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Abstract

We consider the estimation of a large number of GARCH models, of the order of several

hundreds. To achieve parsimony, we classify the series in a small number of groups. Within

a cluster, the series share the same model and the same parameters. Each cluster contains

therefore similar series. We do not know a priori which series belongs to which cluster.

The model is a finite mixture of distributions, where the component weights are unknown

parameters and each component distribution has its own conditional mean and variance.

Inference is done by the Bayesian approach, using data augmentation techniques. Illustrations

are provided.
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1 Introduction

An important question still standing in modelling the volatility of asset returns is how to deal

with a large number of series, for example all the stocks of the SP500 (let us say that in general

we consider J of them). It is well known that financial return series are dynamically interrelated

and that this has to be taken into account for example in the construction of optimal portfolios.

Multivariate GARCH models (MGARCH) are potentially useful in this respect; see Bauwens,

Laurent, and Rombouts (2003) for a survey. MGARCH models define the conditional variance

matrix as a function of the past data. However, the number of parameters to estimate in a

multivariate GARCH model rises fastly with J , rendering them useless for modelling more than a

handful of series. For example, the BEKK model of Engle and Kroner (1995), in its simplest form

with one lag, would have 625,250 parameters in the SP500 example. By using a technique called

‘variance targeting’ by Engle and Mezrich (1996), this number is reduced to 500,000, which is still

unmanageable.

Recently, dynamic conditional correlation (DCC) models were proposed by Engle (2002) and by

Tse and Tsui (2002). These models generalize the constant conditional correlation model (CCC) of

Bollerslev (1990). They require much less parameters than the BEKK model (1,502 in the SP500

example if one uses GARCH(1,1) models for the conditional variances and ‘correlation targeting’).

An essential feature of the DCC (and CCC) models is that one specifies separately the conditional

variances and the conditional correlations. This feature enables a two-step consistent estimation

procedure where one first estimates the parameters of the conditional variances, without taking

account of the correlation parameters. This boils down to estimating univariate GARCH models

separately if there are no lagged shocks or volatility spillovers. In the second step, one estimates

the parameters of the conditional correlations given the parameters estimated in the first step.

In this paper, we focus on the estimation of a large number of univariate GARCH models,

because this allows us firstly to present our new methodology in a simple case, and secondly

because univariate GARCH models are the cornerstone of MGARCH models of the DCC type.

Although the estimation of a large number of univariate GARCH models does not raise technical

difficulties, it raises at least the issue of reporting a large number of estimates. Our main idea

is that estimating a large number of univariate (or even low-dimensional multivariate) GARCH
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models can be circumvented by postulating the existence of a finite number of groups, say G of

them, such that the members or the data series of each group have the same parameter vector

determining the conditional variance specification. The overall problem to be solved is twofold:

the inference on the number of groups, and given this number the inference on the parameters of

the different groups.

We address this problem by treating the data as a draw of a finite mixture of distributions,

f̃(yj) =
G∑

g=1

ηgf(yj |θg), (1)

where η1 + . . . + ηG = 1 and yj is the j-th time series of returns, possibly a vector (see Section 2

for details of notations). This implies a difficult likelihood to work with because it contains GJ

terms:

L(η, θ|y) ∝
J∏

j=1

(
G∑

g=1

ηgf(yj |θg)

)
. (2)

A mixture problem involves making inferences about the group probabilities and the component

distributions given only a sample from the mixture. The closer the component distributions

are to each other, the more difficult this is because of problems related to identifiability and

computational instability. For more details on finite mixtures, see the contributions of Diebolt

and Robert (1994) and Richardson and Green (1997). See also Chib and Hamilton (2000) for an

application to treatment models and Frühwirth-Schnatter (2001) for an application to US quarterly

real gross national product data.

Popular in applied finite mixture modelling is the use of a normal mixture
∑G

g=1 ηgN(µg, σ
2
g).

In this paper we have minor interest in the location or the scale as such and we focus on the

differentiation between the component distributions via different conditional heteroskedasticity

structures by the use of GARCH models. We illustrate that in this complicated dynamic structure

the use of finite mixtures is very promising. For the sake of exposition we use a normal mixture

but extensions, for example the use of the Student t-distribution, are not difficult to cope with.

One can think of finite mixtures in two ways, see for example Richardson and Green (1997).

Firstly, we can postulate a heterogenous population of G components of sizes proportional to ηg

(g = 1, . . . , G), from which the data is drawn. Secondly, we can consider (1) as a parsimonious

representation of a non-standard density. Take again the example of the SP500. Even if we believe

that the 500 stocks are all different (i.e. no two stocks are driven by the same volatility process),
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it may be convenient to imagine that there are for example three groups of stocks, those with low

persistence in the variance, those with high persistence, and stocks with in-between persistence.

An additional matter of particular importance in this respect is classification, i.e. the allocation

of each series to one of the groups.

The paradigm of inference in this paper is Bayesian for several reasons. A first reason is that in

the approach of finite mixtures, Bayesian inference allows to treat classification in a straightforward

manner. This happens through the data augmentation technique, whereby group indicators are

created and treated as parameters that facilitate the numerical integration of the posterior density.

Simulated values of these parameters provide posterior densities of these indicators. A second

reason is that mixture models are inherently difficult to estimate, due to identification difficulties.

The Bayesian approach helps to identify the model by inputting adequate prior information. A

third reason is the need to infer the number of groups. This is conveniently done by computing

posterior probabilities on the range of values deemed a priori plausible. For each number, the

marginal likelihood must be computed, after which posterior probabilities are easily obtained. A

fourth reason is inherent to Bayesian inference: information coming from financial specialists can

be incorporated into statistical models. On the one hand, financial decisions that are somehow

based on an estimated parameter vector can be made more precise because of the accumulation

of the prior and data information. On the other hand, these financial decisions are again made

by financial specialists who duly appreciate that their knowledge is incorporated in the model.

For example a financial specialist may have information on the persistence in volatility for a stock

that he trades all the time.

The paper is organised as follows. In Section 2, we specify the model and the prior distribution.

Since the corresponding posterior distribution is too complicated to conduct Bayesian inference

analytically, we explain in Section 3 how we solve this problem by using the Gibbs sampler. Under

regularity conditions, the draws from this Markov chain Monte Carlo (MCMC) sampler can be

regarded as draws from the posterior distribution. In Section 4 we address the choice of G, the

number of groups. In Section 5, we show simulated examples to illustrate the feasibility and the

reliability of the procedure and in Section 6 we apply it to a set of 131 return series of the SP500

index. New paths to explore and conclusions are mentioned in Section 7.
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2 Model and prior specification

We have a collection of J vectors of N elements of (financial) time series of length Tj

{
yj

it

}
i = 1, . . . , N ; t = 1, . . . , Tj ; j = 1, . . . , J. (3)

We denote yt = (y1
t , y2

t , . . . , yJ
t ) as containing the J vectors yj

t of dimension N × 1 at time t,

and yj the Tj × N matrix containing all data on vector j. The aim is to group the J vectors

into G groups. Members of the same group have common parameter vectors for the model in

consideration. Before defining the model we define a group indicator.

Definition 1 The group indicator Sj takes value sj = g when vector j (j = 1, . . . , J) belongs to

group g, where g ∈ {1, . . . , G}.

The model is then defined as a multivariate GARCH model with conditional variance matrix

Hj
t (θg) if yj belongs to group g.

Definition 2

yj
t = [Hj

t (θSj )]
1/2εj

t j = 1, . . . , J ; t = 1, . . . , Tj , (4)

where Hj
t (θSj ) is defined by some MGARCH specification, and where εj

t are i.i.d. with E(εj
t ) = 0,

V (εj
t ) = IN , and εi

t ⊥⊥ εj
v ∀i 6= j ∀t, ∀v.

Therefore, the model includes G parameter vectors θ1, θ2, . . . , θG which we collect in the vector θ

for notational convenience. When we know the values that the group indicators take, the inference

on θ becomes straightforward. One can for example estimate θ by maximum likelihood given that

εj
t has a specified distribution.

The choice of G is discussed in Section 4. How to decide which pair belongs to which group,

given G, follows the same idea as in Frühwirth-Schnatter (2001): if we assume that a priori nothing

can be said about group membership, then the prior probability that the j-th series belongs to

group g is assumed to be equal to the proportion of vectors in group g:

P (Sj = sj) = ηsj sj ∈ {1, . . . , G}. (5)

The parameter η = (η1, . . . , ηG−1) has to be estimated and ηG is determined as ηG = 1−∑G−1
l=1 ηl.

