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Abstract

In continuous time specifications, the prices of interest rate deriva-
tive securities depend crucially on the mean reversion parameter of
the associated interest rate diffusion equation. This parameter is well
known to be subject to estimation bias when standard methods like
maximum likelihood (ML) are used. The estimation bias can be sub-
stantial even in very large samples and it translates into a bias in
pricing bond options and other derivative securities that is important
in practical work. The present paper proposes a very general and com-
putationally inexpensive method of bias reduction for pricing bond op-
tions that is based on Quenouille’s (1956) jackknife. We show how the
method can be applied directly to the options price itself as well as the
coefficients in continuous time models. The method is implemented
and evaluated here in the Cox, Ingersoll and Ross (1985) model, al-
though it has much wider applicability. A Monte Carlo study shows
that the proposed procedure achieves substantial bias reductions in
pricing bond options with only mild increases in variance that do not
compromise the overall gains in mean squared error.

Our findings indicate that bias correction in estimation of the drift
can be more important in pricing bond options than correct specifi-
cation of the diffusion. Thus, even if ML or approximate ML can be
used to estimate more complicated models, it still appears to be of
equal or greater importance to correct for the effects on pricing bond
options of bias in the estimation of the drift. An empirical applica-
tion to U.S. interest rates highlights the differences between bond and
option prices implied by the jackknife procedure and those implied by
the standard approach. These differences are large and suggest that
bias reduction in pricing options is important in practical applications.

JEL Classification: C13, C22, E43, G13
Keywords: Bias Reduction, Option Pricing, Bond Pricing, Term Struc-
ture of Interest Rate, Re-sampling, Estimation of Continuous Time
Models.



1 Introduction
For more than three decades continuous time models have proved to be a
versatile and productive tool in finance. Sundaresan (2000) provides a recent
extensive survey of these models and their many financial applications. The
models are especially useful with respect to pricing derivative securities where
both closed form solutions and numerical methods are used in practical work.
This paper is concerned with pricing interest rate derivative securities, a
practical issue that has been addressed in a number of different ways in
the past. One of the oldest and most important approaches is based on
modelling the dynamics of the instantaneous interest rate. According to this
approach, to calculate prices of derivative securities it is necessary to estimate
whatever system parameters occur in the continuous time specification of
the underlying asset. Since only discrete time observations are available, a
common practice is to discretize the continuous time system and estimate the
resulting discretized model (see, for example, Chan, Karolyi, Longstaff, and
Sanders (hereafter CKLS), 1992). Unless the exact discrete model is known,
as it is in certain special cases (e.g., Phillips, 1972), discretization generally
introduces an estimation bias since the internal dynamics between sampling
points are ignored. Misspecification bias results in inconsistent estimators
(see Merton, 1980, Lo, 1988, and Melino, 1994) of the parameters of the
continuous system with consequent bias effects on derivative prices.

To circumvent the problem of inconsistent estimation of continuous sys-
tems, methods have been proposed to estimate continuous time specifications
directly. Among the techniques that have been proposed, the maximum like-
lihood (ML) approach is naturally appealing in view of its good asymptotic
properties in general regular estimation problems, and maximum likelihood
estimation (MLE) has become something of a gold standard to aim for in the
estimation of continuous time systems. In consequence, many articles have
suggested ways of constructing or approximating the likelihood function of a
continuous system analytically and of computing it by numerical or simula-
tion methods. Examples of this approach include Lo (1988), Pedersen (1995),
Kessler (1997), Durham and Gallant (2002), Aït-Sahalia (1999, 2002), and
Brandt and Santa-Clara (2002), to mention only a few. The ultimate goal
of all these methods is to approach the MLE in the hope that this estimator
will deliver best performance characteristics.

In spite of its generally good asymptotic properties, the MLE can have a
substantial finite sample bias in dynamic models of the type used in financial
econometric applications. The bias is well known to be especially acute even
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in simple models like the first order autoregression (Hurvicz, 1950, Orcutt,
1948) and this bias is exacerbated in models with a fitted intercept and
trend (Orcutt andWinokur, 1969, Andrews, 1993, Andrews and Chen, 1994).
These bias problems in discrete time dynamic models are manifest in the
estimation of continuous time systems, such as diffusion models for short
term interest rates (Ball and Torous, 1996, Chapman and Pearson, 2000,
Yu and Phillips, 2001) and they persist even when the sample size is quite
large, as it often is in financial applications. Similar arguments apply to
other commonly used estimation methods in dynamic models, including the
general class of extremum estimators.

The problem of estimation bias turns out to be of great importance in
the practical use of econometric estimates in asset pricing. The prices of
bond options and other derivative securities hinge crucially on the value
of unknown parameters. Of particular importance in diffusion models are
the parameters governing volatility and drift. When these parameters are
estimated with bias, as occurs with the MLE and many other estimation
procedures, estimation bias is transmitted to the pricing formulae for bonds,
bond options and other derivative securities. For instance, when the true
mean reversion parameter is 0.1 and 600 monthly observations are available
to estimate a square-root diffusion model (Cox, Ingersoll and Ross, 1985),
the bias in the ML estimator of the mean reversion parameter is 84.5% in an
upwards direction. This estimation bias further leads to a 24.4% downward
bias in the option price of a discount bond and 1.0% downward bias in the
discount bond price. The latter figures are comparable in magnitude to the
estimates of bias effects discussed in Hull (2000, Chapter 21.7). The biases
would be even larger when less observations are available. Of course, these
numbers depend on other aspects of the specification, including the nature
of the bond and the maturity of the option, which are discussed in Sections
2 and 3. The existence of bias in stock option pricing has been noticed in
the literature. For example, it is well known that the Black-Scholes stock
option price estimates are biased, even when an unbiased volatility estimate
is used (Butler and Schachater, 1986, Knight and Satchell, 1997). However,
compared with the documented bias effect in stock option pricing, the bias
effect in bond option pricing is found to be much more dramatic in the present
paper.

To address the problem of biased estimation in continuous time models
with its consequential effects on bond option prices, this paper introduces
bias reduction techniques based on the jackknife (Quenouille, 1956). While
jackknife methods have been extensively used in discrete time models (e.g.,
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Efron, 1982, and Shao and Tu, 1995), we know of no earlier implementation
in continuous time model estimation. The jackknife has several properties
that make it appealing in the present application. The first advantage is
its generality. Unlike other bias reduction methods, such as those based on
corrections obtained by estimating higher order terms in an asymptotic ex-
pansion of the bias, the jackknife technique does not rely on the explicit form
of an asymptotic expansion. This means that it is applicable in a broad range
of model specifications and it is not necessary to develop explicit higher order
representations of the bias. In the present context, we can, for instance, ap-
ply the jackknife technique directly to the quantity of interest, like the option
price itself. Given the complicated form of options price representations in
terms of the underlying process and its parameters, this advantage is signif-
icant and makes the method very suitable for empirical implementation. In
fact, it turns out that direct use of the jackknife to the options price provides
significant gains relative to bias reduction in the parameters of the contin-
uous time model. Moreover, other methods of parameter bias reduction in
dynamic models, like median unbiased procedures (e.g., Andrews, 1993) are
only applicable to parameter estimation and are not directly applicable to
more complex quantities like options prices which depend on many other
aspects (including distributional details) of the model. A second advantage
is that this approach to bias reduction can be used with many different es-
timation methods, including general methods like MLE. Third, it can be
applied in any asset pricing situation (e.g., stock and currency options with
stochastic interest rates and interest rate derivatives) where the quantities
of interest depend on the estimation of continuous time systems in which
finite sample bias arises. Finally, unlike many other bias correction methods
such as median unbiased estimation, bias function approximation (MacKin-
non and Smith, 1998) and bootstrapping, the jackknife is computationally
much cheaper. In fact, the method is not much more time consuming than
the initial estimation itself.

Our findings in this paper indicate that the jackknife provides a very
substantial improvement in pricing bond options over existing methods. To
illustrate, Fig. 1 compares the distribution of estimates of the option price of
a discount bond obtained by using MLE and jackknifed MLE in a Cox, In-
gersoll and Ross (CIR) model with 600 monthly observations. As is apparent
in the figure, the jackknife estimates are much better centered on the true
options price and do not show any appreciable increase in variance. In fact,
the root mean squared error (RMSE) of the jackknifed estimates is 12.1%
smaller than that of MLE while also providing a bias reduction of 11.5% for
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Figure 1: Distribution of jackknife and ML estimates of bond option prices
based on 600 monthly observations.

600 observations. Section 3 of the paper explores this implementation of the
jackknife in detail and shows that a carefully designed jackknife method can
lead to a lower value of RMSE, so bias reduction is accomplished without
compromising the gains by much larger variability.

