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Abstract

This paper develops a model of social networks di®erent from those presented in the recent
literature. In contrast to existing models, the level of investment in link formation is a decision
variable rather than being exogenous, and links form stochastically rather than deterministi-
cally, with the probability depending on the noncooperative investment choices of both parties.
Since network structure is then stochastic rather than deterministic, the actual pattern of links
cannot be speci¯ed, as in previous models, with the analysis focusing instead on which links
are most likely to form. The analysis is couched in the context of friendship formation.
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1. Introduction

Building upon a long tradition in sociology, economists have recently turned their attention

to the analysis of social networks. Such networks play a crucial role in human interaction.

They facilitate the dispersion of economic information, such as the existence of job openings

at particular ¯rms, and they provide transmission links for cultural information, such as style

trends and opinions on the latest books and movies. In addition, interpersonal networks provide

pure enjoyment through individual friendship bonds and broader social interaction at parties

and other group gatherings.

Economic analysis of social networks begins with a set of assumptions on the process by

which interpersonal links in a network are formed. Generally, link formation requires resource

investment on the part of the individuals creating the link. Then, the analysis must specify

the gains from network linkages, which include the bene¯ts from direct connections to other

individuals as well the gains from indirect connections via a sequence of links. With the costs

and bene¯ts of link formation speci¯ed, the next step is to analyze the equilibrium structure of

the network, characterizing the pattern of links. The question is: who is connected to whom?

The ¯nal step is to compare the equilibrium network with the one that is socially optimal.

In the recent economic literature, two distinct approaches to the analysis of social networks

stand out. The ¯rst is developed by Jackson and Wolinsky (1996) and extended in Jackson

(2001) and Jackson and Watts (2002a,b). In this model, both individuals must incur a cost in

order for a link between them to be formed. If one individual withholds the required investment,

the link is severed. This setup is referred to as a \non-directed" network. By contrast, Bala

and Goyal (2000a) analyze a \directed" network, where an individual can create a link with

another agent, enjoying the resulting bene¯ts, by making a one-sided investment. For bene¯ts

to also °ow in the opposite direction, the other individual must incur a corresponding cost.
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While Dutta and Jackson (2000) provide further analysis of this model, Bala and Goyal (2000b)

generalize the setup so that a one-sided investment facilitates a bi-directional °ow of bene¯ts.

While link formation di®ers under these two approaches, network bene¯ts have a similar

characterization. In one version of the Jackson-Wolinsky model, the bene¯ts of linkages atten-

tuate with distance, with the gain from association with an individual L links distant reduced

by the factor ±L, where ± · 1. Under the Bala-Goyal approach, bene¯ts depend simply on the

total number of individuals accessed through direct or indirect linkages, an outcome that can

be generated by setting ± = 1 in the Jackson-Wolinsky model.

The analysis of Jackson and Wolinsky shows that the equilibrium network is empty if

linkage costs are high, is a star network (with all individuals connected to a single central

agent) when linkage costs are moderate, and is a complete network (with everyone linked to

everyone else) when costs are low. In addition, they show that the equilibrium network may

not be e±cient. In Bala and Goyal's model, the e±cient network is a wheel, and they show that

the equilibrium converges to this form under a dynamic process. For an excellent overview of

all of this analysis, as well as references to additional papers, see Dutta and Jackson (2002).1

The present paper adds to this emerging literature by proposing a di®erent approach to

social-network formation. As in the Jackson-Wolinsky model, formation of a link between

two individuals requires two-sided investments in the present framework. But in contrast to

their approach, where the required investments are exogenously speci¯ed and link formation

is deterministic, the level of individual investment is a decision variable in the present model

and link formation is stochastic. Thus, the probability that a link is formed between two

individuals depends on the \e®ort" both agents devote to creating the link. These e®ort levels

are chosen noncooperatively via Nash behavior.

Under this approach, the question of network structure takes a di®erent form than in

previous work. Since links are stochastic rather than deterministic, investigating the structure

of a network involves asking which links are most likely to form, rather than characterizing the

actual pattern of links.

Moreover, further assumptions on the technology of link formation militate against the

emergence of some network patterns that are familiar from deterministic models. In par-
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ticular, because of decreasing returns to e®ort in forming links and the increasing marginal

costs of exerting it, individuals will spread their e®ort over many di®erent potential partners.

Thus, unless ex ante asymmetries are added to the model, e®ort in link formation will be

exerted equally across all potential partners, ruling out constructs like the star network from

deterministic models.

For the stochastic analog to such a network to emerge, with some links more likely to

form than others, ex ante asymmetries must be present. For example, a personally magnetic

individual may elicit high e®ort levels from potential partners. Links with this individual may

then be more likely to form than links with non-attractive agents.

Another possible source of asymmetry relates to a further key feature of the model. In

particular, the analysis assumes that, for a link to be created between two individuals, they

must be \acquainted" ahead of time, a relationship that involves a low level of contact falling

short of an actual linkage. Thus, if individuals have di®erent sets of acquaintances within

the universe of all agents, e®ort levels directed toward forming links may not be uniform. By

contrast, if everyone is acquainted with everyone else, then all possible links are feasible and

symmetric e®ort levels will emerge.

A ¯nal feature of the model concerns the bene¯ts from direct vs. indirect linkages. As in

the Jackson-Wolinsky model, indirect links are worth less than direct linkages. But, in contrast

to their assumption of a smooth bene¯t decay as link distance increases, the present framework

assumes that bene¯ts are zero when more than two links are involved. Thus, in the symmetric

case, an individual i receives a given bene¯t from a direct linkage to another agent j, and a

smaller bene¯t from being connected indirectly to those individuals with direct links to agent

j. However, i receives no bene¯t from those agents linked indirectly to j .

