)+LY (Y, a) ≤ l and an audit occurs} .

The cumulative distribution Φm(·) of Lm is thus given by

Φm(l) = Pr ob(L
m ≤ l) =

Z
ΓX

(1−m)δ(l − LX)dF +
Z
ΓX

Z
ΓY

mδ(l − LX − LY )dFdG ,

where δ(z) = 1 as long as z ≥ 0, and δ(z) = 0 otherwise. And the first and second

7The summation in the second subset comes immediately from the separability of the joint distribution
of X and Y . For the likelihood ratio associated with this joint distribution is precisely

LX,Y (x, y, a) =
∂[f(x,a)g(y,a)]/∂a

f(x,a)g(y,a) = fa(x,a)g(y,a)+f(x,a)ga(y,a)
f(x,a)g(y,a) = LX(x, a) + LY (y, a).
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moments of this distribution are respectively8

E(Lm) = 0 and V ar(Lm) = IX(a) +M(a)IY (a) . (6)

A significant implication of (6) is that two contingent auditing policies (be they rel-

atively upper-tailed, relatively lower-tailed, two-tailed, or totally random, for instance)

that share the same intensity will generate likelihood ratio distributions with the same

variance. It follows that Kim (1994)’s MPS criterion is often not helpful to differentiate

the information systems correxponding to different policies of audits: two policies mA(X)

and mB(X) where MA = MB will have associated likelihood ratio distributions so that

noone can yield the other via some mean-preserving spread of probability mass.

But what about mean and variance-preserving transformations? Recall that, while

classifying probability distributions according to mean-preserving spreads amounts to

making second-order stochastic dominance comparisons (Rothschild and Stiglitz (1970)),

using mean and variance-preserving transformations relates to third-order stochastic dom-

inance (Menezes et al. (1980)).9 Let us now write R &n S when the distribution of the

8To be sure, notice that

E(Lm)2 = E[E[(Lm)2 | X]]
= E[(1−m(X))(LX)2 +m(X)E[(LX + LY )2 | X]]
= E[(1−m(X))(LX)2 +m(X)E[(LX)2 + 2LXLY + (LY )2 | X]]
= E[(1−m(X))(LX)2 +m(X)((LX)2 + 2LXE[LY | X] +E[(LY )2 | X])]
= E(LX)

2 + 0 +E[m(X)E[(LY )
2 | X]]

= IX +MIY .

9Let R and S be any two random variables with respective distribution functions H(r) and P (s), and
densities h(r) and p(s) which are strictly positive on the open interval (t, t). Recall that the distribution
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random variable R dominates the distribution of the random variable S in the nth order.

The following theorem spells out our current intuition.

Theorem 1. Let mA(X) and mB(X) be some auditing policies with the same inten-

sity. If for any x ∈ ΓX we have that
Z x

InfΓX

mBdF ≥
Z x

InfΓX

mAdF , the inequality being

strict for a set of positive measure, then LA &3 LB.

In other words, the information system induced by a contingent auditing policy mA

stochastically dominates in the third order the information system generated by an equally

expensive policy mB when the downside intensity of audits is lower under the former than

under the latter, or equivalently when the former is relatively more upper-tailed than the

latter. A proof of this statement can be found in the appendix.

LetmUT (X) denote an upper-tailed auditing policy, i.e. a policy such thatmUT (x) = 1

if x > x and mUT (x) = 0 if x ≤ x; and similarly, let mLT (X) refer to a lower-tailed

auditing policy, so mLT (x) = 0 when x > x and mLT (x) = 1 otherwise. Given an upper-

tailed, a lower-tailed, and an arbitrary auditing policy m(X) which all exhibit the same

expected frequency, it can be checked that

Z x

InfΓX

mLTdF ≥
Z x

InfΓX

mdF ≥
Z x

InfΓX

mUTdF (7)

of R stochastically dominates the distribution of S in the nth order, noted R &n S, if for all t ∈ (t, t] we
have that

Z t

t

(t − z)n−1{h(z) − p(z)}dz ≤ 0, the inequality being strict on a subset of (t, t] of positive
measure. It can be shown that R &n S implies that R &n+1 S , while the converse is not true.
Third-order stochastic dominance thus provides a finer ordering than second and first-order dominance.
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for all x. By the above theorem, one can now conclude that

LmUT &3 Lm &3 LmLT . (8)

That is: relative to the third-order stochastic dominance ordering, any set of information

systems generated by cost-equivalent auditing policies is bounded above and below by the

systems corresponding respectively to an upper and a lower-tailed auditing policy.