In pricing bond options and interest rate derivatives, model specification
is known to be important. For instance, CKLS (1992) show that use of the
constant elasticity of variance (CEV) model leads to significant changes in
bond option prices compared with alternative models like the CIR or Va-
sicek model. Concern over specification has also led to the introduction of
more flexible methods of estimation, such as the semiparametric treatment
of diffusion in Aït-Sahalia (1996a) and the fully nonparametric approaches
of Stanton (1997) and Bandi and Phillips (2002) that allow users to be ag-
nostic regarding functional form. At least in models where the drift is linear
and parametric, the discrete time equivalent model that is satisfied by equis-
paced observations has the same general autoregressive form, so that dynamic
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estimation bias of the type discussed above can be expected in all conven-
tional approaches. In consequence, it may be expected that a bias reduction
procedure such as the jackknife may be useful even in situations where the
continuous time model is misspecified by incorrect specification of the diffu-
sion. Our findings indicate that the jackknife indeed continues to deliver bias
reduction in both autoregressive parameter estimation and in pricing bond
options under model misspecification. In fact, the results suggest that bias
reduction may be more important in practice than correct specification of
the diffusion term in pricing bond options.

The paper is organized as follows. Using simulated data, Section 2 shows
the bias effects of ML estimation on system parameters, prices of discount
bonds and options on a discount bond in the context of a single factor dif-
fusion model. Section 3 introduces a generic version of the jackknife and
shows how it can be implemented in parameter estimation, and bond and
option valuation. The simulation performance of these jackknife estimates is
compared with that of the ML approach. We also discuss bias and variance
tradeoffs, consider a version of the jackknife that reduces variability, examine
the performance of the jackknife when the model is misspecified, and com-
pare the performance of the jackknife with median unbiased estimation as an
alternative method of bias reduction. Section 4 shows the practical effects
of jackknifing in an empirical application with monthly and weekly Federal
funds rate data. Section 5 concludes and outlines some further applications
and implications of the approach.

2 Estimation Bias in Continuous Time Mod-
els, Bond Pricing and Bond Option Pricing

We start our discussion with a brief review of some well-known bias results
and bias correction methods for discrete time dynamic models. Most rele-
vant in the present context is the fact that standard procedures like ML and
least squares (LS) produce downward biased coefficient estimators in the
first order autoregression (AR). Using analytic techniques, Hurwicz (1950)
demonstrated the bias effect in the first order AR model with known inter-
cept. Using Monte Carlo techniques, Orcutt (1948) and Orcutt and Winokur
(1969) found that the bias is larger when the intercept is fitted and explained
the bias enlargement in terms of the induced correlation between the regres-
sor and the residual that results from a fitted intercept. Andrews (1993)
showed that the presence of a time trend in the regression further accen-
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tuates the autoregressive bias. In these two cases, the biases do not go to
zero as the AR coefficient goes to zero and the biases increase as the AR
coefficient goes to unity.

In the context of the AR(1) model with an intercept only, Kendall (1954)
showed that, to a first-order approximation,

E[φ̂]− φ = −1 + 3φ
T +O( 1

T 2 ), (1)

where T is the sample size and φ̂ is the ML/LS estimator of the AR coefficient
φ. A natural bias correction method in this simple setting is

φ̂K = φ̂+ 1 + 3φ̂
T . (2)

In the finance literature, Bekaert, Hodrick andMarshall (1997) used Kendall’s
method to correct for bias in testing the expectations hypothesis of the term
structure of interest rates. While feasible in this simple model, where (1) and
various higher order extensions of (1) have long been known (e.g., Shenton
and Johnson, 1965), an undesirable property of the correction method is that
it is not directly applicable in more complicated set-ups where asymptotic
expansion formulae have not been derived.

As an alternative bias correction method in the AR(1) model with fitted
intercept and/or time trend, Andrews (1993) proposed a median unbiased
estimator of φ. The method relies on knowledge of the exact median function
of the estimator. Although the procedure is extended to deal with more
general AR(p) models in Andrews and Chen (1994), the estimator is no longer
exactly median unbiased and it is not available in more complex models where
there are usually additional parameter dependencies in the median function.

Similar bias problems occur in the estimation of continuous time dynamic
models. As in discrete time models, the problem is worse when the series
are persistent. This phenomenon was documented by Chapman and Pearson
(2000), for instance, in the context of the following constant elasticity of
variance (CEV) model (c.f. CKLS, 1992),

dr(t) = κ(µ− r(t))dt+ σrγ(t)dB(t), (3)
where B(t) is a standard Brownian motion, and θ = (κ, µ, γ, σ) is the vector
of unknown system parameters. In this model, r(t) mean-reverts towards
the unconditional mean µ with speed captured by κ. The observed data are
recorded discretely at (0,∆, 2∆, · · · , T∆) in the time interval [0, T∆], where
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∆ is the step in a sequence of discrete observations of r(t). Since r(t) is often
recorded as the annualized interest rate, if it is observed monthly (weekly or
daily), we have ∆ = 1/12 (1/52 or 1/252).

Chapman and Pearson (2000) used weighted least squares (WLS) to esti-
mate κ in a discretized version of (3) for daily interest rates. Their simulation
findings confirm that the estimate of κ is upward biased and that the bias
is significant even when the sample size is as large as 7,500. Using the same
CEV model, Yu and Phillips (2001) find that alternative Gaussian methods
of estimating (3), such as those proposed by Nowman (1997), substantially
overestimate κ for daily, weekly and monthly frequencies, whereas the biases
are generally small for the other parameters. Ball and Torous (1996) used
WLS and GMM to estimate the discretized model of a restricted version of
(3) with γ = 0.5 for both weekly and monthly interest rates. They found that
although both µ and σ can be estimated accurately, the sampling distribution
of estimated κ is substantially biased upward.

These results are not surprising because the CEV model has a discrete
time formulation that is very similar to an AR(1) model where there is un-
conditional heteroscedasticity and with an autoregressive coefficient that is
dependent on κ. Since the prices of bonds and bond options also crucially
depend on κ, the upward bias in coefficient estimation translates directly
into biased bond and option pricing. This important implication of dynamic
model estimation bias is explored below in the context of the well-known
square-root (CIR) model specialization of (3) due to Cox, Ingersoll and Ross
(1985), which is commonly used in practical work. There are several reasons
why we use the square-root model to study bias effects. First, the square-root
model has closed form expressions for the transition and marginal densities.
As a result, we can simulate the discrete observations directly from the con-
tinuous time model and hence avoid simulation errors. For the same reason,
we can perform exact ML estimation directly on the continuous time model
and hence avoid the discretization bias. Second, there are known closed form
options price formulae for the square-root model and hence no approximation
errors are introduced. In summary, all these closed form solutions enable us
to quantify bias effects in the most accurate way and to perform a large scale
Monte Carlo study.

Setting γ = 1
2 in (3), the CIR model has the form

dr(t) = κ(µ− r(t))dt+ σr1/2(t)dB(t). (4)
Feller (1951) and Cox, Ingersoll and Ross (1985) show that the transition
density of r(t + ∆) conditional on r(t) is ce−u−v(v/u)q/2Iq(2(uv)1/2) and
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the marginal density of r(t) is ww2
1 rw2−1e−w1r/Γ(w2), where c = 2κ/(σ2(1 −

e−κ∆)), u = cr(t)e−κ∆, v = cr(t), q = 2κµ/σ2
−1, w1 = 2κ/σ2, w2 = 2κµ/σ2,

and Iq(·) is the modified Bessel function of the first kind of order q. The tran-
sition density together with the marginal density can be used for simulation
purposes as well as for obtaining the full ML estimator of θ(= (κ, µ, σ)′).