To motivate the analysis, it is helpful to think of the model as a portrayal of friendship

networks. For two individuals to form a friendship, they must be acquainted ahead of time,

perhaps as a result of working at the same ¯rm. Each individual must then exert e®ort,

which could involve inviting the other person to dinner at his house, arranging other types of

social outings, or buying gifts on special occasions. Friendships form most easily when e®ort

is reciprocated, although bonds may form and be maintained with unbalanced e®ort levels on
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the two sides. E®ort creates \direct" friendships, and the combination of such links leads to

\indirect" friendships. Concretely, a particular individual may invite all of his direct friends

to a dinner party at his house, and through socializing with one another, these people enjoy

indirect friendships. Because this type of dinner-party interaction is not as intimate as the

one-on-one contact between direct friends, it yields lower bene¯ts. For convenience, the model

will be developed using this friendship terminology, recognizing that the analysis applies more

generally.

Section 2 of the paper presents the general version of the model and then analyzes the

fully symmetric case. In this case, each individual is acquainted with the entire universe of

agents, and everyone is equally attractive as a friend. This section establishes an important

e±ciency result, which is natural given the structure of the model. In particular, because

each individual's e®ort generates externalities, chosen e®ort levels are uniformly too low. One

externality arises because, in choosing his e®ort levels, each individual ignores the reciprocal

bene¯ts enjoyed by his direct and indirect friends, and a second type of externality is identi¯ed

in the analysis. Thus, people do not exert enough e®ort in forming and maintaining friendships.

Section 3 analyzes the e®ect on the equilibrium network structure of several types of asym-

metries, focusing on how asymmetries a®ect e®ort levels and the probabilities of link formation.

The analysis considers the case where a single individual (a \magnetic agent") o®ers greater

friendship bene¯ts than anyone else, and the case where one agent \knows everyone," being ac-

quainted with the entire universe of agents (the remaining individuals are each acquainted with

only a portion of the universe). The analysis is carried out under several alternate assumptions

regarding the e®ect of e®ort levels on the friendship probability. Under one assumption, this

probability depends on the sum of the two e®ort levels, while under an alternate speci¯cation,

the minimum of the e®ort levels is what matters.

Section 4 recasts the model in two-period setting, where indirect friendships formed in the

¯rst period can be upgraded to direct friendships by further second-period e®ort. Section 5

o®ers conclusions.
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2. The General Model

2.1. The setup

Let the universe of individuals be comprised of n agents. Moreover, let a(i) denote the set

of agents in this universe with whom individual i is acquainted, so that

a(i) ´ fjj i and j are acquaintedg: (1)

Furthermore, let eij denote the e®ort expended by agent i in attempting to establish a friend-

ship link with j 2 a(i). The probability that an ij friendship is formed is then given by

P (eij ; eji): (2)

The function P , which satis¯es 0 · P < 1, is increasing in both arguments, and the second

partial derivatives @2P=@e2
ij and @2P=@e2

ji are both negative. In addition, P is a symmetric

function, with P (eij ; eji) = P (eji; eij). Note while e®ort levels are speci¯c to individuals, the P

function itself does not depend on the identities of individuals attempting to form a friendship

link.

This probabilistic approach can be justi¯ed by imagining that, conditional on e®ort levels,

friendship formation depends on the realization of a random error term. In particular, suppose

that a friendship between i and j is established when F (eij ; eji)+² > 0, where F is an increasing

function and ² is an error term that is identically distributed across all potential pairs (i; j)

of agents, as well as independent between di®erent pairs. Then, the friendship probability is

Prob[² > ¡F (eij; eji)] ´ P (eij ; eji).

For agent i, the cost of the e®ort exerted to establish an ij friendship is C(eij), where C is

increasing and strictly convex and where C(0) = 0. Consequently, the cost of i's e®ort across

all possible friendship links is
P

j2a(i)C(eij). Several aspects of this cost formulation should

be noted. First, e®ort is not chosen subject to any kind of resource constraint. Instead, the

choice of e®ort is constrained only by the increasing cost of exerting it. While maintaining

this orientiation, an alternate approach would be to de¯ne e®ort e in such a way that its cost
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is simply e itself (implying that C is the identity function). While this approach is sensible,

it is unworkable under a key special case considered below, where the P function is assumed

to depend on the sum of the e®ort levels, being written P (eij + eji) (see below for a fuller

explanation).

A di®erent alternate approach would be to write the total cost of e®ort as C(
P

k2a(i) eik).

However, this approach does not re°ect increasing costs at the individual link level. Intuitively,

the current approach can be justi¯ed by imagining that e®ort comes in cardinal units, and that

it is increasingly costly to generate extra units on a particular link as the e®ort level rises. For

example, adding extra units of e®ort in cultivating a particular friend may require increasingly

lavish dinner parties, implying C 00 > 0.

Finally, let uij denote agent i's bene¯t from being a direct friend of j , and let vij < uij

denote i's bene¯t from indirect friendship with j. As explained above, indirect friendship

means that i is a direct friend of an individual k who in turn is a direct friend of j. A crucial

assumption in the analysis is that these friendship bene¯ts are cumulative. In other words,

individual i can be both a direct and an indirect friend of j , enjoying bene¯ts from both

associations. Concretely, i can enjoy direct-friendship bene¯ts from inviting j to dinner at his

own house, but he also derives enjoyment from seeing j at a dinner party at k's house, although

the latter bene¯t is lower. Moreover, each time that i sees j at parties held by di®erent hosts,

indirect-friendship bene¯ts arise.

An alternative approach would be to assume that the bene¯ts of friendship are not cumu-

lative, re°ecting the view that bene¯ts arise purely from knowing another individual, not from

the amount of time spent together. Under this approach, once i establishes an indirect friend-

ship with j through a third party k, another indirect-friendship link through agent l would

add nothing to bene¯ts. Moreover, a direct friendship would supercede indirect friendships,

with i's total bene¯t from knowing j equal to uij regardless of the extent of indirect contacts

between the two individuals. While some progress can be made in analyzing this alternate

model, few results can be derived.