Theorem 1 finally clarifies what amending an existing auditing policy actually does to

the associated information system. Note that the conditional expectation and variance of

the likelihood ratio distribution associated with an auditing policy m(X) are respectively

E(Lm | X = x) = LX(x, a) so V ar(Lm | X = x) = m(x)IY (a) . (9)

Raising the probability m(x) of performing an audit amounts therefore to increasing the

local variance of Lm at X = x Conversely, decreasing m(x0) contracts the distribution of

Lm at X = x0. A combination of both transformations thereby involves a reallocation of

local variance - leftward if x < x0 or rightward if x0 > x - within the information system.10

Now that we have a convenient classification of audit-generated information systems,

the upcoming section will turn to decision-making and the principal’s choice of policy.

10Equivalently, let LX,Y be the joint likelihood ratio of X and Y ; it can be shown that the distribution
of LX,Y is a mean-preserving spread of that of LX (see Kim (1994), proposition 2). Raising (diminishing)
the contingent probability m(x) of performing an audit, by increasing (decreasing) the relative frequency
of LX,Y and lowering (augmenting) that of LX , amounts therefore to increasing (decreasing) the local
dispersion of Lm at X = x.
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4. CHOOSING AN INFORMATION SYSTEM

It is intuitive that the cost of auditing will first have an impact on the type of policy

to be set by the principal. The following proposition clarifies this matter.

Proposition 1. An optimal auditing policy is such that auditing intensity is decreas-

ing with respect to K, and M ≡ 1 when K = 0 .

A proof can be found in the Appendix. Note that the second part of this proposition

constitutes an extension of Holmström (1979)’s celebrated “sufficient statistic” result: it

says indeed that any informative signal about the agent’s effort has positive value for the

principal, even when gathering such a signal is an endogenous (i.e. strategic) decision.

Given a cost of auditing K, the relevant set of policies reduces therefore to those dis-

playing the appropriate expected frequency. This result certainly provides some guidance

for selecting an auditing policy, but it still leaves out a huge set of policies to choose from.

In order to pursue further, let us now rewrite the principal-agent problem (taking stock

from Grossman and Hart (1983)) as follows. Let

uN(x) = u(w(x)),

uA(x) = EY [u(s(x, Y ))] = u(wA(x)),

u(s(x, y)) = uA(x) + ω(x, y) with EY [ω(x, Y )] = 0,

and ρ(x) = EY [s(x, Y )]− wA(x),

so ω(x, Y ) represents the contingent “lottery” (with prizes expressed in the units of the
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agent’s utility function) associated with an audit that comes after observing x, and wA(x),

ρ(x) denote respectively the “certainty equivalent” and the “risk premium” associated

with this lottery. Expressions (1), (3) and (5) are then respectively the same as

EC =

Z
ΓX

{(1−m)ϕ(uN) +m[ϕ(uA) + ρ]}dF +K
Z
ΓX

mdF (10)

EU =

Z
ΓX

{(1−m)uN +muA}dF − a ≥ U (11)

EUa =

Z
ΓX

{(1−m)uN +muA}dFa +
Z
ΓX

Z
ΓY

mωdFdGa − 1 ≥ 0. (12)

Note that the risk premium ρ can in turn be written as

ρ(x) = EY [ϕ(uA(x) + ω(x, Y ))]− ϕ(uA(x)). (13)

The current optimization problem is thereby equivalent to that of a Von-Neumann-

Morgenstern decision-maker with utility index −ϕ(·) who must select feasible contri-

butions uN(X) and uA(X) together with fair lotteries of the form ω(x, Y ) and their

contingent probabilities of occurrence m(x).

If ϕ000(·) ≡ 0, then ρ is invariant with respect to uA. In this case the decision-maker

prefers to set uN(x) = uA(x) whenever 0 < m(x) < 1, because ϕ is a convex function.