Prices of discount bonds and call options on discount bonds based on
the square-root model (4) both have analytic solutions. Define P (t, s) as the
price at time t of a discount bond that pays-off $1 at time s and C(t, τ ; s,K)
as the value at time t of a call option on a discount bond of maturity data
s and of principal L, with exercise (or strike) price K and expiration date
τ (s > τ > t) . (Note that, as distinct from options on stock prices, the
moneyness of bond options is here determined by the relative size of K to
L exp(−(s− t)r(t)); see for example, Buser, Hendershott and Sanders, 1990).
Cox, Ingersoll and Ross (1985) show that

P (t, s) = A(t, s)e−B(t,s)r, (5)
and that
C(t, τ ; s,K) = LP (t, s)χ2(2r∗(φ+ ψ +B(τ , s)); 4κµσ2 ,

2φ2reγ(τ−t)

φ+ ψ +B(τ , s))

−KP (t, τ)χ2(2r∗(φ+ ψ); 4κµσ2 ,
2φ2reγ(τ−t)

φ+ ψ ), (6)
where

A(t, τ) = ( 2γe(κ+λ+γ)(τ−t)/2

(κ+ λ+ γ)(eγ(τ−t) − 1) + 2γ )
2κµ/σ2,

B(t, τ) = 2(eγ(τ−t) − 1)
(κ+ λ+ γ)(eγ(τ−t) − 1) + 2γ ,

γ = √(κ+ λ)2 + 2σ2,
φ = 2γ

σ2(eγ(τ−t) − 1) ,
ψ = (κ+ λ+ γ)/σ2,
r∗ = ln(A(τ , s)/k)/B(τ , s),
k = K/L,

λ is the market price of interest rate risk, and χ2(·; q, p) is the cumulative
distribution function of a noncentral chi-square variate with q degrees of
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Figure 2: Relationship between κ and option and bond prices

freedom and the noncentrality parameter p. In this paper, unless specified
explicitly, we assume λ = 0, which implies that the physical measure is the
same as the risk neutral measure.

It is clear from equations (5) and (6) that both bond and option prices
depend on the mean reversion parameter, κ. Fig. 2 plots the price of a
discount bond and the price of the option on the discount bond as a function
of κ. The discount bond is a three-year bond (hence t = 0 and s = 3) with
a face value of $1 and initial interest rate of 5%. The one-year European
call option on a three-year discount bond has a face value of $100 and a
strike price of $87 (ie t = 0, r(t) = 0.05, s = 3, τ = 1, L = 100,K = 87).
These parameters are empirically reasonable and imply thatK/(L exp(−(s−
t)r(t))) = 1.011. Hence, in this case we have to price an out-of-the-money
option.

We choose µ = 0.08, σ = 0.02 in model (4). It can be seen that as κ
changes both bond and option prices change in a nonlinear and monotoni-
cally decreasing fashion. So any bias in estimated κ is transmitted to the
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corresponding estimates of the bond and option prices. In particular, overes-
timation of κ leads to underestimation of the bond and option prices. Also,
as is apparent in Fig. 2, the bond price is much less sensitive to a change
in κ than the option price. As a result, we expect bias in κ to have a larger
impact on option pricing. Furthermore, in both cases the sensitivity depends
on the magnitude of κ. The smaller is κ, the larger the sensitivity.

Figs. 3-6 plot, in the percentage terms, the bias of the ML estimator of
κ, and the bias of the estimated bond and option prices (using plugged in
ML estimates) as a function of κ. The results given in these figures are based
on simulations which allow for both monthly and weekly frequencies and the
following range of possible true values of κ : 0.1, 0.15, 0.2, 0.25, 0.3, 0.4. Figs.
3-4 give the results for the monthly frequency with sample sizes equal to
300 and 600. Figs. 5-6 give results for the corresponding weekly frequency
with sample sizes equal to 1000 and 2000. All results are based on 1000
replications.

The following general conclusions emerge from these results. First, the
ML estimator of κ is upward biased and the percentage bias decreases mono-
tonically with the true value of κ. This result is consistent with what is
known about dynamic bias in AR/unit root models (e.g., Andrews, 1993), as
larger κ corresponds to a smaller AR coefficient. In all cases, the biases are
serious for empirically relevant values of κ and sample sizes. In fact we have
found that the estimate bias is much more serious than the discretization
(either Euler or Milstein) bias for empirically relevant values of κ and sample
sizes.1

Second, although the bias in the ML estimator of the parameter κ is
serious, this bias does not translate into a serious bias for the bond price. The
outcome is partly explained by Fig. 2, where it is clear that the bond price is
not very sensitive to changes in κ. However, bonds are always under priced
and this is consistent with the upward bias in estimated κ. In magnitude,
the bias monotonically decreases with the true value of κ and stays within
the 2% range.

By contrast, the options price is substantially underestimated. The per-
centage bias is generally non-monotonic in κ and in all cases considered it
is larger than 20%. In some cases, the bias in the options price is as high
as 45% for monthly data and 52% for weekly data. Hence, bond options are
significantly underpriced when κ is estimated by ML. The most serious bias
1The Euler and Milstein discretization bias is obtained based on the same simulation

design and the results may be obtained from the authors upon request.
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occurs when κ takes values in the interval [0, 0.3], which is empirically the
most relevant range of κ.

Finally, the bias of the ML estimator of κ, and the bias in bond and
option prices all get smaller as the sample size increases. This means that on
average ML traders would increase the option price when more observations
are available. Nonetheless, the bias in κ and the bias in option prices are still
nonnegligible even for large sample sizes. These results indicate that biases
in the estimation of these quantities must be expected to occur in practical
work where the empirical sample sizes are in the same general range as those
considered here. The biases are particularly problematic in the case of bond
options prices.

3 Jackknife Estimation of System Parame-
ters, Bond Prices and Option Prices

3.1 Jackknife estimation
Quenouille (1956) proposed the jackknife as a solution to finite sample bias
in parametric estimation problems. Let T be the number of observations in
the whole sample and decompose the sample into m consecutive sub-samples
each with & observations, so that T = m × &. The jackknife estimator of a
certain parameter, θ, then utilizes the subsample estimates of θ to assist in
the bias reduction process giving

θ̂jack = m
m− 1 θ̂T −

∑m
i=1 θ̂�i

m2 −m, (7)

where θ̂T and θ̂�i are the estimates of θ obtained by application of a given
method like ML to the whole sample and the i’th sub-sample, respectively.
Under quite general conditions which ensure that the bias of the estimates
(θ̂T , θ̂�i) can be expanded asymptotically in a series of increasing powers of
T−1, it can be shown that the bias in the jackknife estimate θ̂jack is of order
O(T−2) rather than O(T−1).

The result can be demonstrated as follows using Sargan’s (1976) theorem
on the validity of the (Nagar) approximation of the moments of statistical
estimator in terms of the moments of the estimator’s Taylor expansion as a
polynomial of more basic statistics (like sample moments of the data). To fix
ideas, suppose θ̂T = θT (pT ) , where pT is an N− vector of sample moments
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of the data with mean µ, whose Taylor development to order k is valid and
has the form

θT,k (pT ) =
k−1
∑

s=0

1
s!
[{

(pT − µ)′ ∂
∂p

}s
θT (p)

]

p=µ
. (8)

It is frequently the case in practical applications that pT − µ = Op
(

T− 12
)

and then (8) produces a corresponding stochastic expansion. Under some
mild regularity conditions on the derivatives of θT (pT ) that appear in (8)
and the order of magnitude of the moments of θ̂T and p, which are assumed
to exist, Sargan (1976, Theorems A1 & A2) proved that

E
(

|θT (p)|j
)

= E
(

|θT,k (p)|j
)

+O (T−γk) , γ > 0, (9)

so that for suitably large k, we can replace the j’th moment of θ̂T by the
j’th moment of the polynomial approximation θT,k (p) . This theorem holds
rather generally and applies in the present context where θ̂T is an econometric
estimator of the parameters in the diffusion equation (4) and pT is a vector of
sample moments of discrete data generated by the model (4). The functional
dependence θ̂T = θT (pT ) andits Taylor representation (8) may also be obtained indirectly. In the case
of extremum estimators like ML, this involves the use of the implicit function
theorem and power series inversion of the Taylor expansion of the first order
conditions.

When θ̂T is a consistent estimator of θ and when the moment expansion
E (pT ) = µ + b1

T + O (T−2) holds for some constant b1, we can apply (9) to
deduce that for some constant a1

E(θ̂T ) = θ + a1
T +O( 1

T 2 ), and E(θ̂�i) = θ + a1
T/m +O( 1

(T/m)2 . (10)

Taking expectations in (7) and substituting the two expressions in (10) leads
directly to the expansion

E(θ̂jack) = m
m− 1θ +

m
m− 1

a1
T −
∑m

i=1(θ + a1T/m)
m2
−m +O( 1

T 2 )
= θ +O( 1

T 2 ), (11)
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reducing the O (T−1) bias (10) in the unmodified estimate θ̂T to O (T−2) in
θ̂jack. Note that (11) is invariant to the choice of m to O (T−1) .

In view of the generality of (9), this bias reduction procedure can be ex-
pected to be widely applicable. It is also very easy to implement in practical
work. In the present case, we assume that the above theory applies, validat-
ing (10) and (11). The quantity θ can be either a parameter (such as κ), a
function of parameters (such as the bond option price) or a vector of several
such quantities. In the case of bond and options prices, θ will depend on
known variables such as t, s and τ , as well as unknown parameters such as
κ. These additional dependencies do not affect the validity of the procedure.