2.2. Equilibrium e®ort choices

With the above background, expected friendship bene¯ts net of the costs of e®ort can be
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computed for individual i. The relevant expression is

Bi =
X

j2a(i)

P (eij ; eji)

2
4uij +

X

h2a(j);h6=i
vihP (ejh; ehj)

3
5 ¡

X

j2a(i)

C(eij): (3)

The uijP (eij ; eji) term in (3) gives agent i's expected bene¯ts from formation of a direct

friendship with an acquaintance j , and the last summation gives the cost of e®ort. The mid-

dle summation, when combined with P (eij ; eji), captures the expected bene¯ts from indirect

friendships formed via agent j. To understand this term, note that P (eih; ehi)P (ehj ; ejh) gives

the probability that i forms an indirect friendship with h through agent j. For such a link to

arise, i must be a direct friend of j and j must be a direct friend of h. Multiplying by vih thus

gives expected bene¯ts, and summing across all individuals that are acquaintances of j gives

total expected bene¯ts of indirect friendships formed via j.

Note that use of the multiplicative probability expression above to compute the probability

of an indirect friendship follows from the previous independence assumption on the error term

². This assumption means that agent h's formation of direct friendships with i and j represent

independent events in a probabilitistic sense, so that their joint probability is given by the

product expression.

Individual i chooses his e®ort levels taking the e®ort choices of others as parametric. The

¯rst-order condition for choice of eil, where l 2 a(i), is given by

@Bi
@eil

=
@P (eil; eli)

@eil

2
4uil +

X

h2a(l);h6=i
vihP (elh; ehl)

3
5 ¡ C 0(eil) = 0: (4)

The portion of (4) involving uil gives the increase in the expected bene¯t from a direct friend-

ship with l as eil rises, and the last term gives the marginal cost of the extra e®ort. An increase

in eil also raises the likelihood of all indirect friendships that pass through l by increasing the

probability of an il link. The summation in (4), when multiplied by the P derivative, cumulates

these incremental bene¯ts across the feasible links through l. Thus, the ¯rst-order condition

balances the gains from a greater likelihood of both direct and indirect friendships against the
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cost of additional e®ort. Finally, it is easily seen that the second-order condition for choice of

eil is satis¯ed given the maintained assumptions on the P and C functions.

Each individual chooses e®ort levels for the links involving his various acquaintances, sat-

isfying (4) in each case. The overall equilibrium is then found by simultaneous solution of

the resulting large collection of ¯rst-order conditions (note that each individual contributes his

own set of equations). To gain further insight, it is useful to simplify matters by considering

the fully symmetric case, where friendship bene¯ts are uniform across individuals and where

each person is acquainted with everyone else. In this case, uij ´ u and vij ´ v hold for all i

and j. Since e®ort choices will be symmetric across individuals in this situation, all the e's in

(4) are identical, and the equation can be used to solve for the common value. To write the

equation in a compact form, let P 1(e; e) denote the partial derivative of P with respect to its

¯rst argument. Then (4) reduces to

P 1(e; e)[u + (n¡ 2)vP (e; e)] = C 0(e): (5)

Using this condition, several quick comparative calculations can be carried out. Letting

©(e) ´ [P 1(u + (n¡ 2)vP ) ¡ C0]; (6)

where ©0(e) < 0, it follows that @e=@n = ¡vPP 1=©0 > 0, with the e®ects of u and v on e also

being positive. Thus, because a larger universe of agents o®ers more possible indirect-friendship

links following formation of a direct friendship, the chosen e®ort level rises. Similarly, higher

friendship bene¯ts, either direct or indirect, raise e. Note that the condition ©0(e) < 0, used

above, is required for local stability of the equilibrium.

As a small extension, consider the e®ects of population turnover. If people move away in

any period with a probability q, then established friendships are severed. Under this modi¯-

cation, the P function must be multiplied by (1¡ q), so that (5) becomes P 1[u(1¡ q) + (n¡
2)v(1¡q)2P ] = C0. Then, it is easily seen that @e=@q < 0, so that greater population turnover

(a higher q) makes people less willing to devote e®ort to friendship formation, a natural result.
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2.3. The social optimum

To compute the socially optimal e®ort levels, observe that the social welfare function is

given simply by W ´Pn
i=1Bi. Referring to (3), the ¯rst-order condition for optimal choice of

eil is then

@W
@eil

=
@P (eil; eli)

@eil

2
4(uil + uli) +

X

h2a(l);h6=i
(vih + vhi)P (elh; ehl)

3
5 +

@P (eil; eli)
@eil

2
4 X

k2a(i);k6=l
(vlk + vkl)P (elk; ekl)

3
5 ¡ C 0(eil) = 0: (7)

Satisfaction of the second-order condition for the social optimality problem, which requires

that the Hessian matrix of W is negative de¯nite, is not ensured and must be assumed.

To understand (7), start by considering the ¯rst line, which di®ers from the expression

in (4) by the inclusion of the uli and vhi terms. The ¯rst of these terms gives the bene¯t

enjoyed by individual l from a direct friendship with i. While agent i does not consider this

bene¯t in choosing eil, the planner recognizes that greater e®ort by i raises expected direct-

friendship bene¯ts for both i and l. Similarly, while an increase in eil also raises the likelihood of

establishing indirect friendships with individuals h who are acquainted with l, agent i considers

only his own bene¯t vih from such links, ignoring the reciprocal bene¯ts vhi enjoyed by the

other individuals. The planner, on the other hand, takes both bene¯ts into account.

While the marginal cost term is seen again in the second line of (7), the ¯rst expression

captures an e®ect that does not appear at all in the equilibrium condition (4). This e®ect

arises because greater e®ort by i in establishing a link with l raises the chances that indirect

friendships with l will be formed by other individuals k through agent i. The resulting bene¯ts,

which accrue to both l and k, are counted in this ¯rst expression.

