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Abstract

This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. Two
types of estimators are examined. The first one is based on the Euler scheme applied to the orig-
inal processes; the second applies the Euler scheme to a variance-stabilizing transformation of the
processes. We show that the transformation increases the speed of convergence of the Euler scheme.
The limit distribution of this estimator is derived in explicit form and is found to be non-centered.
We also study estimators of conditional expectations of diffusions with known initial state. Expected
approximation errors are characterized and used to construct second-order bias corrected estimators.
Such bias correction eliminates the size distortion of asymptotic confidence intervals and allows to
examine the relative efficiency of estimators. Finally, we derive the limit distributions of Monte
Carlo estimators of conditional expectations with unknown initial state. The variance-stabilizing
transformation is again found to increase the speed of convergence. For comparison we also study
the Milshtein scheme. We derive new convergence results for this scheme and show that it does not
improve on the convergence properties of the Euler scheme with transformation. Our results are
illustrated in the context of a dynamic portfolio choice problem and of simulated-based estimation
of diffusion processes.
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1 Introduction

In many financial applications such as portfolio allocation, asset pricing and risk management, we
need to compute the conditional expectation f(t, x) = Et[g(XT )], where XT is the terminal value of
the solution of the stochastic differential equation (SDE)

dXv = A(Xv)dv +B(Xv)dWv; Xt = x. (1)

This computation is often performed using Monte Carlo (MC) simulation. An advantage of the
procedure is that it grows only linearly with the number of variables involved in the simulation.
Therefore, for high dimensional multivariate diffusion problems, it becomes the only feasible ap-
proach.1 One drawback of MC methods is their slower convergence rate, but this shortcoming can
be mitigated by choosing an efficient design.2 To identify an efficient design one needs to characterize
the approximation errors associated with a given Monte Carlo scheme. The purpose of this paper
is to study the limit distributions of several Monte Carlo estimators of conditional expectations of
diffusions in order to develop efficient Monte Carlo designs and build confidence intervals around the
estimated expectations.

When the transition density of the diffusion is unknown, which is often the case in financial mod-
els, the MC computation of the conditional expectation involves two types of approximations. The
first one is an approximation of the terminal value XT , of the solution of (1). Several discretization
schemes of this SDE can be used for this purpose.3 The most popular, perhaps because of its ease of
implementation, is the Euler scheme, an iterative procedure which evaluates the drift and the volatil-
ity functions at the value X(tn) at time tn in order to infer the value X(tn+1) at tn+1 and proceeds
in this manner until tN = T . The second approximation is in the computation of the conditional
expectation, which is performed by averaging over a finite sample of approximated terminal values
X(T ). Justification for this averaging is based on the law of large numbers. The combination of
these two operations, labeled MCE (Monte Carlo with Euler discretization), produces an estimate
of f(t, x) which involves two types of errors, (i) a discretization error and (ii) an averaging error. It
is the knowledge of these two errors which is important for the design of an efficient MCE scheme.
We provide a detailed analysis of these two approximation errors.

Error properties for approximations of solutions of SDEs (the first type of error) have been studied
before. For the Euler discretization scheme the asymptotic distribution of the error was found by

1Partial Differential Equations (PDE) or finite state Markov chains (MKC) are competing procedures which produce

numerical approximations of f(t, x). These two methods (PDE and MKC) are deterministic algorithms whose compu-

tational cost grows exponentially with the dimension of the problem. In implementations, this cost quickly becomes

prohibitive, even for simple problems. The literature on the speed of convergence of finite difference approximations of

Bellman equations is sparse. One of the few contributions is a recent paper by Krylov (2000).
2Moreover, the control of errors and the parallelization of the numerical algorithm are easier to perform with a MC

technique because innovations in the underlying uncertainty are independent.
3A detailed analysis of discretization schemes available can be found in Kloeden and Platen (1997).
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Kurtz and Protter (1991a) and Jacod and Protter (1998). We extend their results by proposing a
change of variables, commonly referred to as a Doss transformation (see Doss (1979)), which reduces
the diffusion coefficient of the SDE to unity. This transformation has enjoyed recent popularity in
financial econometrics (see, for instance, Ait-Sahalia (2002) and Durham and Gallant (2002)) and
has been used for the computation of optimal portfolios by Detemple, Garcia and Rindisbacher
(2003). We show that a Doss transformation of the SDE can improve the speed of convergence of
the discretization scheme since the martingale part of the transformed SDE can be approximated
without error. The asymptotic law of the estimate of the Doss transformed state variable is derived
and found to be non-centered. This stands in contrast with the simple Euler scheme applied to the
original (non-transformed) SDE which produces an error whose asymptotic law is centered.

In an insightful paper Duffie and Glynn (1995) highlighted the trade-off between the discretiza-
tion error and the Monte Carlo averaging error, and showed the existence of an efficient choice of
discretization steps and Monte Carlo replications. For this efficient MCE scheme, they also charac-
terized the asymptotic distribution of the approximation error and found it to be non-centered. As
a result, the efficient procedure has a second-order bias. In this paper we explicitly characterize the
second-order bias as the expected value of a known random variable. Since this random variable can
be simulated along with the diffusion, it can be used to design a new approximation that corrects
for second-order bias. The bias corrected estimate is shown to be asymptotically equivalent to a
Monte Carlo procedure which samples directly from the true distribution of the terminal point of
the diffusion.4

In applications one often requires approximations of the function f(Xs, s) at future dates s > t.
For instance, for asset allocation purposes, one needs to evaluate the performance of a portfolio
relative to a selected benchmark at a given horizon (market timing experiments). In these instances
the unknown function is also evaluated at an unobserved point Xs, which must be estimated along
with the function itself. This evaluation can be performed in two ways, using the Doss transformed
state variables or the original SDE (1). We derive the asymptotic distributions of the errors involved.
Again, we find that the procedure involving a Doss transformation increases the speed of convergence
to the true value.

To provide additional perspective we also study the Milshtein second-order scheme (Milshtein
(1995)). We show that this scheme does not dominate the Euler scheme with transformation, as far
as convergence properties are concerned. This highlights the benefits of the transformation. We also
argue that the transformation is computationally less costly. Our results for the weak limit of the
solution of SDEs based on the Milshtein scheme and the second-order bias are new and therefore of
independent interest.

We illustrate our results with two applications. First, we consider a dynamic portfolio allocation
4Our method is simpler than the one in Talay and Tubaro (1991) since it does not require solving a PDE in addition

to calculating an expectation. In addition, it leads to the construction of computationally feasible second-order bias

corrected approximation schemes.
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problem. We assume that there is only one state variable, the short rate, and that the market
price of risk is constant, for simplicity. To model the evolution of the short rate, we retain the
specification introduced in Detemple, Garcia and Rindisbacher (2003) where the short rate is a non-
linear diffusion process with mean reversion and a constant elasticity of variance. This specification
admits as particular cases the standard CIR and CEV processes. In a dynamic asset allocation
problem, the portfolio shares can be expressed as conditional expectations of random variables which
depend on the paths of the state variables. We compute the asymptotic laws for the portfolio shares
and examine the asymptotic error distribution of future hedging demands when the future value of
the state variable is unknown. Second, we examine simulation-based inference for diffusions. In this
context we propose an efficient simulation-based estimator of the estimating function and compare
it to the simulated maximum likelihood estimators proposed in Pedersen (1995a,b) and Brandt and
Santa Clara (2002).

The rest of the paper is organized as follows. In section 2 we study the asymptotic error distribu-
tion of approximations of solutions of SDEs and provide numerical illustrations for processes often
used in finance. Section 3 describes the asymptotic laws of estimators of conditional expectations,
where we distinguish between the case where the conditioning state variable is known and the case
where it is unknown. For both cases, we characterize expected approximation errors, second-order
discretization biases and bias corrected estimators. New asymptotic convergence results for the Mil-
shtein scheme are derived in section 4. Section 5 provides applications of the results to dynamic asset
allocation and simulation-based inference. Conclusions are formulated in section 6. All proofs are
collected in appendix A. Appendix B contains expressions needed to characterize the second-order
bias-corrected estimators. Appendix C reformulates portfolio weights as conditional expectations of
solutions of SDEs.

2 Asymptotic laws of estimators of solutions to SDEs

Many continuous-time financial models can be represented by multivariate diffusions with general
drift and diffusion functions. The solution of the financial application, whether it is asset pric-
ing, portfolio allocation or risk management, relies on the simulation of a discretized version of
the stochastic differential equation. The Euler scheme is most often used for this purpose. This
discretization involves an approximation error. In this section we study the asymptotic error dis-
tribution of approximations of solutions to SDEs. We first review results on the convergence of the
Euler scheme (subsection 2.1). Next we study the Euler scheme applied to a Doss transformation of
the state variables (subsection 2.2).5 The importance of obtaining an expression for the asymptotic
distribution of the approximation error cannot be underestimated. As we will see, it is not possible
to approximate the distribution of the approximation error in a finite simulation experiment using a

5To simplify the presentation we assume homogeneous dynamics of the process to be simulated.
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simulated benchmark for the true value XT , no matter how finely we sample the process.

2.1 Euler approximation without transformation

To set up the stage for convergence results with the transformation and the Milshtein scheme, we
recall known results for the Euler scheme without transformation. They also play a key role in
finding our explicit expression for the second-order bias. Consider the random variable XT given by
the terminal value of the solution of the SDE, starting at t = 0.

dXv = A(Xv)dv +
d∑
j=1

Bj(Xv)dW j
v (2)

with d× 1 vectors A and Bj where A ∈ C1(Rd) and Bj ∈ C1(Rd) 6 and at most of linear growth. Its
Euler approximation is

XN
T = X0 +

N−1∑
n=0

A(XN
nh)h+

N−1∑
n=0

d∑
j=1

Bj(XN
nh)∆W j

nh (3)

where h = T/N and ∆W j
nh = W j

(n+1)h −W
j
nh.

7

Kurtz and Protter (1991a) and Jacod and Protter (1998) deduce the asymptotic behavior of
the error distribution of the Euler approximation of the vector XT (see Jacod and Protter (1998),
Theorem 3.2, p. 276).

Theorem 1: The approximation error XN
T −XT converges weakly8 at the rate 1√

N
(i.e.

√
N(XN

T −
XT )⇒ UXT ). The asymptotic error is

UXT = − 1√
2

ΩT

∫ T

0
Ω−1
v

d∑
l,j=1

[∂BjBl](Xv)dZ l,jv

with [Z l,j ]l,j∈{k,...,d} a d2 × 1 standard Brownian motion independent of W , ∂Bj a d × d matrix of
derivatives of Bj with respect to X and

Ωv = ER
∫ ·

0
[∂A](Xs)ds+

d∑
j=1

∫ ·
0
∂Bj(Xs)dW j

s


v

.

In this last expression ∂A is the d × d matrix of derivatives of the vector A with respect to the
elements of X and ER(·) denotes the right stochastic exponential.9

6The space C1(Rd) denotes the space of once continuously differentiable Rd valued functions.
7To simplify the notation we restrict the error analysis to equidistant discretization schemes.
8Let S be a metric space and S its Borel sets. A sequence of random variables XN is said to converge weakly to a

random variable X whenever, with PXN ≡ P◦(XN )−1 and PX ≡ P◦X−1, we have
∫
S
f(s)dPXN (s)→

∫
S
f(s)dPX(s)

for all continuous and bounded functions f on S.
9For a semimartingale M , the right stochastic exponential Zv = ER(M)v is the unique solution to the d× d matrix

SDE dZv = dMvZv with Z0 = Id.
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Theorem 1 says that the error converges in law at the rate 1√
N

to the random variable UXT
as the number of discretization points N increases. The asymptotic error UXT depends on the
coefficients of the SDE and on their derivatives. Surprisingly, it also depends on new Brownian
motions ([Z l,j ]l,j∈{k,...,d}), which are orthogonal to the original ones (W ). These appear because the
stochastic integral of a time dependent function with respect to a Brownian motion is imperfectly
correlated with the terminal value of the Brownian motion. A second Brownian motion is then
needed to describe the law of the integral. The result in Theorem 1 follows because the limit law of
XN
T depends on stochastic integrals of this sort.

To illustrate the result consider the simple case of a geometric Brownian motion

dXv = aXvdv + bXvdWv. (4)

The asymptotic error UXT is: UXT = − b√
2
XTZT = Z b2

2
X2
T

, where XT is log-normally distributed
and ZT is normal. In this case, the error distribution is a mixture of normals where the mixing
distribution is the square of the geometric Brownian motion XT itself.

Given the scaling property of the Brownian motions Z l,j we see that the asymptotic distribution,
in the univariate case, is always a mixture of normals. For example for a CIR process

dXv = κ(X̄ −Xv)dv + σ
√
XvdWv, (5)

we find that: UXT = − σ2

2
√

2
Ω−1
T

∫ T
0 Ω−1

v dZv = Zσ4

8
Ω2
T

∫ T
0 Ω−2

v dv
. However, in this example, we do

not know the explicit law of the mixing random variable σ4

8 Ω2
T

∫ T
0 Ω−2

v dv since dΩv = (−κdv +
(σ2 /
√
Xv)dWv)Ωv where Ω0 = 1 and have to rely on numerical procedures. At the end of this section

we will provide numerical results for the CIR process as well as for the constant elasticity of variance
(CEV) process.

The fact that the asymptotic distribution depends on an independent Brownian motion which
does not exist on the original probability space shows that it is not possible to approximate the
distribution of the approximation error in a finite simulation experiment using a simulated bench-
mark for the true value XT . This underscores the importance of the expression for the asymptotic
distribution. If we do not know the exact expression for the asymptotic error UXT , error analysis
using a simulated benchmark

√
N(XN

T − XN?

T ) with N? large will always just depend on the orig-
inal Brownian motions W j and not on the independent Brownian motions Z l,j which arise in the
functional describing the weak limit. Therefore a simulated benchmark cannot be used to assess the
true properties of the error distribution. The independent Brownian motions Z l,j , characterizing the
asymptotic distribution UXT , will never emerge with finite N?.

Theorem 1 illustrates the drawback of Monte Carlo methods, which have a convergence rate
of 1√

N
. In the next sub-section we will introduce a useful change of variables which simplifies the

volatility coefficient of the underlying SDE, but most importantly which will allow us to construct
an approximation of the true value XT with an improved rate of convergence of 1/N .
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2.2 Euler approximation with Doss transformation

We first introduce the transformation then establish the limit law of the Euler approximation of
the terminal value of the transformed SDE. Consider the new state variables X̂v = F (Xv), where
F : Rd → R

d is the function whose inverse G : Rd → R
d exists and satisfies

∂zjGi(z) = Bi,j(G(z)). (6)

An application of Ito’s lemma shows that the ith component X̂i,v = Fi(Xv) satisfies

dX̂i,v =
(
∂Fi(Xv)A(Xv) +

1
2
∂2Fi(Xv)�

(
B(Xv)B′(Xv)

))
dv +

 d∑
j=1

∂Fi(Xv)Bj(Xv)dW j
v


where ∂Fi(Xv) denotes the 1 × d gradient of Fi, ∂2Fi(Xv) is the d × d Hessian and, for two
matrices A,B the operation A�B =

∑
i,j Ai,jBi,j . Thus, ∂Fi(Xv)A(Xv), ∂Fi(Xv)Bj(Xv) and

∂2Fi(Xv)� (B(Xv)B′(Xv)) all have dimension 1× 1. Since ∂FiBj = 1{i=j} (i.e. ∂FB is the identity
matrix) the vector X̂v evolves according to

dX̂v = Â(X̂v)dv + dWv

where Wv = [W j
v ]j=1,...,d, Â(X̂v) = [Â1(X̂v), ...Ân(X̂v)]′ with Âi(X̂v) given by the drift of X̂i,v. For

the sake of generality and to cover some specific applications (such as portfolio choice) we consider
a slightly more general version of this equation, namely,

dX̂v = Â(X̂v)dv +
d∑
j=1

B̂jdW
j
v (7)

where Â(X̂v) is a d×1 vector of functions and B̂j is a d×1 vector of constants (not necessarily given
by the unit vector).

The corresponding Euler approximation for these transformed state variables is

X̂N
T = X̂0 +

N−1∑
n=0

Â(X̂N
nh)h+

N−1∑
n=0

d∑
j=1

B̂j∆W
j
nh.

The error distribution of this approximation of the d-vector X̂T is given next,

Theorem 2: Suppose that condition (6) holds. The approximation error X̂N
T − X̂T converges weakly

at the rate 1
N (i.e. N(X̂N

T − X̂T )⇒ U X̂T ). The asymptotic error is

U X̂T = −Ω̂T

∫ T

0
Ω̂−1
v ∂Â(X̂v)

1
2
dX̂v +

1√
12

d∑
j=1

B̂jdZ
j
v +

1
2

d∑
j,k,l=1

∂l,kÂ(X̂v)B̂k,jB̂l,jdv
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with [Zj ]j∈{1,...,d} a d × 1 standard Brownian motion independent of W and Zh,j, ∂Â(X̂v) =
[∂1Â(X̂v), ..., ∂dÂ(X̂v)] the d× d matrix with columns given by the derivatives of the vector Â(X̂v),
and ∂l,kÂ(X̂s) the d × 1 vector of cross derivatives of Â(X̂v) with respect to arguments l, k. The
d× d matrix Ω̂v is

Ω̂v = ER
(∫ ·

0
∂Â(X̂s)ds

)
v

Theorem 2 shows that the speed of convergence increases after application of the transformation.
It also highlights the fact that the limit law is different and involves exponentials of a bounded
total variation process instead of a stochastic integral. Furthermore, in contrast to the limit without
transformation UXT , U X̂T does not have mean zero.

The simplest example is the Ornstein-Uhlenbeck process

dXv = κ(X̄ −Xv)dv + σdWv. (9)

In this case the asymptotic distribution U X̂T is given by the sum of two normal random variables

U X̂T =
κ

2
e−κT

∫ T

0
eκvdXv +

κσ√
12
e−κT

∫ T

0
eκvdZv =

κ2

2
(X̄ −X0)e−κTT +Wα(T ) + Zβ(T ) (10)

where α(T ) ≡ σ2κ(e2κT−1+2κT (1−κT ))
16e2κT

and β(T ) ≡ κσ2

24 (1 − e−2κT ). If X0 6= X̄ the asymptotic law is
non-centered.