In the context of square-root diffusions, we propose to jackknife not only
the parameter κ, but also the bond and option prices directly. We have
found that there is substantial advantage to the latter procedure of dealing
directly with the quantity of interest in implementing the jackknife rather
jackknifing the parameter estimates on which the option price depends and
plugging this revised estimate into the options price formula. The reason
is that the jackknife tends to increase the variance of the quantity being
estimated and this additional variance adversely affects the performance of
the procedure when the quantity is a very nonlinear function of its arguments,
like the option price. In such cases, it appears to be much better to apply
the jackknife directly to estimate the option price (see Section 3.4).

In implementing the jackknife (7), it is often convenient to choose m = 2
(two subsamples) and this simple choice has very satisfactory performance
in bias reduction. In the simulations reported below, we also tried the value
m = 4 and there are certain advantages to increasing the value of m. In
particular, while the mean expansion (11) is invariant to m to order T−1, the
variability of θ̂jack depends onm, as is apparent from the following expression
for the scaled estimation error of θ̂jack:

√
T
(

θ̂jack − θ
)

=
(

1 + 1
m− 1

)√
T
(

θ̂T − θ
)

−
1

m− 1

{

1
√m

m
∑

i=1

√
&
(

θ̂�i − θ
)

}

.

(12)
In (12) √T scaling is presumed to be appropriate for θ̂T and for θ̂jack, andanalogous formulae would apply in the case where there happened to be a
faster convergence rate (e.g. due to nonstationarity). It might be anticipated
from this expression 2 that larger values ofmmay help to reduce the variation
2For example, if 1l + m

l → 0 as T → ∞, if the data are weakly dependent, and if the
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of θ̂jack and, therefore, since (11) still holds, the RMSE of the jackknife
estimator θ̂jack. These heuristics are supported in the present case by the
simulation results, which reveal that use ofm = 4 enables both bias reduction
and MSE reduction in estimation.

Since full ML estimation of (4) is feasible for the square-root diffusion,
the jackknife procedure can be based on ML. The following specific steps
were involved in the implementation of the procedure.3

1. Estimate the system parameters by ML using the entire sample.
2. Calculate the bond and option prices based on the ML estimates ob-

tained in Step 1.
3. Estimate the system parameters by ML for each sub-sample.
4. Calculate the bond and option prices based on the ML estimates ob-

tained in Step 3 for each sub-sample.
5. Calculate the jackknife estimators of κ, and the bond price and option

prices using equation (7).
To compare the performance of the jackknife and ML estimators, we use

the same Monte Carlo experiments as in the previous section. We first set m
to 2. Data are simulated from a square-root model with µ = 0.08, σ = 0.02
and κ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4. For monthly data we choose T = 300, 600
and for weekly data we choose T = 1000, 2000. The number of replications
is 1000. The discount bond is a three-year bond with a face value of $1 and
estimates θ̂li and θ̂T are asymptotically normally distributed as

√l
(

θ̂li − θli
)

,√T
(

θ̂T − θ
)

→d N (

0, σ2θ
) ,

then, in general, √T
(

θ̂jack − θ
)

→d N (

0, σ2θ
) ,

also. However, as m increases, higher order terms in the expansions suggest that the finite
sample variation of √T

(

θ̂jack − θ
)

decreases with m. A detailed examination of these
issues will be provided in later work.
3Matlab code to implement the procedure in the context of square-root diffusions can

be found at
http://yoda.eco.auckland.ac.nz/∼jyu/research.html.

This code covers both the simulations and the empirical work discussed below.
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initial interest rate of 5%. The one-year European call option on a three-year
discount bond has a face value of $100 and a strike price of $87.

Figs. 7-10 plot, in percentage terms, the biases of the jackknife estimator
of κ, and the bond and option prices as functions of κ. We also plot biases
of the ML estimator for comparison. Figs. 7-8 correspond to the monthly
frequency with sample sizes T = 300, 600. Figs. 9-10 correspond to the
weekly frequency with sample sizes T = 1000, 2000. In all figures, the solid
line represents the ML estimate while the marked line represents the jackknife
estimate.

First, it can be seen that the jackknife procedure successfully reduces the
bias in the estimation of κ across all cases. The jackknife works surprisingly
well even when the sample size is small. Also, the improvement over ML is
greater when the true value of κ is smaller, which is the more relevant case in
empirical work. Second, although we have already found that ML estimated
bond price has only a small downward bias, the jackknife estimated bond
price still produces gains in all cases. The marginal difference between these
estimates is a decreasing function of κ. Third, and most importantly, we
find the jackknife estimated bond option price is substantially better than
ML. The bias reduction from the jackknife is at least 12%, 8%, 10% and
15% across the four cases. These gains are of sufficient magnitude to make
an important difference in practical work. Fourth, the jackknife method still
appears to underprice the option.

Tables 1-4 compare the means, standard deviations, and RMSE’s of the
MLE of κ and the ML estimated option price and bond price with those
obtained by the jackknife in the same experiments. Tables 1-2 give the
monthly frequency results with sample sizes 300 and 600, while Tables 3-4
give the weekly frequency results with sample sizes 1000 and 2000. Consis-
tent with Figs. 7-10, the jackknife method is seen to provide a significant
improvement in terms of bias reduction over ML in the estimation of κ and
option prices, while the gains in estimating bond prices are marginal but still
uniform across all cases. The bias reductions from the jackknife in pricing
options are achieved at the cost of a minor increase in RMSE.

To understand how the market price of risk affects the performance of the
jackknife, we use a similar Monte Carlo design with 300 monthly observations
and focus on the empirically more relevant case where κ = 0.1, but allow λ
to take the following empirically reasonable values −0.05,−0.07,−0.09. As
a result, the risk neutral measure is different from the physical measure.
Table 5 compares the means, standard deviations, and RMSE’s of the MLE
of κ and the ML estimated option price and bond price. In all cases, the
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Figure 7: Percentage bias in κ, bond price, and bond option price graphed
as a function of κ. Sample size = 300 and sampling frequency = monthly.
Marked line = jackknife, solid line = ML
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Figure 8: Percentage bias in κ, bond price, and bond option price graphed
as a function of κ. Sample size = 600 and sampling frequency = monthly.
Marked line = jackknife, solid line = MLE.
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Figure 9: Percentage bias in κ, bond price, and bond option price graphed
as a function of κ. Sample size = 1000 and sampling frequency = weekly.
Marked line = jackknife, solid line = MLE.
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Figure 10: Percentage bias in κ, bond price, and bond option price graphed
as a function of κ. Sample size = 2000 and sampling frequency = weekly.
Marked line = jackknife, solid line = MLE.
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problem of finite sample bias persists for ML and the jackknife still provides
an improvement. It apparent that when the market price of risk becomes
larger in absolute value, the estimation bias in the option price is larger in
percentage for both ML and the jackknife. The effect of the market price of
risk on the bond price is less clear, however.

3.2 Variance reduction
All of these results refer to the case where m = 2 and the jackknife is based
on only two subsamples. In this case it is apparent from the findings that
there is a trade-off between the (often substantial) bias reduction achieved by
the jackknife and a marginal increase in the dispersion of the estimates. As
argued above, it is possible to reduce the variability of the jackknife estimate
(with a small compromise in the bias reduction gains) by using larger values
of m. To illustrate the effectiveness of this approach, we use the same Monte
Carlo design as before and focus on the empirically more relevant case where
κ = 0.1, considering in all the following four cases: T = 300, 600 monthly
observations, and T = 1000, 2000 weekly observations. Table 6 compares
the means, standard deviations, and RMSE’s of the MLE of κ and bond and
option prices with those obtained from jackknife estimates withm = 4 in (7).
It can be seen that the jackknife provides smaller RMSE than ML in all cases
and continues to achieve major bias reductions. However, m cannot be set
too large because the subsample estimates of θ rely on & = T/m observations
and & needs to be large enough to ensure that the subsample likelihood has
a well behaved optimum.

It is noteworthy that, on average, the jackknife method underestimates
κ as well as the option price. At first glance the direction of the bias in the
option price estimates seems inconsistent with the direction of the bias in
κ. However, since the option price is a nonlinear transformation of κ, an
underestimated κ has a different impact in magnitude on the option price
from an overestimated κ. As a result, although the jackknife estimate of κ
has little asymmetry (as is apparent in Fig. 11), the jackknifed option price
becomes asymmetric (as is apparent in Fig. 1). Obviously the nonlinearity
is the cause of this counter-intuitive result.

