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Abstract

The usual index of leading indicators has constant weights on its
components and is therefore implicitly premised on the assumption
that the dynamical properties of the economy remain the same over
time and across phases of the business cycle. We explore the pos-
sibility that the business cycle has phases, for example, recessions,
recoveries and normal growth, each with its unique dynamics. Based
on this possibility we develop a nonlinear model of the business cycle
that combines a number of previous approaches. We model the state
of the economy as a latent variable with a threshold autoregression
structure. In addition to dependence on its own lags the latent vari-
able is also determined by observed economic and financial variables.
In turn these variables are modeled as following a nonlinear vector au-
toregression with regimes defined by the latent business cycle variable.
A Markov Chain Monte Carlo algorithm is developed to estimate the
model. Special attention is paid to specification of prior distributions
given the large dimension of the model. We also investigate using the
business cycle chronology of the NBER to aid in the classification of
the latent variable. The two main empirical objectives of the model
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are to provide more accurate predictions of economic variables par-
ticularly at turning points and to describe how the dynamics differ
across business cycle phases.

1 Introduction

We explore the possibility that the business cycle has phases, for example,
recessions, recoveries, productivity surges, fragile growth and normal growth,
each with its unique dynamics. To aid us with the exploration we develop a
nonlinear model of the business cycle that combines and extends a number of
previous approaches. We have two objectives: first to provide more accurate
predictions of business cycle turning points and thus economic variables in
general; second to describe how the dynamics of economic variables change
over the phases of the business cycle and over time.
Why would such an exploration be interesting. From the dominant linear

perspective such an exploration is distinctly uninteresting. From this per-
spective, well captured by the use of linear VARs or linear common factor
models, knowledge of the current business cycle phase gives no additional
information for predicting the future. Of course if one takes such models and
enters business cycle expansions and recessions as dummy variables one usu-
ally finds significant effects. The explanation for this result from the linear
perspective is the perfectly reasonable one that recessions reflect the presence
of large negative shocks and expansions the absence of large negative shocks.
The NBER dates are produced ex-post and contain information on these
large negative shocks. That is, it is not surprising that recessions have lower
rates of economic activity than expansions. However, these large negative
shocks are not predictable ex-ante.
Another (mildly nonlinear) perpective accepts that dynamics differ be-

tween recession and expansions and possibly also recovery periods. Indeed
nearly all of the work on nonlinear time series has focused on the difference be-
tween recession and expansions in the post-World War II time period. There
are three main findings: the move from expansion to recession is abrupt
(Hamilton ,1989); recessions have larger shocks than expansions (Koop and
Potter 2001); there is some bounce-back in terms of higher growth in the
recovery period after a recession (Beaudry and Koop, 1993, Potter, 1995).
The first of these results essentially agrees with the linear perspective; the
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second states there is higher order dependence in the shocks hitting the econ-
omy that will affect forecast distributions but not point forecasts. Only the
bounce-back result (see also Sichel 1994), also known as plucking theory of
business cycles, is in direct contradiction to the linear perspective.
Recession and recovery periods make up less than one third of the time

periods since 1945 and since 1982 only about one fifth of the periods. Con-
sider also that the average length of expansions is 57 months but the range
is from 12 months to 120 months with only the late 1970s expansion being
close to the average. In contrast recessions are much more homogeneous in
their lenght ranging from 6 to 16 months. What accounts for the differing
lengths of expansions?
Leamer (2001) investigates whether there is a life-cycle to an expansion.

Unlike the previous research on duration dependence in recessions and expan-
sions, he focuses on the three long expansions of the 1960s, 1980s and 1990s
and attempts to analyze the sources of the “spurt” in growth that occured
as these expansions continued past 4 years. Further, unlike previous work
on forecasting recessions, Leamer focuses on the period immediately before
business cycle peaks to see if this might be modeled as a different type of
phase (we will call it the fragile one) and transitions to it predicted by a
specific set of indicators. He finds that hours, unemployment and profits are
good predictors of transitions into this fragile phase.
Leamer’s exploration was mainly guided by the use of “spider” charts

that show the path of the same variable across different business cycle phases,
with their levels normalized to be equal at the start of the phase. Such
charts are frequently used to informally predict the behavior of variables
over a particular phase such as a recession or to attempt to classify where
a particular phase is presently occuring. Such an approach is solidly in the
NBER tradition of Burns and Mitchell’s and makes little sense from the
dominant linear perspective. Thus, it is impossible to formalize such an
approach using linear methods. Further, the inference from spider charts
relies heavily on the judgement of the investigator and the choice of business
cycle phase start dates.
Consider the “stylized fact” that the stock market has predicted 9 of the

last 5 recessions. A spider chart for the behavior of stock market indices
around business cycle peaks shows a pattern of a decline before the peak
and then a turn-around before the trough. However, the stock market also
has large declines without being followed by a business cycle peak and the
behavior around actual peaks is very varied. In contrast, consider the unem-
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ployment rate. It tends to increase mildly just before a business cycle peak
but then increase very strongly after the peak. The behavior is much more
uniform than the stock market around peaks and crucially the unemployment
rate has no increases of more than 0.4 percentage points without a recession
occurring. Of course once a large jump in the unemployment rate occurs
the recession has probably already started. Further, the smallest increase in
unemployment during a period including a recession is 2 percentage points,
thus it is possible that a smaller increase, for example 1 percentage point
might not be associated with a recession.
The model we develop provides a means of formalizing the information

contained in spider type charts for a large number of variables and at the
same time provides a statistical method for dating business cycle phases.
Returning to the ambiguity of the stock market as a leading indicator of
recessions and the precision of increases in the unemployment rate as an in-
dicator of recessions. In the nonlinear model we construct the stock market
would indicate the possible move into a fragile phase of the business cycle.
This transition would be confirmed if the unemployment rate remained con-
stant or increased slightly but would be downweighted if the unemployment
rate declined. Forecasts of economic variables following the initial decline
in the stock market would place an increased weight on the behavior of the
variables in fragile phases and on the downturn phase that would be more
likely to occur after the fragile phase. Even if the only difference in behavior
across phases was differing levels of uncertainty this would affect the forecast
distribution. The weight on the behavior of the fragile phase would change
as new data on the unemployment rate and stock market arrived. For ex-
ample, suppose the stock market decline is quickly reversed (as in the Fall of
1998) and the unemployment rate continues to decline then this would make
the fragile followed by recession phase less likely than the initial assessment
following the stock market fall.
Perhaps the most outstanding feature of the US economy in the last 20

years is its increased stability. From the perspective of the model we develop
we are able to give a different interpretation than the standard linear ones
of smaller shocks or better inventory management. Since the volatility of
economic variables is different across business cycle phases, longer durations
in less volatile phases would produce an overall decrease in volatility.
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1.1 Literature Review

The empirical analysis of business cycles has two distinct strands (see the
review article by Diebold and Rudebusch 1996): the classification approach of
the NBER originating with Burns andMitchell and the econometric modeling
approach originating with the Cowles Commission. One interpretation of the
model developed in this paper is that it allows insights from the classification
approach to assist in the construction of an econometric model. We are not
the first to try to combine the classification and econometric approach (see
Diebold and Rudebusch 1996 and 2001 for comprehensive literature reviews).
The closest in spirit to our approach is the research prompted by Hamil-

ton’s 1989 Markov Switching model of US Output, particularly the papers of
Diebold, Lee and Weinbach (1996) and Filardo (1994), (DLW&F hereafter).
In the Markov switching approach there are usually 2 or 3 business cycle
phases that are modeled as the states of an unobserved Markov chain. In
Hamilton’s original paper the transitions between the states were exogenous
and had a constant hazard. In the extensions by DLW&F the probability of
transition was allowed to depend on various leading indicators but the evo-
lution of these indicators over the cycle is not modeled, unlike the approach
we pursue.
Another branch of the literature are dynamic factor models, the best