Thus, two kinds of externalities are not taken into account in individual decision making.

First, in choosing e®ort levels, an individual ignores the reciprocal bene¯ts enjoyed by agents

who become his direct or indirect friends. Second, he ignores his role in facilitating indirect

friendships for other people, which make use of the direct links that he establishes.
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The presence of these externalities naturally suggests that equilibrium e®ort levels will be

too low. To establish this point formally, it is helpful to consider the symmetric case, where

both the equilibrium and the optimum are easily characterized. Under symmetry, (7) reduces

to

2P 1(e¤; e¤)[u + 2(n¡ 2)vP (e¤; e¤)] = C0(e¤); (8)

where e¤ denotes the common, socially optimal e®ort level. Note that, compared to (5), a factor

of 2 appears twice in (8). The outer 2 captures the planner's focus on the two-way bene¯ts

that occur in both direct and indirect friendships, which are not fully recognized in individual

decisions. The inner factor of 2 captures indirect-friendship bene¯ts for other individuals that

°ow through the direct link established by a given agent (as re°ected in the second line of (7)).

The following result provides a comparison the equilibrium and socially optimal e®ort

levels:

Proposition 1. If the equilibrium in the symmetric case is unique and stable, then the
common equilibrium e®ort level is smaller than the socially optimal level, with e < e¤.
Thus, people do not expend enough e®ort in forming friendship links.

This and all subsequent results are proved in the appendix.

3. Equilibrium Network Structure under Asymmetric Conditions

In the real world, the pattern of interaction in social networks often exhibits striking

asymmetries, with certain individuals linked to many other agents while other individuals are

poorly connected. To explore this phenomenon in the present model, the analysis now considers

the e®ect of asymmetric conditions on equilibrium e®ort choices and on the resulting structure

of friendship networks, as re°ected in link probabilities.

Two related types of asymmetries are considered. In the ¯rst case, one individual is

a \magnetic agent," o®ering greater direct and indirect friendship bene¯ts than the other

individuals, who remain symmetric. In the second case, one individual \knows everyone,"

being acquainted with the entire universe of agents, while other agents are each acquainted

with only a portion of the universe. The analysis explores the e®ects of these asymmetries,

10



focusing in particular on the question of whether links to the \attractive" agent are most likely

to form. The analysis of each case is carried out assuming a small universe of agents, with n = 3

in the magnetic-agent case and n = 5 in the knows-everyone case. Somewhat surprisingly, the

results do not automatically generalize to larger values of n.

The initial analysis is carried out under the assumption that the P function depends on

the sum of the e®ort levels. The function is thus written P (eij + eji), with P 0 > 0 and P 00 < 0.

The discussion proceeds by ¯rst developing the equilibrium conditions for the magnetic-agent

and knows-everyone cases, and the results for both cases are then presented and discussed

simultaneously. Following this discussion, the analysis then explores the e®ect of a di®erent

speci¯cation for the probability function, where P depends on the minimum of the e®ort levels,

being written P (minfeij ; ejig).

3.1. The magnetic-agent case

Suppose that the universe of agents consists of three individuals, all of whom are acquainted

with one another, with individual 1 being the magnetic agent. Individuals 2 and 3 receive

bene¯ts of u1 and v1 from having the magnetic agent as a direct and indirect friend, respectively.

Agents 2 and 3, by contrast, generate direct and indirect bene¯ts of ux and vx, respectively,

for their partners, where u1 > ux and v1 > vx. A further maintained assumption is u1 ¡ ux >
v1 ¡ vx, which says that the magnetic agent's advantage in direct-friendship bene¯ts exceeds

his advantage in indirect-friendship bene¯ts. This assumption seems natural given that people

will especially bene¯t from direct links with the magnetic agent.

E®ort levels will re°ect the partial symmetry of this setup. The e®orts expended by agents

2 and 3 in attempting to link with 1 will be equal, with the common level denoted by ex1.

Similarly, agent 1 will expend the same e®orts in attempting to link with 2 and 3, with the

common level denoted e1x. Finally, the e®orts expended by agents 2 and 3 in attempting to

link with one another will be equal and denoted exx. Because of these symmetries, the same

total e®ort, denoted ee, will be expended on the 1{2 and 1{3 links, and this level will generally

be di®erent from the total e®ort expended on the 2{3 link, denoted be. These e®ort levels satisfy

ee = e1x + ex1 (9)
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be = 2exx: (10)

Adapting the ¯rst-order condition (4) to the present context, the equilibrium is determined

by (9) and (10) along with following conditions:

P 0(ee)[ux + vxP (be)] = C0(e1x) (11)

P 0(ee)[u1 + vxP (ee)] = C0(ex1) (12)

P 0(be)[ux + v1P (ee)] = C0(exx) (13)

Note in (11) that additional e®ort by agent 1 raises the likelihood of direct friendships with

2 and 3, yielding bene¯ts of ux, while also increasing the chances of indirect friendships with

these individuals via the 2{3 link, yielding bene¯ts of vx. In (12), additional e®ort by agents 2

or 3 in linking with 1 makes a direct friendship with the magnetic agent more likely, yielding

a bene¯t of u1, while also raising the chance of an indirect friendship with the other non-

magnetic individual via agent 1, yielding a bene¯t of vx. Finally, in (13), additional e®ort on

the 2{3 link makes a direct friendship with the other non-magnetic agent more likely, yielding

a bene¯t of ux, while raising the chance of an indirect friendship with 1 via that agent, yielding

a bene¯t of v1.2

3.2. The knows-everyone case

Suppose instead that friendship bene¯ts are symmetric across individuals, but that agents

have di®erent sets of acquaintances. In particular, let n = 5, and suppose that agent 1 \knows

everyone," being acquainted with the four other agents. However, agents 2 and 3 are only

acquainted with one another and with agent 1, while agents 4 and 5 are only acquainted with

one another and with agent 1. The pattern of acquaintances thus looks like an hour glass, with

agent 1 at the narrow point in the center, agents 2 and 3 at the bottom corners and agents 4

and 5 at the upper corners.