3.3 Specification bias versus estimation bias
Specification issues in continuous time modelling of short time interest rates
have been a focal point of much recent literature in finance. Important
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Figure 11: Density of ML estimate and jackknife estimate (m=4) of kappa
based on 300 monthly observations

contributions include CKLS (1992) and Aït-Sahalia (1996a, 1996b), Stanton
(1997), Bandi and Phillips (2002), Bandi (2002), and Hong and Li (2002), to
mention only a few. Using the CEV model, for example, CKLS (1992) reject
all more restricted nested single factor models and find that the CEV model
leads to option prices that are significantly different from those implied by
simpler interest rate processes.

In view of the importance of the diffusion specification to option pricing,
it is of interest to compare the magnitude of estimation bias in the drift to
bias effects arising from diffusion misspecification. The relative importance
of these two effects can be assessed in simulation. To do so, we simulate 600
monthly observations from the following model (Vasicek, 1977),

dr(t) = κ(µ− r(t))dt+ σdB(t), (13)
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where (κ, µ, σ)′ is set at (0.1, 0.12, 0.015)′.4 The discount bond is a three-year
bond with a face value of $1 and initial interest rate of 5%. The one-year
European call option on a three-year discount bond has a face value of $100
and various strike prices so that the ratio of the strike price to the current
value of par takes each of the following values: 0.95, 1, 1.05. These ratios
correspond to in-the-money, at-the-money, and out-of-the-money situations,
respectively. The number of replications is 1000. Each simulated sequence
is fitted under the (misspecified) CIR model to obtain the ML and jackknife
estimates of κ, the bond price and option price.

Since the diffusion term is misspecified in estimating the CIR model, the
ML estimates are biased. However the exact discrete model corresponding
to (13) is (Phillips, 1972)

r (t) = e−κ∆r (t−∆) + µ (1− e−κ∆)+ σ
∫ t

t−∆
e−κ(t−s)dB (s) , (14)

whose autoregressive term is the same as that of the discrete model corre-
sponding to a CIR model. Therefore, we may expect that ML estimates of
the drift function in the misspecified model continue to suffer from dynamic
estimation bias, making the jackknife desirable. Of course, the ML estimates
of the drift function in the correctly specified discrete model (14) will also
suffer from dynamic estimation bias. The experimental design in the simula-
tion enables us to isolate the bias arising in the estimation of the drift from
that due to misspecification of the diffusion.

Tables 7-9 compare the means, standard deviations, and RMSE’s of the
ML and jackknife estimates of κ, the bond price, and the option price, true
values of these quantities also being shown for comparison purposes. The true
bond value is obtained using the analytic formula given in Vasicek (1977) and
the true option value is calculated based on the analytic formula derived by
Jamshidian (1989). Tables 7-9 report results for ML estimation of the cor-
rectly specified (Vasicek) model obtained from the exact discrete model (14),
ML estimation of the CIR model where the diffusion function is misspecified,
and jackknife estimates based on the misspecified CIR model.

It is clear from Tables 7-9 that the bias effect plays an important role in
all cases. For example, in comparing the ML and jackknife estimates of the
4We use slightly different parameter values here (specifically, µ = 0.12 and σ = 0.015

rather than µ = 0.08 and σ = 0.02) because data from the Vasicek model can become
negative and these parameter settings avoid negative values in the 1000 replications used
in this comparison.
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misspecified CIR model when m = 2, the jackknife method reduces the bias
in the bond price from -1.73% to -0.27%, and the bias in option prices from
-21.04% to -5.89%, -40.02% to -23.94%, and -57.65% to -47.72% for the in-
the-money, at-the-money, and out-of-the-money options respectively. These
are substantial improvements, indicating that the jackknife continues to be
a very effective tool of bias reduction even in misspecified situations. When
m = 4, the jackknife method reduces the bias in the bond price from -1.73%
to -0.51%, and the bias in option prices from -21.04% to -10.27%, -40.02% to -
30.05%, and -57.65% to -50.34% for the in-the-money, at-the-money, and out-
of-the-money options respectively, while also achieving reductions in RMSE
over the m = 2 setting. Finally, in comparing the ML estimates of the
correctly specified (Vasicek) model with the jackknife estimates (m = 4) of
the misspecified CIR model, we find that the jackknife continues to reduce
the bias in the bond price, now from -1.83% to -0.51% and the bias in options
prices from -21.14% to -10.27% and from -36.15% to —29.85% for the in-the-
money and at-the-money cases. Only in the out-of-the-money case does ML
have lower bias in the correctly specified model for the option price than the
jackknife estimate from the misspecified model. The improvements for the
bond price and for the in-the-money and at-the-money options indicate that
the bias arising from estimating the drift term is generally more serious than
that arising from misspecification of the diffusion.

3.4 Jackknife versus median unbiased estimation
In addition to the jackknife, median unbiased estimation (MUE) introduced
by Andrews (1993) can also remove bias in coefficient estimation of the dis-
crete AR(1) model. This method relies on full knowledge of the exact median
function of the estimator, which can only be obtained by simulation. For con-
tinuous time models with nonlinear diffusions the situation is exacerbated
because the distribution is non Gaussian, there is conditional heterogeneity
in the model, and the median function must be approximated using a com-
putationally intensive Monte Carlo method that depends on specific values of
the other parameters in the model. In consequence, MUE is not a practically
feasible method.

In spite of these practical limitations, the MUE procedure provides a very
interesting benchmark for evaluating the success of bias reduction procedures
in dynamic models. The MUE is obtained by transforming the ML estimate
κ̂ with the inverse median function m−1d , where the median function md(κ) isfound by running extensive simulations over a wide range of parameter values
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κ. In this way the MUE procedure utilizes a great deal of information about
the distribution of the ML estimator and, at least when the assumptions
underlying the construction ofmd are valid, we can expect this bias reduction
procedure to be hard to beat.

In the present study, we implemented the MUE in the CIR model, where
its performance can be directly compared with that of the jackknife and
ML. The median functions (for various sample sizes) of the ML estimate of
κ in the CIR model were obtained by simulation.5 Using these simulated
median functions, we correct the bias by constructing the median unbiased
estimator of κ as in Andrews (1993). Fig. 12 compares the density of the
estimates of κ from ML, the jackknife with m = 4 and MUE, where 300
monthly observations are used to estimate the CIR model for parameter
values κ = 0.1, µ = 0.08, σ = 0.02, and the number of replications is 1000. It
can be seen that the jackknife method works nearly as well as MUE in terms
of correcting for estimation bias in κ. Table 10 reports the means, standard
deviations, and RMSE’s of estimate of κ, bond price and option price from
ML, jackknife withm = 2, 4, and MUE, where the bond and bond option are
defined in the same way as before. For comparison purposes, we also plug-in
the jackknife parameter estimates to the bond and option price formulae and
report the results in Table 10. In terms of the bias reduction in κ, MUE
is comparable to jackknife but has smaller RMSE. The results suggest that
MUE is very effective in reducing dynamic bias, as indeed it is designed to do.
Not surprisingly, the plug-in MUE works better than the plug-in jackknife
for pricing bonds and options as it provides smaller biases as well as smaller
RMSE’s. However, the plug-in MUE is not superior to the estimates obtained
from jackknifing the quantities of interest directly. Although, in magnitude,
the bias in the bond and option prices from MUE is comparable to that from
jackknifing bond and option prices withm = 2, the RMSE is larger for MUE,
particularly for option prices.

These results confirm that the idea of jackknifing specific quantities of
interest directly, rather than plugging in bias reduced parameter estimates is
likely to be especially important in practice, as in the present setting where
the object is to achieve gains in pricing derivative securities where the for-
mulae are complicated functions of several fundamentals including unknown
parameters. It is a characteristic feature of the jackknife method that it
permits corrections to be implemented directly on the ultimate quantity of
interest. This is an important operational distinction between the jackknife
5The median functions may be obtained from the authors upon request.
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Figure 12: Densities of ML estimate, jackknife estimate (m=4) and MUE of
kappa based on 300 monthly observations.

and other bias reduction techniques like MUE which have more limited ap-
plicability in view of distributional and invariance property restrictions.

The reason jackknifing option prices directly works better than various
plug-in methods (including the plug-in jackknife) is because of the nonlinear
nature of pricing applications. It is already well known that nonlinearity can
cause plug-in methods to produce biased option price estimates even when
the parameter estimate is unbiased (Butler and Schachater, 1986). Our re-
sults demonstrate that bias effects can be much more significant when the
parameter estimate itself is biased and the pricing function is heavily non-
linear. The nonlinearity of the options pricing formula has other important
implications in finance. For instance, when comparing alternative option val-
uation models, Christoffersen and Jacobs (2002) found that a method can
often perform well out-of-sample in a dimension that corresponds to the loss
function applied in estimating or calibrating the forecasts, but not necessarily
well in other dimensions. These differences in option pricing performance are
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largely driven by the nonlinearities of option pricing functions. By avoiding
the use of plug-in operations entirely, appropriate use of the jackknife can be
expected to be more robust against the effects of nonlinearity.