For notational purposes we define ζ = (θ, η). Furthermore, because the Sj ’s are not observed

they will have to be estimated also. We define SJ = (S1, . . . , SJ) and ψ = (SJ , ζ).
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Assumption 1 The prior density is factorized as

ϕ(ψ) = ϕ(SJ |η) ϕ(ζ) (6)

= ϕ(SJ |η) ϕ(θ) ϕ(η) (7)

where

ϕ(sJ |η) =
J∏

j=1

P (Sj = sj) =
J∏

j=1

ηsj =
G∏

g=1

ηxg
g (8)

denoting xg = ](sj = g) and

ϕ(θ) =
G∏

g=1

ϕ(θg). (9)

We draw attention to several important issues. Firstly, the prior density on ζ is factorized into

the products of the priors on θ and η which means that the group probabilities do not affect the

parameter vectors of the G groups and vice versa. Secondly, when the group probabilities (η) are

known then the prior density on SJ can be factorized into the product of the prior densities on

each Sj . Since each of the J vectors can only belong to one group at the same time we can write

this in (8) as a product over G factors. This is explained in more detail in Appendix 1. Thirdly,

the prior density on θ is also factorized into a product of densities on the θg’s. That is, we assume

a priori independence between the θg’s.

The fact that the high dimensional prior density on ψ is factorized by assuming several inde-

pendence properties alleviates the problem of evaluating the posterior density. The precise choice

of each density is described in Section 3. Next we define the likelihood function.

Likelihood: Suppose that the N -variate vector yj
t belongs to group g. Then its likelihood

contribution is given by f(yj
t |θg, I

j
t ) which is a normal density with zero conditional mean and

conditional variance matrix equal to Ht(θg). Ij
t is the information set until t − 1 containing

(at least) yj
1, . . . , y

j
t−1 and initial conditions (assumed known). A likelihood is available for each

N -variate vector yj
t :

J∏

j=1

Tj∏
t=1

f(yj
t |θSj , I

j
t ) =

J∏

j=1

f(yj |θSj ). (10)

It is possible to relax the normality assumption, for example to allow for a higher kurtosis of the
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data, and take another family of component distributions. This implies the inclusion of an extra

vector νg containing other parameters of f . One can think as if θSj
contains νg such that we do

not loose any generality.

A crucial fact is that we do not know which pair belongs to which group. This is why we

consider the Sj ’s as latent parameters in the model. See Tanner and Wong (1987) for more

details. Notice however that the two polar case of overall pooling (G = 1) and no pooling (G = J)

make the Sj ’s redundant. In the former case there is only one model parameter vector that is the

same for every data vector yj while in the latter case of no pooling the model parameter is data

vector specific which implies that the likelihood is just the product of the J individual likelihoods.

We summarize this section by writing the posterior density.

Posterior density: If we denote bt y all the available data then the posterior density is written

as

ϕ(ψ|y) ∝ ϕ(η)
G∏

g=1

ϕ(θg)
J∏

j=1

f(yj |θSj )ηSj (11)

= ϕ(η)
G∏

g=1

ηxg
g ϕ(θg)

J∏

j=1

f(yj |θSj ). (12)

3 Gibbs sampling for the posterior density

To take advantage of the properties of (12), it is convenient to split ψ into three blocks and to use

the following Gibbs sampling mechanism:

1. Sample SJ from ϕ(SJ |θ, η, y).

2. Sample η from ϕ(η|SJ , θ, y).

3. Sample θ from ϕ(θ|SJ , η, y).

We iterate over these blocks until convergence to the stationary distribution. See Diebolt and

Robert (1994) for details on the convergence of MCMC samplers. We discuss the three blocks in

detail in the next subsections.
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3.1 Sampling SJ from ϕ(SJ |ζ, y)

Given ζ and y the Sj ’s are seen to be mutually independent. Using (8) and (12) we can write

ϕ(S1, . . . , SJ |ζ, y) ∝
J∏

j=1

f(yj |θSj ) ϕ(Sj |η)

= ϕ(S1|ζ, y) ϕ(S2|ζ, y) . . . ϕ(SJ |ζ, y). (13)

The sequence {Sj}J
j=1 is equivalent to a multinomial process (see Appendix 1), so we have to

sample from a discrete distribution where the G probabilities are based on

P (Sj = g|ζ, yj) ∝ f(yj |θg) ηg, g = 1 . . . G, (14)

so that

P (Sj = g|ζ, yj) =
f(yj |θg) ηg∑G
l=1 f(yj |θl) ηl

. (15)

To sample Sj we draw one observation from a uniform distribution on (0, 1) and decide which

group g to take.

Notice that we just defined the posterior probability distribution of Sj and how to sample from

it. We have to repeat this for all the Sj , which means J times. Furthermore the probabilities are

calculated conditional on ζ and therefore we have to calculate the probability distribution each

time in the loop of the Gibbs sampler.

3.2 Sampling η from ϕ(η|SJ , θ, y)

To sample η notice first that the relevant part of (12) is

ϕ(η|SJ , θ, y) = ϕ(η|SJ) ∝ ϕ(η)
G∏

g=1

ηxg
g . (16)

Indeed, knowing y and which vectors belong to each of the G groups implies that the likeli-

hood is constant with respect to η. The prior on η is chosen to be a Dirichlet distribution,

Di(a10, . . . , aG0) with parameter vector a0 = (a10, . . . , aG0)′. As a consequence, ϕ(η|SJ) is also a

Dirichlet, Di(a1, . . . , aG) with ag = ag0 +xg, g = 1, . . . , G. More details about this and sampling

from a Dirichlet distribution can be found in Appendix 2.
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3.3 Sampling θ from ϕ(θ|SJ , η, y)

Using the prior assumption (9) we can write

ϕ(θ|SJ , η, y) = ϕ(θ|SJ , y) = ϕ(θ1|ỹ1) ϕ(θ2|ỹ2) . . . ϕ(θG|ỹG) (17)

where

ϕ(θg|ỹg) ∝ ϕ(θg)
∏

j∈Jg

f(yj |θSj
) (18)

and Jg = {j |Sj = g}, and ỹg =
{
yj |j ∈ Jg

}
, i.e. the collection of data series that belong to group

g. Therefore, to sample θ one can simulate the θg independently. The latter can be done using the

griddy-Gibbs sampler, see for example Bauwens, Lubrano, and Richard (1999, chap. 3). Notice

that if group g is empty, ϕ(θg|ỹg) = ϕ(θg). A simple approach is to take uniform priors on θg.

Therefore the only user specified prior parameters in this model are the bounds of the uniform

distributions and a0 of the Dirichlet distribution. However, more informative prior densities can

be easily incorporated and do not complicate the Gibbs sampling algorithm.

Notice that for the griddy-Gibbs sampler, like every MCMC sampler, a burn-in phase is neces-

sary in order to sample from the stationary distribution. More precisely, for every draw of ψ and

thus of θ we apply the griddy-Gibbs sampler for every θg. Therefore, there is a need for G burn-in

phases which has large computing time consequences. After some experiments of sampling from

different settings we came to the conclusion that a burn-in phase for the overall Gibbs sampler

suffices. This makes sense because the next draw of ψ is conditional on the last one implying

that every time we draw θ we do not use some fixed starting value. Hence, the fact that the

griddy-Gibbs sampler for every θg is a sub-chain of the overall Gibbs sampler in our model helps

to reduce the overall computing time.

3.4 Multimodality and identification issues

Inherent to the nature of SJ = (S1, . . . , SJ) , the discrete latent process, problems may arise by

sampling from the unconstrained posterior distribution on ψ. More precisely, the complete data

likelihood, see (10), and the prior on SJ , see (8), are invariant to a relabeling of the groups which

means that we can take the labeling {1, 2, . . . , G} and do a permutation {ρ(1), ρ(2), . . . , ρ(G)}

without changing the value of the function. If the prior ϕ(ζ) is also invariant to relabeling then
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the posterior ϕ(ψ|y) has this property also. As a result, the posterior may have G! different modes.

Because SJ , θ and η depend on this labeling we may expect that the sampling results are difficult

to use for the calculation of posterior moments. Notice that for a commom, i.e. invariant to

relabeling, parameter vector, inference can be done without any problem.

To solve the multimodality problem, identifiability constraints have to be imposed. Robert and

Mengersen (1999) apply succesfully reparameterisations and multistep algorithms to G-component

normal mixtures. Frühwirth-Schnatter (2001) explores first the unconstrained posterior distribu-

tion using the random permutation sampler. The aim of this sampler is to explore all the possible

modes of the posterior distribution. Based on the resulting draws she is able to graphically find

identification restrictions on some parameters. One can then run a permutation sampler taking

into account these restrictions. We propose an easy identifiability constraint that uses the fact that

we work with GARCH models. By selecting rather non-overlapping supports for the parameters,

we are able circumvent the multimodality problem, see Section 5 for more details.

Another identification problem is due to the possibility of empty groups. In Section 3.3 on

the sampling of θ we mentioned that if group g is empty then ϕ(θg|ỹg) = ϕ(θg). Therefore an

improper prior is not allowed for θg. However, as we will see later in Section 5 that presents some

illustrative examples, we can still be rather non-informative by taking proper uniform priors.