The result in Theorem 2 can now be used to construct an approximation of XT = G(X̂T ) which
has an improved speed of convergence.

Corollary 1: Under the conditions of Theorem 2 N(G(X̂N
T )−XT )⇒ B(XT )U X̂tT .

The convergence rate 1/N attained by G(X̂N
T ) corresponds to the convergence rate of the Euler

scheme for an ordinary differential equation. This is the best rate that can be attained with a Euler
scheme.

2.3 A numerical example

For concreteness we illustrate Theorems 1 and 2 with a mean reverting constant elasticity of variance
process

dXv = κ(X −Xv)dv + σXγ
v dWv. (11)

This specification is often used to model the evolution of the short rate in term structure models,
as in Chan et al. (1992). For γ = 1

2 we obtain a CIR process, otherwise it is a standard CEV process.
To characterize the asymptotic error distribution we need to identify the expressions in ΩT and

UXT . Straightforward computations give ∂B(x) = σγxγ−1 and ∂A(x) = −κ . The SDE for the
transformed process is 10

10Given two functions f and g, the notation ◦ reads [f ◦ g](x) ≡ f(g(x)).
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dX̂v =
[[
∂A

B
− 1

2
∂B

]
◦G
]

(X̂v) + dWv (12)

where G(x) = (σx)−
1
γ . Similarly, expressions for ∂Â and ∂2Â, which appear in Ω̂T and U X̂T , are

respectively ∂Â(x) = [[∂A− A∂B
B − 1

2∂
2BB] ◦G](x) and

∂2Â(x) =
[[
∂2AB − ∂A∂B −A∂2B +

A(∂B)2

B
− 1

2
(∂3BB + ∂2B∂B)B

]
◦G
]

(x)

with ∂2B(x) = σγ(1− γ)xγ−2, ∂3B(x) = σγ(1− γ)xγ−3 and ∂2A(x) = 0.
For the CEV process we adopt the parameter values in Chan et al. (1992). Parameter values for

the CIR process are taken from Broze et al. (1995). Table 1 provides these values.
Figures 1 and 2 present the asymptotic error distribution for CIR and CEV respectively. The

simulations are based on T = 1 and N = 365. The graphs plot the empirical distribution func-
tion based on M = 50000 replications. We clearly see that the asymptotic distributions using the
transformation are non-centered and that the error is considerably smaller with the transformation.

A comparison of figures 3 and 4 for the CIR process and 5 and 6 for the CEV process illustrates the
increase in the speed of convergence due to the transformation. In those experiments the benchmark
“true” value is computed without the transformation and taking N = 214.11 Approximation errors,
relative to this benchmark, are then computed using N = 2x with x = 2, . . . , 9 to measure the
convergence. Again the distribution functions are based on M = 50000 replications. The results
clearly illustrate that both the speed of convergence and the distribution of the asymptotic error are
important to assess the properties of the estimation procedure.

The simulation of the discretized version of the process of interest is usually the first step of
a Monte Carlo procedure for a financial application such as computing the price of a European
option. In the case of a stock option, XT represents the final value of the stock price given the price
today and determines the option payoff under the sampled trajectory. The next step is typically to
generate a large number of such discretized trajectories to compute the option price as an average
of the payoff obtained for each trajectory. Common wisdom suggests that the precision of this price
estimator can be improved by discretizing the process as finely as possible and taking a very large
number of independent replications. However, in practice, one faces a limited budget of computation
time. Duffie and Glynn (1995) propose a computationally efficient trade-off between reducing the
length of the discretization step and increasing the number of simulations of the sample path of
the discretized process. For this efficient MCE scheme, they also characterized the asymptotic
distribution of the approximation error and found it to be non-centered. As a result, the efficient
procedure has a second-order bias. In the next section, we extend their results in several dimensions.
First, we explicitly characterize the second-order bias as the expected value of a known random
variable. Since this random variable can be simulated along with the diffusion, we design a new

11We take this shortcut to illustrate the relative speed of convergence.
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approximation that corrects for second-order bias. We also provide equivalent results for the Doss-
transformed process introduced in the previous section. Finally, we provide the error distributions,
characterize the second-order bias and derive the bias-corrected conditional estimator when the
conditional expectations to be estimated depend on state variables that are not known, a case often
found in practical applications.

3 Asymptotic laws of estimators of conditional expectations

We now derive the asymptotic distribution of the estimate of the conditional expectation of a function
of the terminal value of an SDE, XT . When the distribution of XT is unknown an estimator of
the expected value is obtained by sampling independent replications of the numerical solution of
the SDE and averaging over the sampled values. The approximation error of this scheme has two
components (Duffie and Glynn (1995)). The first is the error due to the discretization of the SDE.
The second is the error in the approximation of the conditional expectation based on a law of large
numbers for independent random variates. This error will not disappear even if sampling is from
the true distribution. In the following subsections, we characterize both components to obtain an
explicit expression for the asymptotic distribution of the error in the approximation of the conditional
expectation. We distinguish the case where the conditional expectation depends on a known state
variable from the one where it is unknown in order to cover different financial applications.

3.1 Expectations conditional on a known state variable

In this subsection, we wish to calculate E[g(XT )|F0] ≡ E0[g(XT )] where X solves (2) or (7). To
approximate the expectations we rely on a law of large numbers and draw independent replications
Xi,N
T , respectively X̂i,N

T , of the terminal points XN
T , respectively X̂N

T , of the Euler discretized
diffusion with and without Doss transformation. Our next theorem describes the asymptotic laws
for these two Euler schemes.

Theorem 3: Suppose that the assumptions of Theorem 2 hold. Let g ∈ C1(Rd) such that g(XT ) ∈
D

1,2. For the schemes without and with transformation, we respectively have

√
M

(
1
M

M∑
i=1

g(Xi,NM
T )−E0[g(XT )]

)
⇒ ε

1
2
KT (X0) + LT (X0)

√
M

(
1
M

M∑
i=1

ĝ(X̂i,NM
T )−E0[ĝ(X̂T )]

)
⇒ ε

1
2
K̂T (X̂0) + LT (X̂0)

where limM→∞NM = +∞ and ε = limM→∞
√
M

NM
, and LT (X0), LT (X̂0) are the terminal values of

centered Gaussian martingales with quadratic variation and conditional variance given by

[L,L]T =
∫ T

0
E0[Nv(Nv)′]dv ≡ var[g(XT )|F0]

11



Nv = Ev[∂g(XT )DvXT ].

In these expressions DsXT is the Malliavin derivative of XT . The deterministic functions KT and
K̂T are derived in Theorems 4 and 5 of the next subsection.

The random variable DsXT captures the impact of an innovation in the Brownian motion W

at time s on the state variable X at time T . In essence this derivative measures the persistence
of a shock in the state variable. It is similar to an impulse response function which quantifies the
sensitivity of the variable XT to a past uncertainty shock at time s.12

The theorem shows that the asymptotic laws of the estimators have two parts. The first, K,
corresponds to the discretization bias; the second, L, results from the Monte Carlo estimation of the
expectation. Note that L would not vanish, even if we could sample directly from the law of XT .
This is because the conditional expectation cannot be calculated in closed form.

The theorem also shows that the estimators converge at the same rate. In our next section
we provide intuition for this result. At this stage we remark that the common convergence rate is
the rate achieved by the Euler scheme applied to an ODE. Since the rate 1√

M
is obtained from a

central limit theorem, an immediate conclusion is that higher order schemes would fail to improve
the convergence speed. They would just reduce the second-order bias.

3.1.1 Expected approximation errors

The second-order discretization biases KT and K̂T , which appear in Theorem 3, are obtained by
studying the convergence of the expected approximation errors. This section is devoted to this issue.

Euler scheme on the original state variables Our first result describes the convergence of
the expected approximation error for the Euler scheme (3), E0[g(XN

T )− g(XT )], where g(XN
T ) is an

approximation of g(XT ) based on the discretization of the process X.
12We also assume that g(XT ) is in the domain D1,2 of the Malliavin derivative operator. For a brief introduction to

Malliavin calculus see Appendix D in Detemple, Garcia and Rindisbacher (2003). Nualart (1995) provides an exact

definition of the domain of the Malliavin derivative operator D1,2.
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Define the random variables

V1,T = −ΩT

∫ T

0
Ω−1
s

∂A(Xs)dXs +
d∑
j=1

[∂BjA−
d∑
i=1

(∂Bj)(∂Bi)Bj ](Xs)dW j
s


+ΩT

∫ T

0
Ω−1
s

d∑
j=1

[∂Bj∂BjA](Xs)−
∫ T

0

d∑
k,l=1

[∂k(∂lABl,j)Bk,j ](Xs)

 ds

+ΩT

∫ T

0
Ω−1
s

d∑
i,j=1

([∂[∂Bi∂BjBi]Bi − ∂Bi∂Bi∂BjBi](Xs)) ds

V2,T = −
∫ T

0

d∑
i,j=1

νi,j(Xs,Ωs)ds

where ∂A, ∂Bj are d× d matrices of Jacobians, Ω is defined in Theorem 1 and

νi,j(Xt,Ωt)dt = d[[(Bi)′(∂2g)(∂Bi)(∂Bj)Bi + (∂g)ΩT (∂Bi)Ω−1
T (∂Bi)(∂Bj)Bi](X),W i]t.

An explicit expression for νi,j(X,Ω) is given in Appendix B.
With this notation we have

Theorem 4: Let g ∈ C3(Rd) be such that

lim
r→∞

lim sup
N

E0

[
1{|N(g(XN

T )−g(XT ))|>r}N |g(XN
T )− g(XT )|

]
= 0 (13)

( P-a.s.). Then we have that

NE0

[
g(XN

T )− g(XT )
]
→ 1

2
KT (X0) ≡ 1

2
E0 [∂g(XT )V1,T + V2,T ] (14)

Theorem 4 can be viewed as a full probabilistic counterpart to the results in Talay and Tubaro
(1991) and Bally and Talay (1996a,b). These authors show that the expected approximation error
of the Euler scheme can be written in terms of the expectations of an unknown function of a random
variable, where the function solves a PDE. Our proof uses probabilistic arguments to derive a rep-
resentation in the form of a conditional expectation of a known random variable whose components
depend on the coefficients of the underlying SDE. This characterization is easier to evaluate since it
does not require to solve a PDE. As a result, it does not suffer from the curse of dimensionality which
affects the numerical solutions of the PDEs characterizing the second-order bias in Talay and Tubaro
(1991) and remains applicable for multivariate diffusions. Even in the univariate case, using Monte
Carlo simulation in combination with the solution of a PDE is computationally very costly. This
may explain why the theoretical results of Talay and Tubaro (1991) and Talay and Bally (1996a,b)
have not been used in applications.
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Euler scheme on the transformed state variables Let ĝ be such that g(XT ) = [ĝ ◦ G](X̂T )
and define the random variable

V̂T = −Ω̂T

∫ T

0
Ω̂−1
v ∂Â(X̂v)

dX̂v +
d∑

j,k,l=1

∂l,kÂ(X̂s)B̂k,jB̂l,jds


with Ω̂T = exp

(∫ v
0 ∂Â(X̂s)ds

)
. For the scheme based on the transformed state variables we obtain,

Theorem 5: Suppose that the conditions of Theorem 2 hold. For ĝ ∈ C1(Rd) such that

lim
r→∞

lim sup
N

E0

[
1{|N(ĝ(X̂N

T −ĝ(X̂T ))|>r}N |ĝ(X̂N
T )− ĝ(X̂T )|

]
= 0 (15)

P-a.s. we have
NE0

[
ĝ(X̂N

T )− ĝ(X̂T )
]
→ 1

2
K̂T (X̂0) ≡ 1

2
E0

[
∂ĝ(X̂T )V̂T

]
. (16)

A comparison of (14) with (16) suggests that it will be difficult, in general, to establish the
dominance of one method over the other on the basis of the expected approximation error. Indeed,
the formulas show that both methods converge at the same speed 1/N and, while the second-order
biases differ (KT (X0) 6= K̂T (X̂0)), they do not appear to be ordered in any systematic way. To
compare the two methods one may want to take the computational cost into account. For instance,
in the portfolio application considered later in this paper, it is more costly to calculate KT than K̂T .

The difference in the rates of convergence for the limit distribution (Theorems 1 and 2) and
the expected approximation error (Theorems 4 and 5) can be explained as follows. The speed of
convergence for the limit distribution is determined by the martingale part of the error expansion
which converges more slowly (1/

√
N) than the bounded variation part (1/N). The transformation

eliminates the martingale part of the error. Taking the expectation also eliminates the martingale
part of the error. It follows immediately that the expected approximation errors will converge at the
same rate. To see that the expectation eliminates the martingale part of the error in the absence of
a transformation it suffices to note that this term converges weakly to a stochastic integral whose
expectation is null.13

3.1.2 Second-order discretization biases

Going back to Theorem 3 we note that the two procedures have asymptotic second-order discretiza-
tion biases, respectively given by ε

2K and ε
2K̂. Thus, any confidence interval based solely on the Gaus-

sian process L will suffer from a size distortion. In fact, a confidence interval of nominal size α, based
on L, will cover the true value E0[g(XT )] only with probability Φ(Φ−1(1−α/2)−δ)−Φ(Φ−1(α/2)−δ),

13The martingale part of the error converges to the product of a random variable and a stochastic integral with

independent integrator.
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where Φ is the cumulative Gaussian distribution and δ = εKT (X0)/2
√

var[LT |F0], instead of prob-
ability 1 − α. For the method with transformation the coverage probability of the true value is
Φ(Φ−1(1−α/2)− δ̂)−Φ(Φ−1(α/2)− δ̂) with δ̂ = εK̂T (X̂0)/2

√
var[LT |F0].14 The degree of size dis-

tortion is then measured by s(z) ≡ 1−α− (Φ(−Φ−1(α/2)− z)−Φ(Φ−1(α/2)− z)), where z ∈ {δ, δ̂}.
We conclude that these confidence intervals are valid if and only if there is no second-order bias.
Clearly, an increase in the second-order bias reduces the real coverage probability. Likewise, a de-
crease in the asymptotic variance or an increase in ε will increase the size distortion.

A benefit of the formulas (14)-(16) for the second-order biases KT (X0) and K̂T (X̂0), is that they
can be computed by simulation. Theorems 4 and 5 can then be used to develop approximation
schemes that correct for second-order bias. Likewise, asymptotically valid confidence intervals can
easily be implemented. Furthermore, bias correction is feasible even when the number of state
variables is large. In contrast bias correction based on the solutions of PDEs quickly becomes
infeasible when the number of state variables increases.15

3.1.3 Bias corrected estimators

Bias-corrected estimators are asymptotically equivalent to Monte Carlo estimators obtained by sam-
pling from the true distribution of XT . As a result they do not suffer from the size distortion problem
described above. Bias-corrected estimators of conditional expectations can be constructed as follows.
Let

gN,McT =
1
M

M∑
i=1

[
g(Xi,N

Nh ) +
1
2
∂g(Xi,N

Nh )Ci,N1,Nh +
1
2
Ci,N2,Nh

]
(17)

ĝN,McT =
1
M

M∑
i=1

[
ĝ(X̂i,N

Nh ) +
1
2
∂ĝ(X̂i,N

Nh )Ĉi,NNh

]
(18)

where Ci,N1,Nh, C
i,N
2,Nh, Ĉ

i,N
Nh , for n = 0, . . . , N − 1, are defined in Appendix B . Our next result shows

that gN,McT and ĝN,McT are bias-corrected estimators.
14When M →∞ we have

P(E0[g(XT )] ∈ [ 1√
M

∑M
i=1 g(Xi,NM ) + Φ−1(α/2)σ

M,NM√
M

, 1√
M

∑M
i=1 g(Xi,NM )− Φ−1(α/2)σ

M,NM√
M

]

↓

Φ(−Φ−1(α/2)− δ)− Φ(Φ−1(α/2)− δ)

where
(
σM,N

)2
= VARM,N [LT |F0] is a convergent estimator of the variance. These confidence intervals have the

correct length if and only if the second-order bias vanishes, i.e. δ = 0.
15Duffie and Glynn (1995) also propose to use the Richardson-Romberg type of estimator 2

4M

∑4M
i=1 g(Xi,2N

T ) −
1
M

∑M
i=1 g(Xi,N

T ) to eliminate approximately the second-order bias. To calculate this estimator one must quadruple the

number of replications and double the number of discretization points. Since in our method the second-order bias can

be simulated along with the state variables, it is computationally less costly than Richardson-Romberg approximation

schemes.
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Theorem 6: Suppose that the conditions of Theorem 2 hold. Then,
√
M(gN,MM

cT − E0[g(XT )]) ⇒
LT (X0) and

√
M(gNM ,McT − ĝNM ,McT )⇒ 0 as N,M →∞.

Theorem 6 shows that gN,McT and ĝN,McT correct for the second-order bias and are asymptotically
equivalent. This means that a bias correction eliminates all the potential benefits of the transforma-
tion. One should, however, bear in mind that the equivalence is asymptotic and that bias-corrected
estimators may perform differently in finite samples.

3.2 Expectations conditional on an unknown state

In some applications the conditional expectations to be estimated depend on state variables that
are not known. For instance, in market timing experiments, future trajectories of optimal portfolios
and hedging terms are simulated. In the area of risk management, measures of riskiness of future
imperfectly hedged positions are of interest to a variety of financial participants including speculators,
hedgers and issuing firms. Likewise the evolution of the volatility of a stock over time is of interest
to equityholders and debtholders of firms. To price American options using Monte Carlo methods,
we have to calculate the continuation value backwards. This value is given as the expectation of the
remaining pay-offs to maturity conditional on unknown future states.

Formally, all these problems are repeated regression problems. We want to estimate E[g(XT )|Xτ ],
where Xτ is unknown but X0 has been observed. Hence, Xτ is replaced by the simulated value
XN
τ (X0). The novel difficulty which emerges in these situations is that future estimates are condi-

tional on (future) state variables whose distribution is unknown and requires estimation.
Estimators can be constructed as follows. Suppose that information about the current state is

available (X0 is known) and that we are trying to estimate a conditional expectation at τ , which
depends on the unknown value Xτ . An estimate is obtained by first simulating a trajectory up to τ
to construct the feasible predictor of the future state XN

τ (X0). The predicted state value then serves
as a starting point for M trajectories which are used to estimate the conditional expectation at τ .