The optimality conditions imply, furthermore, that

µLY = ϕ0(uA(x) + ω(x, Y ))− ϕ0(uN(x)), (14)
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where µ ≥ 0 is the Lagrange multiplier associated with constraint (12). The contingent

lotteries ω(x, Y ) must now be identical, since ϕ0 is a linear function. The decision-maker’s

problem amounts therefore to minimize

EC =

Z
ΓX

ϕ(uN(x))dF +Mρ+KM

subject to

EU =

Z
ΓX

uN(x)dF − a ≥ U

EUa =

Z
ΓX

uN(x)dFa +M

Z
ΓY

ωdGa − 1 ≥ 0.

Clearly, the only feature of audits that matters here is their intensity M .

Now, let ϕ000 be negative (the treatment of ϕ000 > 0 is symmetric).11 This time the

decision-maker exhibits precautionary motives, or prudence. When having to face a mean-

preserving additional risk, a prudent decision-maker prefers to see it attached to the best

rather than the worst outcomes (see Eeckhoudt et al. (1995)). Starting from the previous

solution (uN(x) = uA(x), and ω(x, Y ) invariant with respect to x), she would thus set

m(x) larger when x is higher and m(x) smaller when x is lower. This suggests than a

11The sign of ϕ is negative, positive or zero when, for instance, the agent’s utility function shows
constant relative risk aversion (CRRA) respectively lower than, greater than, or equal to 1/2. For
concreteness, a complete treatment of the knife-edge case u(t) = t1/2 has been put in the Appendix.

More generally, ϕ000(.) < (> or =) 0 if and only if P > (< or =) 3R , where P =
−u000
u00

is the agent’s

coefficient of absolute prudence, as defined and interpreted in Kimball (1990), and R =
−u00
u0

that of

absolute risk aversion.

14



preferred auditing policy would now be relatively more upper-tailed. Moreover, prudence

together with (13) implies that the premium ρ must decrease with uA (see Kimball (1990),

and Hartwick (1999)), and that

EY [ϕ
0(uA(x) + ω(x, Y ))]− ϕ0(uA(x)) < 0.

When being offered a slight increase in uA(x) that keeps (1−m)uN +muA constant, the

decision-maker would therefore depart from any proposal in which uN(x) ≥ uA(x) and

0 < m(x) < 1, for such an alternative entails that

dEC(x) = (1−m)ϕ0(uN)duN +m[EY [ϕ0(uA(x) + ω(x, Y ))]duA

= m{EY [ϕ0(uA(x) + ω(x, Y ))]− ϕ0(uN)}duA < 0.

This suggests (using Baiman and Demski’s wording) that a better auditing policy would

have uA(x) > uN(x), thereby constituting a “carrot” rather than a “stick” for the agent.

This discussion draws attention to the function ϕ(·) and the sign of its third derivative

as key ingredients of choice. Indeed, the general criterion we will now introduce, which

allows to select among audit-generated information systems that bear the same cost, relies

on a surrogate of ϕ.

Write ∆(w,σ) = u(w)σ − w and let ∆∗(σ) = Maxw∈W{∆(w,σ)}. By the envelope

theorem, ∆∗0(σ) = u(w(σ)), where w(σ) satisfies u0(w)σ = 1 or equivalently ϕ0(u(w)) = σ.
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Hence, ∆∗0(σ) = ϕ0−1(σ) and

ϕ000(·) > 0 if and only if ∆∗
000
(·) < 0 . (15)

The second major result of this paper, which proof is in the Appendix, is now at hand.

Theorem 2. The principal prefers a signal R to a signal S to implement a given

action a if ER[∆∗(λR+µRLR)] ≥ ES[∆∗(λR+µRLS)], where λR and µR are the multipli-

ers of the participation and the incentive constraints which appear in the principal-agent

problem with signal R.

First note that the following assertion - a restatement of Kim (1995)’s proposition 1 -

is a direct consequence of the above. Hence, theorem 2 encompasses the MPS criterion.12

Corollary 1 (MPS criterion): The information system from a signal R is preferred

by the principal to the one from a signal S if the likelihood ratio distribution of R is a

mean-preserving spread of the likelihood ratio distribution of S, that is if LS &2 LR.