4 Choosing G

4.1 Inference or model choice

G, the number of component distributions in the mixture, is of particular importance. There are

two modelling approaches to take care of G. First, one can treat G as an extra parameter in the

model as is done in Richardson and Green (1997) who make use of the reversible jump MCMC

methods. In this way, the prior information on the number of components can be taken explicitly

into account by specifying for example a Poisson distribution on G in such a way that it favours

a small number of components. A second approach is to treat the choice of G as a problem of

model selection. By so-doing one separates the issue of the choice of G from estimation with G

fixed (Section 3 deals with estimation with G fixed). For example, one can take G = 2 and G = 3

and do the estimation separately for the two models. Then Bayesian model comparison techniques
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can be applied, for instance by the calculation of the Bayes factor, see Cowles and Carlin (1996)

and Chib (1995) for more details. We choose the second approach. To implement it, we have to

compute the marginal likelihood of the data for each G that we want to consider. Once this is

done, posterior probabilities for every value of G are easily computed, and one may opt for the

value of G with the highest probability. In this framework, the model parameter is ζ = (θ, η), not

ψ which includes also SJ because of the data augmentation.

Definition 3 The marginal likelihood is defined as the integral of the likelihood with respect to the

prior density

m(y) =
∫

f(y|ζ)ϕ(ζ)dζ. (19)

Since this is the normalizing constant in Bayes’ theorem we can also write

m(y) =
f(y|ζ)ϕ(ζ)

ϕ(ζ|y)
. (20)

Notice that (20) is an identity that holds for every ζ. For a given value ζ∗, the estimate, in

logarithms, is

ln m̂(y) = ln f(y|ζ∗) + ln ϕ(ζ∗)− ln ϕ̂(ζ∗|y). (21)

We have to evaluate the likelihood in (2) only once and the evaluation of the prior is straightfor-

ward. How to estimate the posterior at ζ∗ is explained below.

4.2 Calculation of ϕ̂(ζ∗|y)

We start by the fact that the posterior density can be expressed as

ϕ(ζ∗|y) = ϕ(η∗|y) ϕ(θ∗|y, η∗) (22)

with

ϕ(η∗|y) =
∫

ϕ(η∗|y, θ, SJ) ϕ(θ, SJ |y) dθ dSJ (23)

ϕ(θ∗|y, η∗) =
∫

ϕ(θ|y, η∗, SJ) ϕ(SJ |y, η∗) dSJ . (24)

This can be further simplified because ϕ(η∗|y, θ, SJ ) = ϕ(η∗|SJ ) and ϕ(θ|y, η∗, SJ) = ϕ(θ|y, SJ),

see Section 3. One can estimate (23) by

ϕ̂(η∗|y) =
1
D

D∑

d=1

ϕ(η∗|SJ
(d)) (25)
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where D denotes the number of Gibbs draws. Therefore, we have to evaluate D times a Dirichlet

density with parameter a
(d)
g in the vector η∗. Because there is a closed form expression of the

Dirichlet density, see Appendix 2, we know the integrating constant and it is possible to estimate

(23) by the Gibbs estimate in (25).

Applying directly the same technique, i.e. averaging of the Gibbs draws, to estimate (24)

is impossible: we do not have Gibbs draws from ϕ(SJ |y, η∗), we only have Gibbs draws from

ϕ(SJ |y, η) for different values of η. A solution is to apply a new Gibbs sampling to ϕ(SJ |y, η∗, θ)

and ϕ(θ|y, SJ) so that the estimate for (24) is

ϕ̂(θ∗|y, η∗) =
1
D

D∑

d=1

ϕ(θ∗|y, SJ
(d)). (26)

Remark that {SJ
(d)}d=1,...,D in (26) are different from {SJ

(d)}d=1,...,D in (25) because the former

draws are sampled from a distribution with η fixed to η∗. In Chib (1995) it is necessary that all

the conditional densities used in the Gibbs sampler have closed form expressions. In our model,

there is no closed form expression for the density ϕ(θ|y, SJ ) which is the reason why we use the

griddy-Gibbs sampler in this paper. As a consequence, if we want to use (26) we are back at the

initial problem of the calculation of the integrating constant of ϕ(θ|y, SJ) for each draw . However,

this problem can be solved more easily than before by noticing that ϕ(θ|y, SJ) =
∏G

g=1 ϕ(θg|ỹg).

This decomposition implies that we have to calculate the marginal likelihood

m(ỹg) =
∫

f(ỹg|θg) ϕ(θg) dθg (27)

for each lower dimensional model. For the example of univariate GARCH models in Section 5, the

marginal likelihood in (27) is the solution of a two-dimensional integral. This opens the door for

other techniques, like deterministic integration or a Laplace approximation. These two alternative

methods are explained in Appendix 3. The method we propose has a non-negligable computational

cost: for every draw from ϕ(θ|y, SJ) we have to calculate the G marginal likelihoods in order to

have a correct estimate in (26), that we can write as

ϕ̂(θ∗|y, η∗) =
1
D

D∑

d=1

G∏
g=1

f(ỹg|θ∗g) ϕ(θ∗g)
m(ỹg)

(28)

=
1
D

D∑

d=1

exp

[
G∑

g=1

[
ln

(
f(ỹg|θ∗g) ϕ(θ∗g)

)− ln (m(ỹg))
]
]

, (29)

where actually ỹg depends on SJ
(d). Collecting all terms, the estimated marginal likelihood in
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logarithms is given by

ln m̂(y) =
J∑

j=1

ln

(
G∑

g=1

η∗g f(yj |θ∗g)

)
+

G∑
g=1

ln
(
ϕ(θ∗g)

)
+ ln (ϕ(η∗))− ln

(
1
D

D∑

d=1

ϕ(η∗|SJ
(d))

)

− ln

(
1
D

D∑

d=1

exp

[
G∑

g=1

[
ln

(
f(ỹg(SJ

(d))|θ∗g) ϕ(θ∗g)
)
− ln

(
m(ỹg(SJ

(d)))
)]])

. (30)

5 Simulated examples

In this section we illustrate how the Gibbs sampler performs by the use of examples that mimic

realistic financial settings.

5.1 Three groups for one hundred series

5.1.1 DGP

We consider J = 100 time series of size Tj = 1000 drawn from a mixture with G = 3 components:

f̃(yj) =
3∑

g=1

ηgf(yj |θg) (31)

with η1 = 0.25 and η2 = 0.5. Remember that f(yj |θg) =
∏Tj

t=1 f(yj
t |θg, I

j
t ), and we take

yj
t |θg, I

j
t ∼ N(0, hj

t ) (32)

hj
t = (1− αg − βg)ω̃j + αg(y

j
t−1)

2 + βgh
j
t−1. (33)

For the simulation of the data we fix ω̃j = 1 which implies that the unconditional variance for

every generated data series is equal to one. However, the constant ω̃j in the conditional variance

is not subject to inference, rather it is fixed at the empirical variance of the data. This technique

of forcing the estimated unconditional variance to be equal to the empirical variance is called

variance targeting (see Engle and Mezrich, 1996). The parameter vector for pair j is then

θSj = (αSj , βSj )
′
. (34)

The chosen true values for the α’s and β’s are given in Table 1. We clearly cover three different

situations with respect to the volatility process. The first process has a high persistence in the

variance because α1 + β1 = 0.94 is close to 1, the bound for a weakly stationary process. In stock

markets, these could be stocks with large market caps. The second process is less persistent, with
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α2 + β2 = 0.72. The third gives relatively less weight to the lagged conditional variance and is

slightly less persistent (α3 + β3 = 0.60) than the second process.

The number of series belonging to each group is fixed at its expectation (Jηg). That is, the

first 25 series belong to the first group, the next 50 belong to the second and the last 25 to the

third group. This order is of course not important but we choose it in this way to simplify the

comparison with the posterior classification. For the simulation we can choose G between the two

polar cases of overall pooling (G = 1) and no pooling (G = J). This means for our example of

100 series that the number of parameters in θ may vary between 2 and 200. We take G = 3, the

real number of components in the mixture which implies that θ contains 6 elements. Therefore

the augmented parameter vector ψ contains 100 + 6 + 2 = 108 parameters.

5.1.2 Results for a correct number of groups

We discuss first the case when the model is correctly specified, in particular when the number

of groups is equal to three, like in the DGP. As we mentioned in Section 3.4 we have to select

a proper prior distribution on θ. Given the assumption on the prior distribution on θ in (9) we

only need to specify prior distributions on θg, g = 1, . . . , 3 which are bivariate distributions in

our example. We can still simplify this further by imposing prior independence of the elements

in θg, i.e. taking the prior on θg as a product of the prior on αg and the prior on βg. In this

example we take uniform distributions for the priors. This implies that we only have to select the

support of the uniform distributions in order to have a proper prior. These intervals are given

in Table 1. Because of the stationarity condition, αg + βg < 1, it may happen during the Gibbs

sampling that the joint support is not a rectangle, created by the respective bounds, anymore.