Although agent 1 is not magnetic in the above sense, establishing a direct friendship with

him gives the other agents potential access to indirect friendships with people they could not
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otherwise reach. Thus, the kind of asymmetries seen in section 3 will arise, allowing the

earlier e®ort notation to be used without change. Eliminating the subscripts on u and v, the

equilibrium conditions for the knows-everyone case are then given by

P 0(ee)[u + vP (be)] = C0(e1x) (14)

P 0(ee)[u + 3vP (ee)] = C0(ex1) (15)

P 0(be)[u + vP (ee)] = C0(exx) (16)

along with (9){(10). Observe that agent 1 faces exactly the same incentives for forming links as

in the magnetic agent case, with a successful link yielding a direct friendship and one potential

indirect friendship. Thus, (14) has the same form as (11). However, for agents 2, 3, 4, and

5 (who are again denoted by x), a direct friendship with agent 1 creates 3 potential indirect

friendships, accounting for the factor of 3 in (15). Finally, the incentives for forming links with

acquaintances other than individual 1 are the same as before for agents 2, 3, 4, and 5, with

a successful link yielding a direct friendship and one potential indirect friendship. Thus, (16)

has the same form as (13).

3.3. Results and discussion

To simplify the presentation of the results, let the term \nonattractive agents" denote the

individuals other than agent 1. These individuals are agents 2 and 3 in the magnetic-agent

case, and individuals 2, 3, 4, and 5 in the knows-everyone case. Then, the following results

can be established:

Proposition 2. In both the magnetic-agent and knows-everyone cases, the non-
attractive agents expend more e®ort attempting to link with agent 1 than agent 1 ex-
pends attempting to link with them. The nonattractive agents expend an intermediate
amount of e®ort in attempting to link with one another. More precisely,

ex1 > exx ¸ e1x; (14)

with the last inequality holding strictly in the knows-everyone case. The inequality ee > be
holds in the knows-everyone case, implying that direct friendships involving agent 1 are
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more likely to form than direct friendships involving the nonattractive agents. In the
magnetic-agent case, ee > be holds provided that v1 ¡ vx is small.

To understand these conclusions, consider ¯rst the magnetic-agent case. Observe that

individuals 2 and 3 naturally expend substantial e®ort in attempting to become friends with

the magnetic agent. However, the unattractiveness of individuals 2 and 3 as direct friends

leads agent 1 to choose low e®ort levels, an outcome that is compounded because the indirect

friendships generated by direct links with 2 and 3 also yield low bene¯ts. By contrast, even

though a direct friendship with the other nonmagnetic individual yields a low bene¯t for agent

2 or 3, the prospect of a direct friendship with 1 via the other agent leads to an e®ort level exx

at least as large as e1x.

With the e®ort levels on the 1{2 and 1{3 links unbalanced, the relationship between total

e®ort on these links and total e®ort on the 2{3 link is ambiguous. However, a small di®erential

between v1 and vx weakens the incentive for agents 2 and 3 to capture 1's indirect-friendship

bene¯ts via investments in the 2{3 link. In this situation, total e®ort on the 2{3 link falls short

of e®ort of the links leading to the magnetic agent, which in turn makes friendships between

the nonmagnetic individuals less likely than those involving agent 1.

While a strong incentive to link with agent 1 also exists in the knows-everyone case, this

incentive arises because this agent, rather than being innately attractive, provides the path

to many indirect friendships through his wide acquaintances. In contrast to the magnetic-

agent case, however, an indirect friendship with agent 1 is no better than any other indirect

relationship. This fact reduces the incentive for the nonattractive agents to form links with

one another, mirroring the situation in the magnetic agent case when v1 ¡ vx is small. As a

result, ee > be holds unconditionally in the knows-everyone case.

Thus, the above results capture an individual's natural tendency to expend extra e®ort

in forming links with people whose friendship is valuable, where the value arises either for

innate reasons or because of the additional opportunities the friendship a®ords. Because of

this extra e®ort, such friendship links may be more likely to form than links involving less

desirable people. Thus, the model generates the natural conclusion that attractive individuals

have lots of friends.3
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It is natural to ask whether the conclusions of Proposition 2 continue to hold when the

universe of agents grows in size. Interestingly, clearcut results cannot be derived for n > 3 in the

magetic-agent case, which indicates that this case is less straightforward than it might appear

at ¯rst. The source of the ambiguity is that, with more people present, indirect friendships play

a larger role in governing e®ort choices, diluting the e®ect of the magnetic agent. However,

numerical simulations of the model reveal that the conclusions of Proposition 2 are fairly robust

to increases in the number of agents.4

Similarly, the results for the knows-everyone case do not generalize as the individuals at

the top and bottom of the hourglass increase in number. The di±culty is that, since a larger

n makes more indirect friendships possible without the need to go through agent 1, links to

other nonattractive agents may become relatively more appealing.5

3.4. The e®ect of a minimum-e®ort speci¯cation

Some observers would argue that unbalanced e®ort levels are not conducive to a creating a

friendship. In particular, it could be argued that, when one individual works hard at forming a

link while the other is passive, the surplus e®ort has no e®ect. This view suggests that, rather

than depending on the sum of the e®ort levels, the P function should depend on the minimum

of the levels, being written P (minfeij ; ejig). The purpose of the analysis in this section is to

explore the e®ect of this alternate speci¯cation on the equilibria in the magnetic-agent and

knows-everyone cases. Note that in a fully symmetric case, the minimum-e®ort assumption

has no impact.