Proof. By definition, ∆∗(σ) = maxw∈W ∆(w,σ) where ∆(w,σ) is a linear function of

σ. As a consequence, for 0 ≤ α ≤ 1,

∆∗(ασ0 + (1− α)σ1) = α∆(w(ασ0 + (1− α)σ1),σ0) + (1− α)∆(w(ασ0 + (1− α)σ1),σ1)

≤ α∆∗(σ0) + (1− α)∆∗(σ1) ,

12Theorem 2 is actually implicit in Kim (1995)’s proposition 1, where the function ψ(q) defined by
expression number (4) in the proof corresponds to our function ∆∗(σ). Our current presentation simply
brings up and exploits the potential of∆∗ (thereby contributing also a simpler proof of the MPS criterion).
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so ∆∗(·) is a convex function.13 The statement now simply follows from the fact that

EJ [∆
∗(λR + µRLJ)] = ELJ [∆

∗(λR + µRLJ)], for J = T,Z.

The next result will finally allow to select among various contingent auditing policies

that bear the same cost.

Corollary 2: Let ∆∗000 > (<)0. The information system from R is preferred by the

principal to that from a signal S when LR &3 LS (LR .3 LS).

Proof. Recall from Whitmore (1970) that any risk-averse decision maker whose mar-

ginal utility function is strictly convex would prefer a lottery A over a lottery B having

the same expectation when the former dominates the latter in the sense of third-order

stochastic dominance.

Building on the classification of audit-generated information systems made available

in section 3, Corollary 2 entails that (corroborating the discussion previous to theorem

2), if ϕ000 < 0, then the principal will adopt a contingent auditing policy mA(X) instead of

an alternative policy mB(X) of equal intensity when the information system induced by

the former exhibits less local variance at lower values of X (and consequently more local

variance at higher values of X) than the one corresponding to the latter.

This remark supports (this time from an information-value perspective) Baiman and

Demski (1980)’s first characterization of optimal auditing policies: considering the in-

equalities in (8), optimal audits are upper-tailed when ϕ000 < 0 and lower-tailed if ϕ000 > 0.

13The reader might have noticed that ∆∗ is actually the mathematical conjugate of ϕ. And the
conjugate function of a convex function is itself convex (Rockafellar (1970)).
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These developments also hint at a practical recipe for incrementally improving an

auditing policy.

· First, select the desired frequency of audits. This would involve standard considera-

tions of risk sharing and incentives, also taking into account the unsunk cost of auditing.

· When this is done, determine the convenient local intensity of audits at specific

values of the signal X. This would be achieved through successive mean and variance-

preserving transformations of the information system, and the relative strength of the

agent’s prudence (as captured by the sign of the third derivative of ϕ) would then indicate

the appropriate reallocation (rightward or leftward) of local variance.

5. EXTENSIONS

The above analysis uses the framework which is standard in the auditing literature:

namely, there is a unit cost per audit and the signals X and Y are conditionally indepen-

dent. This section will now show that the approach developed in this paper can provide

useful insights when those assumptions are relaxed.

5.1 Convex Auditing Costs

Assume that the cost of audit is strictly convex in the auditing probability, that is:

the function K : [0, 1] → [0,∞) is such that K(0) = 0, K 0(·) > 0 and K 00(·) > 0. The

principal’ s expected cost when the agent delivers effort a is then given by

18



EC =

Z
ΓX

Z
ΓY

{(1−m)w +ms}fgdxdy +
Z
ΓX

K(m)fdx (16)

but the constraints (3) and (4) of the principal-agent problem remain the same.

Such a cost function indicates that the principal now dislikes variability in the prob-

ability of auditing. This has to be traded off against the informational returns from

contingent audits. According to theorems 1 and 2, which are still valid in this context,

the latter is higher for relatively upper-tailed (lower-tailed) audits when ϕ000 < 0 (ϕ000 > 0).

It is therefore intuitive that an optimal auditing policy would be increasing (resp. de-

creasing; constant) with respect to X when ϕ000 < 0 (resp. ϕ000 > 0; ϕ000 = 0), and that it

may now be strictly random for values of X located in the middle of ΓX . The following

statement formalizes this assertion; a proof can be found in the Appendix.