This induces therefore a prior dependence between αg and βg, i.e. in this case the prior is uniform

over a trapezium rather than a rectangle. Notice that other prior distributions on θg are possible

also. One could think of beta distributions for example. For the Dirichlet distribution on η we

choose a0 = (2, 2, 2)′ to exclude empty groups a priori.

To compute the posterior results, we have drawn 20000 realisations of ψ and we used a burn-in

period of 1000 draws. The computing time is about 40 hours on a powerful computer (2.6Ghz

Intel Xeon processor). We first discuss the results on η. Figure 1 displays the posterior marginals

that are rather symmetric. The Dirichlet prior on η implies that the prior means are all equal
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to 1/3. Therefore, the data play an important role in rectifying this prior information. That the

elements of η are negatively related because of the restriction
∑3

g=1 ηg = 1 is exemplified in the

correlation matrix in Table 1. The correlation between η3 and η1 and η2 is high because η3 is

centered around 0.5, leaving minor freedom to the other two parameters.

We focus next on θg. Figure 2 shows the posterior marginals of αg and βg. While α1 is slightly

skewed to the right, the converse is true for β1. The reason for this skewness is that the upper

bounds for α1 and β1, see Table 1, are not respecting the stationarity condition α1 + β1 < 1. One

can easily distinguish three clusters in the way we expect them to appear. There is no overlapping

for the αg by choice of the prior intervals.
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Figure 1: Posterior marginals of ηg (G = 3)

Figure 3 also reveals clearly that β2 and β3 are partially overlapping, to see this consider

only the βg axis (the horizontal axis). Nevertheless, as we already mentioned before, there is no

identification problem because in the αg direction no overlapping occurs. Table 1 provides some

posterior summary statistics for θ. With respect to the posterior means we find values reasonably

close to the values of the data generating process. The posterior standard deviations are rather

small as we can also observe from Figure 2. The reason for the strong negative correlation within

each θg is of the same nature as that for η, namely the parameter restriction αg + βg < 1.

Until now we discussed the posterior results on ζ, i.e. the group probabilities and the pa-

rameters characterizing the component distributions. However, the fact that we use the data

augmentation technique allows us to say something about the classification issue also. More pre-
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Table 1: Posterior results on η and θ (G = 3)

η1 η2 η3

True value 0.25 0.50 0.25

Mean 0.2166 0.4981 0.2853

Standard deviation 0.0555 0.0763 0.0692

Correlation matrix 1 -0.4851 -0.2677

-0.4851 1 -0.7127

-0.2677 -0.7127 1

g = 1 g = 2 g = 3

True value αg 0.04 0.12 0.20

βg 0.90 0.60 0.40

Prior interval αg 0.001,0.07 0.07,0.15 0.15,0.25

βg 0.65,0.97 0.45,0.75 0.20,0.60

Mean αg 0.0435 0.1041 0.1975

βg 0.8758 0.5917 0.4369

Standard deviation αg 0.0060 0.0092 0.0132

βg 0.0238 0.0306 0.0350

Correlation αg, βg -0.7849 -0.71409 -0.7184
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Figure 2: Posterior marginals of the elements of θg (G = 3)

15



0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Figure 3: Scatterplot of the Gibbs draws of θg (G = 3)

Table 2: Hit Table (G = 3)

Posterior group

1 2 3

1 19 6 0 25

Real group 2 0 45 5 50

3 0 3 22 25

19 54 27 100

The proportion of correct hits is 0.86.

16



cisely, we can use the posterior draws on SJ to identify, by some classification rule, the members

of the three clusters. We propose a straightforward and simple classification rule: the data series

belongs to the group to which it belongs most frequently a posteriori. For instance, of the 19000

draws of SJ in our example the last data series never belonged to the first group, 16 times to the

second and hence 18984 times to the third group. As a consequence, the last data series is said to

belong to group three which for this series is a correct classification. We applied this rule to all

the 100 series and we summarize the classification results in Table 2 (we do not report the detailed

results for the 100 SJ because of space limitations). We draw attention to two points. Firstly,

when there is a misclassification this occurs only with the neighboring group. For instance the

real third group was (wrongly) classified in the second group 3 times but it was never classified in

the first group. Secondly, the total number of correct classifications, i.e. the sum of the diagonal

elements of the 3× 3 matrix in Table 2, amounts to 86 out of 100 which is a satisfactory result.

Table 3: Model choice criteria for simulated DGP

G Marginal log-lik. Maximized log-lik. # par. BIC

1 -48085.20 -48078.49 2 -48085.40

2 -48035.39 -48019.68 5 -48036.95

3 -48028.65 -48004.57 8 -48032.20

4 -48035.09 -48004.17 11 -48042.16

100 -48064.48 -47836.94 200 -48527.72

5.1.3 Results for incorrect numbers of groups

Next, we consider the case when the number of groups in the estimated model is wrong: we take

four cases: one group, two groups, four groups, and one hundred groups. In the first case, all the

series are considered as generated from the same GARCH(1,1) model, in the last case, they are

considered to be all different, whereas they come from three different groups.

We report in Table 3 (second column) the value of the marginal likelihood for the different

values of G. They were computed using formula (30), using the posterior mean as a high density

point (using ML estimates, we obtain results that differ only in the decimals). Not surprisingly,
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the preferred model is the correct one. We can also use asymptotic model choice criteria, more

easy to compute, to choose a preferred model. The Bayesian information criterion (BIC), see

Schwarz (1978), selects the correct model, see the last column of the table. The BIC is equal to

the maximized log-likelihood value less a penalty term equal to the number of parameters times

log(T )/2 (T = 1000 in this example). Notice that the value of the maximized log-likelihood

function increases with G since a model with given G embeds a model with smaller G.

In Tables 4, 5 and 6, we report the posterior results for different numbers of groups (comparable

to Table 1, except that we do not report the correlation matrix of the group probabilities). The

support of the prior uniform density were adjusted for each case. Obviously, for one group, we

take as prior support for the GARCH parameters the union of the intervals for the case of three

groups. For two groups we divide the prior support of one group for the αg parameters in two

intervals of equal length. In the case of four groups, we adjust the prior used for three groups by

splitting the support of the parameters of the middle group in two pieces. The posterior results are

not surprising. For one group, the posterior means of the GARCH parameters are roughly in the

middle of the corresponding prior interval: the likelihood information forces a global homogeneity

that has to be in the middle given the features of the DGP (50 series in the middle group, 25

in each of the other groups). For two groups, the series that belong to the middle group are

forced to belong to one of the two outside groups: the posterior expected group probabilities are

close to 0.5.. Hence, the posterior means are pulled toward the middle of the corresponding prior

intervals. Notice how this increases the posterior correlation between α1 and β1 (-0.90) and to a

lesser extent between α2 and β2 (-0.75), compared to the values for three groups. In the case of

four groups, the middle group is split in two sub-groups, as is most clearly seen on the graph of

the posterior densities of the GARCH parameters, see Figure 4. Notice how this artificially pulls

toward zero the posterior correlations between α2 and β2 (-0.11), and between α3 and β3 (-0.04).

The posterior results for the two outside groups are very much like in the case of three groups.

Finally, for 100 groups, we do not report the posterior results, but we show in Figure 5 the

posterior densities of the 100 α and β GARCH parameters. We bet that for someone who does

not know the DGP, it would not be clear that the DGP has three groups.
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Figure 4: Posterior marginals of the elements of θg (G = 4)
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Figure 5: Posterior marginals of the elements of θg (G = 100)
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Table 4: Posterior results on η and θ (G = 1)

Prior interval α 0.001,0.25

β 0.20,0.97

Mean α 0.1137

β 0.5979

Standard deviation α 0.0069

β 0.0264

Correlation α, β -0.7263

5.2 Many groups for one hundred series

In the next example we change the setting: the 100 data series are now drawn from a mixture

with 25 components given by

αg = 0.06 + 0.01× (g − 1) (35)

βg = 0.88− 0.02× (g − 1) g = 1, . . . , 25. (36)

The idea is to mimic a case where all the series are practically different, but not to a large extent.

Hence it may be of interest, if only for practical reasons, to use a model with a small number of

parameters, and we fix the number of groups to 3 for the inference. The choice of the prior is of

particular importance in this setting because it determines which heterogeneous data series cluster

together. The prior bounds on θg are given in Table 7. One can deduce from (35)-(36) that out

of the 100 series, 32 series fall into the first group, 36 in the second and 32 in the third group.

Therefore, this should be reflected in the posterior results on η, which is indeed the case as can

be seen from the posterior results reported in Table 7.