Consider ¯rst the magnetic-agent case. E®ort levels on the 1{2 and 1{3 links, which were

previously asymmetric, will now be symmetric given that an increase in e®ort above the level

chosen by the other individual yields no gain. The e®ort levels can be written as e1x = ex1 ´ eem
and exx ´ bem, where the notation recognizes that e®ective total e®ort on the links, previously

equal to the sum, is now just equal to the symmetric individual levels (the m subscript is used

to denote the minimum-e®ort case).

On the links involving the agent 1, where e®ort levels were previously asymmetric, the non-

magnetic individual's marginal bene¯t from a higher e®ort level will be greater than marginal

cost. This agent would like a higher common e®ort level, but he recognizes that a unilateral
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increase is undesirable. By contrast, the magnetic agent's ¯rst-order condition holds as an

equality. Because he has a lower incentive to expend e®ort, agent 1's decisions e®ectively

govern the e®ort choices on these links. Thus, the following equation system determines the

equilibrium for the magnetic-agent case:

P 0(eem)[ux + vxP (bem)] = C 0(eem) (19)

P 0(eem)[u1 + vxP (eem)] > C 0(eem) (20)

P 0(bem)[ux + v1P (eem)] = C 0(bem) (21)

This system has the same pattern as (11){(13), with (19) pertaining to the magnetic agent

and (20) and (21) applying to agents 2 and 3. Note that each equation has the same LHS as

in the previous system, with di®erences arising only in the C 0 arguments on the RHS.

The analogous equations for the knows-everyone case are written

P 0(eem)[u + vP (bem)] = C0(eem) (22)

P 0(eem)[u + 3vP (eem)] > C0(eem) (23)

P 0(bem)[u + vP (eem)] = C0(bem) (24)

Again, (22) pertains to agent 1, while (23) shows that agents 2{5 would like a higher e®ort

level on the links leading to 1, but ¯nd a unilateral increase undesirable.

Using these conditions, the following results can be established:

Proposition 3. Under the minimum-e®ort speci¯cation, bem > eem holds in the
magnetic-agent case. Thus, direct friendships between nonmagnetic agents are more
likely to form than direct friendships involving the magnetic agent. By contrast, bem =
eem holds in the knows-everyone case, so that all friendships are equally likely to form

Remarkably, the minimum-e®ort speci¯cation reverses the expected outcome in the magnetic-

agent case, making links with the agent 1 less likely than those involving other agents. The
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reason is that, while e®ort on the 1{2 and 1{3 links is governed by agent 1's low incentives

to form friendships, e®ort on the 2{3 link takes account of the possible bene¯ts for agents 2

or 3 of an indirect friendship with the magnetic agent via the other individual. As a result,

more e®ort is expended on this link, and 2{3 friendships are more likely to form. By contrast,

because an indirect friendship with agent 1 carries no extra bene¯t for nonattractive agents in

the knows-everyone case, no additional e®ort stimulus is present on the 2{3 and 4{5 links. As

a result, e®ort ends up being the same as on the links involving agent 1.

This analysis shows that, under the minimum-e®ort speci¯cation, it is no longer true that

attractive agents have lots of friends. The lower incentives for friendship formation felt by

such agents end up governing the e®ort levels on the links leading to them, making friendships

no more likely than on other, less advantageous links. While this result is interesting from a

formal standpoint, it obviously lacks realism, indicating that link formation may depend on

more than just the minimum e®ort level of the agents.

4. An Intertemporal Extension

While the analysis up to this point has been based on a single-period model, it is useful

to consider friendship formation in a two-period setting. In such a setting, indirect friendships

formed in the ¯rst period e®ectively increase an individual's set of acquaintances, allowing

direct friendships to be formed with these individuals in the second period.

To analyze e®ort choices in this two-period setting, imagine that agents are arrayed on an

in¯nite line, with an individual's initial acquaintances consisting of the two adjacent agents.

Concretely, this setup can be viewed as an urban neighborhood, where people initially know

only their next-door neighbors. An agent will expend e®ort attempting to link to both his left

and right neighbors, but the problem can be analyzed by only considering the choice of e®ort

in the rightward direction. Let i be the individual under consideration, and suppose that his

successive neighbors on the right are j, k, and l, with h being his immediate neighbor on the

left.

Friendship formation is governed by the following rules. If expenditure of e®ort in period

1 establishes a direct friendship, then that friendship persists in period 2 without the need
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for additional e®ort. However, if the e®ort fails, with a frienship not forming in period 1,

then expenditure of further e®ort in period 2 is futile. Successful period 1 friendships may

generate an indirect friendship, and the resulting link can be developed into a direct friendship

by expenditure of further e®ort in period 2.

Let ´ < 1 represent the common discount factor, and let second-period e®ort choices be

denoted by a 2 subscript. Furthermore, suppose that P depends on sum of the e®ort levels,

and let u and v be uniform across agents. Then, focusing on the portion of overall friendship

bene¯ts that are a®ected by eij , which mostly involve agents to the right of i, the relevant

maximand is

(1 + ´)
h
uP (eij + eji) + vP (eij + eji)P (ejk + ejk)

i
¡ C(eij) +

´P (eij + eji)P (ejk + ejk)
h
uP (e2ik + e2ki) + vP (e2ik + e2ki)(1 +P (ekl + elk)) ¡ C(e2ik)

i

+ 2´P (eij + eji)P (eih + ehi)P (e2jh + e2hj)v: (25)