4 Empirical Application
This empirical application compares the estimated κ, bond prices, and option
prices implied by the MLE with those of the jackknifed MLE in the case of
two short term interest rate series. Both datasets involve the Federal funds
rate and are available from the H-15 Federal Reserve Statistical Release.
The first is sampled monthly and has 576 observations covering the period
from July 1954 to June 2002. The second is sampled weekly and has 2112
observations from July 7, 1954 to December 21, 1994. The sample sizes are
chosen to be close to those used in the simulation study to help in calibrating
the results with the simulation. Since all yields are expressed in annualized
form, we have ∆ = 1/12 for the monthly data and ∆ = 1/52 for the weekly
data.

Time series plots of the two datasets are provided in Fig. 13. Table 11
shows the sample sizes, means, standard deviations, first seven autocorrela-
tions, and Phillips’ (1987) Z(t) unit root test statistic (with a fitted intercept
in the regression) for both series. The presence of a unit root is rejected at
the 10% level but cannot be rejected at the 5% level in both series. These
results, together with the form of the sample autocorrelogram, suggest that
both interest rate series are highly persistent. Hence, standard estimation
methods for diffusion equations can be expected to lead to significant bias in
estimating the correlation and mean reversion coefficients.

In this comparison, we focus on a three-year discount bond, a one-year
call option, and a half-year call option on a discount bond. In all cases the
initial value for the short term interest rate is set at 6%. For the discount
bond we choose a face value of $1. The call option on a three-year discount
bond has a face value of $100 and various strike prices so that the ratio of
the strike price to the current value of par takes each of the following values:
0.95, 1, 1.05. These ratios correspond to in-the-money, at-the-money, and
out-of-the-money situations, respectively. We first estimate the square-root
model by ML and jackknife methods and then obtain the ML estimated bond
and option prices as well as the jackknife estimates of the two prices.

Tables 12 and 13 report the results with m = 2 . For monthly data, the
jackknife estimate of κ is 0.0846 and is 16.9% smaller than the MLE; the
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Figure 13: Time series plots of monthly and weekly Fed funds rate

jackknife estimate of the bond price is 0.3% higher than its ML counterpart.
More importantly, the call option values differ substantially between the two
methods. The biggest percentage differences are for the out-of-the-money op-
tion. For example, for the half-year option, the price of the out-of-the-money
option implied by the jackknife method is 13% larger than that obtained from
the MLE. For weekly data, the jackknife estimate of κ is 0.2222 and is 37.4%
smaller than the MLE; and the jackknife estimate of the bond price is 0.02%
higher than its ML counterpart. For call option values, the differences are
even bigger than in the case of monthly data. For example, for the half-year
option, the price of the out-of-the-money option implied by the jackknife
method is 21% larger than that by the ML method. All these results are
consistent with the magnitudes and directions of the biases and differences
between the jackknife and ML estimates that were found in the simulation
studies.
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5 Conclusions and Implications
Bias in the estimation of the parameters of continuous time models by stan-
dard methods such as ML translates into bias in pricing bonds and bond
options. In cases where the parameters take on realistic values, we have
found that these biases can be substantial, particularly in the case of bond
options. The procedure we propose here for reducing the bias involves the
use of subsample estimates and a version of the jackknife. Simulations show
the procedure to be highly effective in a CIR model and to offer substantial
improvements in pricing bond options and marginal improvements in pricing
bonds over the usual ML approach. The greatest gains are in the substan-
tial bias reductions that the jackknife method provides. But use of multiple
subsamples in the construction of the jackknife enables reductions in both
bias and mean squared error, so the gains from bias reductions are not lost
in variance increases. An interesting feature of the proposed method is that
it can be used to reduce bias even when the diffusion of the model is mis-
specified, thereby offering an additional advantage over standard methods.
Our simulation findings indicate that the dynamic estimation bias arising
from the use of standard estimation methods can be even larger than the
specification bias arising from misspecifying the diffusion. Moreover, using
the jackknife in a model where the diffusion is misspecified turns out to be
less biased than using ML in the correctly specified model.

The present paper applies the approach to price discount bonds and op-
tions in the context of a square-root diffusion estimated by MLE. Use of this
specific model makes it possible to employ full ML and, importantly, closed
form options price formulae. So precise evaluation of the performance of the
jackknife procedure is possible in this set up. Nonetheless, the technique itself
is quite general and can be applied in many other contexts and models with
little modification. For example, the method extends to a broader range of
model specifications, including the CEV model (CKLS, 1992), extended one-
factor models (Hull and White, 1990), two-factor equilibrium models (Bren-
nan and Schwartz, 1979, 1982, and Longstaff and Schwartz, 1992, Langetieg,
1980, and Countadon, 1982), the semiparametric model (Aït-Sahalia 1996)
with parametric drift, models with stochastic volatility (Andersen and Lund,
1997) and diffusion models with jumps (Duffie, Pan and Singleton, 2000). A
particularly interesting class of term structure models is the multifactor affine
family that has been studied intensively in the recent literature for pricing
interest rate derivatives (e.g., Duffie and Kan, 1996, and Dai and Singleton,
2000). Because the drift is linear and parametric in this family, we expect
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the bias problem to be present in these models also and again our method
should be useful.

In more complicated models such as those just mentioned, the analytic
form of the likelihood function is often unavailable and so exact ML is in-
feasible. However, the proposed jackknife method can be used in connection
with other estimation methods. Examples include simulated GMM (Duffie
and Singleton, 1993), EMM (Gallant and Tauchen, 1996), indirect inference
(Gourieroux, Monfort and Renault, 1996), continuous time GMM (Hansen
and Scheikman, 1995), approximate ML (Aït-Sahalia, 2002), simulated ML
(Pedersen, 1995, Brandt and Santa-Clara, 2002, Durham and Gallant, 2002),
and methods via the empirical characteristic function (Singleton, 2001, and
Knight and Yu, 2002). Finally, many other interest-rate-contingent claims
can be treated in a similar way. Examples include coupon-bearing bonds,
caps, swaptions, captions, mortgage-back securities, and stock and currency
options with stochastic interest rates. Since all these interest-rate-contingent
claims are nonlinear functions of the system parameters, any bias in the
estimation of the system parameters will carry over to pricing the interest-
rate-contingent claims. The situation in these cases is analogous to the one
explored here and the proposed jackknife method can be used to reduce the
bias in pricing the contingent claims.

The term structure model is estimated using time series information only
in the present paper. Some recent term structure literature make use of
both time series and cross sectional information (e.g., Babbs and Nowman,
1999, Ball and Torous, 1996, Duffee and Stanton, 2002). As shown in Duffee
and Stanton (2002), even when cross sectional information is used, the finite
sample bias problem remains substantial. Furthermore, in a recent study of
bias in dynamic panel models, Phillips and Sul (2002) found that the finite
sample autoregressive bias was in fact exacerbated in panel estimation with
fitted intercepts. The need for bias correction procedures therefore remains
in dynamic panel data models and the jackknife method should continue to
be useful in such cases. Appropriate extensions will be considered in later
work.
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Table 1. Monte Carlo study comparing mean, standard deviation, RMSE
of ML and jackknife estimates of κ, bond prices and option prices when the
number of monthly observations is 300