Approximation errors for these estimators include, again, two sources of errors, a discretization
error and a Monte Carlo error. But now the need to discretize the SDE has two effects. As in the prior
case the random variables inside the conditional expectation must be simulated since direct sampling
from the true distributions is not feasible. In addition the future state at which the estimation is to
be performed can only be approximated.

3.2.1 Error distributions

Consider the estimator

gN,Mτ,T (XN
τ ) =

1
M

M∑
i=1

g(Xi,N
T (Xi,N

τ ))

16



where XT (Xτ ) is the process X started at Xτ with T > τ , which solves

XT (Xτ ) = Xτ +
∫ T

τ
A(Xs(Xτ ))ds+

d∑
j=1

∫ T

τ
Bj(Xs(Xτ ))dWs.

Also let XN
T (XN

τ ) denote the numerical approximation of XT (Xτ ). We will give the asymptotic
distributions of the errors with and without transformation

Ug
N,M

τ,T =
1√
M

M∑
i=1

(
g(Xi,N

T (XN
τ ))−Eτ [g(XT (Xτ ))]

)

U ĝ
N,M

τ,T =
1√
M

M∑
i=1

(
g(X̂i,N

T (X̂N
τ ))−Eτ

[
g(X̂T (X̂τ ))

])
.

Theorem 7: Suppose that the conditions of Theorem 3 hold. Then
√
M
(
gNM ,Mτ,T (XNM

τ )−Eτ [g(XT )]
)
⇒ LT (Xτ ) + εE0

[
∂g(XT (Xτ ))ΩT (Ωτ )−1

]
UXτ (19)

where NM and ε are such that ε = limM→∞
√
M/NM , and the martingale LT (Xτ ) is defined in

Theorem 3 and Ω in Theorem 1. Moreover,
√
M(gNM ,Mcτ,T (XNM

τ )− gNM ,Mτ,T (XNM
τ ))⇒ 0 where the bias

corrected estimator gNM ,Mcτ,T (XNM
τ ) is defined in (17) with N = NM .

As in the case of known state the estimation error has a Gaussian martingale part due to the
Monte Carlo approximation error and a bounded variation part associated with the discretization
of the state variable process. But since Xτ is unknown the martingale LT (Xτ ) is not conditionally
Gaussian any longer. Theorem 7, then, asserts the convergence to a non-Gaussian random variable.

The corresponding result for the transformation is

Theorem 8: Suppose that the conditions of Theorem 4 hold. Then
√
M
(
ĝNM ,Mτ,T (X̂NM

τ )−Eτ [ĝ(X̂T )]
)
⇒ ε

1
2
K̂T (X̂τ )+LT (Xτ )+εE0

[
∂ĝ(X̂T (X̂τ ))Ω̂T (Ω̂τ )−1

]
U X̂τ (20)

where NM and ε are such that ε = limM→∞
√
M/NM , and the martingale LT (X̂τ ) is defined in

Theorem 4 and Ω̂ in Theorem 2. Moreover,
√
M
(
ĝNM ,Mcτ,T (X̂N̂

τ )−Eτ [ĝ(X̂T )]
)
⇒ LT (Xτ ) + εE0

[
∂ĝ(X̂T (X̂τ ))Ω̂T (Ω̂τ )−1

]
U X̂τ ,

when N̂ ,M → ∞, where the bias-corrected estimator ĝNM ,Mcτ,T (X̂N̂
τ ) is defined in (18) with NM dis-

cretization points on [τ, T ] and N̂ discretization points on [0, t].

In contrast to the non-second-order-bias corrected estimator without transformation, the asymp-
totic law of the non-second-order-bias-corrected estimator with transformation is non-centered, in-
dicating a second-order bias. This fact may decrease the superior performance of estimators with
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transformation for fixed M and N . The second-order bias with transformation is a consequence of the
approximation of the future value of the conditioning state variable. It follows that this second-order
bias does not vanish even when the bias-corrected conditional estimator is used.

Comparing Theorems 7 and 8, one can see that the asymptotic distribution for the bias-corrected
estimator differs from the one without bias correction only when the transformation is used. Hence,
both discretization errors, i.e. the one from the approximation of the underlying state variable
and the one from the approximated random variable in the estimate of the conditional expectation,
are of the same order. It also appears that the procedure with Doss transformation has the same
convergence speed whether the state is known or unknown.

4 A comparison with Milshtein’s second-order approximation

While Euler schemes for SDEs are appealing from a computational point of view, they might be
judged insufficiently accurate. Indeed, second-order schemes such as Milshtein (see Milshtein (1995))
or Talay (1984, 1986, 1991) have been proposed to better approximate the solution of an SDE. In
this section, we extend our weak convergence analysis to the Milshtein second-order approximation.

The Milshtein approximation of XT in (2) is

X̃N
T = X0 +

N−1∑
n=0

A(X̃N
nh)h+

d∑
j=1

Bj(X̃N
nh)∆W j

nh +
d∑

j,l=1

[∂BlBj ](X̃N
nh)
∫ (n+1)h

nh

∫ s

nh
dW l

vdW
j
s

 (22)

where h = T/N and ∆W j
nh = W j

(n+1)h −W
j
nh. This scheme is obtained using a stochastic Taylor

expansion for the diffusion coefficient.16

The Milshtein scheme is often difficult to implement for multivariate diffusions. The increments
∆F l,j ≡

∫ (n+1)h
nh

∫ v
nh dW

l
sdW

j
v in the last term of (22) cannot, in general, be written in a form which

is easy to simulate. In fact, for multivariate diffusions without commutative noise (∂BlBk 6= ∂BkBl

some k 6= l) , the increment ∆F l,j can only be simulated using a further discretization of the intervals
[(n+ 1)h, nh] (see Gaines and Lyons (1997)). This leads to a substantial increase in computational
cost. The comparison to a Euler scheme with a number of discretization points equal to the total
number of points required to implement the Milshtein scheme is unclear.17

16For details on the stochastic Taylor expansion and how to obtain this result see Kloeden and Platen (1997) or

Milshtein (1995).
17The commutative noise condition necessary for this representation is the same condition needed for the Doss

transformation. When commutativity fails the transformation cannot be used and the implementation of the Milshtein

scheme requires the simulation of the iterated Wiener integrals ∆F l,j . In those cases implementation based on a

standard Euler scheme without transformation is considerably less demanding.
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For commutative noise (i.e. ∂BlBk = ∂BkBl), the last term in (22) simplifies to18

d∑
j,l=1

[∂BlBj ](X̃N
nh)∆F l,j =

1
2

 d∑
j=1

[∂BjBj ](X̃N
nh)
(

(∆W j
nh)2 − h

)
+

d∑
j,l=1

j 6=l

[∂BlBj ](X̃N
nh)∆W j

nh∆W l
nh

 .

(23)
The representation of X̃N

T as a functional of the Brownian increments ∆W k
nh for k = l, j follows.

Note, in particular, that every univariate diffusion has commutative noise and can be implemented
on the basis of (23).

Our next result describes the asymptotic error of the approximation error associated with (22)
and therefore find an explicit expression for the Monte Carlo estimator of conditional expectations
based on the Milshtein scheme.

Theorem 9: The approximation error X̃N
T − XT converges weakly at the rate 1

N (i.e. N(X̃N
T −

XT )⇒ ŨXT ). The asymptotic error is

ŨXT = −1
2

ΩT

∫ T

0
Ω−1
s

∂A(Xs)dXs −
d∑
j=1

[(∂Bj)ABj ](Xs)ds


−1

2
ΩT

∫ T

0
Ω−1
s

 d∑
k,l,j=1

[((∂k,lA)Bk,jBl,j + ∂lA(∂kBl,j)Bk,j)] (Xs)ds


− 1√

12
ΩT

d∑
j=1

∫ T

0
Ω−1
s

[
(∂A)Bj ](Xs)dZ

j
1,s − [(∂Bj)A](Xs)dZ

j
2,s

]
.

where for each k = 1, 2 the process [Zjk]j∈{1,...,d} is a d × 1 standard Brownian motion independent
of W and Zh,j. The processes UXT and ΩT are given by the expression in Theorem 1 for the Euler
approximation without transformation.

Theorem 9 shows that the speed of convergence increases when one uses the stochastic Taylor
expansion of the diffusion term. This expansion eliminates the error component of order 1/

√
N in

the martingale part of the Euler approximation. It follows that the error for the Milshtein scheme
converges at the same speed as the error for the Euler scheme with transformation: both schemes
improve on the standard Euler approach. Note also that in the particular case of a constant volatility
coefficient the asymptotic error distributions are the same for all schemes (i.e. ŨXT = U X̂T ).

From Theorem 9 we can easily deduce the expected approximation error

Theorem 10: Suppose that the assumptions of Theorem 9 hold. Let g ∈ C1(Rd) such that g(XT ) ∈
18See Milshtein (1995) or Gaines and Lyons (1997).
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D
1,2. For the Milshtein scheme, we have

√
M

(
1
M

M∑
i=1

g(X̃i,NM
T )−E0[g(XT )]

)
⇒ ε

1
2
K̃T (X0) + LT (X0)

where limM→∞NM = +∞ and ε = limM→∞
√
M

NM
and LT (X0), LT (X̂0) are the terminal values of

centered Gaussian martingales with quadratic variation and conditional variance defined in Theorem
3. The deterministic function K̃T is derived in Theorem 11.

For estimates of conditional expectations the rate of convergence of the Milshtein scheme is
identical to the rate of the Euler schemes with and without transformation. The three schemes
differ only in their second-order bias. The second-order bias K̃T can be found explicitly, as shown
below. Its size relative to the second-order bias of the Euler scheme depends on the drift and the
diffusion coefficients of the underlying processes. A global ordering of the three schemes in terms of
second-order asymptotic properties does not seem possible.

In order to describe the expected approximation error we need the random variable

ṼT = −1
2

ΩT

∫ T

0
Ω−1
s

∂A(Xs)dXs −
d∑
j=1

[(∂Bj)ABj ](Xs)ds


−1

2
ΩT

∫ T

0
Ω−1
s

 d∑
k,l,j=1

[((∂k,lA)Bk,jBl,j + ∂lA(∂kBl,j)Bk,j)] (Xs)ds


With this definition, we have

Theorem 11: Suppose that the conditions of Theorem 9 hold. For g ∈ C1(Rd) such that

lim
r→∞

lim sup
N

E0

[
1{|N(g(X̃N

T −g(XT ))|>r}N |g(X̃N
T )− g(XT )|

]
= 0 (24)

we have, P-a.s.,

NE0

[
g(X̃N

T )− g(XT )
]
→ 1

2
K̃T (X0) ≡ 1

2
E0

[
∂g(XT )ṼT

]
. (25)

Bias-corrected estimators based on the Milshtein scheme are asymptotically equivalent to Monte
Carlo estimators obtained by sampling from the true distribution of XT . As a result they do not
suffer from the size distortion problem described before. Bias-corrected estimators of conditional
expectations can be constructed by taking

g̃c
N,M
T =

1
M

M∑
i=1

[
g(X̃i,N

Nh ) +
1
2
∂g(X̃i,N

Nh )C̃i,NNh

]
(26)

where C̃i,N1,Nh is a convergent approximation of −ṼT , defined in Appendix B. Our next result shows
that g̃c

N,M
T is a bias-corrected estimator of the conditional expectation based on the Milshtein scheme.
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Theorem 12: Suppose that the conditions of Theorem 10 hold. Then,
√
M(g̃NM ,McT −E0[g(XT )])⇒

LT (X0),
√
M(gNM ,McT − ĝcNM ,MT )⇒ 0 and

√
M(gNM ,McT − g̃cNM ,MT )⇒ 0 as M →∞.

It is important to note that Milshtein does not improve over bias-corrected Euler, even without
transformation. Indeed, the theorem shows that all estimators (Milshtein and Euler) are asymptot-
ically equivalent after second-order bias correction. For non-commutative noise, our explicit expres-
sions for the second-order bias can be used to develop estimators that are computationally superior
to the Milshtein scheme because they to not require further subdivisions of discretization intervals
to approximate the increments ∆F l,j .

Our next theorem describes properties of estimates of conditional expectations with unknown
initial state. The result shows that the Milshtein scheme has the same qualitative properties as the
Euler scheme with Doss transformation.

Theorem 13: Suppose that the conditions of Theorem 9 and 10 hold. Then

√
M
(
g̃NM ,Mτ,T (X̃NM

τ )−Eτ [g(XT )]
)
⇒ ε

1
2
K̃T (Xτ ) +LT (Xτ ) + εE0

[
∂g(XT (Xτ ))ΩT (Ωτ )−1

]
ŨXτ (27)

as M → ∞ where ε = limM→∞
√
M/NM , and the martingale LT (Xτ ) is defined in Theorem 3 and

Ω in Theorem 2 for the Euler scheme without transformation. Moreover,

√
M
(
g̃NM ,Mcτ,T (X̃N

τ )−Eτ [g(XT )]
)
⇒ LT (Xτ ) + εE0

[
∂g(XT (Xτ ))ΩT (Ωτ )−1

]
ŨXτ .

where the bias-corrected estimator g̃N,Mcτ,T (X̃N
τ ) is defined in (26).

5 Applications

In this section we provide two applications of the theorems developed in the last sections which are
particularly relevant for finance. The first application deals with the computation of the optimal
portfolio shares in a dynamic asset allocation context. To compute these shares which include hedging
terms we follow the Monte Carlo methodology introduced in Detemple, Garcia and Rindisbacher
(2003). We are therefore in a framework where computing portfolio shares amounts to computing
conditional expectations based on simulating Euler discretized processes and averaging replications
of such simulated processes. To illustrate the case where the state is unknown we perform a market
timing experiment where, based on today’s information, we examine the asymptotic error distribution
of the hedging demand at a future date. The second application deals with simulation-based inference.
The solution to any financial problem involving diffusions rests on the estimation of the parameters
of the drift and diffusion functions. The statistical results developed in this paper are well suited to
perform asymptotic error analysis for simulation-based inference methods for diffusions.
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5.1 Dynamic asset allocation

We consider a general setting with complete markets.19 Suppose that d risky stocks and one riskless
asset are available. Stock prices, Si, i = 1, ..., d, satisfy the stochastic differential equations

dSit = Sit[(µi(t, Yt)− δi(t, Yt))dt+
d∑
j=1

σij(t, Yt)dW
j
t ]; i = 1, ..., d (29)

dYt = µY (t, Yt)dt+
d∑
j=1

σYj (t, Yt)dW
j
t (30)

where W is a d-dimensional vector of Brownian motions capturing the underlying uncertainty and
Y is a k-dimensional vector of state variables describing the evolution of the opportunity set. Here
µi is the gross expected return, δi the dividend rate and σi the vector of volatility coefficients of
security i. Let σ denote the d× d volatility matrix whose components are σij , i, j = 1, ..., d. All the
functions in (29)-(30) are assumed to satisfy conditions for the existence of a strong solution (S, Y ).
The riskless asset pays interest at the rate r(t, Yt).

We also assume that the market price of risk θ(t, Yt) ≡ σ(t, Yt)(µ(t, Yt)− r(t, Yt)1d), where 1d is
the d-dimensional unit vector, satisfies the Novikov condition (see Karatzas and Shreve (1987)) so as
to ensure the existence of the risk neutral measure. The state price density ξ satisfies the stochastic
differential equation dξt = −ξt [r(t, Yt)dt+ θ(t, Yt)dWt] subject to the initial condition ξ0 = 1.

In this environment an investor selects a portfolio policy π so as to maximize the expected utility
of terminal wealth E[u(T,XT )] subject to the dynamic budget constraint{

dXt = r(t, Yt)Xtdt+Xtπ
′
t[(µ(t, Yt)− r(t, Yt)1)dt+ σtdWt], X0 = x

Xt ≥ 0, for all t ∈ [0, T ].
(31)

Here Xt represents wealth at date t, x is initial wealth and πt the vector of proportions invested in
the risky assets at t. The non-negativity constraint prevents bankruptcy. We focus on the case of
constant relative risk aversion u(T,X) = (1 − R)−1X1−R where R > 0 is the relative risk aversion
coefficient.

For any function f(t, Y ) let ∂2f(t, Y ) be the gradient of f . With this notation the optimal
portfolio policy is given by (see Detemple, Garcia and Rindisbacher (2003)):

πt = (σ(t, Yt)′)−1

 1
R
θ(t, Yt)− ρEt

 ξρt,T

Et

[
ξρt,T

]Ht,T


where ρ = 1 − 1/R , ξρt,v = exp(−ρGt,T ), Gt,T =

∫ T
t λ(s, Ys)ds +

∫ T
t θ(s, Ys)dWs and Ht,T =∫ T

t ∂2λ(s, Ys)DtYsds+
∫ T
t ∂2θ(s, Ys)DtYsdWs, with λ(t, Yt) ≡ r(t, Yt) + 1

2θ(t, Yt)θ(t, Yt)
′.20

19See Merton (1971), Karatzas, Lehoczky and Shreve (1987), Cox and Huang (1989), Ocone and Karatzas (1991)

and Detemple, Garcia and Rindisbacher (2003) for additional details.
20We further suppose that E[ξρT ] <∞ and ξρT ∈ D

1,2.
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The Malliavin derivative DtYs ≡ (D1tYs, ..., DdtYs) solves the linear SDE

d(DmtYs) =

∂2µ
Y (v, Ys)ds+

d∑
j=1

∂2σ
Y
·j (s, Ys)dW j

s

 (DmtYs) (32)

subject to the boundary condition lims→t(DmtYs) = σYm(t, Yt) for m = 1, ..., d.
The optimal portfolio policy πt has a mean-variance term (θ(t, Yt)), a hedging term against

interest rate fluctuations (the part of Ht,v involving ∂2r(t, Yt)) and a hedging term against market
price of risk fluctuations (the part of Ht,v involving ∂2θ(s, Ys)). This formula shows that the hedging
terms are conditional expectations of functions of random variables Gt,T ,Ht,T which are themselves
path-dependent functions of the state variables Y and their Malliavin derivatives DtY . Appendix
C shows how to write these conditional expectations as expectations over the terminal values of
solutions of SDEs. This will embed the formulas in the general setup of sections 2 and 3.