The ¯rst line of (25) gives the expected present value of bene¯ts for the direct and indirect

friendships established in period 1, minus the cost of the initial e®ort. Note that individual

k, who resides two doors to the right, is i's potential indirect friend in period 1. The second

line of (25) gives the expected subsequent bene¯ts that result from building on an indirect

friendship with agent k. Note ¯rst that the bracketed expression is discounted and multiplied

by the probability that k becomes i's indirect friend, with the cost of period-2 e®ort subtracted

o®. The ¯rst term in the bracketed expression gives the expected bene¯ts of direct friendship

with k, and the second term gives potential indirect-friendship bene¯ts via k. These include

bene¯ts from indirect friendship with l, k's rightward neighbor, as well as bene¯ts from indirect

friendship with j. Note that even though i is already a direct friend of j, he bene¯ts further

from seeing j at parties hosted by k, to which he is now invited (being k's direct friend). Note

that since the bene¯ts in the second line are conditional on the formation of a link between j

and k, the probability that i enjoys the bene¯ts of indirect friendship with j via k is simply the

probability of a direct link between i and k, P (e2ik + e2ki). This fact explains the appearance

of the 1 in the middle bracketed term.
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To understand the third line of (25), observe that if i becomes direct friends with both j

and his left neighbor h in period 1, then these individuals, being indirect friends, can become

direct friends in period 2 by exerting further e®ort. But i then enjoys additional indirect

friendship bene¯ts by seeing h at parties hosted by j and by seeing j at parties hosted by h.

These bene¯ts are captured by last line of (25).

Finally, note that (25) re°ects the assumption that, in choosing period-2 e®ort, i is uncer-

tain whether a direct friendship with k will lead to an indirect link with l. In particular, i does

not know whether a direct link between k and l was formed in period 1, but instead chooses

his period-2 e®ort based on the probability P (ekl + elk) that such a link exists.

The ¯rst-order conditions for choice of eij and e2ik can be computed and simpli¯ed by

using symmetry of the equilibrium. Period-1 e®ort choices will take the same value, denoted

e, for all agents, with second period choices also uniform and given by e2. Let the subscript 2

indicate that the functions P , P 0, C, and C0 are evaluated at e2, with no subscript indicating

evaluation at e. Then, the ¯rst order conditions for period-2 and period-1 e®ort levels are

given by

P 02(u + v(1 + P )) = C 02 (26)

P 0
h
(1 + ´)(u+ vP ) + ´P (uP2 + vP2(3 + P )¡ C2)

i
= C0 (27)

While these conditions do not a®ord any special insights, a comparative static calculation

shows that e is increasing in the discount factor ´, assuming stability of the equilibrium. Thus,

as a higher discount rate puts more weight on future friendship bene¯ts, particularly those

from direct links forged in period 2 on the basis of period-1 successes, more period-1 e®ort is

expended.

The main lesson of this analysis is that current investment in friendships pays future

dividends by allowing new direct friendships to be built on the indirect links created today.

This lesson would obviously be strenghtened in a setup with multiple future periods, where

the span of direct friendship links would gradually expand over time to include an individual's

entire neighborhood.

19



5. Conclusion

This paper has developed a model of social networks di®erent from those presented in

the recent literature. In contrast to existing models, the level of investment in link formation

is a decision variable rather than being exogenous, and links form stochastically rather than

deterministically, with the probability depending on the noncooperative investment choices of

both parties. Since network structure is then stochastic rather than deterministic, the actual

pattern of links cannot be speci¯ed, as in previous models, with the analysis focusing instead

on which links are most likely to form. This alternate approach leads to a much simpler

mathematical structure than in previous work.

The analysis is couched in the context of friendship networks, and its ¯rst lesson is that

individual investment in friendship formation is too low. This result arises in part because an

individual does not consider the gain to the other agent in deciding whether to increase his

investment in a friendship link, but another externality is also involved. The discussion then

explores the e®ect of several asymmetries on the equilibrium structure of friendship networks.

It is shown that friendship links are likely to form when they involve an attractive agent,

whose appeal arises either because of personal magnetism or a broad group of acquaintances.

The analysis is also extended to an intertemporal setting, showing that current investment in

friendship links can improve future options by allowing an individual's set of friends to grow

over time.

Given the intense current interest in social networks, researchers are likely to bene¯t from

availability of a greater variety of modeling approaches, especially ones that place fewer math-

ematical demands on the analyst. As a result, the present framework could help advance the

state of knowledge in this important area.
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Appendix

Proof of Proposition 1: Let (5) be rewritten (using (6)) as ©(e) = 0 and let (8) be written

as ¡(e¤) = 0, where ¡(e¤) = 2P 1[u + 2(n¡2)vP )]¡C0. Then, since the factors of 2 in ¡ imply

¡(e¤) > ©(e¤), the fact that ¡(e¤) = 0 yields ©(e¤) < 0. But with stability of the equilibrium

implying ©0(e) < 0 and uniqueness implying that ©(e) has a single solution, it follows from

©(e¤) < 0 that the solution must satisfy e < e¤.

Proof of Proposition 2: Consider ¯rst the magnetic-agent case. To establish ex1 > e1x,

suppose that the contrary is true, with e1x ¸ ex1. Then, given C 00 > 0, the RHS of (11) must

exceed or equal the RHS of (12), with the same relationship holding for the left-hand sides

of the two equations. But given u1 > ux, the only way the latter relationship can hold is for

be > ee to be satis¯ed. Next note that the maintained assumption u1 ¡ ux > v1 ¡ vx implies

u1 + vxP (ee) > ux + v1P (ee), given P (ee) < 1. Using be > ee and the latter inequality, (12) and

(13) then imply exx < ex1. But, given (9) and (10), the only way that this last inequality can

be consistent with be > ee is for e1x < ex1 to hold. This inequality, however, violates the initial

assumption that e1x ¸ ex1, establishing its impossibility.

To establish exx ¸ e1x, assume the contrary, with exx < e1x holding. Given C 00 > 0,

vx ¸ v1, and P 00 < 0, the only way that (11) and (13) can be satis¯ed along with the previous

assumption is for be > ee to hold. But since exx < e1x together with ex1 > e1x (established

above) yield be = 2exx < 2e1x < e1x + ex1 = ee, a contradiction arises, ruling out the initial

assumption.