Proposition 2: If the cost of audits K(·) is a strictly convex function and ϕ000 < 0

(ϕ000 > 0; ϕ000 = 0), then an optimal auditing policy m∗(X) is such that:

- either m∗(X) ≡ 0;

- or m∗(X) ≡ 1;

- or m∗(·) is continuous and increasing (decreasing; constant) in the values of X, and

there exists a subinterval (x, x) of ΓX such that 0 < m∗(X) < 1 when X ∈ (x, x).

5.2 Correlated Signals

What does an optimal auditing policy look like when the signals X and Y are depen-
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dent random variables (given the effort a)? To answer this question,14 let h(x, y, a) be the

joint density function of (X,Y ). In this context, f(x, a) now denotes the marginal density

of X, i.e. f(x, a) =
Z
ΓY

h(x, y, a)dy, and g(x, y, a) =
h(x, y, a)

f(x, a)
stands for the density of

Y conditional upon observing X = x. The likelihood ratio corresponding to an auditing

policy m(X) is then

Lm = (1−m(x))fa(x, a)
f(x, a)

+m(x)
ha(x, y, a)

h(x, y, a)
=
fa(x, a)

f(x, a)
+m(x)

ga(x, y, a)

g(x, y, a)
(17)

= LX(x, a) +m(x)LY (x, y, a).

Since

EY/X=x[LY (x, Y, a)] =

Z
ΓY

ga(x, y)

g(x, y)
g(x, y)dy = 0, (18)

EY/X [LXLY ] = LX [EY/X(LY )] = 0. The conditional mean and variance of the associated

likelihood ratio distribution are then respectively given by

E(Lm | X = x) = LX(x, a) and V ar(Lm | X = x) = m(x)EY/X [(LY )
2] . (19)

Comparing (19) and (9) reveals that the local variance now depends not only on the

probabilitym(x) but also on the informational content of the signal Y whenX = x. If that

content is monotone increasing (decreasing) in the value X may take, it is intuitive that

this would then back up the principal’s preference for upper-tailed (lower-tailed) audits

14A different but related question would be to ask for the value of an additional signal Y , as a function
of the linear correlation between X and Y . This issue is addressed by Rajan et Sarath (1997), in a
monitoring context (i.e. where m(X) ≡ 1) with binary random variables.
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in the presence of a uniformly negative (positive) function ϕ000(·). Our last proposition

makes this statement rigorous. (The proof is in the Appendix.)

Proposition 3: If LY (x, Y, a) &2 LY (x0, Y, a) for all x > x0 and ϕ000 ≤ 0, then the

optimal auditing policy is relatively upper-tailed. If, on the other hand, LY (x0, Y, a) &2

LY (x, Y, a) for all x and x0 such that x > x0 and ϕ000 ≥ 0, then the optimal policy is

relatively lower-tailed.

6. CONCLUDING REMARKS

This paper first brings together two important streams of literature in principal-agent

theory: that which started with Holmstrom (1979) on ordering information systems, and

that which began with Baiman and Demski (1980) on auditing.

It contributes to the former by providing, through Theorem 2 and Corollary 1, a strict

extension (and a simpler proof) of Kim (1995)’s MPS criterion. It offers new insights

as well for the auditing and principal-agent literature, through Propositions 2 and 3

which deal with more general contexts that the ones previously studied, and through

Theorem 1 which makes it clear that the design of auditing policies not only trades off risk

sharing and incentives, but also incentives and downside risk. (This conclusion constitutes,

furthermore, a new economic application of third-order stochastic dominance.)

The latter conclusion would now support some conjectures for further principal-agent

research. On the positive side, empirical work seems to have found little relationship

between risk and incentives (see, for instance, Prendergast (1999, 2002)); based on the
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latter conclusion, however, this may be because, in circumstances where it is harder to

infer effort from output, firms can nevertheless introduce more incentives via compensated

changes in downside risk. On the normative side, one way to set higher-powered incentives

in more uncertain environments (in multitasking, for example) might be to harness the

agent’s precautionary motives and consider explicitly the configuration of local risks.15

APPENDIX

Proof of Theorem 1: By definition (see Menezes et al. (1980)), a random variable

Z dominates a random variable T to the third order whenever the following inequality

holds for all real t, this inequality being strict on a set of values of t of positive measure:

E[Max(t− Z, 0)2] ≤ E[Max(t− T, 0)2] .