known example is Stock and Watson’s (1989, 1991 and 1993) (SW hereafter)
dynamic factor approach. In their early work SW used statistical methods
to extract a dynamic factor from the Commerce Department’s list of 4 coin-
cident indicators and used various leading indicators to predict future values
of the dynamic factor. In particular they developed a sophisticated recession
probability index based on the forecast distribution of the dynamic factor.
Chauvet (1998) combines the approach of Stock and Watson with that of
Hamilton, following suggestions by Diebold and Rudebusch (1996) that such
a model would integrate the classification and econometric approach. This
factor model with Markov switching does a good job of tracking the recession
starting in March 2001 (see Chauvet 2002). In more recent work, Stock and
Watson (2002) and Knox, Stock and Watson (2000) have developed methods
that allow many more variables to be used to produce the dynamics factors.
There is some indication (Watson 2002) that such a “large data” approach
could pay dividends in forecasting performance. In the construction of our
model we will also exploit common factors restrictions with the flavor of lead-
ing and coincident indicators but similar to Chauvet these common factors
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will be constructed for individual phases of the business cycle.
A somewhat separate literature focuses on probit modeling for recession

prediction. Perhaps the best known paper is Estrella and Mishkin (1998)
where they find that although a range of leading indicators are statistically
significant in sample, only the term spread is useful in genuine forecasting
exercises. Our model for the business cycle latent variable is very similar to
that proposed by Chauvet and Potter (2002). In a similar manner Dueker
(2001) has extended the probit approach by allowing for an unobserved busi-
ness cycle variable tracking the NBER dates to be used in a standard VAR.
The main innovation in Dueker as in our work is that the variables deter-
mining the business cycle phase are endogenously determined and thus their
behavior can be forecast out of the sample period.
The models described above required a number of advances in econometric

technique and computational speed. Nelson and Kim ’s 1999 monograph
provides an excellent introduction to all of these models and a description of
best practice classical and Bayesian techniques for their estimation.

1.2 Outline of Paper

The model we develop is very complex in terms of the number of latent vari-
ables involved and and large number of unknown parameters. Each part of
the model is relatively simple which allows us to construct a straightforward
Gibbs sampling alogorithm for its estimation. The standard parts of the
estimation are described in the appendix. Some of the non-standard aspects
are described in detail in the main text.

We start in Section 2.1 by describing a threshold autoregressive model for
the latent variable determining business cycle phases. The exact definition of
the business cycle phases are left to Section 3. The threshold autoregressive
model uses information from variables modeled by a VAR described in the
rest of this section in a phase dependent way. In Section 2.2 we discuss
how the variables helping determine the phase loosely fit into two categories:
leading or coincident indicators. The usefulness of a particular indicator can
vary across phases. Since we want to allow for a large number of time series
to predict the business cycle latent variable we introduce a common factor
structure into a linear VAR in Section 2.3. This requires the estimation of a
further set of latent variables in the Gibbs sampler. Section 2.4 generalizes
the VAR developed in Sections 2.2 and 2.3 to one with a threshold structure
with regimes defined by business cycle phases.
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In section 2.4.1 we detail one of the main advantages of our model over
previous one. We show how conditioning on information about business
cycle phases, we can use the differing relationship of leading and coincident
indicators in and across business cycle phases to improve forecasts of future
values.
In Section 3 we turn to the definition and estimation of business cycle

phases. Section 3.1 provides 2 definitions of business cycles. The definitions
differ on how recovery phases are treated. The subsection also discusses pos-
sible sources of increased stability in the business cycle. Subsection 3.1.1
discusses some of the similarities with Markov switching models and high-
lights some of the differences. Section 3.2 discusses how the model itself can
be directly used to identify business cycle phases. It provides a detailed de-
scription of the block of the Gibbs sampler that generates the business cycle
phases. Section 3.3 describes ways of directly introducing the NBER dates
into the estimation of business cycle phases.
Since the model is so complex it is esssential to evaluate the model with

its predictions for new data. Of course one advantage is that the model is
designed to produce lots of predictions in real time. Section 4.1 provides a
description of forecasting and dynamic simulation of the model. Section 4.2
considers difficulties associated with constructing forecast of recoveries and
trough dates. Section 4.3 contrasts our approach to forecasting recession
phases with that of Estrella and Mishkin (1998).
Section 5.1 gives an overview of the Gibbs sampler. The detailed infor-

mation on the sampler is contained in the appendix. Section 5.2 contains
information on the prior distributions used for the business cycle latent vari-
able model. Section 5.3 discusses various approaches to constructing prior
distributions for the nonlinear VAR and the common factor structure con-
tained within it.
Section 6 contains a small scale application to the unemployment rate

and term spread. There are some initial results for this application available.
Section 7 will contain a large scale applications to the leading and coincident
indicators of the Conference Board. Section 8 concludes.

2 Statistical Model
Our statistical model has two components: a latent variable model for deter-
mining business cycle phases and a vector autoregressive model for observ-
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able variables. Both models have a threshold autoregressive structure with
regimes defined by phases of the business cycle. We leave the determination
of these phases/regimes to the next section.
Time is indexed by the integer t ∈ T . The set T can be decomposed into

5 disjoint subsets T =R ∪ N ∪ S ∪ F ∪ D, where D represents periods of
downturns, R represents periods of recovery from downturns, N represents
periods of normal growth, S represents periods when growth spurts and F
represents periods of fragile growth. T can also be into split into subsets
representing particular “business cycles” although as we discuss below such
a decomposition might have a union smaller than T . We denote the current
business cycle or most recent business cycle by J.(Burns and Mitchell had 9
phases we have 5).

2.1 Model for Latent Variable

We define a latent stochastic process Zt. This latent variable will be used to
classify the phase of the business cycle according to a set of rules defined in
Section 3. For the moment, we ignore the exact description of these rules.
Zt follows a threshold autoregressive structure where the conditional mean
is determined by the business cycle phase in the the last period along with a
phase specific set of observable variables and the conditional variance is time
dependent.

Zt =


XNt + θNZt−1 + σ(t)²t, if t− 1 ∈ N
XRt + θRZt−1 + σ(t)²t, if t− 1 ∈ R
XSt + θSZt−1 + σ(t)²t, if t− 1 ∈ S
XFt + θFZt−1 + σ(t)²t, if t− 1 ∈ F
XDt + θDZt−1 + σ(t)²t, if t− 1 ∈ D

(1)

where ²t ∼ IIDN(0, 1), Xpt are random variables defined by {αP+β0PYt, P =
1, . . . 5}, with βP a M × 1 vector of parameters and Yt is M × 1 vector of
economic variables realized at time t, {σ(t)} is a time varying innovation
variance. Below we will parameterize time variation as relating to individual
business cycles.
In describing the MCMC algorithm below we will denote the complete

set of parameters for the latent variables by Ψ. We decompose Ψ into four
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sets {Ψi : i = 1, . . . , 4} with elements

ψ1 = [αP ,β
0
P ]
0, P = 1, . . . , 5

ψ2 = [θ1, . . . , θ5]
0,

ψ3 = [σ(1), . . . , σ(J),σ(J + 1)]0,
ψ4 = [υ, υs2]0

where we include σ(J + 1) to allow for fact that a new business cycle might
start during the estimation period as described below. The fourth subset Ψ4

contains the parameters of the model for determining the prior distributions
on the elements ofΨ3 which potentially we might also update on in a standard
heiriachical manner.

2.2 Model for Observable Economic Variables

The model for business cycle classification contains information from the ran-
dom vector Yt. We think of the vector as containing information from two
distinct type of variables: business cycle leading indicators, mainly financial
variables, and coincident macroeconomic aggregates such as GDP, consump-
tion, employment, hours and industrial production. Further, some of these
coincident variables will serve the role of phase classifiers and some will serve
the roll of indicating transitions between phases in the near future.
We denote the total number of distinct variables in Yt by K = KL+KC

where KL is the distinct number of leading indicators and KC is the number
of distinct coincident indicators. In general the length of the vectorYt will be
substantially greater thanK since we will require it to equal to the maximum
of

• The minimum state vector for describing the dynamics of K unique
variables in Yt across the business cycle phases.

• The maximum lead length amongst the KL leading indicators plus 1.