We concentrate next on θ. Given that we did the inference as if there were only 3 components

in the mixture, but in reality there are 25 of them, which posterior means should we expect? As

we can see in (35) and (36) αg and βg are defined by using a fixed increment within a support.

Given the prior bounds on θg, this implies that the posterior mean should not be too far away

from the prior mean. Said differently, we expect that the posterior marginal densities are centrally

located in the prior supports (see Figure 6). Posterior moments are reported in Table 7.
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Table 5: Posterior results on η and θ (G = 2)

η1 η2

Mean 0.5193 0.4807

Standard deviation 0.0918 0.0918

g = 1 g = 2

Prior interval αg 0.01,0.125 0.125,0.22

βg 0.60,0.95 0.25,0.70

Mean αg 0.0659 0.1704

βg 0.7466 0.4750

Standard deviation αg 0.0086 0.0121

βg 0.0391 0.0285

Correlation αg, βg -0.9014 -0.7589

Table 6: Posterior results on η and θ (G = 4)

η1 η2 η3 η4

Mean 0.2097 0.3315 0.2181 0.2408

Standard deviation 0.0497 0.1166 0.1180 0.0602

g = 1 g = 2 g = 3 g = 4

Prior interval αg 0.001,0.07 0.07,0.11 0.11,0.25 0.15,0.25

βg 0.65,0.97 0.45,0.60 0.60,0.75 0.20 ,0.60

Mean αg 0.0432 0.0982 0.1228 0.2047

βg 0.8772 0.5646 0.6240 0.4145

Standard deviation αg 0.0058 0.0081 0.0101 0.0131

βg 0.0223 0.0286 0.0220 0.0378

Correlation αg, βg -0.7662 -0.1144 -0.0430 -0.7005

21



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350

10

20

30

40

50

α1

α2 α3

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

5

10

15

20

β1

β2

β3

Figure 6: Posterior marginals of the elements of θg

Table 7: Posterior results on η and θ (G = 3)

η1 η2 η3

Mean 0.3423 0.3941 0.2637

Standard deviation 0.0675 0.0722 0.0690

g = 1 g = 2 g = 3

Prior interval αg 0.001,0.13 0.13,0.22 0.22,0.35

βg 0.74,0.94 0.54,0.74 0.35,0.54

Mean αg 0.0945 0.1805 0.2824

βg 0.7922 0.6080 0.4629

Standard deviation αg 0.0079 0.0130 0.0144

βg 0.0189 0.0260 0.0260

Correlation αg, βg -0.8708 -0.8392 -0.8211
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6 Application to US stocks

We work with the returns on 131 stocks belonging to the biggest US companies. Each stock is

observed from 29/09/99 to 30/07/03 implying 1000 observations each. Table 8 presents a summary

of the descriptive statistics of all the series, which are given in Table 11. This table shows that there

is a lot of variation in the different empirical characteristics of the stocks. For example, the mean

kurtosis for all the series is 8.83 but it ranges from 3.43 to 90.4 with a standard deviation of 10.7.

Hence, we expect also quite some heterogeneity in the estimates of GARCH(1,1) models for each

series, which are also presented in Table 11. The overall reason for this data heterogeneity may

be that individual stocks react differently to general news and specific company announcements.

Table 8: Descriptive statistics

mean st. dev. minimum maximum

mean -0.0007 0.05 -0.18 0.15

std 2.56 0.78 1.63 6.00

min -15.75 7.64 -57.3 -6.89

max 13.38 4.93 5.99 31.4

skew -0.17 0.77 -5.20 0.96

kurt 8.83 10.70 3.43 90.4

Each line of this table reports the mean, standard deviation

(st. dev.), minimum, and maximum of the descriptive statis-

tics (mean, std, min, max, skew, kurt) of the 131 series, which

can be found in Table 11.

Table 9: Marginal log-likelihood for application

G Marginal log-lik. # par.

1 -179457.40 2

2 -179230.35 5

3 -179129.93 8

131 -179357.60 262
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Figure 7: Posterior marginals of ηg (G = 3)

To select the number of groups, we allow a priori G to take the values, 1, 2, 3, and 132. Table

9 reports the corresponding values of the marginal log-likelihood. We come to the conclusion that

the appropriate number of groups is three. We therefore report the results for three groups, based

on 20000 draws from the MCMC sampler described in Section 3, out of which we dropped the

first 1000. We do not report the values of the maximized log-likelihood because we were unable

to obtain the convergence of the algorithm for ML estimation for G = 2 and G = 3.

The posterior means of η and θ can be found in Table 10. The posterior marginals of η are

given in Figure 7, and those of the GARCH parameters αg and βg are in Figure 8.

The densities of η1 and η2 are quite similar and centered around 0.45. This forces the density

of η3 to be more concentrated on 0.12. The negative correlation between η1 and η2 is relatively

high while the correlations between η1 and η3, and η2 and η3 are less pronounced.

The prior intervals on αg and βg were chosen after some initial experiments to avoid too

much zero mass in the densities (otherwise the numerical integrals in the griddy Gibbs sampler

are wasting a lot of points). The posterior means of βg are markedly different from each other.

Compared to β1 and β2 the posterior standard deviation of β3 is rather large. With respect to

αg we can see that α2 and α3 are close to each other. This does not imply that we should merge

groups two and three. For example the persistence αg + βg, 0.96 and 0.79 respectively, is clearly

different between these groups. The high persistence for the first group, i.e. 0.99 , is forcing the

correlation between α1 and β1 to be close to minus one. This is much less the case for group three.
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Table 10: Posterior results on η and θ (G = 3)

η1 η2 η3

Mean 0.4248 0.4513 0.1239

Standard deviation 0.0594 0.0598 0.0312

Correlation matrix 1 -0.8632 -0.2502

-0.8632 1 -0.2726

-0.2502 -0.2726 1

g = 1 g = 2 g = 3

Prior interval αg 0.02,0.07 0.07,0.12 0.055,0.13

βg 0.90,0.99 0.82,0.92 0.58,0.80

Mean αg 0.0474 0.0908 0.0862

βg 0.9438 0.8653 0.7095

Standard deviation αg 0.0037 0.0044 0.0083

βg 0.0047 0.0081 0.0304

Correlation αg, βg -0.9674 -0.8733 -0.6635
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Figure 8: Posterior marginals of the elements of θg (G = 3)
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We investigate the whole shape of the posterior marginal densities of αg and βg. The range

of the density of α3 covers that of the density of α2 but the standard deviation of the former is

almost twice as high. One might think that this causes identification problems. This is unlikely to

be true because the posterior marginal densities of βg are clearly separated. Notice the difference

between α3 and β3, and the other groups. The densities for this group are still unimodal and we

consequently do not find it necessary to split it up and to add a fourth group.

Finally, we can use the same simple classification rule as in Section 5 that a data series belongs

to the group to which it belongs most frequently a posteriori. After applying this rule using the

realisations of the group indicator SJ simulated by the algorithm, we find that 56 series belong to

the first group, 60 series to the second and 15 series to the third group. In the last but one column

of Table 8, one finds the posterior probability that each series belongs to its group, indicated in

the last column. A large majority of the series, actually 93 (i.e. 71 percent), have a probability

larger than 0.9 to belong to their group, while only 8 series (6 percent) have a probability less

than 0.6 to belong to their group. According to this rule, the allocation of the series to the groups

is rather clear, but it should be kept in mind that the model does not imply a sure classification,

since each series has a non-zero probability to belong to each group.

The question may be asked if there is an economic or financial interpretation of the groups

(e.g. in terms of sectors). Searching for an interpretation of this kind would require to analyze the

classification in relation to observable characteristics of the firms (which we have not collected).

We do not believe that this would be a fruitful exercise, since the model is not designed for this

purpose. A possible extension of our model would be to parameterize the group probabilities as

functions of observable variables, but this is beyond the scope of this paper.

The interpretation of the groups, according to the classification rule we have proposed, can only

be done in terms of the GARCH parameters. Group 1 corresponds to highly persistent conditional

variances (α1 + β1 estimated at 0.99), and group 3 to less persistent processes (α3 + β3 estimated

at 0.79). In terms of persistence, group 2 is closer to group 1 than to group 3, with α2 + β2

estimated at 0.96. The difference between groups 1 and 2 lies in the relative importance of the

impact of the lagged shock (0.05 in group 1, 0.09 in group 2) and of the autoregressive parameter

of the conditional variance (0.94 in group 1, 0.87 in group 2).
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7 Conclusion

We have addressed the problem of estimating a large number of GARCH models. The approach

consists in pooling similar series in a cluster and using a small number of clusters. The model

specifies the distribution of each series as a mixture of a small number of GARCH models. We

have illustrated that inference is feasible using the Bayesian approach using data augmentation

and the Gibbs sampler. The Gibbs sampler has two levels: at the first level, we have three

blocks (corresponding to group indicators, group probabilities, and parameters of the GARCH

components), and at the second level, for the GARCH parameters, we have to use the griddy-

Gibbs sampler within each group. We have illustrated with simulated and real data that the

approach is feasible and delivers sensible results.