5.1.1 An illustration of the asymptotic laws for the portfolio shares

This section illustrates the second-order bias, and its effect on the size distortion of asymptotic
confidence intervals, for the following one factor model:

dYv = κ(Y − Yv)
(
1 + φ(Y − Yv)2η

)
dv + σY γ

v dWv.

This specification was introduced in Detemple, Garcia and Rindisbacher (2003) to model the evolu-
tion of the short rate and will hereafter be called a NMRCEV process. It includes a nonlinear term
in the drift of the process to capture the faster mean reversion occurring when interest rates depart
from their long term value. For φ = 0 and γ = 1

2 we obtain a CIR process.
We assume a constant market price of risk θt = θ = 0.1, a stock volatility σ = 0.2 and a relative

risk aversion R = 4. We also assume that the short rate follows either a CIR or a NMRCEV process.
We then calculate second-order bias-corrected estimators for investment horizons T = 2, 4, 6, 8, 10.

Table II shows the relation between the size distortion, which is an increasing function of the
parameter δ/ε = 1

2KT (var[g(XT )|F0])−1/2 (resp. δ̂/ε = 1
2K̂T (var[g(XT )|F0])−1/2), and the invest-

ment horizon. The values reported are all negative. For the CIR process, the absolute value of the
size distortion parameter is larger when the transformation is applied, for all horizons. The opposite
is true for the NMRCEV process. The relation across models varies according to the horizon. For
short horizons, the parameter is larger for the nonlinear model; the reverse holds for long horizons.
For both processes the absolute value increases with the investment horizon, making asymptotic
confidence intervals worse for longer horizons.

Figure 7 illustrates the effects of different simulation designs, parametrized by the number of
Monte Carlo replications M and the number of discretization points for the Euler scheme N , on
size distortion. It shows, for various horizons and both the CIR and NMRCEV models, the size
distortion for a 95% confidence interval as a function of ε = limM→∞

√
M/NM . For both CIR and
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NMRCEV interest rate processes, asymptotic confidence intervals suffer from an important size
distortion when the number of discretization points is small relative to the number of Monte Carlo
replications (εM =

√
M/NM > 1). They will, therefore, cover the true value with a probability that is

considerably lower than the nominal size of the confidence interval. Figure 7 also shows that for long
horizons and small numbers of discretization points, the number of Monte Carlo replications must
be severely limited to obtain confidence intervals with coverage probability close to their nominal
size. These results emphasize that the construction of valid confidence intervals cannot neglect the
second-order bias. For the NMRCEV interest rate process it appears that the transformation reduces
the size distortion.

Table III presents results for the second-order bias KT . The second order bias is small for both
processes. Yet, at the same time, the size distortion of asymptotic confidence intervals is large,
illustrating that the standardized error distributions of the two estimators differ significantly. It
follows that the second-order bias cannot be ignored, when constructing confidence intervals or
statistical tests, even if the location of the estimator is not substantially affected by the correction.
This follows from the structure of the size distortion parameter δ/ε = 1

2KT (var[g(XT )|F0])−1/2,
which depends on both bias and variance. In our example KT is small. We then conclude that the
size distortion is a consequence of a small variance rather than a large second-order discretization bias.
Since the length of a confidence interval measures the efficiency of an estimator this observation has
important implications for the use of variance reduction techniques. If variance reduction is applied
without taking the second-order bias into account, the value of the size distortion parameter δ can
actually increase and this reduces the effective coverage probability of the confidence interval. It
follows that an assessment of efficiency based on the length of an asymptotic confidence interval,
without taking the second order bias into account, could lead to incorrect conclusions. Our explicit
formulas for the second-order bias can be used to eliminate this problem.

Table IV illustrates properties of bias-corrected estimators. First note that the bias correction
improves the estimator in the right direction. The benchmark true value is calculated with N = 212

and M = 200000 without transformation and without bias correction. Estimators with N = 29 and
M = 25000 are then calculated. For the CIR process the bias correction does not play an important
role for the precision of the portfolio weight. Bias correction is more important for the NMRCEV
process. Since both the second order bias corrected estimator and the estimator without correction
converge to the true value at the same speed, their difference must disappear when M and N become
sufficiently large. The small difference between the two estimators in Table IV indicates that these
asymptotic convergence results apply in our simulation design for (M,N). The results indicate that
second order bias correction is not important if we are only interested in the level of the estimator.
However, bias correction cannot be ignored when assessing the relative efficiency of an estimator
based on a comparison of confidence intervals. It is important to note that our conclusions are for
one set of parameters only. Improvements in the precision of estimators using second-order bias
correction may be more important for other parameter values. Our explicit expressions can be used
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to verify whether this is indeed the case.

5.1.2 An illustration with a portfolio choice in a market timing experiment

To illustrate the theorems of the previous section we consider an investment horizon of 10 years
and examine the asymptotic error distribution of the hedging demand in year 9. Figures 8 and 9
plot the asymptotic error distributions for the CIR process and the NMRCEV process respectively.
For both processes we present the asymptotic error distribution using the Euler discretization (no
transformation) in the upper panel and two asymptotic error distributions for the process with
transformation (with or without bias correction) in the lower panel. Computations are based on
M1 = 5000 trajectories to calculate the expected value and M2 = 500 trajectories for the empirical
distribution function. The discretization is N = 25 for the simulation of the state variables and the
simulation of the conditional hedging demand.

For the estimators of the hedging demand with transformation, it can be seen that the bias
corrected distribution functions are everywhere below the distribution functions of the estimators ig-
noring the second-order bias. The difference between the two distributions is much more pronounced
for the NMRCEV process, due again to the non-linear drift structure. Comparing the estimators
with and without transformation we note that the bias corrected error is more concentrated around
the median for the estimator with transformation. This is also true for both processes, but again
the difference is smaller for the CIR case.

The results obtained for the NMRCEV process show that the use of the transformation with bias
correction has considerable benefits. Not only does this scheme increase the speed of convergence
but it also produces errors that are more concentrated around the median.

5.2 Simulation-based Inference for diffusions

Standard dynamic models in finance, such as those encountered in asset pricing, involve diffusion
processes with coefficients that are not known a priori. Estimation and statistical inference are there-
fore essential for their implementation. The importance of statistical methods is further enhanced
by the fact that parameter uncertainty can have a significant impact on economic results (see the
recent paper by Barberis (2000) on optimal portfolio choice).

The absence of explicit formulas for transition densities of general diffusion processes implies that
maximum likelihood inference can only proceed with the use of an auxiliary numerical procedure to
approximate the transition density.21 Some of the numerical approaches that have been proposed
are (i) the numerical resolution of the Kolmogorov forward equation (Lo (1988)), (ii) the estima-

21Numerical approximations can be avoided if we allow the observation interval to decrease to zero. For this type of

fill-in asymptotics, efficient estimators have been obtained by Dacunha-Castelle (1986), Florens-Zmirou (1989, 1993),

Genon-Catalot (1990), Genon-Catalot and Jacod (1993) and Bibby and Sørensen (1995). This type of asymptotics

seems to be less appropriate for non-experimental setups like those encountered in financial econometrics.
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tion of the infinitesimal generator based on a truncated set of eigenfunctions (Kessler and Sørensen
(1995), Hansen and Scheinkman (1995)), (iii) the simulated maximum likelihood estimation (Peder-
sen (1995a,b), Brandt and Santa-Clara (2000), Durham and Gallant (2002)), (iv) orthogonal series
expansions (Ait-Sahalia (2002)), and (v) Markov Chain Monte Carlo (MCMC) Bayesian techniques
(Eraker (1999), Chib, Elerian and Shephard (2000)). Similarly, the method of moments and other
methods using estimating functions require auxiliary numerical techniques, as soon as the moment
condition or the estimating function are not available in explicit form. In particular, this is the case
if state variables are latent. Simulation-based approaches proposed to handle estimations of this
type are (i) the simulated method of moments (Duffie and Singleton (1993)), (ii) indirect inference
procedures (Smith (1990), Gouriéroux, Monfort and Renault (1993)) and efficient method of moment
procedures (EMM) ( Gallant and Tauchen (1996)).22

Our characterizations of the asymptotic error distributions apply directly to the approximation
errors of auxiliary numerical procedures and can therefore be used to find efficient experimental
designs for simulation-based inference methods for diffusions. To achieve numerical efficiency for
these Monte Carlo procedures, two types of approximation errors must be accounted for. The
first error is due to the numerical solution of a stochastic differential equation based on a time
discretization scheme. The second error is the Monte Carlo error due to the approximation of the
expectation in the estimating function, by an average over independent replications. Understanding
the trade-off between these two errors requires the asymptotic error distribution.

Take indirect inference as an example. This procedure relies on the simulation of diffusion
processes at a step which is finer than the observation step to correct the discretization bias. As
emphasized by Broze, Scaillet and Zakoian (1999), the use of any fixed time interval to perform the
simulation results in an asymptotic bias.23 Although their theoretical asymptotic results support
choosing an arbitrarily small discretization step, their numerical experiments show that there is a
trade-off between increasing the length of the simulated data (M times the length T of the observed
sample) and the size h = T/N of the discretization step. Durham and Gallant (2002) investigate
by experimentation the trade-off between the number of sub-intervals N and the number of Monte
Carlo sample paths M in the estimation of diffusion models for various simulation schemes. Our
results provide an analytical characterization of these trade-offs for some of their simulation schemes.
In particular, we show that the bias is a function of both M and N and our characterization of this
bias provides a way to correct the second-order bias of simulation-based estimators.

We briefly sketch a general setup for parameter estimation. Suppose that we observe an equally
22See Gouriéroux and Montfort (1994) for an overview of simulation-based inference. A particular class of method

of moments estimators is based on the empirical characteristic function (see Singleton (1999), Jiang and Knight (2000)

and Chacko and Viceira (1999) for the case where the characteristic function is in closed form and Carrasco, Chernov,

Gallant and Ghysels (2000) when the characteristic function is obtained by Monte Carlo simulation).
23Because the simulation is based on a fixed time step and therefore not performed using the true probability density

function they rename the method quasi-indirect inference.
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spaced discrete time sample {Y0, . . . , YL}, where Yl = Ytl and tl+1 − tl = ∆, of the diffusion process

dYt = A(Yt; θ)dt+
d∑
j=1

Bj(Yt; θ)dW
j
t and Yt0 = y given,

whose coefficients depend on an unknown parameter θ ∈ Ψ ⊂ Rp. Under this assumption we denote
the transition density of the Markov chain {Y0, . . . , YL} by p∆(Yl, z; θ0)λ(dz) ≡ Pθ0

(
Ytl+1

∈ dz
∣∣Ftl),

where we assume that this density is absolutely continuous with respect to the Lebesgue measure
λ on Rd. Also assume that the Markov chain {Y0, . . . , YL} is geometrically ergodic.24 This last
assumption guarantees the existence of a stationary density, denoted by p̄(y; θ0).

We seek to estimate parameters θ using the conditional constraint∫
Rd

hj,∆(Yl, z; θ)p∆(Yl, x; θ0)λ(dx) = 0 for all j = 1, . . . , p = 0 ⇔ θ = θ0, . (33)

The structure of (33) implies that h∆(Yl, z; θ0) ≡ (hj,∆(Yl, z; θ0))j=1,...,p is a vector of martingale
increments. This suggests estimating θ by solutions θ̂

L

∆ of martingale estimating equations

1
L

L−1∑
l=0

g∆(Yl, Yl+1; θ) = 0,

where g∆(Yl, Yl+1; θ) = J∆(Yl; θ)′h∆(Yl, Yl+1; θ) and J(Yl; θ) is a q × p matrix of weights.
It is well-known25 from Chamberlain (1987,1992) and Newey (1990) that the efficient estimator

is obtained for weights given by

J∆(y; θ) = Ψ∆(y; θ)−1Γ∆(y; θ)

Ψ∆(y; θ) ≡
∫
Rd

h∆(y, z; θ)(h∆(y, z; θ))′p∆(y, z)λ(dz)

Γ∆(y; θ) ≡
∫
Rd

(∂θh∆(y, z; θ))′p∆(y, z)λ(dz).

The efficient estimator has the following asymptotic distribution

√
L(θ̂

L

∆ − θ0) ⇒ Σ∆(θ0)−
1
2Z

Σ∆(θ0) ≡
(∫

Rd

Γ∆(y; θ0)′Ψ∆(y; θ0)−1Γ∆(y; θ0)p̄(y; θ0)λ(dy)
)

24This assumption can be avoided by introducing a stochastic normalization for limit theorems, i.e. a random

sequence cL such that cL(θ̂
L

∆−θ0)⇒ Z where Z is a standard normal variate and cL →∞, as is the case for estimators

that are of the locally asymptotically mixed normal (LAMN) or locally asymptotically Brownian functional (LABF)

form. See the book of Basawa and Scott (1982) for more on this. As shown by Heyde (1992) confidence intervals based

on a stochastic normalization of the estimator are, in general, shorter than those based on deterministic normalization.
25For a recent summary, see Müller and Wefelmeyer (2002) and references therein. They show that the martingale

estimating function framework covers GMM, generalized quasi-likelihood, extended quasi-likelihood estimation, and

quasi-likelihood estimation.
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where Z is a standard normal random variable.
If the transition density p∆(y, z; θ) is known, the estimation of the unknown parameters based

on (33) is equivalent to the estimation of unknown parameters in a Markovian ergodic time series
model.26 It is of particular interest to note that the discrete nature of observations has no impact
on the inference procedure.

Unfortunately, the transition density p∆(y, z; θ) is usually unknown and/or we cannot calculate
the optimal weights J(y; θ) in closed form. The corresponding optimal estimating function cannot
be used as it stands for estimating θ, i.e. the efficient estimator is infeasible. Similarly, for moment-
based constraints, indirect inference or EMM estimators, the functions hj,∆(Yl, Yl+1; θ) which identify
the parameters through (33) are not known in explicit form and are obtained using Monte-Carlo
simulation.27

In a diffusion setting, we can use simulations and numerical solution techniques for SDEs to
approximate the optimal weights J and/or the functions hj defining the constraints which identify
the parameters.28 For simulation-based estimators the necessary computations can be performed (i)
by discretizing time and using the Euler or the Milshtein scheme to approximate the solution of the
stochastic differential equation and then (ii) replicating this approximation M times to generate M
independent realizations of the terminal point {Y i,N

l+1 (Yl) : i = 1, ..,M}. The integral in the expression
for hj and/or J can then be replaced by an empirical mean over independent replications given the
initial value.

With an unknown transition density function, the estimator θ̂
L,M,N

is given in terms of a
simulation-based martingale estimating function, i.e. as the unique root of

1
L

L−1∑
l=0

gM,N
∆ (Yl, Yl+1; θ̂

L,M,N
) ≡ 1

L

L−1∑
l=0

JM,N
∆ (Yl; θL,M,N )hM,N

∆ (Yl, Yl+1; θ̂
L,M,N

) = 0.

The results of this paper can be used to study the asymptotic properties of the normalized error√
M(gM,N

∆ − g∆) resulting from this procedure.
In particular, we now show that an approximation of the true estimating function based on

M independent Monte Carlo replications with N discretization points introduces a second-order
bias. As a result simulation-based estimators have different higher-order asymptotic properties than

26The particular choice hj,∆(y, z; θ) = ∂θjp∆(y, z; θ) leads to a maximum likelihood estimator which attains the

Cramér-Rao lower bound (
∫
Rd

Ψ∆(y; θ0)p̄(y; θ0)λ(dy))−1.
27See Gallant and Tauchen (2002) for a survey. For moment-based estimating functions hj are often of the form

hj,∆(Yl, Yl+1; θ) = fj(Yl, Yl+1)−
∫
Rd
fj(Yl, z)p∆(Yl, z; θ)λ(dz). Hence if the transition density is unknown, in many cases

the functions hj cannot be obtained in closed form either. Similarly, for indirect inference and EMM the functions hj

are given as the distance between some auxiliary simulated model and its sample equivalent.
28Alternative kernel-based estimation methods for conditional expectations converge at a slower rate (L−2/(d+4))

which depends on the dimension of the diffusion. Therefore, for multivariate diffusions a large sample is necessary to

get reasonably accurate estimates of the weights and/or the functions hj . Simulation-based estimators are in those

cases particularly interesting.
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their infeasible optimal counterparts. The second-order bias has important implications for the
construction of asymptotic confidence intervals and for parametric hypothesis testing.

To describe the second-order bias of the simulation-based estimator, we introduce the expression,

κ∆(θ0) ≡
∫
Rd×Rd

K∆(y, y, z; θ0)p∆(y, z; θ0)λ(dz)p̄(z; θ0)λ(dy), (34)

where Kj,∆(·, y, z; θ0) is given as in Theorem 4, except that we have made explicit that the function
being averaged over depends, for simulation-based estimating functions, on the observations Yl and
Yl+1.29

The following result shows that the simulation introduces an additional second-order bias.

Theorem 14: Assume that the conditions of Theorem 4 for the Euler scheme without transformation
are satisfied. Then, for geometrically ergodic diffusions observed over time intervals of equal fixed
length ∆, we have √

L(θ̂
L,ML,NL
∆ − θ̂L∆)⇒ −ε1ε2Σ∆(θ0)−1κ∆(θ0)

where ε1 = limL→∞
√
L√
ML

and ε2 = limL→∞
√
ML
NL

. Corresponding estimators for the Euler scheme
with Doss transformation (under the assumptions of Theorem 5) and the Milshtein scheme (under
the assumptions of Theorem 11), are obtained if Kj,∆(·, y, z; θ0) in (34) is replaced by K̂j,∆(·, y, z; θ0)
of Theorem 5 and K̃j,∆(·, y, z; θ0) of Theorem 11, both adjusted for the dependence of hj and J on
the observations (Yl, Yl + 1) = (y, z).

Theorem 14 shows that the efficient simulated estimator of the estimating function has a second-
order bias which depends on the discretization scheme used. The numerical scheme used to solve
the SDE becomes irrelevant only if ε1ε2κ∆(θ0) = 0. It is therefore necessary that conditions linking
the sample size, the number of replications and the number of discretization points (L,ML, NL) are
such that both ε1 and ε2 are finite.