Consider limiting ourselves to one leading indicator Lt, one coincident
aggregate Ct. Assume the leading indicator leads by one period and that
the minimum state vector is [Ct, Lt, Ct−1, Lt−1], i.e., a second order Markov
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assumption. Then consistent with the concept of leading and coincident
indicators we could have:

Yt =


Ct
Lt
Ct−1

Lt−1

 ,βP =

βPC
0
0
βPL

 , P = 1, . . . 5.
The idea is to include not only leading indicators but also coincident indi-

cators to help in the classification of business cycle phases and the transitions
among them. Consider the stylized fact that the stock market has predicted
9 of the last 5 recessions. In our set up the leading indicator might be sug-
gesting a phase transition but unless confirmed by the coincident variable’s
behavior, the prediction would at best tentative.
We now turn to a model for the evolution of Yt over time. Although

we are mainly interested in a nonlinear model for this evolution we start by
discussing a standard linear model.

2.2.1 Linear Model

Continuing with the simple example of one leading indicator and one coinci-
dent indicator, assume that the model for this bivariate system is constant
across business cycle phases and is given by the companion form of a VAR(2):

Yt = a+AYt−1 +HVt,

where the 4× 4 companion matrix A is given by·
Φ1 Φ2

I2 02

¸
,

Φ1,Φ2 are 2 × 2 matrices, a is a 4 × 1 vector of the form [aC , aL, 0, 0]
0,the

4× 2 matrix H is given by ·
I2

02

¸
Vt is a 2× 1 Gaussian random vector with mean zero and variance Σ.
A strict interpretation of the leading indicator versus coincident indicator

would be that Φ1[2, 1]= Φ2[2, 1] = 0 (the coincident indicator does not help
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predict the leading indicator). Further, one might expect that Φ1[1, 2],Φ2[1, 2]
were non-zero (the leading indicator helps predict the coincident indicator)
and that if the leading indicator was a financial variable that Φ1[2, 2] = 1 or
0 (efficient markets type assumption),and Φ2[2, 2] = 0.
The forecast distributions of this linear state space model are multivariate

Gaussian with mean:
ET [YT+h] = (I+A+ · · ·+Ah−1)a+AhYT and variance:

VarT [YT+h] = (Σ+AΣA0+ · · ·+Ah−1ΣAh−10).

These forecast distributions do not depend on the phase of the business
cycle but can be used directly to construct forecast distributions for ZT con-
ditional on a particular phase (or sequence of phases).

E [ZT+l|T + ` ∈ P, ` = 0, . . . L− 1]

=
LX
`=0

θL−`P (αP + β
0
PET [YT+l]) + θ

L
PZT ,

VarT [ZT+L]

=
LX
`=0

θ
2(L−`)
P

¡
σ2(T + L− `) + β0PVarT [YT+`]βP

¢
.

2.3 Common Factor Restrictions

In practice there are literally hundreds of variables which one could use as
leading or coincident indicators. Even without allowing the dynamics of the
VAR to change over the phases of the cycle, the number of parameters to
be estimated would be many times larger than the sample size. The main
solution to this dimensionality problem is to assume that the dynamics are
well described by a few common factors. In other words, the business cycle
is driven by just a few shocks rather than the hundreds of shocks defined by
an unrestricted vector autoregression.
In our case we decompose the vector Yt into k observed economic vari-

ables yt and s common factors, cf t with the following specification:

yt = a+Π(B)yt−1 + Λ(B)cf t + ut,

cf t = b+Θ(B)cf t−1 +wt,
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where a is a k×1 vector, Π(B) is a diagonal back operator polynomial matrix
of order q, Λ(B) is a k × s matrix in the back operator polynomial also of
order q, ut is a k× 1 Gaussian random vector with diagonal variance matrix
Σu, b is a s × 1 vector, Θ(B) is a s × s matrix polynomial of order q in
the back operator and wt is a s × 1 Gaussian random vector with variance
matrix Σw. Although the order of the back operator polynomials is assumed
to be q, some of the matrices might be null at higer orders. Below we discuss
methods to estimate the common factors from the observables but one could
also include in the list of common factors important observables such as an
overall measure of activity or the term spread (Bernanke, Boivin and Elotz
(2002) call this the Factor Augmented Vector Autogression). In an empirical
example in Section 7 we use the published leading and coincident indices.
Then stacking the observables and common factors in a state space form

as above we have

Yt =


yt
cf t
...

yt−q+1

cf t−q+1

 =
 a+Λ1b

b
0(q−1)(s+k)

+


Π ΛΘ
0s Θ

A31 0
0 A42

Yt−1 +


Ik Λ1

0s Is
0(q−1)(s+k)×k 0(q−1)(s+k)×s

 · ut
wt

¸
,

where

ΛΘ =
£
Λ1Θ1 Λ1Θ2 + Λ2 · · · Λ1Θq + Λq

¤
and Π =

£
Π1 · · · Πq

¤
.

2.4 General Nonlinear Model

The linear model described above embodies the restriction that dynamics are
invariant across the business cycle. This restriction certainly makes predic-
tion of business cycles computationally easier but it is a strong restriction.
We relax it by assuming that the evolution of the random vector Yt is gov-
erned by a nonlinear vector autoregression. The nonlinearity is of a regime
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switching type with the same regime classification as for the latent variable
Zt.
The description of the general nonlinear model in state space form is:

Yt =


aN +ANYt−1 +HVNt if t− 1 ∈ N
aR +ARYt−1 +HVRt if t− 1 ∈ R
aS +ASYt−1 +HVSt if t− 1 ∈ S
aF +AFYt−1 +HVFt if t− 1 ∈ F
aD +ADYt−1 +HVDt if t− 1 ∈ D

, (2)

where, {aP , P = 1, . . . 5} are M × 1 vectors, {AP , P = 1, . . . 5} are M ×M
matrices, H is an M ×K matrix and {VPt, P = 1, . . . 5} is a K × 1 random
vectors distributed independent, multivariate normal distribution with mean
vector zero, covariance matrix {ΣP , , P = 1, . . . 5}and are independent of ²t.
The forecast distributions generated by this nonlinear model are also

conditionally Gaussian given a future path of the business cycle phases.
To reduce the dimensionality of the parameter space further we only

allow certain of the sub-vectors of aP and submatrices of AP and ΣP to vary
with the phase. The most parsimonious version would have all the changes
across the phases determined by the common factor model (bP ,ΘP ,Σw

P ).
In addition one could limit the changes in non-recovery expansion periods to
the intercepts and variance matrix of the innovations of the common factor
model.

2.4.1 Updating Information on Unknown Variables in the VAR

Suppose that time T − 1 is known to be a normal expansion phase but, in
contrast to the known value of the leading indicator at time T , the coincident
variable is only known with a lag. Then, just using the information from the
current value of the leading indicator, the conditional distribution for CT
would be Gaussian with mean:

µT |LT
= ET−1[CT ] + Σ

−1
22NΣ21N(LT − ET−1[LT ]),

and variance

ηT |LT
= Σ11N −Σ12NΣ

−1
22NΣ21N

Suppose in addition to the observables, one also had realizations of the busi-
ness cycle latent variable available through time T. Using the fact that time
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T − 1 is a normal expansion phase, we also have the information that

ZT − θNZT−1 − αN − βNLLT−1 = Z
∗
T = βNCCT + σ(T )²T .

Using the independence of ²T from innovation to the VAR we obtain an
updated normal distribution with mean:

µT |LT

ηT |LT

+
β2

NC

σ2(T )

Z∗T
βNC

1
ηT |LT

+
β2

NC

σ2(T )

,

and variance

1

1
ηT |LT

+
β2

NC

σ2(T )

.