Applying this to our problem, LA &3 LB thus means that

Ω(t) = E[Max(t− LA, 0)2]−E[Max(t− LB, 0)2] ≤ 0

for any t ∈ Γ, the inequality being strict on a subset of ΓL with positive measure.

15This assertion can actually be supported further, thanks to some recent results from Keenan and
Snow (2002, p. 274-5): “(...) in simple problems of portfolio choice and labor supply, risk averse decision
makers with constant absolute risk aversion increase their exposure to risk in response to compensated
increases in downside risk, but would respond in the opposite manner to compensated increases in risk.”
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As

E[Max(t− LA, 0)2] =
Z
ΓX

Z
ΓY

(1−mA(x))Max(t− LX , 0)2dF (20)

+

Z
ΓX

Z
ΓY

mA(x)Max(t− LX − LY , 0)2dFdG,

we obtain that

Ω(t) =

Z
ΓX

(mB −mA)[Max(t− LX , 0)]2dF −
Z
ΓX

Z
ΓY

(mB −mA)[Max(t− LX − LY , 0)]2dFdG

=

Z
ΓX

(mA −mB)Ψ(t− LX)dF , (21)

where the function Ψ(·) is defined as

Ψ(t) = EY [Max(t− LY , 0)2]−Max(t, 0)2. (22)

Note that Ψ(·) is a differentiable function, since the derivative of Max(C, 0)2 exists and

is equal to 2Max(C, 0). Therefore, by Jensen’s inequality,

Ψ0(t) = 2EY [Max(t− LY , 0)]− 2Max(t, 0) ≥ 0,

so Ψ(·) is increasing on ]Inf ga
g
, Sup

ga
g
[.
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The right-hand side of (21) can now be integrated by parts, which yields

Ω(t) =

Z
ΓX

{
Z x

InfΓX

(mA(z)−mB(z))dF (z, a)}Ψ0(t− LX)(∂LX
∂x

)dx . (23)

We conclude that, if
Z x

InfΓX

mB(z)dF (z, a) ≥
Z x

InfΓX

mA(z)dF (z, a) for any x, with strict

inequality on a subset of positive measure, then Ω(t) ≤ 0, as claimed.

Proof of proposition 1:

Part I (Optimality conditions): Write∆(w,σ) = u(w)σ−w and∆∗(σ) =Maxw∈W{∆(w,σ)}.

And let Λ denote the Lagrangian function associated with the principal-agent problem,

that is:

Λ = −K
Z
ΓX

mdF +

Z
ΓX

(1−m)∆(w,λ+ µLX)dF

+

Z
ΓX

Z
ΓY

m∆(s,λ+ µ(LX + LY ))dFdG− λ(a+ U)− µ,

where λ and µ are the multipliers corresponding to the participation and the incentive

constraints respectively. If [w(X), s(X,Y ),m(X)] solves the principal-agent problem, then

the following conditions have to be satisfied for some λ ≥ 0 and µ ≥ 0:

1. if m(x) < 1, then w(x) = Argmaxw ∆(w,λ+ µLX(x, a)),

2. if m(x) > 0, then s(x, y) = Argmaxw ∆(w,λ+ µLX(x, a) + µLY (y, a)),
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3. and for all x,

m(x) = arg max
m∈[0,1]

m{
Z
ΓY

[u(s)(λ+ µLX + µLY )− s]dG (24)

− [u(w)(λ+ µLX)− w]−K}.

When the decision to audit is randomized, i.e. when 1 > m(x) > 0 at some x, the

first and second conditions can also be written respectively as

u0(w){λ+ µLX} = 1, (25)

u0(s){λ+ µLX + µLY } = 1 (26)

If m(x) = 0 or 1 at some signal x, however, there is a multiplicity of optimal contracts,

since s(x, Y ) can be set arbitrarily at m(x) = 0 and any w(x) is also a possible solution

at m(x) = 1. In what follows, we shall suppose without losing generality that in this case

s(x, Y ) and w(x) still satisfy conditions 1 and 2, and so equations (7) and (8). Condition

3 therefore says that m(x) maximizes m ·Q(LX(x, a)) on [0, 1], where Q(·) is defined as

Q(z) = EY [∆
∗(λ+ µz + µLY )]−∆∗(λ+ µz)−K. (27)

Note that, together with the Monotone Likelihood Ratio Property, equations (25) and

(26) entail that the optimal wages w(x) and s(x, y) are nondecreasing in x and y.