Several extensions and applications are on our agenda. Firstly, more flexible specifications of

the component distributions could be considered. We use normal densities for ease of illustration.

Student t and skew-t densities could, and probably, should be used. Even a non-parametric

specification can be considered. Secondly, the same method can be used to cluster a large number of

small multivariate GARCH models. One application of this approach would be to adapt the study

of Kearney and Patton (2000). The practical limit is the length of computations given that the

numerical burden of the second level Gibbs sampler (griddy-Gibbs) is proportional to the number

of parameters of each GARCH component. As an alternative approach, one can try and replace

the second level Gibbs sampler by a Metropolis step. Thirdly, in principle, our algorithm can be

used to split a single long (univariate or multivariate) series in different groups corresponding to

different regimes: the latent variables would indicate to which regime each observation belongs.

Fourthly, the clustering idea can also be used to identify clusters of pairs of series with similar

correlation dynamics. Fifthly, our medium term more ambitious objective is to construct and

estimate a multivariate GARCH model for a large number of series. One idea is to find the

members of the clusters by the approach of this paper. Given the clusters, we can then specify

correlation (or covariance) models within each cluster. The last task would be to correlate the

clusters by a higher level link.
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Table 11: Descriptive statistics

j stock mean std min max skew kurt α̂ β̂ p̂j g

1 3M Co 0,0393 1,82 -6,89 10,51 0,51 5,67 0.08 0.87 0.99 2
2 Abbott Labs 0,0046 2,21 -17,60 11,75 -0,39 8,85 0.04 0.94 1.00 1
3 Aflac 0,0423 2,29 -12,22 14,91 0,50 8,26 0.20 0.39 1.00 3
4 Alcoa -0,0125 2,67 -11,66 12,22 0,10 4,62 0.04 0.94 0.97 1
5 Alltel -0,0386 2,10 -12,54 11,78 -0,10 6,03 0.03 0.96 0.99 1
6 Altria Gp 0,0150 2,48 -14,90 15,06 -0,27 8,80 0.05 0.94 1.00 1
7 American Express -0,0004 2,62 -14,61 10,44 -0,16 4,59 0.07 0.87 0.99 2
8 Anadarko Ptl 0,0320 2,53 -11,46 10,31 -0,04 4,43 0.04 0.96 1.00 1
9 Analog Devices 0,0302 4,67 -13,93 20,66 0,33 3,76 0.05 0.94 0.97 1
10 Anheuser-Busch 0,0398 1,85 -8,60 7,43 -0,29 5,46 0.09 0.89 0.83 1
11 AOL Time Warner -0,1281 3,65 -18,79 14,88 -0,22 5,49 0.08 0.88 0.99 2
12 Applied Mats -0,0037 4,36 -15,10 22,81 0,39 4,26 0.06 0.91 0.57 2
13 Atandt -0,1057 3,12 -21,17 20,84 0,14 8,32 0.09 0.65 1.00 3
14 Avon Products 0,0878 2,29 -11,06 17,57 0,95 9,94 0.08 0.91 1.00 1
15 Baker Hughes 0,0080 2,98 -15,60 17,10 0,04 5,49 0.05 0.95 0.99 1
16 Bank of America 0,0420 2,24 -9,06 7,98 0,03 4,48 0.09 0.90 0.78 1
17 Bank of New York -0,0099 2,68 -16,85 14,99 -0,05 7,09 0.09 0.82 0.93 2
18 Bank One 0,0132 2,25 -11,40 12,01 0,19 5,91 0.08 0.89 0.95 2
19 BB&T 0,0134 1,84 -8,17 10,31 0,17 6,12 0.11 0.87 0.55 2
20 Bellsouth -0,0588 2,44 -19,98 10,90 -0,57 9,71 0.05 0.94 0.86 1
21 Boeing -0,0260 2,47 -19,39 8,59 -0,58 7,43 0.08 0.87 1.00 2
22 Boston Scientific 0,0985 2,93 -32,74 15,11 -1,08 20,24 0.15 0.73 0.98 2
23 Bristol Myers -0,0855 2,66 -25,38 13,67 -1,17 15,14 0.07 0.91 0.66 2
24 Cardinal Health 0,0593 2,34 -17,13 11,74 -0,46 8,49 0.12 0.78 0.99 2
25 Caterpillar 0,0196 2,27 -12,86 8,03 0,01 4,61 0.04 0.89 0.99 3
26 Cendant 0,0032 3,24 -20,97 31,38 0,85 14,84 0.09 0.85 0.99 2
27 Charles Schwab -0,0811 4,09 -21,14 23,25 0,44 5,49 0.14 0.50 1.00 3
28 Chevron Texaco -0,0206 1,63 -6,92 9,04 0,05 5,01 0.08 0.89 0.95 2
29 Cisco Systems -0,0550 4,05 -14,07 21,82 0,32 5,70 0.07 0.91 0.83 1
30 Citigroup 0,0415 2,47 -17,11 11,90 -0,21 6,78 0.07 0.89 0.96 2
31 Clear Chl Comms -0,0655 3,16 -18,03 13,70 -0,40 6,12 0.08 0.88 1.00 2
32 Coca Cola -0,0074 1,99 -10,60 9,20 -0,02 5,94 0.03 0.96 1.00 1
33 Colgate Palmolive 0,0180 2,00 -17,33 18,50 0,08 17,26 0.11 0.88 0.80 1
34 Comcast -0,0211 3,16 -15,21 13,58 0,15 5,04 0.05 0.95 1.00 1
35 Conagra 0,0008 1,91 -21,70 9,30 -1,47 21,52 0.03 0.96 1.00 1
36 Conocophillips 0,0070 1,75 -8,58 9,91 -0,13 5,17 0.06 0.91 0.62 1
37 CVS -0,0333 2,83 -26,13 16,73 -0,79 14,56 0.08 0.73 1.00 3
38 Deere & Co 0,0237 2,36 -11,82 14,87 0,35 6,37 0.07 0.86 0.81 2
39 Dominion Res 0,0304 1,82 -13,68 8,38 -1,16 11,74 0.24 0.60 1.00 2
40 Dow Chemicals -0,0050 2,56 -11,18 10,77 0,09 4,98 0.09 0.82 0.97 2
41 Duke Energy -0,0446 2,45 -16,14 14,98 -0,24 8,55 0.14 0.73 0.99 1
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42 Du Pont -0,0321 2,17 -11,70 9,41 0,16 5,50 0.07 0.89 0.98 2
43 EMC Mass -0,1215 4,75 -32,95 22,20 -0,40 7,22 0.04 0.95 0.97 1
44 Emerson Electric -0,0186 2,12 -14,86 8,95 -0,17 5,92 0.10 0.65 1.00 3
45 Exelon 0,0456 1,95 -12,55 8,66 -0,25 6,66 0.16 0.75 1.00 2
46 Exxon Mobil -0,0057 1,76 -8,84 10,48 0,19 6,12 0.07 0.91 0.65 2
47 Fannie Mae 0,0037 2,06 -7,12 9,11 0,32 4,92 0.06 0.93 1.00 1
48 Fifth Third Bancorp 0,0337 2,09 -8,53 10,62 0,26 4,49 0.12 0.85 0.81 2
49 First Data 0,0576 2,40 -8,53 14,21 0,28 5,62 0.12 0.83 1.00 2
50 Fleetboston Finl -0,0123 2,62 -11,18 11,68 0,32 5,01 0.09 0.87 0.99 2
51 Ford Motor -0,0937 2,78 -15,89 14,51 0,21 6,66 0.12 0.72 0.60 3
52 Forest Labs 0,1494 2,73 -26,90 14,19 -0,85 13,86 0.02 0.98 1.00 1
53 Fpl Group 0,0211 1,68 -9,03 8,74 -0,25 6,87 0.15 0.73 0.99 2
54 Freddie Mac -0,0043 2,18 -17,50 11,14 0,00 8,99 0.05 0.90 0.96 2