Clearly if the coincident indicator is tightly related to the value of the business
cycle latent variable in the normal growth phase (β2

NC is large relative to
σ2(T )) a large update in the precision and perhaps depending on the size of
Z∗T , the center of the forecast distribution is possible.
There is still more information about CT available in the value of the

business cycle latent variable at T +1 since this is related to the leading indi-
cator at time T. This suggests the state space formulation with measurement
equation (assuming for simplicitly period T is a fragile phase):

Z∗T+1 =
£
βFC 0 0 βFL

¤
CT+1

LT+1

CT
LT

+ σ(T + 1)²T+1,

with Z∗T+1 = ZT+1 − αF − θZT . Using this measurement equation along
with the transition in equation 2 above and the conditional distribution of
CT |LT ,ZT

, standard filtering and smoothing techniques would produce a dis-
tribution for value of the coincident indicator in period T taking into account
the values of the current and next period value of the latent variable. Clearly,
we would also obtain more precise forecast distributions for the values of the
coincident and leading indicators at time T + 1.
In the general case where the largest horizon of the leading indicator is

L, if we had the values of the latent variable thru time T +L, then we could
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incorporate this information in the forecast distributions for the coincident
and leading indicators using similar methods. Suppose we use these forecast
distributions to generate realizations of the future values of the leading and
coincident indicators. We can use these realizations along with the known
set of observable data to generate a new sequence of realizations of the la-
tent variable using techniques discussed below in Section 3.2. Iterating this
alternating conditioning a large number of times would generate draws from
the unconditional (i.e., not dependent on the latent variable) forecast distri-
bution for future observables, see Section 4.1. We will use this approach in
our MCMC algorithm so the relevant estimation period for parameters and
latent variables will be T + L.

2.4.2 Parameters For the Nonlinear VAR

We signify the set of parameters of the nonlinear model by Ξ. This set can
be decomposed into five subsets {Ξi} with respective elements:

ξ1 = [a01, vec(Λ1)
0, · · · ,a05, vec(Λ5)

0]0,

ξ2 = [diag(Π1)
0, · · · , diag(Π5)

0] ,

ξ3 = [diag(Σ
u
1 )
0, · · · , diag(Σu

5 )
0] ,

ξ4 = [b
0
1, vec(Θ1)

0, · · · ,b05, vec(Θ5)
0]0

and

ξ5 = [vec(Σ
w
1 ), · · · , vec(Σw

5 )]

3 Defining and Identifying Business Cycle Phase

3.1 Definitions of Business Cycles
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The joint model described above has 5 distinct business cycle phases. We
define these phases in terms of the behavior of the latent variable {Zt}. We
start by defining downturns as periods when Zt < 0. Next we distinguish
recoveries from other periods of expansion by their proximity to periods
when Zt changes from negative to positive. That is, t ∈ R if Zt > 0 andP∞

s=0

Qs
w=0 1 [Zt−w > 0] < $

The other three phases of an expansion are defined to be feasible after
$ − 1 periods of recovery. They are defined by a simple partition of the
positive reals:

1. t ∈ F if 0 ≤ Zt < r1 and
P∞

s=0

Qs
w=0 1 [Zt−w > 0] ≥ $,

2. t ∈ N if r1 ≤ Zt < r2 and
P∞

s=0

Qs
w=0 1 [Zt−w > 0] ≥ $,

3. t ∈ S if Zt > r2 and
P∞

s=0

Qs
w=0 1 [Zt−w > 0] ≥ $.

In order to define the sequence of scalings of the innovations to the la-
tent variable model we need to define a business cycle. We focus on two
definitions:

1. A business cycle begins with the start of complete recovery phase, ends
the period before a transition from a downturn phase to a recovery
phase and must include at least one phase from normal, spurt, fragile.
Interrupted recovery phases do not belong to any business cycle.

2. A business cycle begins with the start of a complete recovery phase,
ends the period before a transition from a downturn phase to a complete
recovery phase and must include at least one phase from the three non-
recovery expansion phases.

Both definitions have difficulty classifying sequences that involve inter-
rupted recoveries. Definition 1 compromises by not classifing all periods as
belonging to a particular business cycle. Definition 2 places interrupted re-
covery phases at the end of a business cycle. In terms of the parametrization
of the innovation variance Definition 2 associates with each complete business
cycle a different value for the innovation variance. For Definition 1 we can
also associate a different value for the innovation variance with each com-
plete business cycle but we also need an innovation variance for interrupted
recoveries. One possibility is to allow for unique innovation variances for each

16



interrupted recovery, an alternative is to use the same innovation variance
for each interrupted recovery.
These assumptions determine a transition function across the various

phases. Because the innovation to Zt can vary across business cycles the
transition function is not time homogenous. Further, the restriction on the
minimum time in the recovery period implies that the transition function is
not aperiodic. However, some properties of the transition function are im-
mediate. First, once in a downturn phase the only transition allowed is to a
recovery phase. Second, the only transition allowed from complete recovery
phases are to expansion phases. Third, we expect the combination of our
prior and the data to impose an ordering of how likely downturn phases are
such that they are most likely from fragile phases, less likely from normal
growth phases and very unlikely from spurt phases. To investigate restric-
tions required for the latter conjecture define a standardized predicted value
for the latent variable by:

bZt|t−1 =
bXPt + θPZt−1p

σ2(t) + β0PHΣPH0βP
,

where bXPt = αP + β0P (aP +APYt−1) . The probability that Zt > 0 is given
by the cumulative distribution function of a standard normal evaluated at
− bZt|t−1. An obvious sufficient condition for downturns to be less likely from
spurt phases than fragile phases is:³ bXFt + θFZt−1

´µq
σ2(t) + β0SHΣSH0βS

¶
<

³ bXSt + θSZt−1

´µq
σ2(t) + β0FHΣFH0βF

¶
.

In general one would expect bXFt + θFZt−1 << bXSt + θSZt−1 because of
the stronger growth and higher level of the latent variable in spurt phases.
However, if β0SHΣSH0βS >> β0FHΣFH0βF then the inequality might not
hold. Requiring that ΣF − ΣS is a positive definite matrix, i.e., that fragile
phases are more uncertain that spurt phases, would remove this possibility if
the elements of βS and βF were identical. Alternatively the inequality would
hold if βS weighted more heavily variables with low variance and more lightly
variables with high variance than βF .
Now consider the normal phase. We would like to make this the most

persistent phase. Once again consider the standardized predicted value. If
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we try to introduce greater persistence directly by imposing θN > θP , P 6= N ,
then we run into the problem that this also increases the overall variability of
Zt which makes it more likely it will cross the thresholds of r1 or r2. We can
counteract this increase in variability by reducing the variance of β0NYtβN in
normal phases assuming that the variability of β0PYtβP is a major source of
transitions in other phases. The variance of Yt also has two similar sources:
ΣN and AN . Consider the counterfactual case of remaining in the normal
phase forever then the variance would converge to

[IM2−AN ⊗AN ]
−1 vec(ΣN),

if the largest eigenvalue of AN was inside the unit circle. If the largest
eigenvalue was on or outside the unit circle then from any initial value in the
normal phase the variance of Yt will increase. This suggests for the normal
phase to be more persistent than other phases of the business cycle we require
a combination of less persistence in the dynamics of the observables, less
uncertainty in one-step head forecasts and βN picking out lower variance
elements of Yt.
Now consider the effect of a drop in σ2(t) as time goes on. This will have

the biggest effect on the persistence of business cycle phase where the the
sequence of ratios

σ2(t)

β0PHΣPH0βP
,

σ2(t+ 1)

β0P (HΣPH0 +APHΣPH0A0
P )βP

, . . .

is the largest. We are assuming this is normal phase. Hence as the transition
function of the normal phase exhibits more persistence as σ2(t) declines we
would observe a drop in the volatility of economic time series.