ML Estimates Jackknife Estimates
κ Bond Option κ Bond Option

True Value 0.1 0.8503 2.3921 0.1 0.8503 2.3921
Mean 0.2762 0.8381 1.4071 0.0988 0.8460 1.8186
Std Dev 0.1853 0.0125 0.8959 0.2606 0.0163 1.2555
RMSE 0.2557 0.0174 1.3315 0.2606 0.0169 1.3803
True Value 0.15 0.8458 1.9955 0.15 0.8458 1.9955
Mean 0.3267 0.8349 1.1468 0.1342 0.8426 1.5043
Std Dev 0.2007 0.0118 0.8182 0.2736 0.0157 1.1681
RMSE 0.2674 0.0161 1.1789 0.2740 0.0160 1.2672
True Value 0.2 0.8418 1.6315 0.2 0.8418 1.6315
Mean 0.3723 0.8321 0.9041 0.1891 0.8389 1.1808
Std Dev 0.2035 0.0110 0.7466 0.2800 0.0147 1.0724
RMSE 0.2666 0.0147 1.0424 0.2802 0.0150 1.1633
True Value 0.25 0.8381 1.2918 0.25 0.8381 1.2918
Mean 0.4156 0.8360 0.7170 0.2313 0.8360 0.9425
Std Dev 0.2151 0.0140 0.6777 0.2915 0.0140 0.9943
RMSE 0.2714 0.0141 0.8886 0.2921 0.0141 1.0539
True Value 0.3 0.8348 0.9735 0.3 0.8348 0.9735
Mean 0.4653 0.8273 0.5550 0.2795 0.8330 0.7126
Std Dev 0.2265 0.0100 0.5954 0.2909 0.0133 0.8729
RMSE 0.2804 0.0125 0.7277 0.2916 0.0134 0.9111
True Value 0.4 0.8290 0.4370 0.4 0.8290 0.4370
Mean 0.5728 0.8227 0.2953 0.3816 0.8273 0.3507
Std Dev 0.2441 0.0092 0.4314 0.3082 0.0120 0.6340
RMSE 0.2991 0.0111 0.4540 0.3087 0.0121 0.6399
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Table 2. Monte Carlo study comparing mean, standard deviation, RMSE
of ML and jackknife estimates of κ, bond prices and option prices when the
number of monthly observations is 600

ML Estimates Jackknife Estimates
κ Bond Option κ Bond Option

True Value 0.1 0.8503 2.3921 0.1 0.8503 2.3921
Mean 0.1845 0.8437 1.8085 0.0933 0.8492 2.2068
Std Dev 0.1013 0.0080 0.6920 0.1397 0.0104 0.9144
RMSE 0.1319 0.0103 0.9052 0.1399 0.0105 0.9330
True Value 0.15 0.8458 1.9955 0.15 0.8458 1.9955
Mean 0.2336 0.8400 1.4765 0.1462 0.8447 1.7858
Std Dev 0.1092 0.0078 0.6700 0.1451 0.0100 0.8744
RMSE 0.1375 0.0098 0.8475 0.1452 0.0101 0.8992
True Value 0.2 0.8418 1.6315 0.2 0.8418 1.6315
Mean 0.2842 0.8364 1.1649 0.1994 0.8405 1.4069
Std Dev 0.1210 0.0078 0.6467 0.1564 0.0098 0.8547
RMSE 0.1474 0.0095 0.7974 0.1564 0.0099 0.8837
True Value 0.25 0.8381 1.2918 0.25 0.8381 1.2918
Mean 0.3314 0.8333 0.9026 0.2479 0.8360 1.0861
Std Dev 0.1275 0.0076 0.5977 0.1586 0.0140 0.7950
RMSE 0.1513 0.0090 0.7133 0.1587 0.0141 0.8212
True Value 0.3 0.8348 0.9735 0.3 0.8348 0.9735
Mean 0.3810 0.8306 0.6825 0.2933 0.8340 0.8172
Std Dev 0.1358 0.0072 0.5268 0.1690 0.0089 0.7039
RMSE 0.1582 0.0084 0.6018 0.1697 0.0090 0.7210
True Value 0.4 0.8290 0.4370 0.4 0.8290 0.4370
Mean 0.4819 0.8256 0.3399 0.3957 0.8282 0.3755
Std Dev 0.1485 0.0066 0.3743 0.1774 0.0079 0.4981
RMSE 0.1696 0.0075 0.3867 0.1775 0.0080 0.5019
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Table 3. Monte Carlo study comparing mean, standard deviation, RMSE
of ML and jackknife estimates of κ, bond prices and option prices when the
number of weekly observations is 1000

ML Estimates Jackknife Estimates
κ Bond Option κ Bond Option

True Value 0.1 0.8503 2.3921 0.1 0.8503 2.3921
Mean 0.3270 0.8357 1.2827 0.0733 0.8452 1.7201
Std Dev 0.2371 0.0144 0.9322 0.3463 0.0187 1.3456
RMSE 0.3282 0.0205 1.4491 0.3473 0.0194 1.5041
True Value 0.15 0.8458 1.9955 0.15 0.8458 1.9955
Mean 0.3827 0.8325 1.0330 0.1403 0.8408 1.3913
Std Dev 0.2494 0.0137 0.8544 0.3429 0.0181 1.2346
RMSE 0.3411 0.0191 1.2870 0.3431 0.0188 1.3745
True Value 0.2 0.8418 1.6315 0.2 0.8418 1.6315
Mean 0.4368 0.8295 0.7995 0.1972 0.8371 1.0707
Std Dev 0.2608 0.0128 0.7801 0.3623 0.0174 1.1444
RMSE 0.3522 0.0178 1.1405 0.3623 0.0180 1.2744
True Value 0.25 0.8381 1.2918 0.25 0.8381 1.2918
Mean 0.4784 0.8270 0.6261 0.2377 0.8339 0.8288
Std Dev 0.2599 0.0123 0.6913 0.3571 0.0167 1.0333
RMSE 0.3460 0.0166 0.9597 0.3573 0.0172 1.1323
True Value 0.3 0.8348 0.9735 0.3 0.8348 0.9735
Mean 0.5301 0.8249 0.4924 0.2959 0.8310 0.6456
Std Dev 0.2822 0.0116 0.5979 0.3818 0.0158 0.8997
RMSE 0.3641 0.0152 0.7674 0.3819 0.0163 0.9576
True Value 0.4 0.8290 0.4370 0.4 0.8290 0.4370
Mean 0.6175 0.8213 0.2742 0.3809 0.8264 0.3381
Std Dev 0.2945 0.0101 0.4265 0.3835 0.0134 0.6380
RMSE 0.3661 0.0127 0.4565 0.3840 0.0136 0.6457
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Table 4. Monte Carlo study comparing mean, standard deviation, RMSE
of ML and jackknife estimates of κ, bond prices and option prices when the
number of weekly observations is 2000

ML Estimates Jackknife Estimates
κ Bond Option κ Bond Option

True Value 0.1 0.8503 2.3921 0.1 0.8503 2.3921
Mean 0.2114 0.8420 1.6784 0.0940 0.8484 2.0790
Std Dev 0.1298 0.0098 0.7911 0.1752 0.0123 1.0560
RMSE 0.1711 0.0128 1.0655 0.1753 0.0125 1.1014
True Value 0.15 0.8458 1.9955 0.15 0.8458 1.9955
Mean 0.2610 0.8384 1.3535 0.1461 0.8439 1.6787
Std Dev 0.1333 0.0091 0.7441 0.1768 0.0114 1.0022
RMSE 0.1735 0.0118 0.9827 0.1769 0.0116 1.0510
True Value 0.2 0.8418 1.6315 0.2 0.8418 1.6315
Mean 0.3073 0.8352 1.0743 0.1942 0.8401 1.3340
Std Dev 0.1386 0.0086 0.6841 0.1793 0.0109 0.9303
RMSE 0.1753 0.0108 0.8823 0.1794 0.0110 0.9768
True Value 0.25 0.8381 1.2918 0.25 0.8381 1.2918
Mean 0.3545 0.8320 0.8285 0.2370 0.8367 1.0259
Std Dev 0.1511 0.0086 0.6267 0.1967 0.0109 0.8617
RMSE 0.1837 0.0105 0.7794 0.1972 0.0110 0.9018
True Value 0.3 0.8348 0.9735 0.3 0.8348 0.9735
Mean 0.4030 0.8294 0.6292 0.2889 0.8335 0.7691
Std Dev 0.1571 0.0081 0.5380 0.1992 0.0103 0.7439
RMSE 0.1878 0.0097 0.6388 0.1995 0.0103 0.7715
True Value 0.4 0.8290 0.4370 0.4 0.8290 0.4370
Mean 0.5004 0.8248 0.3283 0.3854 0.8281 0.3761
Std Dev 0.1748 0.0075 0.3940 0.2103 0.0093 0.5421
RMSE 0.2016 0.0086 0.4087 0.2109 0.0093 0.5455
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Table 5. Monte Carlo study comparing mean, standard deviation, RMSE
of ML and jackknife estimates of κ, bond prices and option prices when the
price of risk is different from zero

λ Parameter κ Bond Price Option Price
−0.05 True Value 0.1 0.8407 1.4999

ML Mean 0.2762 0.8294 0.7409
Std Dev 0.1853 0.0119 0.6454
RMSE 0.2557 0.0164 0.9963

Jackknife Mean 0.0988 0.8366 0.9742
Std Dev 0.2606 0.0154 0.9199
RMSE 0.2606 0.0159 1.0595

−0.07 True Value 0.1 0.8367 1.0963
ML Mean 0.2762 0.8258 0.5050

Std Dev 0.1853 0.0117 0.5079
RMSE 0.2557 0.0160 0.7795

Jackknife Mean 0.0988 0.8326 0.6638
Std Dev 0.2606 0.0150 0.7247
RMSE 0.2606 0.0155 0.8439

−0.09 True Value 0.1 0.8325 0.7044
ML Mean 0.2762 0.8220 0.3095

Std Dev 0.1853 0.0114 0.3626
RMSE 0.2557 0.0155 0.5362

Jackknife Mean 0.0988 0.8285 0.4030
Std Dev 0.2606 0.0145 0.5133
RMSE 0.2606 0.0151 0.5953
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Table 6. Monte Carlo estimates of mean, standard deviation, RMSE of ML
and jackknife estimates of κ, bond prices and option prices with m = 4 when
the true value of κ = 0.1.