To establish ex1 > exx, again assume the contrary, with ex1 · exx holding. Under this

assumption, ee > be must hold for (12) and (13) to be satis¯ed. But with exx ¸ ex1 > e1x

implied by the above assumption, it follows using (9) and (10) that be > ee, a contradiction that

rules out the assumption.

To establish that ee > be holds when v1 ¡ vx is small, suppose v1 = vx, an assumption that

has no e®ect on the preceding arguments. Since exx ¸ e1x continues to hold, it follows from

inspection of (11) and (13) that ee ¸ be must now be satis¯ed, with ee = be implying exx = e1x.

However, the case where ee = be holds can be ruled out because exx = e1x < ex1 implies be < ee,
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a contradiction. Thus, exx > e1x and ee > be must be satis¯ed, a conclusion that also holds by

continuity when v1 ¡ vx is small.

For the knows everyone case, a similar proof applies. To establish ex1 > e1x, suppose

that the contrary is true, with e1x ¸ ex1. Then, given the 3 factor in (15), the only way this

relationship can hold is for be > ee to be satis¯ed. Using (15) and (16), this inequality implies

exx < ex1. But, given (9) and (10), the only way that this last inequality can be consistent

with be > ee is for e1x < ex1 to hold. This inequality, however, violates the initial assumption

that e1x ¸ ex1, establishing its impossibility.

To establish exx > e1x, assume the contrary, with exx · e1x holding. Then, (14) and (16)

imply be ¸ ee. But since exx · e1x together with ex1 > e1x yieldbe = 2exx · 2e1x < e1x+ex1 = ee,
a contradiction arises, ruling out the initial assumption. Thus, exx > e1x holds, and (14) and

(16) yield ee > be.
To establish ex1 > exx, again assume the contrary, with ex1 · exx holding. Under this

assumption, ee > be must hold for (15) and (16) to be satis¯ed. But with exx ¸ ex1 > e1x, it

follows using (9) and (10) that be > ee, a contradiction that rules out the assumption.

Proof of Proposition 3: In the magnetic-agent case, the ¯rst step is to show inequality

must hold in (20) and equality must hold in (19) rather than the reverse. For the reverse

relationships to hold, bem > eem must also be satis¯ed. But since u1 + vxP (eem) > ux +v1P (eem)

is satis¯ed, (20) and (21) then imply that C0(eem) > C 0(bem) holds, a contradiction. Equations

(19){(21) are then relevant, and if eem ¸ bem, then the LHS of (19) is less than the LHS of (21),

implying that the same relationship holds for the RHS expressions. The latter conclusion,

however, constitutes a contradiction, implying eem < bem. For the knows-everyone case, an

argument like that above establishes that inequality must hold in (23). The conclusion that

eem = bem then follows from inspection of (22) and (24).

Note that this last conclusion presumes that the knows-everyone solution is unique. In

other words, it is assumed that a solution to (22) and (24) other than the one where eem = bem
does not exist.
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Footnotes

¤I thank Kangoh Lee for helpful comments. However, he is not responsible for any shortcom-
ings in the paper.

1A related literature analyzes the role of social networks in providing information about job
openings, which helps to facilitate the matching process in the labor market. See Boorman
(1975) for an early study and Montgomery (1991) and Calv¶o-Armegnol and Zenou (2001)
for more recent contributions. Ioannides and Loury (2002) provide a helpful survey of this
literature.

2The earlier discussion mentioned that when P depends on the sum of the e®ort levels, the
assumption that C(e) ´ e or any other linear form is not tenable. To understand this point,
note that, under such an assumption, the right-hand sides of (11){(13) are all constants.
But since the system then contains three equations to solve for only two unknowns (ee and
be), it is overdetermined.

3If agent 1 is unattractive instead of magnetic, so that u1 < ux and v1 < vx hold, then it can
be shown that all the inequalities in Proposition 2 are reversed. Agent 1 now expends the
higher e®ort level on the 1{2 and 1{3 links, with agents 2 and 3 expending an intermediate
e®ort level in linking with one another. Total e®ort is now higher on the 2{3 link when
v1 ¡ vx is small, implying that agents 2 and 3 are more likely to be direct friends with one
another than with the unattractive agent.

4To see the sources of this ambiguity, note that when n > 3, vx in (11) and (12) is replaced
by (n¡ 2)vx, while v1P (ee) in (13) is replaced by (n¡3)vxP (be) +v1P (ee). To understand the
changes in (11) and (12), observe that by linking to one of the nonmagnetic individuals, agent
1 gains potential access to n ¡ 2 indirect friendships with other nonmagnetic agents. The
same indirect bene¯ts arise when a nonmagnetic agent links to agent 1. To understand the
change in (13), note that when one nonmagnetic agent links to another, he gains potential
access to n ¡ 3 indirect friendships with other nonmagnetic individuals as well as indirect
access to the magnetic agent. The obstacle to generalizing Proposition 2 is that the inequality
u1 + vxP (ee) > ux + v1P (ee), which follows from u1¡ ux > v1¡ vx and plays a crucial role in
the appendix proof, does not generalize to the case of a larger n. The equivalent inequality
for this case is written u1 + (n¡ 3)vxP (be) + (n ¡ 2)v1P (ee) > ux + v1P (ee), and no simple
condition ensures that it holds.

5To see the relevant changes in (14){(16), let m denote the number of individuals on each end
of the hourglass, so that n = 2m + 1. Then v in (14) is replaced by (m ¡ 1)v, 3v in (15) is
replaced by (2m¡ 1)v, and vP (ee) in (16) is replaced by (m¡ 2)vP (be) + vP (ee). With these
substitutions, di±culties similar to those outlined in footnote 4 arise in the appendix proof
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of Proposition 2.
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