The size of the second-order bias depends on the choice of the discretization scheme only through
the functions K, K̂ and K̃ which characterize the expected approximation errors of the different
approximation methods of the SDE. This follows since the speed of convergence of the expected
error is the same for all discretization schemes. We also see that the second order bias is inversely
related to the asymptotic variance of the estimator. As a result, variance reduction without second-
order bias correction will increase the size distortion of asymptotic confidence intervals and hypothesis
tests.

It is also important to note that the results of Theorem 14 do not directly cover simulated max-
imum likelihood estimators, obtained from the numerical integration of the Chapman-Kolmogorov
equation (see Pedersen (1995a,b) and Brandt and Santa-Clara (2002)). Since Monte Carlo integra-
tion of the true transition density kernel is based on a Gaussian kernel approximation with bandwith

29For MCE estimators these observations do not affect the convergence properties.
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determined by the number of discretization points N , the resulting score function depends on the time
discretization parameter N not just through the simulated discretized trajectories but also through
its functional form. As described by Milshtein, Schoenmakers and Spokoiny (2001), this estimator
of the transition density can be interpreted as a kernel estimator based on simulated i.i.d. data. It is
well known that such an estimator will converge at a rate slower than M−1/2. The rate for the score
will be M−2/(d+4), and therefore will depend on the dimension of the diffusion. Optimality for these
simulated maximum likelihood estimators requires that

√
L/M

2/(d+4)
L → ε1 and M

2/(d+4)
L /NL → ε2.

It follows that efficient simulated maximum likelihood estimators based on the numerical integration
of the Chapman-Kolmogorov equations are less efficient than maximum likelihood estimators.

Theorem 14 shows that estimators such that ε1ε2 = 0, are inefficient. Their asymptotic variance
and therefore the length of confidence intervals are larger than the variance and length of the asymp-
totic confidence interval of the efficient estimator.30 The efficient estimator requires quadrupling the
sample length, quadrupling the number of simulations and doubling the number of discretization
points, in order to cut the asymptotic variance and therefore the length of the confidence interval in
half.

Corresponding optimal designs for the simulated maximum likelihood estimator of Pedersen
(1995a,b) and Brandt and Santa Clara (2002) depend in addition on the dimension of the diffu-
sion. These authors assume that ε2 = 0. This assumption, unfortunately, is not sufficient. To
avoid an exploding second-order bias it must be the case that

√
L/
√
ML does not diverge faster than

√
ML/NL vanishes. It follows that the rate of divergence of ML cannot be chosen independently

from L.
For estimators with a fixed number of discretization points and a fixed number of Monte Carlo

simulations the second-order bias always explodes when the sample size becomes large. The cor-
responding asymptotic confidence intervals will then cover the true values with probability zero.
Hypothesis tests become invalid since their effective size can be considerably smaller than the nom-
inal significance level of the test.

Since Theorems 4, 5 and 11 show how to calculate the second-order bias function for the Euler
scheme with and without Doss transformation and for the Milshtein scheme, we are able to develop
second-order bias corrected estimators, which are both efficient and have asymptotic confidence
intervals that do not suffer from size distortion. It is important to note that to achieve asymptotic
efficiency (i.e. estimators with shortest asymptotic confidence intervals) only estimators that correct
for second-order bias do not require a refinement of the time discretization in the simulation of SDEs
as the sample size increases. In contrast, the computational cost of simulation-based estimators,
without second-order bias correction, explodes. Only second-order bias corrected estimators have
the same asymptotic distribution as the estimators obtained from the infeasible optimal estimating
function.31

30This follows since L is too small compared to the efficient estimator.
31This does not imply that simulation-based inference methods without second-order bias correction are inferior to
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6 Conclusion

Error analysis for Monte Carlo estimators of numerical solutions of SDEs is a difficult task. The
present paper introduced key elements to perform this analysis. Our analysis provided explicit
formulas for error distributions, which can be used to construct asymptotically valid confidence
intervals and assess the asymptotic error of the Euler scheme with and without Doss transformation as
well as of the Milshtein scheme. Numerical experiments, performed in the context of an application to
a dynamic portfolio choice problem, showed that the error distributions differ significantly depending
on whether the transformation is used or not. Bias corrections were found to be important in the
case of nonlinear state variable processes, such as the NMRCEV process. This result underscores the
importance of the error statistics obtained, since processes of relevance in financial economics often
have a nonlinear structure. In addition, the characterizations obtained here permit a rigorous analysis
of the asymptotic error properties of a given estimator. They are therefore crucial for the design
of efficient Monte Carlo estimators of diffusion processes. Feasible efficient simulated estimating
function estimators were shown to require second-order bias correction. Our explicit expressions for
the second-order bias can be used to derive such estimators.

7 Appendix A: proofs

We start with a series of auxiliary lemmas which are central to prove theorems and corollaries of
this paper. They provide the weak limits of all the components arising in the error expansion of
estimators without transformation (39) and with Doss transformation (41). They also play a key role
in the derivation of our explicit expressions for the second-order bias and the asymptotic distribution
of estimators without known initial state. It should be noted that the proofs for the results without
transformation are easier since the asymptotic error is exclusively determined by the martingale part
of the error. These processes of the martingale part are uniformly tight and therefore do not require
Wong-Zakai correction terms to derive the weak limits of stochastic integrals. Since the reader may
be unfamiliar with the weak limit theory for stochastic processes and our convergence results are
not available in the previous literature, we provide a detailed discussion of the auxiliary convergence
results.

The first lemma is important to obtain the asymptotic law of the discretization errors. Let
ηNt = [Nt]

N if Nt /∈ N and ηNt = t − 1
N otherwise, where [Nt] is the integer part of Nt. The time

change ηNt is such that limN→∞ η
N
t = t. We have

estimators based on analytic orthogonal series expansions of the likelihood, such as those proposed by Ait-Sahalia

(2002). Explosions of the second-order biases associated with the efficient estimators can only be avoided by increasing

the dimensionality of the orthogonal basis as the sample increases. Second-order biases for such estimators are unknown.
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Lemma 1: The following weak convergence results hold

V 1,N
t ≡ N

∫ t

0
(s− ηNs )ds⇒ 1

2
t ≡ V 1

t (35)

V 2,i,N
t ≡ N

∫ t

0
(W i

s −W i ◦ ηNs )ds⇒ 1
2
W i
t +

1√
12
Zit ≡ V

2,i
t (36)

V 3,i,N
t ≡ N

∫ t

0
(s− ηNs )dW i

s ⇒
1
2
W i
t −

1√
12
Zit ≡ V

3,i
t (37)

V 4,i,j,N
t ≡

√
N

∫ t

0
(W i

s −W i ◦ ηNs )dW j
s ⇒

1√
2
Zi,jt ≡ V

4,i,j
t (38)

as N →∞, where ((W i)i∈{1,...,d}, (Zi)i∈{1,...,d}, (Zi,j)i,j∈{1,...,d}) is a (2d+ d2)- dimensional standard
Brownian motion.

Proof of Lemma 1: Since ηNt = [Nt]
N for Nt /∈ N we have

∫ t
0 (s − ηNs )ds = 1

N2

∫ Nt
0 (s − [s])ds. We

obtain, since N
∫ t

0 (s− ηNs )ds = 1
N

∑[Nt]
k=1

∫
[k−1,k[(s− [s])ds+ 1

N

∫ Nt
[Nt](s− [s])ds

N

∫ t

0
(s− ηNs )ds =

1
2

[Nt]
N

+
1
2

1
N

(Nt− [Nt])2 → 1
2
t

as N → ∞. The second line above follows since [s] = k − 1 for s ∈ [k − 1, k[; the limit in the third
line uses the bound Nt− [Nt] ≤ 1.

Similarly, we can show using the scaling property of Brownian motion that

N

∫ t

0
(W i

s −W i ◦ ηNs )ds =
1√
N

[Nt]∑
k=1

∫
[k−1,k[

(W i
s −W i

[s])ds+
1√
N

∫ Nt

[Nt]
(W i

s −W i
[s])ds.

Itô’s lemma then implies
∫

[k−1,k[(W
i
s −W i

[s])ds =
∫ k
k−1(k − s)dW i

s so that N
∫ t

0 (W i
s −W i ◦ ηNs )ds =

1√
N

∑[Nt]
k=1

∫
[k−1,k[(k−s)dW

i
s+ 1√

N

∫ Nt
[Nt](W

i
s−W i

[s])ds. Note that the sequence of i.i.d. random variables∫
[k−1,k[(k − s)dW

i
s has variance 1

3 and covariance 1
2δi,j with the Brownian motion W j . Donsker’s

functional central limit theorem then implies

1√
N

[Nt]∑
k=1

∫
[k−1,k[

(k − s)dW i
s ⇒

1
2
W i
t +

1√
12
Zit

where Zi is a standard Brownian motion independent of W j for all j ∈ {1, . . . , d}. This establishes
(36) since the continuity of the pathwise integral with respect to the Lebesgue measure gives

P− lim
N→∞

1√
N

∫ Nt

[Nt]
(W i

s −W i
[s])ds = 0.
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The same type of argument establishes that

N

∫ t

0
(s− ηNs )dW i

s =
1√
N

[Nt]∑
k=1

∫
[k−1,k[

(s− [s])dW i
s +

1√
N

∫ Nt

[Nt]
(s− [s])dW i

s .

Again, by Donsker’s functional central limit theorem, the first part converges to a Brownian motion
whereas the second part converges to zero in probability by the continuity of the Wiener integral

P− lim
N→∞

1√
N

∫ Nt

[Nt]
(s− [s])dW i

s = 0.

Since the sequence of i.i.d. random variables
∫

[k−1,k[(s− [s])dW i
s has variance 1

3 and covariance 1
2δi,j

with W j as well as covariance 1
6δi,j with

∫
[k−1,k[(k − s)dW

j
s we have

1√
N

[Nt]∑
k=1

∫
[k−1,k[

(s− [s])dW i
s ⇒

1
2
W i
t −

1√
12
Zit .

This establishes (37).
It remains to show (38). Again by the scaling property of Brownian motion

√
N

∫ t

0
(W j

s −W j ◦ ηNs )dW i
s =

1√
N

[Nt]∑
k=1

∫
[k−1,k[

(W j
s −W

j
[s])dW

i
s +

1√
N

∫ Nt

[Nt]
(W j

s −W
j
[s])dW

i
s .

Since the sequence of i.i.d random variables
∫

[k−1,k[(W
j
s −W j

[s])dW
i
s has variance of 1

2 and is inde-
pendent of W j ,

∫
[k−1,k[(W

i
s −W i

[s])ds as well as of
∫

[k−1,k[(s − [s])dW i
s we have again by Donsker’s

invariance principle that

1√
N

[Nt]∑
k=1

∫
[k−1,k[

(W j
s −W

j
[s])dW

i
s ⇒

1√
2
Zi,jt .

whereas it follows from the continuity of the Itô integral that P− limN→∞
1√
N

∫ Nt
[Nt](W

j
s −W j

[s])dW
i
s =

0. This completes the proof of (38).

In the sequel we need to assess the convergence of stochastic integrals with respect to the approx-
imate processes V N ≡ [V 1,N , V 2,N , V 3,N , V 4,N ] in Lemma 1. Results of Duffie and Protter (1992),
which provide sufficient conditions for the weak convergence of stochastic integrals, i.e. goodness,
prove useful in that regard.

Lemma 2: The semimartingales (V 1,N , V 3,N , V 4,N ) are good.

Proof of Lemma 2: From condition A in Duffie and Protter (1992) it follows that V 1,N is good if
supN N

∫ t
0 (s−ηNs )ds <∞ for all t ∈ [0, T ]. Similarly, V 3,N and V 4,N are good if supN var[V 3,i,N

t ] <∞
for all i = 1, . . . , d and supN var[V 4,i,j,N

t ] <∞ for all i, j = 1, . . . , d and t ∈ [0, T ]. But since

var[V 3,i,N
t ] = N2

∫ t

0
(s− ηNs )2ds
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var[V 4,i,j,N
t ] = NE

[∫ t

0
(W i

s −W i
ηNs

)2ds1i=j

]
= N

∫ t

0
(s− ηNs )ds1i=j ,

it is sufficient to show that N ε
∫ t

0 (s− ηNs )εds <∞ for ε = 1, 2. The bound 1 > (t− [t])ε ≥ 0 implies

N ε

∫ t

0
(s− ηNs )εds =

1
N

∫ Nt

0
(s− [s])εds <

1
N

∫ Nt

0
ds = t

which shows that V 1,N , V 3,N , V 4,N are good.

Our next lemma shows that the total variation of the semimartingale V 2,N is OP(
√
N).32 As a

result V 2,N cannot be good.

Lemma 3: The semimartingale V 2,N is not good.

Proof of Lemma 3: We want to show that N−
1
2N
∫ t

0 |Ws−WηNs
|ds = OP(1) and consequently the

total variation of V 2,N is such that
∫ t

0 |dV
2,N
s | = OP(

√
N). Note that

N
1
2

∫ t

0
|Ws −WηNs

|ds =
1
N

∫ Nt

0
|Ws −W[s]|ds

=
1
N

[Nt]−1∑
k=0

∫ k+1

k
|Ws −Wk|ds+

1
N

∫ Nt

[Nt]
|Ws −W[Nt]|ds.

By the continuity of the integral the second term 1
N

∫ Nt
[Nt] |Ws −W[Nt]|ds = oP(1). As for the first

term, note that

1
N2

[Nt]−1∑
k=0

E

[(∫ k+1

k
|Ws −Wk|ds

)2
]
<

1
N2

[Nt]−1∑
k=0

∫ k+1

k
(s− k)ds =

1
N

1
2

[Nt]
N
→ 0,

since [Nt]
N → t as N →∞. We can then invoke Chebyshev’s weak law of large numbers to conclude33

P− lim
N→∞

N−
1
2N

∫ t

0
|Ws −WηNs

|ds = lim
N→∞

1
N

[Nt]−1∑
k=0

E
[∫ k+1

k
|Ws −Wk|ds

]

= lim
N→∞

1
N

[Nt]−1∑
k=0

E [|W1|]
∫ 1

0

√
sds = t

√
2
π

(
2
3

)
,

where the last equality follows since E[|W1|] =
√

2
π and

∫ 1
0

√
sds = 2

3 whereas [Nt]
N → t as N → ∞.

This implies supN
∫ t

0 |dV
2,N
s | = supN N

∫ t
0 |Ws −WηNs

|ds = ∞. Theorem 3.2 of Jacod and Protter
(1998) then shows that V 2,N

t cannot be good.
32We say that XN is OP(N) if P− limN→∞

1
N
XN = K 6= 0 for some random variable K.

33Chebychev’s weak law of large numbers states that if 1
N

∑N
i=1 Z

i is such that 1
N2

∑N
i=1 E[(Zi)2] → 0 then P −

limN→∞( 1
N

∑N
i=1(Zi −E[Zi])) = 0.
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Define the errors UX
N

t = XN
t − Xt and U

XN
l

t = XN
l,t − XN

l,ηNt
. To prove Theorem 1 we use the

mean value theorem to write

A(XN
ηNt

)−A(Xt) = A(XN
t )−A(Xt)−

(
A(XN

t )−A(XN
ηNt

)
)

= ∂A
(
Xt + λ1,lU

XN
l

t 1d
)

(XN
t −Xt)− ∂A

(
XN
t + λ3,lU

XN
l

t 1d
)

(XN
t −XN

ηNt
)

where λ·,l ∈]0, 1[ for all l = 1, . . . , d, whereas 1d is a d-dimensional vector of ones, and a similar ex-
pression for B(XN

ηNt
)−B(Xt). The expansion of the error UX

N

t of the Euler continuous approximation
can then be decomposed as

UX
N

T =
∫ T

0

d∑
l=1

∂lA(Xs + λ1,lelU
XN
l

s )UX
N
l

s ds+
∫ T

0

d∑
l=1

d∑
j=1

∂lBj(Xs + λ2,lelU
XN
l

s )UX
N
l

s dW j
s

−
∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )UX
N
l

s ds−
∫ T

0

d∑
l=1

d∑
j=1

∂lBj(XN
s + λ4,lelU

XN
l

s )UX
N
l

s dW j
s

where e′j = [0, . . . , 0, 1, 0, . . . , 0] represents the jth coordinate vector. Since UX
N
l

s = Al(XN
ηNs

)(s −
ηNs ) +

∑d
i=1Bl,i(Xs)(W i

s −W i
ηNs

) we obtain

UX
N

T =
∫ T

0

d∑
l=1

∂lA(Xs + λ1,lelU
XN
l

s )UX
N
l

s ds+
∫ T

0

d∑
l=1

d∑
j=1

∂lBj(Xs + λ2,lelU
XN
l

s )UX
N
l

s dW j
s

− 1
N

∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )Al(XN
ηNs

)dV 1,N
s (39)

− 1
N

∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )
d∑
j=1

Bl,j(XN
ηNs

)dV 2,j,N
s

− 1
N

∫ T

0

d∑
l=1

d∑
j=1

∂lBj(XN
s + λ4,lelU

XN
l

s )Al(XN
ηNs

)dV 3,j,N
s

− 1√
N

∫ T

0

d∑
l=1

d∑
j=1

∂lBj(XN
s + λ4,lelU

XN
l

s )
d∑
i=1

Bl,i(XN
ηNs

)dV 4,i,j,N
s .

Lemmas 2 and 3 imply that the only term whose limit is difficult to find is the term involving an
integral with respect to V 2,N . Our next result shows that its limit must account for a “Wong-Zakai
correction term”.

Lemma 4: For a good sequence of semimartingales αN such that (αN , V 2,N ) ⇒ (α, V 2) we have∫ T
0 αNs dV

2,j,N
s ⇒

∫ T
0 αsdV

2,j
s + [α, V 2,j ]T .

35



Proof of Lemma 4: The integration by parts formula combined with the facts that V 2,j,N is of
bounded total variation and that αN is good gives∫ t

0
αNs dV

2,j,N
s = αNt V

2,j,N
t −

∫ t

0
V 2,j,N
s dαNs ⇒ αtV

2,j
t −

∫ t

0
V 2,j
s dαs.

The result follows upon integrating by parts the limit on the right hand side.