Parameter κ Bond Price Option Price
True Value 0.1 0.8503 2.3921

300 ML Mean 0.2762 0.8381 1.4071
Monthly Std Dev 0.1853 0.0125 0.8959
Obs RMSE 0.2557 0.0174 1.3315

Jackknife Mean 0.0845 0.8443 1.6636
Std Dev 0.2179 0.0138 1.0663
RMSE 0.2184 0.0151 1.2914

600 ML Mean 0.1845 0.8437 1.8085
Monthly Std Dev 0.1013 0.0080 0.6920
Obs RMSE 0.1319 0.0103 0.9052

Jackknife Mean 0.0901 0.8483 2.0831
Std Dev 0.1156 0.0089 0.8003
RMSE 0.1160 0.0091 0.8579

1000 ML Mean 0.3270 0.8357 1.2827
Weekly Std Dev 0.2371 0.0144 0.9322
Obs RMSE 0.3282 0.0205 1.4491

Jackknife Mean 0.0786 0.8424 1.5315
Std Dev 0.2796 0.0160 1.1201
RMSE 0.2804 0.0179 1.4126

2000 ML Mean 0.2114 0.8420 1.6784
Weekly Std Dev 0.1298 0.0098 0.7911
Obs RMSE 0.1711 0.0128 1.0655

Jackknife Mean 0.0905 0.8473 1.9556
Std Dev 0.1511 0.0109 0.9265
RMSE 0.1514 0.0113 1.0242
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Table 7. Monte Carlo estimates of mean, standard deviation, RMSE of
ML and jackknife estimates of κ, bond price and option price for the (true)
Vasicek model using a (misspecified) fitted CIR model. “Strike” is the ratio
of the strike price to the present value of the principal and the sample size
is 600.

Parameter κ Bond Price Option Price
Strike True Value 0.1 0.8371 6.1961
0.95 ML of Mean 0.1797 0.8226 4.8922

CIR Std Dev 0.0940 0.0188 1.6754
RMSE 0.1232 0.0238 2.1230

Jackknife Mean 0.0892 0.8348 5.8313
(m=2) Std Dev 0.1369 0.0250 2.2311

RMSE 0.1373 0.0251 2.2607
Jackknife Mean 0.0855 0.8328 5.5596
(m=4) Std Dev 0.1106 0.0208 1.9211

RMSE 0.1116 0.0212 2.0238
ML of Mean 0.1890 0.8217 4.8858
Vasicek Std Dev 0.1026 0.0202 1.6782

RMSE 0.1358 0.0255 2.1291
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Table 8. Monte Carlo estimates of mean, standard deviation, RMSE of
ML and jackknife estimates of κ, bond price and option price for the (true)
Vasicek model using a (misspecified) fitted CIR model. “Strike” is the ratio
of the strike price to the present value of the principal and the sample size
is 600.

Parameter κ Bond Price Option Price
Strike True Value 0.1 0.8371 2.2974
1 ML of Mean 0.1796 0.8226 1.3780

CIR Std Dev 0.0940 0.0188 1.0482
RMSE 0.1232 0.0237 1.3901

Jackknife Mean 0.0889 0.8348 1.7474
(m=2) Std Dev 0.1368 0.0250 1.4649

RMSE 0.1373 0.0251 1.5625
Jackknife Mean 0.0856 0.8328 1.6071
(m=4) Std Dev 0.1105 0.0208 1.2325

RMSE 0.1115 0.0212 1.4095
ML of Mean 0.1890 0.8217 1.4668
Vasicek Std Dev 0.1026 0.0202 1.0300

RMSE 0.1358 0.0255 1.3231
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Table 9. Monte Carlo estimates of mean, standard deviation, RMSE of
ML and jackknife estimates of κ, bond price and option price for the (true)
Vasicek model using a (misspecified) fitted CIR model. “Strike” is the ratio
of the strike price to the present value of the principal and the sample size
is 600.

Parameter κ Bond Price Option Price
Strike True Value 0.1 0.8371 0.2217
1.05 ML of Mean 0.1797 0.8226 0.0939

CIR Std Dev 0.0940 0.0188 0.1643
RMSE 0.1232 0.0237 0.2081

Jackknife Mean 0.0894 0.8348 0.1159
(m=2) Std Dev 0.1370 0.0250 0.2289

RMSE 0.1374 0.0251 0.2522
Jackknife Mean 0.0853 0.8328 0.1101
(m=4) Std Dev 0.1106 0.0208 0.1973

RMSE 0.1111 0.0212 0.2267
ML of Mean 0.1890 0.8217 0.1326
Vasicek Std Dev 0.1026 0.0202 0.1877

RMSE 0.1358 0.0255 0.2078
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Table 10. Monte Carlo estimates of mean, standard deviation, RMSE of ML
and jackknife estimates of κ, bond prices and option prices of ML, jackknife
with m = 4 and MUE.

Parameter κ Bond Price Option Price
True Value 0.1 0.8503 2.3921

300 ML Mean 0.2762 0.8381 1.4071
Monthly Std Dev 0.1853 0.0125 0.8959
Obs RMSE 0.2557 0.0174 1.3315

Jackknife Mean 0.0988 0.8460 1.8186
(m = 2) Std Dev 0.2606 0.0163 1.2555

RMSE 0.2606 0.0169 1.3803
Jackknife Mean 0.0845 0.8443 1.6636
(m = 4) Std Dev 0.2179 0.0138 1.0663

RMSE 0.2184 0.0151 1.2914
MUE Mean 0.0916 0.8554 2.8015

Std Dev 0.1953 0.0168 1.4050
RMSE 0.1954 0.0173 1.4634

Jackknife Mean 0.0988 0.8584 2.8825
Plug-in Std Dev 0.2606 0.0564 2.1560
(m = 2) RMSE 0.2606 0.0570 2.2110
Jackknife Mean 0.0845 0.8562 2.9417
Plug-in Std Dev 0.2179 0.0223 1.7644
(m = 4) RMSE 0.2184 0.0231 1.8480
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Table 11. Summary statistics and unit root tests for monthly Fed fund rate
from July 1954 to June 2002 and weekly Fed fund rate from July 7, 1954 to
December 21, 1994.

Data Frequency Monthly Weekly
Number of Observations 576 2112
Mean 0.0600 0.0617
Standard Deviation 0.0333 0.0357
Autocorrelation ρ1 0.9815 0.9943
Autocorrelation ρ2 0.9521 0.9897
Autocorrelation ρ3 0.9226 0.9839
Autocorrelation ρ4 0.8954 0.9789
Autocorrelation ρ5 0.8721 0.9719
Autocorrelation ρ6 0.8515 0.9657
Autocorrelation ρ7 0.8330 0.9586
Z(t) test -2.5925 -2.6386
5% critical value -2.8669 -2.8634
10% critical value -2.5696 -2.5678
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Table 12. Empirical estimates for monthly Fed fund rate from July 1954 to
June 2002.

Option Price
Option

Method κ Bond Expiration Exercise PriceCurrent Val of ParPrice (t:years)
.95 1 1.05

ML 0.1018 0.8408 0.5 7.1902 3.6398 1.1318
Jackknife 0.0846 0.8434 7.4402 3.8677 1.2766

ML 1 9.3080 5.4600 2.1340
Jackknife 9.5386 5.6842 2.3148

Table 13. Empirical estimates for weekly Fed fund rate from July 7, 1954
to December 21, 1994.

Option Price
Option

Method κ Bond Expiration Exercise PriceCurrent Val of ParPrice (t:years)
.95 1 1.05

ML 0.3550 0.8386 0.5 7.0425 3.5520 1.0502
Jackknife 0.2222 0.8388 7.1613 3.7538 1.2696

ML 1 9.1322 5.3706 2.1700
Jackknife 9.2021 5.4934 2.3281
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