Part II (Comparative statics): For the sake of this proof, let us abuse notation and
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denote respectively ET (K) and M(K) the expected optimal transfer and the intensity

of an optimal auditing policy at a given effort level a, when the unit cost of an audit is

K. At different cost levels K and K 0, the principal’s objective function would be such

that ET (K) +M(K)K ≤ ET (K 0) +M(K)K 0. Similarly, reversing the respective roles

of K by K 0 also gives ET (K 0) +M(K 0)K 0 ≤ ET (K) +M(K 0)K. Summing these two

inequalities yields (K−K 0)[M(K)−M(K 0)] ≤ 0. Accordingly, the intensity of an optimal

audit must decrease with K.

To prove the second part of the proposition, observe that

EY [∆
∗(λ+ µLX + µLY )] ≥ EY [∆(w(x),λ+ µLX + µLY )] = ∆∗(λ+ µLX)

(the inequality being strict at an interior solution), and so Q(LX(x, a)) is always nonneg-

ative when K = 0.

The constant relative risk aversion (CRRA) case: Suppose that the agent’s

risk preferences can be represented by a utility index of the form u(t) = t1/2.

By equations (25) and (26), the wage schedules in this case are given by

w(X) = (
λ+ µLX

2
)2 and s(X,Y ) = (

λ+ µLX + µLY
2

)2.

Making substitutions in the participation constraint (3) and the incentive constraint (5)
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then yields the following relationships:

EU =
λ

2
− a = U

and

EUa =
µ

2
{
Z
ΓX

(LX)
2dF +M

Z
ΓY

(LY )
2dG)}− 1 = µ

2
{IX +MIY }− 1 = 0.

The principal’s expected cost can thus be written as

EC∗ = (
λ

2
)2 + (

µ

2
)2{IX +MIY }+KM = (a+ U)2 +

1

IX +MIY
+KM. (28)

It appears therefore that this cost depends exclusively on the unit cost of an audit K and

on the intensity M(a) of the chosen auditing policy. The latter would actually be set so

that

M(a) = 1 when K ≤ IY
(IX + IY )2

,

M(a) = 0 when K ≥ IY
(IX)2

, and

M(a) =
1

IY
{(IY
K
)1/2 − IX} when

IY
(IX + IY )2

< K <
IY
(IX)2

.

Observe also that this policy exhibits the intuitive property that the agent would be

audited less often under a signal X which is more informative (in the sense of Fisher).
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Proof of Theorem 2: Let Γi , H(t, a, i), h(t, a, i), and Li denote the support,

distribution function, density function, and likelihood ratio associated with signal i =

T,Z. The corresponding objective, participation constraint, and incentive compatibility

contraint of the principal-agent problem are now respectively written:

Z
Γi

w(t)dH(t, a, i) ≡ ECi (29)Z
Γi

u(w(t))dH(t, a, i)− a ≥ U (30)Z
Γi

u(w(t))dHa(t, a, i) ≥ 1. (31)

The Lagrangian function associated with this problem is

Λi = −
Z
Γi

w(t)dH(t, a, i) + λi{
Z
Γi

u(w(t))dH(t, a, i)− a− U}

+µi{
Z
Γi

u(w(t))dHa(t, a, i)− 1},

or equivalently

Λi = Ei[∆(w,λi + µiLi)]− λi(a+ U)− µi . (32)

From the necessary optimality conditions, we know that there exist some nonnegative

multipliers λi and µi such that the wage schedule wi(·) maximizes ∆(w,λi + µiLi) and

the following equations are satisfied:

λi{
Z
Γi

u(wi(t))dH(t, a, i)− a− U} = µi{
Z
Γi

u(wi(t))dH(t, a, i)− 1} = 0 . (33)
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The principal now prefers the information system generated by signal T to the one gen-

erated by signal Z if using the former is cheaper, that is if EC
∗
Z − EC∗T ≥ 0. At an

optimum, we have that

Λ∗i = Ei[∆
∗(λi + µiLi)]− λi(a+ U)− µi ≤ Ei[∆(wi,λ+ µLi)]− λ(a+ U)− µ

for any λ ≥ 0 and µ, and

Λ∗T − Λ∗Z = EC
∗
Z −EC∗T . (34)

It follows that (Note that, in this model, the multiplier µT is strictly positive.)