3.1.1 Similarities and Contrasts with Markov Switching Models

Suppose that θP = 0 and βP was a zero vector for all 5 of the phases
and set σ(t) = 1. Then transitions between phases would very similar to
a Markov Switching model with duration dependence (see Durland and Mc-
Curdy 1994). If we removed the restriction on the recovery phase then we
would have something very close to Hamilton’s original Markov switching
model. The main diffference would be the timing convention. In standard
Markov switching applications the regime classification variable is contempo-
raneous in the time series model of interest. In our case the regime classifi-
cation variable is lagged one period. Under the constant hazard of transition
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assumption this is a minor difference, although below in footnote 2 we sug-
gest how our timing convention would lend itself to the incorporation of
information from NBER business cycle dates into the regime classification.
If we allow βP to be non-zero vector for each phase then superficially

our model is similar to DLW&F. However, in this case the timing conven-
tion produces a significant difference. In the Markov switching approach the
elements of βP are zero for all coincident variables, and it is assumed that
the dynamics of the coincident and leading variables can be modeled sepa-
rably with the (linear) VAR for leading variables containing no information
on regime classification.1 The contemporaneous state then determines the
regime for the VAR of the coincident variable.
In our approach the coincident variable is used to determine the classifi-

cation of the business cycle phase which in turn effects the dynamics of the
VAR. Markov switching models infer that if the economy is in a recession
state then coincident variables should be negative. In our approach if the co-
incident variable is negative then we infer it is more likely that the economy
is a recession phase and the forecast of the coincident and leading variables
for next period should be adjusted accordly.
Finally consider allowing for autoregressive dynamics in the latent vari-

able. Without the autoregressive dynamics the latent variable forgets its lo-
cation within particular phases in the previous period. For example, suppose
Zt−1 and t − 1 ∈ F. Without the autoregressive component the probability
of transition to a new phase is the same if Zt−1 ≈ 0 or if Zt−1 ≈ r1.With the
autoregressive dynamics the conditional mean is increased by approximately
θ4r1. This extra term includes information on the strength of the leading and
coincident indicators from previous periods. The standard Markov switching
approach ignores this information.

3.2 Model based Identification of Business Cycle Phases

The identification of the business cycle phases has two main sources. First,
we can use the model itself and data to classify the phases. Second we can
use the dating of business cycles produced by the NBER.
To illustrate the identification from the model assume that all the values

of the parameters are known and all values of Zt were known except at time

1The papers are not explicit on the dynamics of the leading indicators but if we assumed
that they have linear dynamics then no information is lost in treating them as exogenous.
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τ . This type of conditioning is used extensively in the MCMC algorithm
below where repeated interation over parameter draws allows one to make
unconditional inferences about the phase classification of a particular period.
Consider the case that r1 > Zτ−1 > 0, Zτ+1 < 0 and

P∞
s=1

Qs
w=1 1 [Zτ−w > 0]

> $. Thus, period τ is any phase except a recovery. There are two sources of
information the fit of the nonlinear var for period τ+1 and the latent variable
model for periods τ , τ+1. Using the independence between the innovations to
the the nonlinear VAR and the latent variable model we consider the update
in two steps. First, we evaluate the height of the likelihood of the nonlinear
var for period τ + 1 for the four possible phases:

`(Yτ+1,Yτ |τ ∈ P )

= 2π−K/2 |det (ΣP )|−0.5 exp
£−0.5V0

P τ+1Σ
−1
P VP τ+1

¤
, P 6= R.

Note that given the information that τ + 1 is a downturn phase, the two
most likely regimes should be fragile or downturn. If τ is assumed to be a
spurt phase then one might expect its predictions of Yτ+1 to be relatively
poor. Starting from a prior, b(τ ∈ P ), over the phases at time τ we obtain
the updated probability mass function:

f(τ ∈ P |Yτ+1,Yτ ) =
`(Yτ+1,Yτ |τ ∈ P )b(τ ∈ P )P
P 6=R `(Yτ+1,Yτ |τ ∈ P )b(τ ∈ P ) , P 6= R.

Next we focus in the conditional density f(Zτ |Zτ−1, Zτ+1) (we suppress the
dependence on Yτ+1,Yτ). This is sufficient from the first order Markov
assumption that prevails in the absence of recovery periods. This conditional
density equals

f(Zτ+1|Zτ )f(Zτ |Zτ−1)f(Zτ−1)

f(Zτ−1, Zτ+1)
.

Since Zτ−1, Zτ+1 are fixed this density is proportional to

f(Zτ |Zτ−1)f(Zτ+1|Zτ ).

For each phase this product of conditional densities is proportional to:

exp

µ
− (Zτ − µ)

2

2σ2(τ + 1)

¶
exp

µ
−θ

2
P (Zτ − µP )2
2σ2(τ)

¶
,
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where

µ = XF τ + θFZτ−1,

µp =
Zτ+1 −XP τ

θP
.

We can re-express this product as a normal density for Zτ , with mean (note
we impose σ2(τ ) = σ2(τ + 1) to simplify the notation):

µP =
µ+ µPθ

2
p

1 + θ2
P

,

and variance

σ2
P =

σ2(τ)

1 + θ2
P

,

multipled by the function:

gP (τ ) = exp

·
− 0.5

σ2(τ)

µ
µ2 + µ2

P θ
2
P −

(µ+ µP θ
2
P )

2

1 + θ2
P

¶¸
.

Thus the likelihood of a phase is given by the value gP (τ) multiplied by
integral of the normal density over the relevant region of the phase:

`(Zτ−1, Zτ+1|τ ∈ P ) = gP (τ )∆P (Zτ−1, Zτ+1;Yτ+1,Yτ ),

Once again one would expect that the fragile phase would be the most likely
of the possible expansion phases for period τ because it should be the most
capable of predicting the negative value in period τ +1. By similar reasoning
the spurt phase should be the least likely. If we simplify to the case of
θN = θS = θF ,αN = αS = αF then this requires XSτ > XNτ > XFτ .
Returning to the example of the term spread. Suppose that all 3 contain the
term spread and the term spread was inverted L periods before. Then phase
with the largest positive weight on the spread would be the most likely to
predict the negative value of the latent variable. Thus, this should be the
fragile phase. Further, by ‘overweighting’ the term spread in the fragile phase
one would make it a transition type indicator. Similarly by underweighting
it in the normal phase one would reduce the variance in this phase and make
a transition from a normal to fragile phase more likely before a downturn if
the spread is associated with downturns.
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Combining these likelihood values with the updated probabilities from
the nonlinear VAR, the conditional probability of phase P at time τ is given
by:

Pr[τ ∈ P |Yτ+1,Yτ , Zτ−1, Zτ+1] =
`(Zτ−1, Zτ+1|τ ∈ P )f(τ ∈ P |Yτ+1,Yτ )P
P 6=R `(Zτ−1, Zτ+1|τ ∈ P )f(τ ∈ P |Yτ+1,Yτ )

.

(3)

A more difficult case occurs when we need to classify a time τ that is in
the middle of a recovery period. The classification is limited to a downturn
or recovery phase. However, selecting a downturn phase has implications
for the $ periods following τ . At the most extreme suppose that if Zτ was
positive then it would mark the last period of a recovery. Thus, a negative
value for Zτ if {Zτ+s > 0, s = 1, . . . , $} would re-classify $ future periods as
recovery ones. Since the values of {Zτ+s, s = 1, . . . , $} are being conditioned
on this would introduce the likelihood effect of classifying these $ periods
as normal, spurt or fragile versus recovery periods. Further, the value of the
innovation variance of the latent variable model depends on whether we have
a complete recovery has occurred or not.

3.3 Incorporating NBER Business Cycle Dates

An additional source of information on business cycle phases is available
from the NBER’s classification of recessions and expansions. The NBER
defines a business cycle as starting the month after a peak and ending the
month of the next peak or starting the month after a trough and ending the
month of the next trough. Further, they assume that the economy is either
in recession, expansion (depression phases are also included prior to 1945)
and that expansion phases must last at least 12 months and recession phases
must last at least 6 months. The NBER looks at levels of activity to define
peaks and troughs, whereas we focus on growth rates of activity measures.
If we assume that NBER defined recessions are identical to downturns

as measured by our business cycle latent variable then their business cycle
chronology identifies recovery and downturn phases(with the exception of
peak and trough months) exactly and by default all other time periods must
be classified in one of the three other phases. Further, we do not have the
possibility of interrupted recovery.
An interpretation of the exact correspondence between the NBER reces-

sions and downturns is an informative prior over the timing of business cycle
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phases that is degenerate for certain dates. More formally, we are assuming
that the NBER dating committee does not observe the same data we are
using but instead is able to observe the sign of Zt. In the case of Hamilton’s
original Markov switching model such an assumption would make little sense.
Given the “prior information” of the NBER dates the transition matrix pa-
rameters could be updated immediately without analyzing the observables
by using the length of expansions and recessions excluding peak and trough
months. These probabilities would then be slightly updated by using the
behavior of the observables at peak and trough months to classify them as
recession or expansion months.
Consider the example of generating a value of Zτ above if the NBER