55 Gannett 0,0112 1,66 -8,44 6,69 0,02 4,31 0.07 0.88 0.73 2
56 General Dynamics 0,0238 2,14 -13,21 8,73 -0,36 6,39 0.10 0.73 1.00 3
57 General Eelectric -0,0328 2,34 -11,29 11,74 0,07 5,27 0.07 0.85 0.66 3
58 General Motors -0,0529 2,43 -14,54 9,84 -0,16 5,49 0.06 0.90 0.83 2
59 Gillette -0,0068 2,03 -9,02 14,97 0,35 7,72 0.04 0.95 0.99 1
60 Golden West Finl 0,0954 2,00 -11,02 12,02 0,08 6,41 0.07 0.92 0.95 1
61 Harley-Davidson 0,0615 2,39 -9,11 11,27 0,21 4,79 0.07 0.86 0.95 2
62 Heinz HJ -0,0102 1,76 -8,60 13,51 0,48 9,44 0.16 0.77 0.98 2
63 Hewlett Packard -0,0508 3,54 -20,70 19,01 0,04 6,53 0.02 0.96 0.55 1
64 Home Depot -0,0356 2,99 -33,87 12,14 -1,47 20,53 0.13 0.77 0.94 2
65 Honeywell Intl -0,0737 3,05 -19,57 25,38 -0,22 12,60 0.24 0.46 1.00 3
66 IBM -0,0394 2,58 -16,89 12,26 -0,16 8,10 0.05 0.93 0.92 1
67 Illinois Tool Wks -0,0058 2,04 -9,03 10,04 0,29 5,23 0.08 0.85 0.92 2
68 Intel -0,0428 3,79 -24,88 18,34 -0,38 6,95 0.09 0.86 1.00 2
69 International Paper -0,0212 2,35 -11,00 11,24 0,35 5,04 0.06 0.92 0.78 1
70 Johnson & Johnson 0,0011 2,07 -18,63 10,80 -0,89 13,12 0.10 0.83 1.00 2
71 Kellogg -0,0082 2,11 -9,69 10,29 0,39 5,58 0.06 0.93 0.85 1
72 Keycorp 0,0055 2,08 -8,27 10,79 0,04 5,05 0.06 0.92 0.98 1
73 Kimberly-Clark -0,0097 1,92 -11,55 10,08 -0,20 8,33 0.07 0.91 0.72 2
74 Kohls 0,0558 2,73 -10,59 10,51 0,19 4,29 0.08 0.89 0.87 2
75 Kroger -0,0322 2,61 -28,25 9,46 -1,52 18,82 0.12 0.82 1.00 2
76 Linear Tech 0,0142 4,41 -14,69 16,35 0,30 3,43 0.07 0.92 0.66 1
77 Lowe’s Cos 0,0697 2,82 -11,57 16,94 0,33 5,36 0.04 0.95 1.00 1
78 Marsh & Mclennan 0,0377 2,29 -13,50 12,88 0,25 6,63 0.10 0.86 1.00 2
79 Maxim Integ. Prod. 0,0126 4,52 -30,31 20,89 0,12 5,89 0.07 0.92 0.66 1
80 Mbna Corp 0,0386 2,98 -14,76 19,19 0,14 6,68 0.09 0.87 1.00 2
81 Mcgraw-Hill Co 0,0254 1,99 -11,93 13,40 0,32 7,52 0.07 0.91 0.70 2
82 Medtronic 0,0377 2,17 -9,05 10,60 -0,07 4,77 0.06 0.93 0.97 1
83 Mellon Finl -0,0082 2,41 -10,55 10,15 0,10 4,51 0.09 0.87 0.99 2
84 Merck -0,0148 2,03 -9,86 9,16 0,10 5,38 0.06 0.88 0.57 3
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85 Merrilllynch 0,0468 2,88 -12,17 11,06 0,11 4,09 0.05 0.91 0.48 1
86 Microsoft -0,0534 2,80 -16,97 17,86 -0,11 7,79 0.08 0.89 0.98 2
87 Motorola -0,1185 3,95 -26,24 17,53 -0,60 8,59 0.08 0.88 0.98 2
88 National City 0,0223 1,99 -9,48 9,44 -0,03 5,22 0.08 0.91 0.97 1
89 Nextel Comms A -0,0584 6,00 -33,44 28,60 0,04 6,82 0.05 0.95 1.00 1
90 Northrop Grumman 0,0434 2,17 -12,50 14,58 0,01 7,19 0.04 0.87 1.00 3
91 Omnicom -0,0043 2,68 -21,94 12,13 -0,51 9,34 0.10 0.87 1.00 2
92 Oracle 0,0093 4,35 -23,63 19,31 0,09 5,24 0.05 0.95 0.99 1
93 Paychex 0,0351 3,08 -14,14 13,35 -0,01 4,54 0.05 0.93 0.90 1
94 Pepsico 0,0402 1,86 -10,73 13,86 0,33 8,59 0.05 0.94 0.94 1
95 Pfizer -0,0022 2,17 -11,23 6,93 -0,19 4,60 0.08 0.90 0.76 2
96 Pnc Finl. Svs -0,0040 2,22 -16,05 11,65 -0,30 7,69 0.10 0.86 1.00 2
97 Procter & Gamble -0,0080 2,20 -37,66 9,09 -5,20 90,36 0.04 0.96 1.00 1
98 Progressive Corp 0,0854 2,43 -21,36 18,99 0,05 15,75 0.03 0.97 1.00 1
99 Qualcomm -0,0229 4,63 -18,45 27,01 0,24 5,10 0.03 0.97 0.90 1
100 Raytheon New -0,0455 3,45 -57,28 23,71 -4,78 85,19 0.13 0.63 1.00 3
101 Royal Dutch -0,0303 1,84 -9,69 5,99 -0,48 5,17 0.10 0.85 1.00 2
102 Safeway -0,0730 2,53 -19,06 12,66 -0,64 9,10 0.04 0.94 0.50 1
103 Sara Lee -0,0192 1,89 -10,35 12,32 0,18 6,67 0.04 0.93 0.83 1
104 Sbc Communications -0,0750 2,52 -13,54 8,85 -0,03 4,74 0.05 0.92 0.59 1
105 Schering-Plough -0,0885 2,65 -15,82 11,14 -0,24 5,67 0.24 0.45 0.50 2
106 SLM 0,1058 1,96 -9,08 8,78 0,05 5,10 0.04 0.96 1.00 1
107 Southern 0,0615 1,72 -8,85 8,78 -0,02 5,66 0.16 0.79 0.92 2
108 Sprint -0,1321 3,30 -24,42 18,82 -0,44 9,17 0.21 0.67 1.00 2
109 Statestreet 0,0353 2,57 -12,11 16,43 0,10 6,24 0.10 0.85 1.00 2
110 Stryker 0,1103 2,27 -19,26 18,41 0,05 13,13 0.04 0.96 1.00 1
111 Sun Microsystems -0,1812 4,69 -31,09 26,02 -0,13 6,59 0.04 0.94 0.86 1
112 Suntrust Banks -0,0063 1,92 -9,49 9,44 -0,04 5,70 0.07 0.92 0.86 1
113 Sysco 0,0548 1,92 -8,52 12,38 0,18 6,44 0.15 0.77 1.00 2
114 Target 0,0270 2,76 -11,19 12,23 0,07 4,77 0.04 0.95 1.00 1
115 Texas Instruments -0,0811 4,20 -20,12 21,55 0,29 4,38 0.06 0.91 0.55 2
116 Tribune -0,0019 2,09 -18,82 9,30 -0,71 11,34 0.13 0.83 1.00 2
117 Union Pacific 0,0233 1,92 -7,28 6,42 -0,06 3,94 0.05 0.93 0.92 1
118 United Health Gp 0,1286 2,25 -21,77 11,10 -1,10 13,35 0.11 0.86 0.53 2
119 United Technologies 0,0278 2,54 -33,20 9,38 -2,28 32,48 0.03 0.81 1.00 3
120 US Bancorp Del. 0,0024 2,53 -17,42 14,06 -0,15 7,51 0.11 0.85 1.00 2
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121 Verizon Comms -0,0625 2,32 -12,61 11,57 0,08 5,89 0.05 0.93 0.93 1
122 Viacomb 0,0018 2,97 -13,90 15,68 0,22 5,16 0.06 0.91 0.60 2
123 Wachovia 0,0208 2,23 -9,12 8,37 0,01 4,50 0.11 0.87 1.00 2
124 Walgreen 0,0198 2,15 -9,69 8,95 -0,14 4,69 0.03 0.96 0.94 1
125 Walmart 0,0203 2,37 -9,24 9,02 0,23 4,71 0.04 0.96 1.00 1
126 Walt Disney -0,0189 2,74 -20,29 14,20 -0,42 8,65 0.04 0.84 1.00 3
127 Washington Mutual 0,0775 2,23 -11,68 11,54 0,06 5,44 0.15 0.78 1.00 2
128 Wasteman 0,0255 2,45 -14,23 23,32 0,65 13,50 0.04 0.95 1.00 1
129 Wellsfargo & Co 0,0286 1,90 -9,20 9,53 0,08 5,57 0.10 0.88 0.71 2
130 Weyerhaeuser 0,0003 2,32 -12,72 11,11 0,13 5,22 0.05 0.93 0.87 1
131 Wyeth 0,0097 2,73 -27,77 11,47 -1,34 18,70 0.06 0.93 1.00 1

Column 2 indicates the names of the firms in our sample.