EC
∗
Z −EC∗T ≥ ET [∆∗(λT + µTLT )]− EZ [∆(wZ ,λT + µTLZ)] (35)

≥ ET [∆∗(λT + µTLT )]− EZ [∆∗(λT + µTLZ)] .

Hence, the principal selects signal T over signal Z to implement an action a whenever

ET [∆
∗(λT + µTLT )] ≥ EZ [∆∗(λT + µTLZ)], as claimed.

Proof of proposition 2: When the cost of auditing is given by the function K(·),

the necessary optimality conditions (25) and (26) remain the same but (24) is replaced

by:

for all x, m(x) = arg max
m∈[0,1]

mQ(LX(x, a))−K(m)

with Q(z) = {EY [∆(s,λ+ µz + µLY (y, a))]−∆(w,λ+ µz)}.
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Denote by m∗(x) the solution of

Q(LX(x, a)) = K
0(m∗(x)). (36)

m∗(x) is a continuous function of x which, from Part I of the proof of proposition 1,

increases (decreases; is constant) with x provided ∆∗000(·) > (<; =) 0. Several cases may

now arise.

IfK 0(0) ≥ Q(LX(x, a)) for all x, then the optimal auditing policy clearly ism∗(X) ≡ 1.

And if K 0(1) ≤ Q(LX(x, a)) for all x, then it is optimal to set m∗(X) ≡ 0.

When none of the latter inequalities is satisfied for all x, however, there exists at least

one value bx ∈ ΓX at whichm∗(bx) belongs to the open interval (0, 1). If ∆∗000(·) happens to
be always 0 in this case, then m∗(X) will be constant and equal to m∗(bx); but if ∆∗000(·) >
or < 0, then m∗(x) will lie strictly between 0 and 1 as long as Q(LX(x, a)) < K 0(1) and

Q(LX(x, a)) > K
0(0).

Proof of proposition 3: When X and Y are correlated, the necessary optimality

conditions (25) and (26) still hold and (24) now becomes

for all x, m(x) = arg max
m∈[0,1]

mQ(LX(x, a), x)

with Q(z, x) = EY/X=x[∆∗(λ+ µz + µLY (x, Y, a))]−∆∗(λ+ µz)−K}.
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Let us write

Q(LX(x, a), x)−Q(LX(x0, a), x0) = A+B (40)

where

A = Q(LX(x, a), x)−Q(LX(x, a), x0) and

B = Q(LX(x, a), x
0)−Q(LX(x0, a), x0).

Notice that: (1)Q(z, x) increases with z provided thatEY/X=x[∆∗0(λ+µz+µLY (x, Y, a))] >

∆∗0(λ+ µz), and the latter occurs when ∆∗000 > 0; (2) LX(x, a) increases with x. Hence,

when x > x0, B is positive (negative; equal to 0) if ∆∗000 is positive (negative; equal to 0).

The term A, on the other hand, can be written as

A = EY/X=x[∆
∗(λ+ µLX(x, a) + µLY (x, Y, a))] (41)

−EY/X=x0 [∆∗(λ+ µLX(x, a) + µLY (x0, Y, a))].

Recall that LY (x, Y, a) and LY (x0, Y, a) have the same mean 0. Since ∆∗(·) is a con-

vex function, A will be positive (negative) if LY (x, Y, a) dominates (is dominated by)

LY (x
0, Y, a) in the sense of second-order stochastic dominance.

It follows from the above that:

1. If LY (x, Y, a) %2 LY (x0, Y, a) for all x > x0 and ∆∗000(·) ≥ 0, then A+ B is positive

so Q(LX(x, a), x) increases with x. In this case, the optimal policy is thus relatively
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upper-tailed.

2. If LY (x0, Y, a) %2 LY (x, Y, a) for all x > x0 and ∆∗000(·) ≤ 0, then A+ B is negative

so Q(LX(x, a), x) decreases with x. In this case, the optimal policy is relatively

lower-tailed.
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