The asymptotic error expansion for XN in (39) involves an integral with respect to the bounded
variation process V 2,j,N , which is not good according to Lemma 3. As a result the limit of this
integral does not correspond to the integral of the weak limit of the integrand with respect to the
weak limit of the integrator. But, as Lemma 4 shows, if the integrand is good we can obtain the
limit by first integrating by parts. To apply this result it remains to be shown that the integrand in
the integral with respect to V 2,N in (39) is good. For this we need the following lemma.

Lemma 5: The semimartingale XN is good.

Proof of Lemma 5: By Theorem 3.1 of Jacod and Protter (1991) P− limN→∞ supt ‖XN
t −Xt‖ = 0.

It follows that for FXN

(·) -optional times τN and positive constants hN such that hN → 0 as N →∞

‖XN
τN+hN

−XN
τN ‖ ≤ ‖XN

τN+hN
−XτN ‖+ ‖XN

τN −XτN ‖

≤ ‖XN
τN+hN

−XτN+hN ‖+ ‖XτN+hN −XτN ‖+ ‖XN
τN −XτN ‖.

SinceX is continuous and P−limN→∞ supt ‖XN
t −Xt‖ = 0 we obtain P−limN→∞ ‖XN

τN+hN
−XN

τN
‖ =

0. This proves optional equicontinuity of XN .34 By Theorem 14.11 of Kallenberg (1997) this is
sufficient for tightness of XN 35, which in turn, by Theorem 2.3 in Jacod and Protter (1998), is
sufficient for goodness of XN .

The weak limit result (38) in lemma 1 and lemma 2 are sufficient to prove Theorem 1.
If we apply the Doss transformation and sample Gaussian increments (W j

t+(n+1)h −W
j
t+nh) then

the error U X̂
N

= X̂N − X̂ of the Euler approximation with transformation can be expanded as

U X̂
N

T =
∫ T

0

d∑
l=1

∂lÂ(X̂s + λ1,lelU
X̂N
l

s )U X̂
N
l

s ds−
∫ T

0

d∑
l=1

∂lÂ(X̂N
s + λ3,lelU

X̂N
l,t

s )U X̂
N
l,t

s ds

34A sequence of stochastic processes XN is optional equicontinuous if for all FX
N

(·) -optional times τN and sequences

hN such that hN → 0 we have that ‖XN
τN+hN

−XN
τN ‖ → 0 in probability.

35From Prohorov’s theorem we know that tightness is sufficient for relative compactness (a family of probability

measures is relatively compact if every sequence of probability measures contains a weakly convergent subsequence),

which in turn, together with convergence of finite dimensional distributions, implies weak convergence of probability

measures (Billingsley (1968) pp. 35-40). A family of probability measures Π on a metric space is tight if for every ε > 0

there exist a compact set K such that P(K) ≥ 1− ε for all P ∈ Π. A sequence of random elements XN defined on a

metric space is tight if and only if the family of induced measures P(XN )−1 is tight.

36



where λ·,l ∈]0, 1[ for all l = 1, . . . , d, el = [0, ..., 1, ..., 0]′ is the lth unit vector and U X̂
N
l

s = X̂N
l,s−X̂N

l,ηNs
.

Since U X̂
N
l

s = Âl(X̂ηNs
)(s− ηNs ) +

∑d
j=1 B̂l,j(W

j
s −W j

ηNs
) we obtain

U X̂
N

T =
∫ T

0

d∑
l=1

∂lÂ(X̂s + λ1,lelU
X̂N
l

s )U X̂
N
l

s ds− 1
N

∫ T

0

d∑
l=1

∂lÂ(X̂N
s + λ3,lelU

X̂N
l

s )Âl(X̂ηNs
)dV 1,N

s

− 1
N

∫ T

0

d∑
l=1

∂lÂ(X̂N
s + λ3,lelU

X̂N
l

s )
d∑
j=1

B̂l,jdV
2,j,N
s . (41)

As for the error expansion without transformation (39) we have integrals with respect to X̂N . To
find the limit using integration by parts it is necessary that X̂N be good. Our next lemma verifies
this property.

Lemma 6: The semimartingale X̂N is good.

Proof of Lemma 6: The proof parallels the proof of Lemma 5.

Proof of Theorem 2: As in the proof of Theorem 1 integrals with respect to V 2,j,N need special

treatment. Taking α̂l,j,Ns ≡ ∂lÂ(X̂N
s + λ3,lelŪ

X̂N
l

s )B̂l,j and applying the same arguments as for αl,j,N

in Theorem 1 we find that∫ T

0
α̂l,j,Ns dV 2,j,N

s ⇒
∫ T

0
∂lÂ(X̂s)B̂l,jdV 2,j

s +
1
2

∫ T

0

d∑
k=1

∂l,kÂ(X̂s)B̂k,jB̂l,jds (42)

Then, since limN→∞ η
N
s = s and P − limN→∞ U

X̂N
l = P − limN→∞ U

X̂N
l = 0 and since by Lemma

2 V 1,N is good it follows that NU X̂
N ⇒ U X̂ where

U X̂T =
1
2

∫ T

0

d∑
l=1

∂lÂ(X̂s)U X̂ls ds− 1
2

∫ T

0

d∑
l=1

[∂lÂ(X̂s)Âl(X̂s) +
d∑

j,k=1

∂l,kÂ(X̂s)B̂k,jB̂l,j ]ds

−
∫ T

0

d∑
l=1

∂lÂ(X̂s)
d∑
j=1

B̂l,j

(
1
2
dW j

s +
1√
12
dZjs

)
This SDE is linear and its solution corresponds to the result announced.

Proof of Corollary 1: The result follows since N(G(X̂N
T ) −XT ) = ∂G(X̂T )Û X̂

N

T + oP(1), where
oP(1) denotes terms that vanish in probability,36 and since ∂G(z) = B(G(z)).

36XN is said to be oP(1) if P− limN→∞X
N = 0.
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We now turn to the proof of the expected approximation error. It follows from the error expansion
(41) that the approximation error UX

N
satisfies a linear SDE. The solution is

N(ΩN
T )−1UX

N

T = −
∫ T

0
(ΩN

s )−1dIN1,s −
∫ T

0
(ΩN

s )−1dIN2,s −
∫ T

0
(ΩN

s )−1d
(
IN3,s − [RN , IN3 ]s

)
−
√
N

∫ T

0
(ΩN

s )−1d
(
IN4,s − [RN , IN4 ]s

)
(43)

where ΩN
T = exp(RNT ) with

RNT =
∫ T

0

d∑
l=1

∂lA(Xs + λ1,lelU
XN
l

s )ds+
∫ T

0

d∑
l,j=1

∂lBj(Xs + λ2,lelU
XN
l

s )dW j
s

−1
2

∫ T

0

 d∑
l,j=1

∂lBj(Xs + λ2,lelU
XN
l

s )

 d∑
l,j=1

∂lBj(Xs + λ2,lelU
XN
l

s

′ ds (44)

and

IN1,T ≡
∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )Al(XN
ηNs

)dV 1,N
s

IN2,T ≡
∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )
d∑
j=1

Bl,j(XN
ηNs

)dV 2,j,N
s

IN3,T ≡
∫ T

0

d∑
l=1

d∑
j=1

∂lBj(XN
s + λ4,lelU

XN
l

s )Al(XN
ηNs

)dV 3,j,N
s

IN4,T ≡
∫ T

0

d∑
i,j=1

(
d∑
l=1

∂lBj(XN
s + λ4,lelU

XN
l

s )Bl,i(XN
ηNs

)

)
dV 4,i,j,N

s .

In order to find the limit of the expectation of NUX
N

T we need the following auxiliary lemma.

Lemma 7: For any FT -measurable, d× 1 random vector HN
T ⇒ HT , such that

lim
r→∞

lim sup
N

E0

[∣∣∣∣√N(HN
T )′

∫ T

0
(ΩN

s )−1d
(
IN4,s − [RN , IN4 ]s

)∣∣∣∣1{|√NH′T ∫ T0 (ΩNs )−1d[IN4,s−[RN ,IN4 ]s]|>r}

]
= 0

(45)
(i.e. (HN

T )′
∫ T

0 (ΩN
s )−1d(IN4,s − [RN , IN4 ]s) is asymptotically uniformly integrable) the cross moment

√
NE0

[
(HN

T )′
∫ T

0
(ΩN

s )−1d
(
IN4,s − [RN , IN4 ]s

)]
→ 1

2
E0[U2,T ]

where

U2,T =
d∑

i,j=1

[
H ′T

(∫ T

0
βi,js dW

i
s + [βi,j ,W i]T

)
+ [hiβi,j ,W i]T

]
(46)
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and the d× 1 vectors βi,jt and hl are respectively given by

βi,jt = Ω−1
t [∂Bi

d∑
l=1

∂lBjBl,i](Xt), for i, j = 1, . . . , d

HT −E0 [HT ] =
d∑
l=1

∫ T

0
hlsdW

l
s, for l = 1, . . . , d.

Proof of Lemma 7: To establish this limit recall, first, that XN is good and that the coefficients
are continuous by assumption. It follows that RN is good as well. Consider then the limit of√
NE0

[
(HN

T )′
∫ T

0 (Ωs)−1d[RN , IN4 ]s
]
. Since

√
N

∫ t

0
(ΩN

s )−1d[RN , IN4 ]s =
d∑

i,j=1

∫ t

0
βi,js dV

2,i,N
s + oP(1)

and with the help of Lemma 4 we obtain the weak limit

√
N

∫ t

0
(ΩN

s )−1d[RN , IN4 ]s ⇒
d∑

i,j=1

∫ t

0
βi,js dV

2,i
s +

d∑
i,j=1

[βi,j , V 2,i]t.

Weak convergence, along with the uniform integrability of
√
N(HN

T )′
∫ t

0 (ΩN
s )−1d[RN , IN4 ]s in as-

sumption (45), implies convergence in means. Since limN→∞
√
NE0

[
(HN

T )′
∫ t

0 (ΩN
s )−1d[RN , IN4 ]s

]
=

E0

[
H ′T

(∑d
i,j=1

∫ t
0 β

i,j
s dV

2,i
s +

∑d
i,j=1[βi,j , V 2,i]T

)]
= 1

2E0

[
H ′T

(∑d
i,j=1

∫ t
0 β

i,j
s dW i

s +
∑d

i,j=1[βi,j ,W i]T
)]
,

we obtain that

lim
N→∞

√
NE0

[
(HN

T )′
∫ t

0
(ΩN

s )−1d[RN , IN4 ]s

]
=

1
2

d∑
i,j,k=1

E0

[
Hk
T

(∫ t

0
βi,j,ks dW i

s + [βi,j,k,W i]T

)]
,

where the equality in the second line uses the fact that βi,j· and HT are independent from Zi· in V 2,i

and the third line restates the second line using the fact that we multiply two d-dimensional vectors.
Next, consider the limit of

√
NE0

[
(HN

T )′
∫ T

0 (ΩN
s )−1dIN4,s

]
where HT is an arbitrary square

integrable vector of FT - measurable random variables. By the Martingale Representation The-
orem we can, for each k = 1, . . . , d, write HN,k

T − E0

[
HN,k
T

]
=
∑d

l=1

∫ T
0 hN,k,ls dW l

s. Now, since
√
Nd[V 4,i,j,N ,W l]t = 1{i=l}dV

2,i,N
t , we have

d∑
l=1

[∫ ·
0
hN,k,ls dW l

s,
√
N

∫ ·
0

(ΩN
s )−1dIN4,s

]
T

=
d∑

i,j=1

∫ T

0
hk,is βi,j,ks dV 2,i,N

s + oP(1)

⇒
d∑

i,j=1

∫ T

0
hk,is βi,j,ks dV 2,i

s + [hk,iβi,j,k, V 2,i]T (47)
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where the limit in the third line follows from Lemma 4.
Combining the results above gives with hN0 ≡

√
NE0

[
(HN

T )′
∫ T

0 (ΩN
s )−1dIN4,s

]
, that

lim
N→∞

hN0 = lim
N→∞

√
NE0

(E0

[
Hk
T

]
+

d∑
l=1

∫ T

0
hk,ls dW

l
s

)′(∫ T

0
(ΩN

s )−1dIN4,s

)
= lim

N→∞

d∑
k=1

E0

[[∫ ·
0
hk,ls dW

l
s,

∫ ·
0

(ΩN
s )−1dIN4,s

]
T

]

=
d∑

i,j,k=1

E0

[∫ T

0
hk,is βi,j,ks dV 2,i

s + [hk,iβi,j,k, V 2,i]T

]
=

1
2

d∑
i,j,k=1

E0

[
[hk,iβi,j ,W i]T

]

where the second line uses E0

[∫ T
0 (ΩN

s )−1dIN4,s

]
= 0, the third line follows from (47) and the last line

uses E0

[∫ T
0 hk,is βi,j,ks dV 2,i

s

]
= 0.

Proof of Theorem 3: The proofs are the same for the cases with and without transformation. The
approximation error can be written as

1√
M

M∑
i=1

g(Xi,N
T )−

√
ME0 [g(XT )] =

1√
M

M∑
i=1

(
g(Xi,N

T )− g(Xi
T )
)

+
1√
M

M∑
i=1

(
g(Xi

T )−E0[g(XT )]
)
.

By the Lindeberg central limit theorem for i.i.d. random variables we have

1√
M

M∑
i=1

(
g(Xi

T )−E0 [g(XT )]
)
⇒
√

var[g(XT )|F0]Z

where Z ∼ N(0, 1). The Clark-Ocone formula g(XT )−E0 [g(XT )] =
∫ T

0 Es [Dsg(XT )] dWs combined
with the chain rule of Malliavin calculus (see Nualart (1995)) enables us to write var [g(XT |F0] =∫ T

0 E0

[
‖Es[∂g(XT )DsXT ]‖2

]
ds. This establishes that

√
var[g(XT )|F0]Z = LT (X0) in distribution.

It remains to find the weak limit of 1√
M

∑M
i=1

(
g(Xi,N

T )− g(Xi
T )
)

.

If we introduce a sequence of numbers, NM which depends on M and εM =
√
M

NM
such that

limM→∞ ε
M = ε <∞ we get, by the Kolmogorov’s strong law of large numbers,

lim
M→∞

εMNM

(
1
M

M∑
i=1

(
g(Xi,NM

T )− g(Xi
T )
))

= ε lim
N→∞

NE0

[
g(XN

T )− g(XT )
]
, P − a.s.

Our previous result on the expected approximation error then gives

1√
M

M∑
i=1

(g(Xi,NM
T )− g(Xi

T ))→ εKT (X0)

as M →∞. This establishes the result announced .
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We now proceed with the proof of Theorem 4.

Proof of Theorem 4: By Lemma 7 we know that
√
NE0

[
H ′T

∫ T
0 (ΩN

s )−1d(IN4,s − [RN , IN4 ]s)
]
→

1
2E0 [U2,T |] where U2,T is given in (46), for any FT -measurable random vector HT .

Since all other terms in (43) are of the same order and by assumption we have asymptotic uniform
integrability of each terms, we can find the expected approximation error from the weak limit of these
terms.

Since P− limN→∞ U
XN

= 0, and

d[RN , IN3 ]s =
D∑

j,k=1

∂Bk(Xs)γ
j,N
3,s d[W k, V 3,j,N ]s + oP(1) =

D∑
j,k=1

∂Bk(Xs)γ
j,N
3,s dV

1,N
s 1{k=j} + oP(1)

=
d∑
j=1

∂Bj(Xs)γ
j,N
3,s dV

1,N
s + oP(1)

with γj,N3,s =
∑d

l=1 ∂lBj(Xs + λ4,lelU
XN
l

s )Al(XN
ηNs

) we obtain the limit [RN , IN3 ]T ⇒ 1
2

∫ T
0

∑d
j=1[∂Bj

∂BjA](Xs)ds.
For the remaining terms we have (IN1 , I

N
2 , I

N
3 )⇒ (I1, I2, I3) where

I1,T =
1
2

∫ T

0
∂A(Xs)A(Xs)ds

I2,T =
∫ T

0

d∑
j=1

∂A(Xs)Bj(Xs)
(

1
2
dW j

s +
1√
12
dZjs

)
+

1
2

∫ T

0

d∑
k,l,j=1

[∂k(∂lABl,j)Bk,j ](Xs)ds

I3,T =
∫ T

0

d∑
j=1

∂Bj(Xs)A(Xs)
(

1
2
dW j

s −
1√
12
dZjs

)
.

I2,T is obtained as follows. Lemma 4 with αNs =
∑d

l,j=1 ∂lA(XN
s + λ3,lelŪ

XN
l

s )Bl,j(XN
ηNs

) gives∫ T

0
αNs dV

2,j,N
s ⇒

∫ T

0
αsdV

2,j
s + [α, V 2,j ]T .

where αs =
∑d

l,j=1[∂lABl,j ](Xs). Since V 2,j
t = 1

2W
j
t + 1√

12
Zjt Ito’s lemma implies

[α, V 2,j ] =
1
2

∫ t

0

d∑
l,j=1

[∂[∂lABl,j ]](Xs)d[X,W j ]sds =
1
2

∫ t

0

d∑
l,j,k=1

[∂k[∂lABl,j ]Bk,j ](Xs)ds,

where the second equality follows from d[X,W j ]s = B(Xs)ds. This explains the limit of IN2 .
Since g ∈ C3(Rd) and since XN converges the mean value theorem shows that

N(g(XN
T )− g(XT )) = ∂g

(
XT + diag[λi]UX

N

T

)
NUX

N

T

= ∂g
(
XT + diag[λi]UX

N

T

)
ΩN
T

(
N(ΩN

T )−1UX
N

T

)
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for some λi ∈]0, 1[, i = 1, . . . d, where diag[λi] denotes the diagonal matrix with λ1, . . . , λd on the
diagonal and zeros elsewhere, and where N(ΩN

T )−1UX
N

T is defined in (43).
Now define Hk

T = ∂g(XT )Ωk,T for k = 1, . . . , d where Ωk,· is the kth column of the matrix process
Ω. Since N(g(XN

T )− g(XT )) is uniformly integrable by assumption (13) we can apply Lemma 7 to
conclude that the expected approximation error converges to

NE0

[
g(XN

T )− g(XT )
]
→ E0 [∂g(XT )U1,T + U2,T ]

where U1,T is the limit of the first 3 terms in (43), that is,

(ΩT )−1U1,T = −
∫ T

0
(Ωs)−1dI1,s −

∫ T

0
(Ωs)−1dI2,s −

∫ T

0
(Ωs)−1dI3,s +

1
2

∫ T

0

d∑
j=1

[∂Bj∂BjA](Xs)ds]

and U2,T is defined in Lemma 7 with Hk
T = ∂g(XT )Ωk,T .