chronology stated that τ was a recession period. There would be no updating
required on the business cycle phase and the missing (negative) value of Zτ
could be generated by drawing ²τ from the truncated normal on (−∞,−µD/σD)
(in this case the draw is very similar to Dueker 2001).
We could weaken this assignment of probabilities to allow for some am-

biguity. For example, recessions start some time in a peak month and end
some time during the trough month according to comments from the NBER
dating committee. Thus, suppose the NBER classifies period τ as a peak
month we could assign prior weight 0.5 on a downturn and 0.5 on an ex-
pansion. If we distributed the rest of the probability equally amongst the
3 alternatives, this would make it 3 times more likely ex-ante that τ was a
downturn than a fragile period. It makes more sense to give the fragile phase
the same ex-ante weight thus limiting the classification to 2 phases.
There is less of an issue with assigning probabilities for trough months

since by our definition of recovery phases, all other expansion phases are
ruled out. The NBER requirement that expansions last at least 12 months
implies that in monthly data the maximum a priori value of $ is less than
12. (If we allow it to be larger, then the number of business cycles would not
agree).
One could use the information in the NBER dates in further ways. For

example, in the periods before a business cycle peak one could place a high
prior weight on a fragile phase. If one wanted to be design a model that was
good at predicting NBER peak dates one could also place low prior weight
on a fragile phase in expansion periods not close to a business cycle peak (see
Leamer 2001 for a related approach).
Alternatively, one could examine a prior over business cycle phases that

was between the uniform one and NBER prior described above. For exam-
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ple, the shortest expansion in the NBER chronology is August 1980 to July
1981 which lasted only the minimum 12 months. We could choose to view
this period as an interrupted recovery following by a sustained downturn by
relaxing the prior that it was a complete recovery.2

Below if we condition on the exact NBER dates (with peak and trough
periods treated as above) we use the symbol N , if we use the dates but
do not impose exact correspondence between the NBER recessions and our
downturn phase we use the symbolM.

4 Forecasting

4.1 Simulating The Joint Model and Forecasting

It is useful to write the dynamics of the latent variables in a companion form
by defining the vector:

Zt =

 Zt
Zt−1

Zt−$−1

 .
Thus, we can describe the dynamics of the system over business cycle j

by the following transition function

fj(Yt,Zt|Yt−1,Zt−1) = fj(Zt|Yt,Zt−1)f(Yt|Zt−1,Yt−1)

Here fj(Zt|Yt,Zt−1) and f(Yt|Zt−1,Yt−1) are conditionally Gaussian.
In order to simulate the dynamics of this transition function we need to

follow a number of steps.

1. Draw a realization of Yt+1 from f(Yt+1|Zt,Yt).

2. Draw a realization of Zt+1 from fj(Zt+1|Zt,Yt+1).

3. Using these two realized values draw Yt+2 from f(Yt+2|Zt+1,Yt+1).

2One could apply a similar principle to the estimation of Hamilton’s original Markov
switching model by placing a non-degenerate but NBER informed prior on the whether
a particular time period is a recession or expansion period. This prior would induce an
informative prior on the transition matrix probabilities that would then be updated using
the behavior of observables.
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4. Using the draws of Zt+1 and Yt+2 draw Zt+2 from fj(Zt+2|Zt+1,Yt+2).

5. Continue this process until we have simulated to the desired horizon,
note that if the horizon includes the end of one complete business cycle
then the conditional distribution for the latent variable could change
and we need to amend the simulation as described below.

Repeating this process a large number of times would produce draws
from the (conditional on Zt,Yt) marginal distributions of Zt+h and Yt+h.
Generating draws for Yt+h conditional only on Yt is more difficult. The
MCMC algorithm will generate draws of the latent variable conditional on
the whole sample. That is, the actual values of {Yt} were used. In Markov
switching models one can use the filter probabilities that only depend on
the past observed values to integrate out the latent variable. In our case the
generated values after time T depends only on past values of the observables.
The sampler automatically generates draws thru period T + L. Averaging
these forecasts across iterations of the sampler would produce a forecast
conditioned only on observables. Further one can generate forecasts with
origin T+L at each iteration of the MCMC sampler using the steps described
above to generate draws from the forecast distribution.

4.2 Predicting Recovery Phases

We have allowed the innovation variance to the latent variable model to de-
pend on the business cycle number. This means that if a new business cycle
is forecast to begin we need to use a new value for the variance. Under both
definitions we only know if a new business cycle has begun if the expansion
lasts for $ periods. Thus, once in a downturn we would need to evaluate the
probability of a consecutive sequence of $ positive values for the latent vari-
able using the new innovation variance and probability of all other sequences
using the old innovation sequence or the special interrupted recovery value.
If we do have a complete recovery sequence then we know that the nonlin-

ear VAR will be in the recovery phase for next $− 1 periods with the initial
phase being a downturn. Thus, we can act as if its forecast distributions are
Gaussian. A similar argument works for the latent variable model. We can
use this multivariate Gaussian distribution to evaluate the probability of $
positive values of the latent variable. For the case of an interrupted recovery
we form a similar Gaussian distribution but using σ2(J). We are interested
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in the complement to a consecutive sequence of $ positive values for the
latent variable so we can calculate the same type of probability.
If a complete recovery phase is chosen then we forecast as described above

with the restriction that only positive values of the latent variable are allowed
for $ periods. If an interrupted recovery or continuing downturn is chosen
then we can simulate period by period as follows (using either the old inno-
vation sequence or where appropriate the interrupted recovery value):

1. If ZT+l+1 < 0, then we need to reevaluate the probability of a complete
recovery with the new realizations.

2. If ZT+l+1 > 0 then simulate as above.

3. Continue period by period as in (1) and (2) above, until

4. If no negative values are realized by T + h+$ − 1 then ZT+l+$ must
be negative.

4.3 Example:Predicting Recessions/Downturns

Here we contrast our model with others in the literature where the goal
is to predict recessions. Estrella and Mishkin (1998 and references herein,
EM hereafter) discuss using probit models to predict NBER business cycle
classifications of expansions and recessions. In their approach there is also
implicitly a latent variable Zt that takes on positive values in expansions and
negative values in recessions:

Zt = Xt + ²t,

where the vector Xt = α + βYt. In the most frequent application the ele-
ments of the vector β are zero except for one lag of the term spread. EM
use the observed NBER business cycle dates to classify when the latent vari-
able is positive (expansions) and negative (recessions).3 EM find that using
additional leading indicators to the yield curve does not help in real time
prediction because of overfitting in sample. The main empirical finding of
this literature is that inversions of the yield curve lead recessions. Thus, the
probability of a recession state a time t is given by Φ(−Xt).

3EM us the convention that the peak month is part of an expansion and the trough
month is part of a recession.
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Assume that we use a similar lead for the yield curve as EM but also
include a coincident variable such as employment. Assume also that we use
the available NBER dates in the estimation period. In the EM approach
there is no lagged value of the latent variable so the current value (and sign)
of the latent variable is not used in forecasting. In our case we require both
the current value of the latent variable both because it is useful in predicting
the latent variable and because it defines the phase of the business cycle.
Assuming that realizations of the lagged latent variable and coincident

variable are available (but the current value of the leading indicator is not
yet available), the probability of a negative value of Zt is

Pr[Zt < 0|Zt−1,Yt−1, t− 1 ∈ P,Nt−1] = Φ

− bXPt + θPZt−1q
σ2(t) + β2

PCσ
2
PC


where bXPt = αP+βPLLt−1+βPCEt−1[Ct] and σ2

PC = Et−1

£
(Ct −Et−1 [Ct])

2¤ .
If we average this probability over the unknown latent variable and business
cycle phase we would obtain

Pr[Zt < 0|Yt−1,Nt−1].

However, this probability does not answer the question of whether a recession
started at time t since one of the phases we averaged over is the downturn
phase. To address this issue, consider the first hitting time given by

HD(t) = {H : t+H ∈ D, s /∈ D, t < s < t+H},
with associated probability

π`(t) = P [HD(t) = `] = P [Zt+` < 0|Zt+`−1 > 0, . . . , Zt+1 > 0](1− π`−1(t)).

For each initial period t we can form an expected hitting time:

E[HD(t)] =
∞X
`=1

`π`(t).

Returning to the EM probit approach. The probability of a recession
state a time t is given by Φ(−Xt) and conditional on Xt is independent of
the probability of a recession state at time t0.
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In the model of EM assume we have available the conditioning sequence
X t
t−` = {Xt, Xt−1, . . . , Xt−s} where t − s is the last period in which we are

sure the economy was expanding. Thus we can evaluate the probability of
first hitting time to recession by:

π(t− s,X t
t−s,Nt−1) = Φ(−Xt)

sY
`=1

[1− Φ(−Xt−`)] .

Note that this expression reflects a conditionally constant probability of re-
cession and is strictly declining in `.
The first hitting time probability for our model given Yt−1 and Zt−1

t−s > 0,

π(t− s,Yt−1, Zt−1
t−s > 0,Nt−1) = Φ

− bXPt + θPZt−1q
σ2(t) + β2

PCσ
2
PC


sY
`=1

µ
1− Φ

·
−XPt−` + θPZt−`−1

σ(t− `)
¸¶
.

Once again we need to integrate over the unobserved lagged latent variable
but with the additional restriction that the values are all positive, i.e. they
belong to one of three non-recovery expansion phases.

5 Estimation and Prior Distribution

5.1 Outline of Gibbs Sampler

Despite its complexity the model is relatively easy to estimate using a Gibbs
Sampler with data augmentation. One obvious advantage of this approach
is that it generates realizations of the unobserved process {Zt}. Given these
sequences estimation of the remaining parameters is relatively simple. The
sampler is split into 5 main blocks: given the parameters of the latent variable
model, Ψ, the parameters of the nonlinear VAR, Ξ, the (augmented) data
YT+L, information from the NBER turning points, the generation of {Zt}.
Given this sequence, the generation of the latent model parameters. Given
the sequence of {Zt} and the latent variable parameters, and the (augmented)
data YT+L, the generation of the VAR parameters, Ξ. Fourth, given the
sequence of {Zt}, the business cycle latent variable parameters, and the VAR
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parameters, Ξ the generation of the common factors and the (augmented)
data YT+L. Fifth given the sequence of {Zt}, the (augmented) data YT+L,
the VAR parameters, Ξ, the generation of the business cycle classification
parameters r1, r2 and $. Blocks 1 and 4 of the sampler produces forecasts
of out of sample values, estimates of data not yet released and probabilistic
business cycle classifications. The specific details of the Gibbs Sampler are
given in the appendix.

5.2 Priors

A major advantage of the Bayesian approach, in addition to its feasibility,
is that it allows us to incorporate various forms of prior information into
the analysis. We discuss this in general terms below and specifically below
in the context of two empirical applications. The model as set out above
has a large number of parameters. If we don’t restrict these parameters it is
unlikely that the output of such a complex model will be sensible. Thus, we
focus on ways to impose our prior belief that very few of these parameters
should be important in determining the dynamics but still allowing flexibility
in response to the data.

5.2.1 Priors On Latent Variable Model Parameters

The prior information on the latent variable parameters comes in a number
of forms. Firstly, we have the classification of economic variables into leading
and coincident. This gives us information on the pattern of likely non-zero
elements in βP vectors. Further, we expect that the derived common factors
are more likely to have non-zero weights than the individual variables.
For the common factor variables we use a shrinkage type prior designed

to allow leading indicators to ahve predictive power at longer leads and co-
incident variables to have most of their predictive power contemporaneously
or with one lag.
For remaining more doubtful elements we use a variable selection prior

(similar to George and McCulloch) with an underlying t distribution for the
individual coefficients.
In terms of the autoregressive dynamics we impose stationarity and pos-

itive persistence.
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5.2.2 Priors on the Nonlinear Var Parameters

As the number of variables (K) grows the parameters required for the VAR
model starts to become very large without the common factor structure:
5 (K2(q + 1) +K(K + 1)/2) . For example, with K = 12, q = 12, 9750 pa-
rameters would be required compared to a likely sample of 600 observations
on the 12 variables. If we limit ourselves to 2 common factors and restrict
the only changes across phases to the common factors, then the number of
parameters to be estimated is 5 (22(q + 1) + 2(2 + 1)/2) + k(3q + 2). Again
with k = 10, q = 12, 435 parameters would be required to be estimated (as-
suming no lags in the factor loading matrix, 775 parameters with 12 lags in
the factor loading matrix). There would be 55 different parameters in each
phase for the common factor model. These numbers could be reduced by
assuming commonality across expansion phases in the parameters.
A priori it is unlikely that all the parameters in the VAR for the common

factors are non-zero thus we use informative shrinkage priors in the form
of Litterman et al. based on a classification of the factors into leading and
coincident.

6 Application One: Unemployment and Term
Spread

We start by considering a small scale application to one coincident variable,
the unemployment rate and one leading variable, the spread between the
Fed Funds Rate and the 10 year Treasury Note. These variables were chosen
because they have been successful in either predicting or classifying business
cycles in a number of previous studies. In Leamer (2001) the spurt regime
was identified by late expansion declines in the unemployment rate with
knowledge of a surge in real activity. These late expansion declines in the
unemployment rate tend to occur with both low and high spreads between
short and long term interest rates. On the other hand, the spread tends to
be high in early parts of long expansions. Thus we assume a priori that the
spread coefficient is relatively small in the normal and spurt phases. We also
use the NBER dates as an informative and sometimes degenerate prior as
described above in section 3.3 through September 2001. For the period after
September 2001 we use a prior that corresponds to a median recession length
of 11 months.
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The spread variable is available starting from July 1954 through April
2002. We infer one earlier value of the spread variable for June 1954, hence
the relevant estimation sample starts in June 1955. The augmented data
set goes up to April 2003 and automatically provides predictive distributions
over unemployment, the spread and business cycle phases.
The results from a sampler run of 30,000 with a burn-in phase of 10,000

iterations are shown in Figures 1 to 7. Figure 1 shows the posterior mean of
business cycle phases using the rule D = 1, R = 2,N = 3, F = 4, S = 5. It
is clear that the August 1980 to July 1981 expansion is treated as an inter-
rupted recovery period. Figure 2 plots the posterior mean probabilities of the
fragile and spurt phases along with the downturn phase (NBER recessions).
Somewhat surprisingly the spurt phase only occurs in the mid part of the
1990s expansion and appears to be present in the late 1970s expansion.
Figures 3 and 4 contain information of βP for the spread and unemploy-

ment rate respectively. The difference between the leading and coincident
indicator designation is obvious from the reverse pattern of the coefficients
against the lead. Notice that the spread is a particular useful predictor of
the fragile phase. The unemployment coefficients appear to suggest that it is
changes in the unemployment rate that are important. The spread also has
an ambiguous effect in recessions.
Figure 5 contains a plot of the posterior probability that a new business

cycle has started (i.e., the recession is over). The probabilities are surprisingly
low. From Figure 3 we can see that the spread and the unemployment rate
have little explanatory power for recoveries.
Figures 6 and 7 contain predictive distributions for the values of the

Spread and the Unemployment rate in April 2003 generated by the Gibbs
sampler.

7 Application Two: Conference Board Lead-
ing and Coincident Indicators

We will use the 10 leading indicators of Conference Board and the 4 coinci-
dent indicators used by the Conference Board and in a closely related form
by the NBER and Stock and Watson. One version will assume that the
common factors are the composite indicators produced by the Conference
Board, another will estimate a leading and coincident common factor using
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the Gibbs sampler.

8 Conclusion

Appendix: Description of the Gibbs Sampler

Business Cycle Classification Variable

Conditional on values for latent model parameters Ψ, the VAR parameters,
the augmented data and the business cycle classification parameters we want
to combine the prior information on {Zt} generated by the NBER classifi-
cation system with the behavior of the observable economic time series. As
described in the main text in Section 3.2 this can be accomplished by condi-
tioning on the value of Zt−1 from the previous iteration of the sampler and
Zt+1 from the current run of the sampler (See Albert and Chib (1993) for
the original application of this approach).
The Gibbs sampler is then implemented exactly as described in Section

3.2 with the exception of the first and last observation. In the case of the
last observation we only condition on ZT+L−1 and there is no information
available from the nonlinear VAR. Thus, this is a simple Gausian draw using
the relevant phase from Equation 1. For the first observation we condition
on Z2 and combine the information from the VAR with that from the latent
variable model in a similar manner to Section 3.2 for the case where the mean
of Z1 is µP and its variance is σ

2(1)/θ2
P .