Recall the d× 1 vector process βi,jt = Ω−1
t [∂Bi

∑d
l=1 ∂lBjBl,i](Xt) in the definition of U2,T . Ito’s

lemma gives

dβi,jt = Ω−1
t d

(
∂Bi

d∑
l=1

∂lBjBl,i

)
+
(
d
(
Ω−1
t

))(
∂Bi

d∑
l=1

∂lBjBl,i

)
+ d

[
Ω−1, ∂Bi

d∑
l=1

∂lBjBl,i

]
.

and dΩ−1
t = −Ω−1

t

∑
j ∂Bj(Xt)dW

j
t + dHt, where d[H,W i]t = 0 for all i = 1, . . . , d. Then,

d[βi,j ,W i]t = Ω−1
t d

[
∂Bi

d∑
l=1

∂lBjBl,i,W
i

]
+ d[Ω−1,W i]

(
∂Bi

d∑
l=1

∂lBjBl,i

)

= Ω−1
t ∂

[
∂Bi

d∑
l=1

∂lBjBl,i

]
d[X,W i]− Ω−1

∑
j

∂Bid[W j ,W i]

(
∂Bi

d∑
l=1

∂lBjBl,i

)

= Ω−1
t ∂i

[
∂Bi

d∑
l=1

∂lBjBl,i

]
Bidt− Ω−1∂Bi

(
∂Bi

d∑
l=1

∂lBjBl,i

)
dt.

Since
∑d

l=1 ∂lBjBl,i = ∂BjBi we can write
∑d

i,j=1[βi,j ,W i]T =
∫ T

0

∑d
i,j=1 d[βi,j ,W i]t =

∫ T
0 Ω−1

t ηtdt

with ηt =
∑d

i,j=1 (∂i[∂Bi∂BjBi]Bi − ∂Bi∂Bi∂BjBi).
Proceeding in a similar manner, we now find an explicit expression for [(hi)′βi,j ,W i]T . By

definition his is the process in the representation of the random variable HT ≡ ∂g(XT )ΩT , i.e.
(hit)

′ = Et [Di,t (∂g(XT )ΩT )] by the Clark-Ocone formula. Therefore

(hiT )′ = lim
t→T
Di,t (∂g(XT )ΩT ) =

[
(Bi)′(∂2g)ΩT + (∂g)ΩT (∂Bi)

]
(XT )

where ∂2g is the Hessian of g. Since βi,jT = [Ω−1
T (∂Bi)(∂Bj)Bi] we have

(hiT )′βi,jT = [(Bi)′(∂2g)(∂Bi)(∂Bj)Bi + (∂g)ΩT (∂Bi)Ω−1
T (∂Bi)(∂Bj)Bi](XT ) ≡ ci,j(XT ,ΩT ).
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The arguments of this matrix function are the d × 1 vector X and the d × d matrix Ω. Using Ito’s
lemma gives

[ci,j(X,Ω),W i]T =
∫ T

0
∂Xci,j(Xt,Ωt)d[X,W i]t +

∫ T

0
∂Ωci,j(Xt,Ωt)d[vec(Ω),W i]t

where vec denotes the stack operator (for a matrix A with columns A1, . . . , Ad we have vec(A) =
([A′1, . . . , A

′
d])
′),

∂Xci,j(X,Ω) =
[
∂[(Bi)′(∂2g)(∂Bi)(∂Bj)Bi]

]
(X)

+
[(

Ω(∂Bi)Ω−1(∂Bi)(∂Bj)(Bi)
)′
∂2g + (∂g)Ω(∂Bi)Ω−1∂[(∂Bi)(∂Bj)Bi]

]
(X)

+
[(

(∂g)Ω⊗ (Ω−1(∂Bi)(∂Bj)Bi)′
)
∂2Bi

]
(X)

∂Ωci,j(X,Ω) =
[(

((∂Bi)Ω−1(∂Bi)(∂Bj)Bi)′ ⊗ ∂g
)
−
(
(Ω−1(∂Bi)(∂Bj)Bi)′ ⊗ (∂g)Ω(∂Bi)Ω−1

)]
(X)

and ⊗ denotes the Kronecker product (for two matrices A,B the Kronecker product is A ⊗ B =
[ai,jB]i,j=1,...,d..)37.

We now show that
∫ T

0 ∂Ωci,j(Xt,Ωt)d[vec(Ω),W i]t = 0. Since dΩt = Ωt[∂A(Xt)dt+
∑d

j=1 ∂Bj(Xt)dW
j
t ]

we get, using vec(ABC) = (C ′ ⊗A)vec(B), that

dvec(Ωt) =

((∂A)′ ⊗ Id
)

(Xt)dt+
d∑
j=1

(
(∂Bj)′ ⊗ Id

)
(Xt)dW

j
t

 vec(Ωt)

and therefore d[vec(Ω),W i]t = [((∂Bi)′ ⊗ Id) (Xt)] vec(Ωt)dt. This implies∫ T

0
∂Ωci,j(Xt,Ωt)d[vec(Ω),W i]t =

∫ T

0

[
∂Ωci,j

(
(∂Bi)′ ⊗ Id

)
vec(Ωt)

]
(Xt)dt.

But using that (C ′ ⊗A)vec(B) = vec(ABC) if the product ABC is well defined we get

∂Ωci,j
(
(∂Bi)′ ⊗ Id

)
vec(Ω) =

(
((∂Bi)(∂Bi)Ω−1(∂Bi)(∂Bj)Bi)′ ⊗ ∂g

)
vec(Ω)

−
(
((∂Bi)Ω−1(∂Bi)(∂Bj)Bi)′ ⊗ (∂g)Ω(∂Bi)Ω−1

)
vec(Ω)

= (∂g)Ω(∂Bi)(∂Bi)Ω−1(∂Bi)(∂Bj)Bi

−(∂g)Ω(∂Bi)Ω−1Ω(∂Bi)Ω−1(∂Bi)(∂Bj)Bi = 0.

Therefore, given that d[X,W i]t = Bi(Xt)dt, we obtain [ci,j(X,Ω),W i]T =
∫ T

0 νi,j(Xt,Ωt)dt with
νi,j(X,Ω) as defined in the theorem. We conclude

∑d
i,j=1[(hi)′βi,j ,W i]T =

∫ T
0

∑d
i,j=1 νi,j(Xt,Ωt)dt.

37For results on matrix differential calculus see Magnus and Neudecker (1988), in particular the identification tables

on p. 176 for the first derivative and on p. 190 for the Hessian.
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Then, since expectations of stochastic integrals with respect to Zj vanish (since they are independent
from Ft) we get

NE0

[
g(XN

T )− g(XT )
]
→ 1

2
E0 [∂g(XT )V1,T + V2,T ] (48)

with V1,T , V2,T as defined in the theorem. This establishes the result announced.

We now prove results for the expected approximation error using the Doss transformation.

Proof of Theorem 5: Here all the terms of the error expansion (41) are of order 1/N and the
limit distribution is non-centered. The result is then obtained, provided the terms in the error
expansion are uniformly integrable, by taking the expectation of the solution of the linear SDE for
the approximation error

NU
X̂N
t

T = −Ω̂N
T

(∫ T

0
(Ω̂N

s )−1dÎN1,s +
∫ T

0
(Ω̂N

s )−1dÎN2,s

)
(49)

where Ω̂N
T = exp

(∫ T
0 ∂Â(X̂s + λ1,lelU

X̂N
l

s )ds
)

and ÎN1,T ≡
∫ T

0

∑d
l=1 ∂lÂ(X̂N

s +λ3,lelŪ
X̂N
l

s )Âl(X̂N
ηNs

)dV 1,N
s

as well as ÎN2,T ≡
∫ T

0

∑d
l=1 ∂lÂ(X̂N

s + λ3,lelŪ
X̂N
l

s )
∑d

j=1 B̂l,j(X̂
N
ηNs

)dV 2,j,N
s . Since (Ω̂N

t , I
N
1,t, I

N
2,t, X̂

N
t )⇒

(Ω̂t, I1,t, I2,t, X̂t) with Ω̂t, X̂t as defined in Theorem 2 and

Î1,T =
1
2

∫ T

0
[(∂Â)Â](X̂s)ds (50)

Î2,T =
∫ T

0
[∂A

d∑
j=1

B̂j ](X̂s)
(

1
2
dW j

s +
1√
12
dZjs

)
+

1
2

∫ T

0

d∑
j,k,l=1

∂l,kÂ(X̂s)B̂k,jB̂l,jds (51)

(the expression for Î2,T follows from (42)), the proof of the theorem follows using the same arguments
as in the proof without transformation.

Proof of Theorem 6: Consider the Euler approximations of the processes NCNj,· for j = 1, 2 defined
in (53)-(54) in Appendix B. The Euler continuous approximation is

d(NCN1,s) = [∂A(XN
ηNs

)h+
d∑
j=1

∂Bj(XN
ηNs

)dW j
s ](NCN1,s)−

 d∑
j,k=1

[∂[∂Bk∂BjBk]Bi](XN
ηNs

)

 ds

+

[(∂A)A+
d∑
j=1

∂Bj∂ABj +
d∑

j,k,l=1

∂k(∂lABl,j)Bk,j ](XN
ηNs

)

 ds

+
d∑
j=1

[(∂A)Bj + (∂Bj)A−
d∑
i=1

(∂Bj)(∂Bi)Bj ](XN
ηNs

)dW j
s

d(NCN2,s) =

 d∑
i,j=1

νi,j(XN
ηNs
,ΩN

ηNs
)

 ds
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with CN1,0 = CN2,0 = 0. It follows that NE0

[
∂g(XN

Nh)CN1,Nh + CN2,Nh

]
→ −KT (X0).

Consequently, by the same arguments as in the proof of Theorems 3 and 4 we have, for NM and
εM =

√
M

NM
such that limM→∞ ε

M = ε <∞, that

1
2

1√
M

M∑
i=1

(
∂g(Xi,N

NMh
)Ci,N1,NMh

+ Ci,NM2,NMh

)
→ −1

2
ε lim
N→∞

NE0

[
∂g(XN

T )CN1,T + CN2,T
]

= −1
2
εKT (X0)

as M →∞ and
√
M

NM
→ ε. Defining gN,McT = 1

M

∑M
i=1

[
g(Xi,N

Nh ) + 1
2

(
∂g(Xi,N

Nh )Ci,N1,Nh + Ci,N2,Nh

)]
it then

follows that the term 1
2

(
1√
M

∑M
i=1

(
∂g(Xi,NM

NMh
)Ci,NM1,NMh

+ Ci,NM2,NMh

))
corrects the asymptotic second-

order bias for the estimator without transformation when M →∞.
The proof for the estimator with transformation follows the same steps. In this case the average

over independent replications of the random variables 1
2∂ĝ(X̂N

T )ĈNnh approximates the negative of
the second-order bias with transformation.

The asymptotic equivalence of the bias corrected estimators with and without transformation is
a consequence of the fact that they have the same asymptotic distribution.

Proof of Theorem 7: The error can be expanded as follows

Ug
N,M

τ,T =
√
M

N

(
N

(
1
M

M∑
i=1

(
g(Xi,N

T (XN
τ ))− g(Xi

T (XN
τ ))

)))

+
1√
M

M∑
i=1

(
g(Xi

T (XN
τ ))−Eτ

[
g(XT (XN

τ ))
])

+
√
MEτ

[
g(XT (XN

τ ))− g(XT (Xτ ))
]
. (52)

Given the proof of Theorem 3 and the fact that P− limXN
τ = Xτ it only remains to analyze the

limit of the last term. By the mean value theorem we can write, for some λ1 ∈]0, 1[,

√
MEτ

[
U
g(X(XN ))
τ,T

]
=
√
M

d∑
j=1

Eτ

[
∂jg

(
XT (Xτ ) + λ1ejU

X(XN )
j,τ,T

)
U
X(XN )
j,τ,T

]
where Ug(X(XN ))

τ,T = g(XT (XN
τ )) − g(XT (Xτ )) and U

X(XN )
j,τ,T = Xj,τ,T (XN

τ ) −Xj,τ,T (Xτ ). But again,
by the mean value theorem, we have for some λ2, λ3 ∈]0, 1[ that

U
X(XN )
j,τ,T = XN

j,τ −Xj,τ +
d∑
l=1

∫ T

τ
∂lAj

(
Xs(Xτ ) + λ2elU

X(XN )
τ,T

)
U
X(XN )
l,τ,s ds

+
d∑

k=1

∫ T

τ
∂lBj,k

(
Xs(Xτ ) + λ3elU

X(XN )
τ,T

)
dW k

s U
X(XN )
l,τ,s

and, consequently, the limit
√
MEτ

[
U
g(X(XN ))
τ,T

]
⇒

√
M√
N

Eτ [∂g(Xτ,T )Ωτ,T ]UX
N

τ + oP(1) holds as

N →∞. Thus, if we choose NM such that M
NM
⇒ ε2 <∞ as M →∞ we obtain
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√
MEτ

[
U
g(X(XNM ))
τ,T

]
→ εEτ [∂g(Xτ,T )Ωτ,T ]UXτ

where Ωτ,T and UX are defined in Theorem 1. Since the first term in (52) is O(1/
√
NM ) when M

NM

is O(1) we conclude that

Ug
NM,M

τ,T ⇒ LT (Xτ ) + εEτ [∂g(Xτ,T )Ωτ,T ]UXτ .

Finally, the equivalence with the error corrected estimator follows since the first term in the error
expansion, which converges to the second-order bias, is asymptotically negligible.

Proof of Theorem 8: We can expand the error U ĝ
N,M

τ,T as in the proof of Theorem 7 and obtain

for the last term of this expansion
√
ME0

[
U
ĝ(X̂(X̂N ))
τ,T

]
=
√
M
N Eτ

[
∂g(X̂τ,T )Ω̂τ,T

]
U X̂

N

τ + oP(1) as

N →∞. For NM such that
√
M

NM
→ ε <∞ as M →∞, we get

√
ME0

[
U
ĝ(X̂(X̂NM ))
τ,T

]
⇒ εEτ

[
∂g(X̂τ,T )Ω̂τ,T

]
UXτ

In this case the first term will not vanish as
√
M

NM
→ ε <∞. It follows that

U ĝ
NM,M

τ,T ⇒ εK̂T (X̂τ ) + LT (X̂τ ) + εEτ

[
∂g(X̂τ,T )Ω̂τ,T

]
U X̂τ .

The equivalent second-order bias corrected estimator is then ĝc
N,M since

U ĝc
NM,M

τ,T ⇒ LT (X̂τ ) + εEτ

[
∂g(X̂τ,T )Ω̂τ,T

]
U X̂τ .

This complete the proof of the theorem.

Proof of Theorem 9: Since N(X̃N
T −XT ) = N(X̃N

T −XT ) +N(XN
T −XT ) we obtain with

HN
T =

∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )Al(XN
ηNs

)dV 1,N
s

+
∫ T

0

d∑
l=1

∂lA(XN
s + λ3,lelU

XN
l

s )
d∑
j=1

Bl,j(XN
ηNs

)dV 2,j,N
s

∫ T

0

d∑
l=1

d∑
j=1

∂lBj(XN
s + λ4,lelU

XN
l

s )Al(XN
ηNs

)dV 3,j,N
s ,

and (Rs)′ =
∫ s

0 (∂A(Xs)ds + ∂Bj(Xs)dW
j
s ) from the fact that N(X̃N

T − XT ) = N(X̃N
T − XN

T ) +
N(XN

T −XT ) and the expression for XN
T −XT in (39) that

N(X̃N
T −XT ) = N(X̃N

T −XN
T )−

∫ T

0
(dRs)′N(X̃N

s −XN
s )−

√
N

d∑
i,j=1

∫ T

0
[∂BjBi](Xs)dV 4,i,j,N

s

+
∫ T

0
(dRs)′N(X̃N

s −Xs)−HN
T + oP(1)
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Since N(X̃N
T −XN

T )−
∫ T

0 (dRs)′N(X̃N
s −XN

s )−
√
N
∑d

i,j=1

∫ T
0 [∂BjBi](Xs)dV

4,i,j,N
s = −(H̃N

T −HN
T )+

oP(1) where H̃N
T is obtained by replacing XN by X̃N , and since H̃N

T −HN
T = oP(1), lemmas 2, 3,

and 4 yield

N(X̃N
T −XT ) ⇒

∫ T

0

∂A(Xs)ds+
d∑
j=1

∂Bj(Xs)dW j
s

 ŨXs
−1

2

∫ T

0
∂A(Xs)dXs −

1
2

∫ T

0

d∑
k,l,j=1

[((∂k,lA)Bk,jBl,j + ∂lA(∂kBl,j)Bk,j)] (Xs)ds

− 1√
12

d∑
j=1

∫ T

0

[
(∂A)Bj ](Xs)dZ

j
1,s − [(∂Bj)A](Xs)dZ

j
2,s

]
.

Solving the linear SDE for ŨXT establishes the result announced.

Proof of Theorem 10: The proof is the same as for the Euler schemes with and without transformation.

Proof of Theorem 11: Note that UXT is the product of two independent random variables one of
which has null expectation. Since E

[
ΩT

∫ T
0 Ω−1

s

[
(∂A)Bj ](Xs)dZ

j
1,s − [(∂Bj)A](Xs)dZ

j
2,s

]]
= 0, for

all j = 1, . . . , d we get the result announced.

Proof of Theorem 12: The proof follows the same steps as the proof for the Euler scheme with
transformation. In this case the average over independent replications of the random variables
1
2∂g(X̃N

T )C̃Nnh approximates the negative of the second-order bias with transformation. The asymp-
totic equivalence of the bias corrected estimators with and without transformation is a consequence
of the fact that they have the same asymptotic distribution.