Latent Model Parameter Draws

Given the draw of the latent variable the conditional mean and variance
of the parameters of the threshold model in Equation 1 can be found in a
number of ways. We focus on blocking Ψ into the four sets described above
in Section 2.1.

Leading and Coincident Parameters

First, conditional on the autoregressive structure, ψ2 and business cycle spe-
cific variances, ψ3 and using a Gaussian prior on ψ1 with mean µ( ψ1

; ς) and
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variance Ω(ψ
1
; ς) we have a Gaussian posterior with variance

Ω(ψ1; ς) =
h
Ω(ψ

1
; ς)−1 +X0X

i−1

,

and mean

µ(ψ1; ς) = Ω(ψ1; ς)
h
Ω(ψ

1
; ς)−1µ( ψ

1
; ς) +X0z∗

i
,

where

X =

 x2
...

xT

 ,
xt =

£
1(t ∈ D)Y0

t 1(t ∈ R)Y0
t 1(t ∈ N)Y0

t 1(t ∈ F )Y0
t 1(t ∈ S)Y0

t

¤
,

z∗=


P5

P=1 1(t ∈ P )(Z2/σ(2)− θPZ1/σ(1))
...P5

P=1 1(t ∈ P )(ZT/σ(T )− θPZT−1/σ(T − 1))

 .
As discussed in the main text we focus on two ways of parametrizing

the prior distribution. The simplest one is a shrinkage prior tailed for the
properties of the variable in question, i.e., leading versus coincident, real vs.
financial.
The alternative is the variable selection type prior. This requires some

extra steps in the Gibbs Sampler using the information in the drawn values
of {αP ,βP}. Define the binary random vector ξ. Let κ1 be the precision asso-
ciated with inclusion and κ1 the variance associated with effective exclusion.
Then the probability that an element of ξ is equal to 1 is given by:

√κ1 exp(−0.5κ1β
2)q√κ1 exp(−0.5κ1β

2)q +
√κ2 exp(−0.5κ2β

2)(1− q) .

In the case where the unconditional prior distribution is in the tdistribution
family there is one further step to find the collection of precisions. Following
Geweke (1992) we have:...
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Autoregressive Parameters

Next conditional on new draw of the parameters, ψ1 and business cycle spe-
cific variances ψ3 the autoregressive parameters are assumed to have a (trun-
cated Gaussian prior with parameters µ( ψ

2
) and variance Ω( ψ

2
). Ignoring

the truncation we have a Gaussian posterior with variance

Ω(ψ1) =
h
Ω(ψ

1
)−1 + Z0Z

i−1

,

and mean

µ(ψ1) = Ω(ψ1)
h
Ω(ψ

1
)−1µ( ψ

1
) + Z0z

i
,

where

Z =

 Z1
...

Z0T

 ,
Zt =

£
1(t ∈ D)Zt/σ(t) 1(t ∈ R)Zt/σ(t) 1(t ∈ N)Zt/σ(t) 1(t ∈ F )Zt/σ(t) 1(t ∈ S)Zt/σ(t)

¤
,

z =


¡
Z2 −

P5
P=1 1(2 ∈ P )XP2

¢
/σ(2)

...¡
ZT −

P5
P=1 1(T ∈ P )XPT

¢
/σ(T )

 .
Business Cycle Specific Innovation Scalings

Next given these new draws of ψ1,ψ2 we construct the squared errors and
length for of each business cycle to updated on the innovation scalings.

υs2(j) =
X
t∈Bj

²2t ,υE(j) =
X
t∈Bj

1(t ∈ Bj), j = 2, . . . , J + 1.

We use a standard inverted Gamma prior with degrees of freedom υ,mean
scale υs2. Thus for each business cycle j < J + 1 we have a Gamma distri-
bution with posterior degrees of freedom

υ(j) = υ + υ(j)

and posterior mean scale:

υs2(j) = υs2 + υs2(j).

Draw for New business cycle to be completed
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Nonlinear VAR Parameter Draws

Given the draw of the latent variables (Zt and cf t) and business cycle classi-
fication parameters parameters, the nonlinear var parameters can be found
using standard techniques for linear models by blocking within this block. We
start by defining the column vector w = [1, cf 0t−1, · · · , cf 0t−q] and the matrix
WP by  1(1 ∈ P )w1

...
1(1 ∈ P )wT+L−1

 ,
and

U =


cf12 cf22 · · · cfs2
cf12 cf22 · · · cfs2
...

...
...

...
cf1T+L cf2T+L · · · cfsT+L

 .
We have the least squares estimator (see Lutkepohl 1991)

bξ4 = [(W
0
PWP )⊗Is]

−1
[W0

P⊗Is] vec(U0),

This can be combined with a Gaussian prior to obtain a Gaussian poste-
rior distribution.

Data Augmentation Step

There are two main types of data that we need to augment the algorithm
with. The first are the values of the common factors. The second comes from
the fact that, as described in the discussion of Subsection 2.4.1, the informa-
tion in the current value of the leading indicators is useful for updating on
the out-of-sample values of the coincident and leading indicators. Further,
with a realization of the common factors available it is possible to augment
any variables with missing observations at the start of the sample or with
differeing frequencies than used to define business cycle phases. We start by
describing the draw of the common factors.
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Draw of Common Factors

There are two sources of information on the common factors: the observed
economic time series (augmented to fill out the sample to T + L) and the
business cycle latent variable.

Adding Missing or New data

Business Cycle Classification Parameters

The final block of the algorithm generates the parameters $, r1, r2. Infor-
mation on these parameters is available from both the VAR and business
cycle latent variable model. The threshold values are easiest to describe.
Among the 3 phases of normal, fragile and spurt varying the values of r1 will
move observations between the fragile and normal regimes and varying r2

will move observations (including the latent ones) between the normal and
spurt regimes.
We define a prior in terms of the minimum and maximum percentage

of expansion observations that can be either of the fragile or spurt regimes.
Given the draw of the latent variable we then assume a uniform prior between
the realized values corresponding to these minimum and maximum percent-
ages. The likelihood will be flat as we move in the prior space without
changing the classification of phases. At realized data points of the business
cycle latent variable the likelihood will move discontinuously. Thus, we find
the likelihoods at all of these “jump” points and then weight by the inverse
width of the interval between jumps. This gives us a joint posterior over the
thresholds which can be drawn from using standard inversion techniques.
For the minimum length of a recovery period, we know that varying the

parameter in addition to changing the phase classification can also change
the innovation variance to the business cycle latent variable model. Again we
assume that the prior disribution is uniform (discrete) between a minimum
and maximum value. Once again we enumerate the likelihood values associ-
ated with all the a priori values of $ and use standard inversion techniques
to generate a new draw.

Evaluating the Model

The model developed is very complicated and it is important to be sure
that it adds useful information to the study of business cycles. We propose
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using two main methods to measure the value added of this complexity: real
time forecasting and Bayes Factors. Real time forecasting is discussed in the
main text and we can evaluate the forecasts of the model for business cycle
turning points and important real and financial variables using a number
of forecasting criteria against standard models. In this subsection of the
appendix we focus on the use of Bayes factors, that is the ratio of marginal
likelihoods of the our complex model to the simpler models nested within
it. We think the use of Bayes factor is important since they automatically
penalize more complicated models.
There are two main dimensions of complexity we examine:

1. Is a simple constant hazard model be sufficient to explain the transition
between phases?

2. Is a linear VAR (possibly with phase dependent innovation variance)
adequate to explain the observed time series?

In order to calculate the Bayes factors we make extensive use of the
Savage-Dickey Density ratio. For nested models the Bayes factor is given by
the ratio of the height of the posterior density for the larger model evaluated
at the restricted parameter values of the nested model to the height of the
prior density for the larger model at the restricted parameters values. In our
case we exploit this result in an indirect manner as in Chauvet and Potter
(2001).
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