Proof of Theorem 13: As for the Euler scheme with transformation we obtain

√
ME0

[
U
g(X(X̃N ))
τ,T

]
=
√
M

N
Eτ [∂g(Xτ,T )Ωτ,T ] Ũ X̃

N

τ + oP(1)

where Ωt,T is the same as for the Euler scheme without transformation, as N → ∞. If NM → ∞
and

√
M

NM
→ ε <∞ when M →∞, then

√
ME0

[
U
g(X(X̃NM ))
τ,T

]
⇒ εEτ [∂g(Xτ,T )Ωτ,T ]UXτ

In this case, however, the first term will not vanish as
√
M/NM → ε <∞. It follows that

U g̃
NM,M

τ,T ⇒ εK̃τ,T (Xτ ) + LT (Xτ ) + εEτ [∂g(Xτ,T )Ωτ,T ] ŨXτ .

The equivalent second-order bias corrected estimator is then g̃c
N,M since

U g̃c
NM,M

τ,T ⇒ LT (Xτ ) + εEτ [∂g(Xτ,T )Ωτ,T ] ŨXτ .
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This complete the proof of the theorem.

Proof of Theorem 14: The mean value theorem and the fact that P− limL→∞(θ̂
L,ML,NL
∆ − θ̂L∆) = 0

imply the existence of θL? such that P− limL→∞ θ
L
? = θ0 and

−ΓL,ML,NL
∆ (Yl, Yl+1; θL? )

√
L(θ̂

L,ML,NL
∆ − θ̂L∆) =

√
L√
ML

(
1
L

L−1∑
l=0

Ug
ML,NL (Yl, Yl+1, θ̂

L,ML,NL
∆ , θ̂

L

∆)

)
,

where Ug
ML,NL (Yl, Yl+1, θ̂

L,ML,NL
∆ , θ̂

L

∆) ≡
√
ML

(
gML,NL

∆ (Yl, Yl+1; θ̂
L,ML,NL)− g∆(Yl, Yl+1; θ̂

L
)
)
, and

ΓL,ML,NL
∆ (Yl, Yl+1, θ

L
? ) ≡ 1

L

∑L−1
l=0 ∂θg

ML,NL
∆ (Yl, Yl+1; θL? ). By the law of large numbers for ergodic

Markov chains P− limL→∞ ΓL,ML,NL
∆ (Yl, Yl+1, θ

L
? ) = Σ∆(θ0). Similarly, using Theorems 4, 5, or 11,

adjusted for the dependence on the observations Yl, Yl+1, and the fact that P− limL→∞(θ̂
L,ML,NL
∆ −

θ̂
L

∆) = 0, we conclude that P − limL→∞
1
L

∑L−1
l=0 Ug

ML,NL (Yl, Yl+1, θ̂
L,ML,NL
∆ , θ̂

L

∆) = ε2κ∆(θ0) if
limL→∞

√
ML/NL = ε2. The result announced then follows if limL→∞

√
L/
√
ML = ε1 <∞.

8 Appendix B: correcting for second-order bias

This appendix provides formulas for the terms entering the bias-corrected estimators of the condi-
tional expectations.

Let νi,j(Xt,Ωt) denote the cross variation

νi,j(Xt,Ωt)dt ≡ d[[(Bi)′(∂2g)(∂Bi)(∂Bj)Bi + (∂g)ΩT (∂Bi)Ω−1
T (∂Bi)(∂Bj)Bi](X),W i]t.

Simple algebra shows

νi,j(X,Ω) =
[
∂[(Bi)′(∂2g)(∂Bi)(∂Bj)Bi]Bi

]
(X)

+
[
(Bi)′∂2gΩ(∂Bi)Ω−1(∂Bi)(∂Bj)Bi + (∂g)Ω(∂Bi)Ω−1∂[(∂Bi)(∂Bj)Bi]

]
(X)

+
[(

(Ω−1(∂Bi)(∂Bj)Bi)′ ⊗ (∂g)Ω
)
∂2BiBi

]
(X)

where ⊗ is the Kronecker product (A⊗B = (ai,jB)i,j=1...,d).
The terms in the bias-corrected estimators are
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Ci,N1,(n+1)h = Ci,N1,nh + [∂A(Xi,N
nh )h+

d∑
j=1

∂Bj(X
i,N
nh )∆W j,i

nh]Ci,N1,nh

+

[(∂A)A+
d∑
j=1

∂Bj∂ABj +
d∑

j,k,l=1

∂k(∂lABl,j)Bk,j ](X
i,N
nh )

 h

N

−

 d∑
j,k=1

[∂[∂Bk∂BjBk]Bi](X
i,N
nh )

 h

N

+
d∑
j=1

[(∂A)Bj + (∂Bj)A−
d∑
i=1

(∂Bj)(∂Bi)Bj ](X
i,N
nh )

∆W j,i
nh

N
(53)

Ci,N2,(n+1)h = Ci,N2,nh +

 d∑
i,j=1

νi,j(X
i,N
nh ,Ω

i,N
nh )

 h

N

Ωi,N
(n+1)h − Ωi,N

nh =

∂A(Xi,N
nh )h+

N∑
j=1

∂Bj(X
i,N
nh )(∆W j,i

nh)

Ωi,N
nh

Xi,N
(n+1)h −X

i,N
nh = A(Xi,N

nh )h+
d∑
j=1

Bj(X
i,N
nh )(∆W j,i

nh) (54)

with Xi,N
0 = X0, Ωi,N

0 = Id and Ci,N1,0 = Ci,N2,0 = 0, for the model without transformation and

Ĉi,N(n+1)h = Ĉi,Nnh + [∂Â(X̂i,N
nh )h]Ĉi,Nnh +

[(∂Â)Â+
d∑

j,k,l=1

∂l,kÂB̂k,jB̂l,j ](X̂
i,N
nh )

 h

N

+
d∑
j=1

∂Â(X̂i,N
nh )B̂j

∆W j,i
nh

N
(55)

X̂i,N
(n+1)h = X̂i,N

nh + Â(X̂i,N
nh )h+

d∑
j=1

B̂j(∆W
j,i
nh)

with X̂i,N
0 = X0 and Ĉ0 = 0, when the transformation is applied.

For the Milshtein scheme the process C̃(n+1)h is given by

C̃i,N(n+1)h = C̃i,Nnh +

∂A(X̃i,N
nh )h+

d∑
j=1

∂Bj(X̃
i,N
nh )∆W j

nh

 C̃i,Nnh
+

1
2
∂A(X̃i,N

nh )
∆hX

i,N
nh

N
+

1
2

d∑
k,l,j=1

[((∂k,lA)Bk,jBl,j + ∂lA(∂kBl,j)Bk,j)] (X̃i,N
nh )

h

N
(56)
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X̃i,N
(n+1)h = X̃i,N

nh +A(X̃i,N
nh )h+

d∑
j=1

Bj(X̃
i,N
nh )(∆W j,i

nh) +
d∑

l,j=1

[(∂Bl)Bj ](X̃
i,N
nh )

∫ (n+1)h

nh

∫ s

nh
dW l

vdW
j
s

An alternative is to use the Euler scheme to approximate X in the recursion for C̃ . Since both X̃N
·

and XN
· converge to X· the resulting approximation is first order asymptotically equivalent.

9 Appendix C: portfolios as expectations of solutions of SDEs

We now show how to rewrite the optimal portfolio components as conditional expectations of func-
tions of the terminal point of a diffusion. This embedding is by expansion of the state space. We
describe the method for the cases without and with transformation, then provide an illustrative
example.

Case without transformation Define the (d+ d× k + 1 + d)× 1 random vector

X ′t,· = [X ′1,t,·, X
′
2,t,·, X3,t,·, X

′
4,t,·] = [Y ′· , vec((DtY·)′)′, Gt,·,Ht,·]. (57)

Using this enlarged vector of state variables we have

πt = (σ′t)
−1

[
1
R
θ(t, Yt)− ρ

Et[g2(Xt,T )]
Et[g1(Xt,T )]

]
(58)

where g2(x) = exp(−ρx3)x4 and g1(x) = exp(−ρx3).
A straightforward application of Ito’s lemma then shows that Xt,· satisfies the SDE dXt,v =

A(t,Xt,v)dv+
∑d

j=1Bj(t,Xt,v)dW
j
v subject to the initial condition X ′t,t = [Y ′t , σ

Y (t, Yt), 0′d, 0
′
d], where

the functions A(t, x) and Bj(t, x) are respectively given by,

A(t, x) =


µY (t, x1)[

Id ⊗ ∂yµY
]

(t, x1)x2

[λ] (t, x1)
[∂2λ](t, x1)x2

 and Bj(t, x) =


σYj (t, x1)[

Id ⊗ ∂yσYj
]

(t, x1)x2

θj(t, x1)
[∂2θ](t, x1)x2


where ⊗ denotes the Kronecker product.

Case with transformation For the system of transformed state variables we proceed as follows.
Fix some constant matrix B̂ ∈ R2d+d×k+1 × Rd and K ∈ Rd×k+2d+1 → R

d×k+2d+1 such that (i)

(∂xjFi)
′
i,j=1,...,2d+d2+1 = B(B′B)−1B̂′ + (I2d+d2+1 −B(B′B)−1B′)K. (59)

and (ii) rank
(

[B(B′B)−1]B̂′ + (I2d+d2+1 −B(B′B)−1B′)K
)

= d for all x ∈ R2d+d×k+1 and t ∈
[0, T ]. If we find B̂ such that the ODE (59) has a solution, we can define the new state variables
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X̂t = F (t,Xt) where Xt is as in the previous section. By (ii) and the implicit function theorem it
follows that F has an inverse G.

Ito’s formula then gives the dynamics dX̂t = Â(X̂t)dt+ B̂dWt where

Â(t, x) =
[
(H1A+ ∂tH2 +

1
2
H3�BB

′) ◦G
]

(t, x)

with H1(t, x) = [B(B′B)−1B̂ + (I2d+d2+1 − B(B′B)−1B′)](t, x), H2(t, x) =
∫

]·,x]H
1(t, y)dy and

H3(t, x) = 1
2∂xvec(H1(t, x)′) + 1

2(∂xvec(H1(t, x)′))′) (H3 is the Hessian of F ).38 Given the trans-
formed state variables we obtain the portfolio estimator (58) with ĝ1(T, X̂t,T ), ĝ2(T, X̂t,T ) replacing
g1(Xt,T ), g2(Xt,T ) where ĝi(t, x) ≡ [gi ◦G(t, ·)](x) for i = 1, 2.

A one factor example In a one factor model one can find more explicit expressions for the
transformation. For dYt = µY (Yt)dt + σY (Yt)dWt the function F ′(x) = [F1, F2, F3, F4](x) takes the
form 

F1

F2

F3

F4

 (x) =


α11

∫ x1

·
du

σY (u)
+ α12

α21

(
x2

σY (x1)

)α22

+ α23

α31

(
x2

σY (x1)

)α32

exp
(
−α33

∫ x1

·
[
θ
σY

]
(u)du+ α33x3

)
+ α34

α41 exp
(
α42

(
x2

σY (x1)

)α43

+ α44

(
x2

[
θ
σY

]
(x1)− x4

))
+ α45


where αij ∈ R are arbitrary constants. It is easily verified that (∂FB)′ = [α11, 0, 0, 0] = B̂′. The
inverse of the function F is G′(y) = [G1, G2, G3, G4](y) where


G1

G2

G3

G4

 (y) =



G1(y)(
y2−α23

α21

) 1
α22 [σY ◦G1](y)

log
{[(

y3−α34

α31

)([
[σY ◦G1]
G2

]
(y)
)α32

exp
(
α33

∫ G1(y)
·

[
θ
σY

]
(u)du

)] 1
α33

}
log
{[

y4−α45

α41

] −1
α44

}
+ α42

α44

([
G2

[σY ◦G1]

]
(y)
)α43

+
[[

θ
σY

]
◦G1

]
(y)G2(y)


and G1(y) is the inverse of F1(x), i.e., G1 satisfies α11

∫ G1(y)
·

du
σY (u)

+ α12 = y1.
For α34 = α45 = 0 and αi,j = 1 for all other i, j we obtain the transformed drift function

Â =


µY

σY
− 1

2∂σ
Y

x2

(
∂µY

σY
− µY ∂σY

(σY )2 − 1
2∂

2σY
)

F3

(
−
(
∂σY

σY
+ θ

σY

)
µY + ∂µY + λ− 1

2

(
σY ∂2σY − θ∂σY + σY ∂θ

))
x2F4

((
∂θ
σY
− ∂σY (1+θ)

(σY )2

)
µY +

(
1+θ
σY

)
∂µY − ∂λ+ 1

2

(
∂2θ
σY
− (1 + θ)∂2σY

))

 ◦G

whereas B̂′ = [1 0 0 0].
38It is possible to derive more explicit expressions for H3.
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[17] Doss, H., “Liens entre équations différentielles stochastiques et ordinaires,” Annales de l’Institut
H. Poincaré, 13, 1977: 99-125.

[18] Duffie, D. and P. Glynn, “Efficient Monte Carlo simulation of security prices,” Annals of Applied
Probability, 5, 1995: 897-905.

[19] Duffie, D. and P. Protter, “From discrete to continuous finance: weak convergence of the financial
gain process,” Mathematical Finance, 2, 1992: 1-15.

[20] Duffie, D. and K. Singleton, “Simulated moments estimation of Markov models of asset prices,”
Econometrica, 61, 1993: 929-952.

[21] Durham, G. B. and A. R. Gallant, “Numerical techniques for maximum likelihood estima-
tion of continuous-time diffusion processes,” Journal of Business and Economic Statistics, 20,
2002:297-316.

[22] Elerian, O., Chib, S. and N. Shepard, “Likelihood inference for discretely observed non-linear
diffusions,” Econometrica, 69, 2001: 959-993.

[23] Eraker, B., “MCMC analysis of diffusion models with application to finance,” Journal of Busi-
ness and Economic Statistics, 19, 2001: 177-191.

[24] Florens-Zmirou, D., “Approximate discrete-time schemes for statistics of diffusion processes,”
Statistics, 20, 1989: 547-557.

[25] Florens-Zmirou, D., “On estimating the diffusion coefficient from discrete observations,” Journal
of Applied Probability, 30, 1993:790-804.
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Table I: Parameter values for a mean reverting
constant elasticity of variance process.

Parameter Values
dXv = κ(X −Xv)dv + σXγ

v dWv

κ X σ γ

CIR 0.0305 0.0791 -0.0219 0.5000
CEV 0.0171 0.1138 -0.0655 0.9997

Table II: Size distortion parameter δ/ε = KT /var[g(XT )|F0].

Size Distortion Parameter δ
ε

CIR NMRCEV
Horizon no transformation transformation no transformation transformation

2 -0.54877 -0.54907 -0.67265 -0.63492
4 -1.44504 -1.46253 -1.63078 -1.57080
6 -2.46890 -2.49207 -2.55984 -2.49120
8 -3.62079 -3.63765 -3.49561 -3.42404
10 -4.74366 -4.77496 -4.36092 -4.29001

Note: The size distortion is increasing in this parameter.
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Table III: second-order bias KT .

Second-order bias KT

CIR DGR
Horizon no transformation transformation no transformation transformation

2 3.6631e-07 3.2710e-05 5.2684e-06 0.00099117
4 7.3048e-07 5.7614e-05 8.4232e-06 0.00125843
6 1.1086e-06 7.6642e-05 1.0451e-05 0.00129968
8 1.5108e-06 9.1076e-05 1.1907e-05 0.00127281
10 1.9314e-06 1.0183e-04 1.3153e-05 0.00122986

Table IV: Bias corrected estimators of hedging demand.

Bias Corrected Estimators of Hedging Demand: CIR
No transformation With transformation

Horizon no correction with correction no correction with correction “True”
2 0.0320 0.0320 0.0320 0.0320 0.0320
4 0.0623 0.0623 0.0623 0.0623 0.0623
6 0.0909 0.0909 0.0909 0.0910 0.0910
8 0.1179 0.1179 0.1179 0.1180 0.1180
10 0.1434 0.1434 0.1433 0.1435 0.1435

Bias Corrected Estimators of Hedging Demand: NMRCEV
No transformation With transformation

Horizon no correction with correction no correction with correction “True”
2 0.0193 0.0193 0.0191 0.0196 0.0193
4 0.0341 0.0341 0.0338 0.0344 0.0341
6 0.0456 0.0456 0.0453 0.0460 0.0457
8 0.0550 0.0550 0.0547 0.0553 0.0551
10 0.0629 0.0629 0.0625 0.0631 0.0630
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Figure 1: Asymptotic Error distribution function of CIR process, approximated with a Euler scheme
without Doss transformation (P(UX1 ≤ x) upper graph), and with Doss transformation (P(UG(X̂)

1 ≤
x lower graph) .
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Figure 2: Asymptotic Error distribution function of a CEV process, approximated with a Euler
scheme without Doss transformation (P(UX1 ≤ x) upper graph) , and with Doss transformation

(P(UG(X̂)
1 ≤ x) lower graph)
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Figure 3: Speed of convergence of distribution function of the approximation error XN
1 −X1 for a

CIR process approximated with a Euler scheme for N = 2x and x = 2, . . . , 9.
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Figure 4: Speed of convergence of the distribution function of the approximation error G(X̂N
1 )−X1

for a Doss-transformed CIR process approximated with a Euler scheme for N = 2x and x = 2, ..., 9.

61



−8 −6 −4 −2 0 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Convergence of Cumulative Distribution Function: CKLS (no transformation)

Error

Pr
ob

ab
ilit

y

Figure 5: Speed of convergence of the distribution function of the approximation error XN
1 −X1 for

a CEV process approximated with a Euler scheme for N = 2x and x = 2, . . . , 9.
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Figure 6: Speed of convergence of the distribution function of the approximation error G(X̂N
T )−XT

for a Doss-transformed CEV process approximated with a Euler scheme for N = 2x and x = 2, . . . , 9.
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Φ(Φ−1(α/2)−δ(ε))) as a function of ε = limM→∞

√
M

NM
for α = 0.05. The effective coverage probability

is not 1−α but s(ε)− (1−α). CIR, no transformation (upper left); CIR, with transformation (upper
right); NMRCEV, no transformation (lower left); NMRCEV, with transformation (lower right)
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Figure 8: Market Timing CIR: Investment horizon T = 10, asymptotic error distribution of hedging
demand in year τ = 9 without transformation (top) with transformation (bottom).
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Figure 9: Market Timing DGR: Investment horizon T = 10, asymptotic error distribution of hedging
demand in year τ = 9 without transformation (top) with transformation (bottom).
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