Columns 3 to 8 report usual descriptive statistics of the returns (mean, standard deviation, minimum, maximum,

skewness coefficient, kurtosis coefficient).

Columns α̂ and β̂ report the QML estimates of the GARCH(1,1) parameters of ht = (1−α− β)ω̃ + αy2
t−1 + βht−1

for each series, when ω̃ is fixed at the unconditional variance of the data.

Column p̂j gives the probability that series j belongs to the group indicated in the last column for the model with

three groups. The probability is estimated by the relative frequency of generated Sj (in the Gibbs sample) equal to

the value indicated in the last column.
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Appendix 1: The multinomial process

The multinomial process is basically a generalization of the binomial process. Let Ei (i =

1, . . . , G) be a partition of the sample space E. Consider an experiment whose outcomes must

belong to one of the Ei’s. This experiment is described by a vector θ = (θ1, . . . , θG)′ where

θi = P (ω ∈ Ei) ≥ 0 and
∑G

i=1 θi = 1.

Consider now n independent repetitions of the same experiment and let Xi be the number of

outcomes that belong to Ei. Then the vector X = (X1, . . . , XG)′ has a multinomial distribution

with parameter (n, θ) and we write X ∼ M(n, θ).

Characteristics

1. Probability distribution :

P (X = x|n, θ) =
n!∏G

i=1 xi!

G∏

i=1

θxi
i (37)

2. Sample space

Sn =

{
x ∈ Nn|

G∑

i=1

xi = n

}
(38)

3. Parameter space

SG =

{
θ ∈ RG | θi ≥ 0 i = 1, . . . , G and

G∑

i=1

θi = 1

}
(39)

4. First two moments

E(Xi|n, θ) = n θi

V (Xi|n, θ) = n θi (1− θi)

cov(Xi, Xj |n, θ) = −n θi θj (40)

To reconcile with the Sg’s introduced in Section 2, see Table 12, where ygj is an indicator

variable taking the value 1 with probability ηg. It is easy to see that

P (Sj = g) = P (y1j = 0, y2j = 0, . . . , ygj = 1, . . . , yGj = 0)

= η
y1j

1 η
y2j

2 . . . ηygj
g . . . η

yGj

G

= ηg.

(41)
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Group indicator

group S1 S1 . . . SJ

1 y11 y12 . . . y1J X1 =
∑J

j=1 y1j = x1

2 y21 y22 . . . y2J X2 =
∑J

j=1 y2j = x2

...
...

...
. . .

...
...

G yG1 yG2 . . . yGJ XG =
∑J

j=1 yGj = xG

∑G
g=1 xg = J

Table 12: Link between Sg and Xg

Appendix 2: The Dirichlet distribution

For fixed n the Dirichlet distribution is the conjugate prior of the parameters of the multinomial

distribution M(n, θ).

Characteristics

1. Density function :

fDi(θ| a) =
Γ(A)∏G

i=1 Γ(ai)

G∏

i=1

θai−1
i 11SG

(θ) (42)

where a = (a1, . . . , aG) is the parameter of the Dirichlet distribution such that ai > 0

(i = 1, . . . , G) and A is defined as A =
∑G

i=1 ai. We write θ ∼ Di(a).

Note that the density function, given that θ is a parameter of the multinomial distribution,

changes under the restriction
∑G

i=1 θi = 1, for example like

Γ(A)∏G
i=1 Γ(ai)

θa1−1
1 θa2−1

2 . . . θ
aG−1−1
G−1 (1− θ1 − θ2 − . . .− θG−1)aG−1 11SG

(θ1, . . . , θG−1) (43)

2. Sample space

SG =

{
(θ1, . . . , θG−1) ∈ RG−1 | θi ≥ 0 i = 1, . . . , G− 1 and

G−1∑

i=1

θi ≤ 1

}
(44)

3. First two moments

E(θi|a) =
ai

A

V (θi|a) =
ai (A− ai)
A2(A + 1)
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cov(θi, θj |a) = − aiaj

A2(A + 1)
(45)

4. When G = 2 then the Dirichlet distribution is a beta distribution. Let us give the classic

coin tossing example. The likelihood for J coin tosses (Bernouilli trials) with k heads is

p(k|θ, J) = Ck
Jθk(1− θ)J−k (46)

from which we compute directly that the maximum likehood estimator is θ̂ = k/J . We put

a prior distribution over the parameter θ and are interested in

p(θ|k) =
p(k|θ)p(θ)

p(k)
(47)

where

p(θ) = C(α1, α2)θα1−1 (1− θ)α2−1 (48)

and

C(α1, α2) =
Γ(α1 + α2)

Γ(α1) + Γ(α2)
. (49)

We can reparametrize the α’s as follows

α1 = p S + 1

α2 = (1− p) S + 1 (50)

so that (47) becomes

p(θ|k) =
Ck

JC(α1, α2)θk+p S(1− θ)(J−k)+(1−p)S

p(k)
(51)

or

p(θ|k) ∝ θk+p S(1− θ)(J−k)+(1−p)S . (52)

Deriving with respect to θ and solving yields the posterior mode θ∗ = k+p S
J+S .

Notice that p(θ|k) is a beta distribution with parameters k+p S+1 and (J−k)+(1−p)S+1.

Its mean is

k + p S + 1
J + S + 2

. (53)
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This is not equal to the posterior mode.

So, when G = 2, we have to sample from a beta distribution which is done by sampling

independently y1 ∼ G(k + p S + 1, 1), y2 ∼ G((J − k) + (1− p)S + 1, 1) where G means the

gamma distribution and taking y1
y1+y2

as the beta variate.

Posterior distribution

Let

X|θ ∼ M(n, θ) (54)

θ ∼ Di(a) (55)

then

θ|X = x ∼ Di(a∗) (56)

a∗ = a + x. This may indeed be seen using Bayes theorem:

ϕ(θ|x) ∝
G∏

g=1

θag+xg−1
g (57)

Sampling from a Dirichlet distribution

Suppose that X1, . . . , XG are independent random variables having each a gamma distribution

G(ag, 1), g = 1, . . . , G and let

θi =
Xi

X1 + . . . + XG
i = 1, . . . , G− 1

θG = 1− θ1 − θ2 − . . .− θG−1.

Then (θ1, . . . , θG) ∼ Di(a1, . . . , aG). Other results about the Dirichlet distribution can be found

in Wilks (1962).
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Appendix 3: Marginal likelihood

This appendix focuses on the calculation of the marginal likelihood m(ỹg).

Deterministic integration

We only discuss the Simpson rule but notice that many other deterministic integration methods

may be used, see Bauwens, Lubrano, and Richard (1999, chap. 3). The interest lies in the integral

∫ θU

θL

h(θ) dθ. (58)

With 2n intervals of equal length d = θj−θj−1 = 1/2n based on 2n+1 points θ0(= θL), θ1, . . . , θ2n(=

θU ) one can approximate (58) by

(d/3){h(θ0) +
2n−1∑

i=1

(3 + (−1)i+1)h(θi) + h(θ2n)}. (59)

The Simpson rule can be generalized for higher dimensions. For instance, in two dimensions we

write

∫ θU

θL

∫ ξU

ξL

h(θ, ξ) dθ dξ =
∫ θU

θL

dθ

∫ ξU

ξL

h(θ, ξ) dξ. (60)

In words, we integrate the function with respect to ξ for all the possible values of θ, implying

many (2n + 1) one-dimensional integrals. The integral of the resulting one-dimensional function

of θ yields the answer.

Laplace approximation

Let us define exp(h(θg)) = f(ỹg|θg) ϕ(θg) and θ = θg for notational convenience. The Laplace

approximation is based on a second order Taylor expansion of h(θ) around θ̂ = arg max ln f(ỹg|θ)

h(θ) ≈ h(θ̂) +
1
2
(θ − θ̂)′

∂2h(θ)
∂θ ∂θ′

|θ=θ̂ (θ − θ̂). (61)

Therefore the marginal likelihood can be computed as

∫
exph(θ)dθ ≈ exp(h(θ̂))

∫
exp

(
1
2
(θ − θ̂)′

∂2h(θ)
∂θ ∂θ′

|θ=θ̂ (θ − θ̂)
)

dθ. (62)

or

m(ỹg) = f(ỹg|θ̂) ϕ(θ̂) (2π)k/2 | Σ(θ̂) |1/2 (63)
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where k is the dimension of θ and

Σ(θ̂) =
[
−∂2 ln f(ỹg|θ) ϕ(θ)

∂θ∂θ′
|θ=θ̂

]−1

. (64)

Examples

We now present some marginal likelihood computation examples to compare the deterministic

integration with the Laplace approximation. We consider four cases.

1. Univariate normal with known variance.

Y |θ ∼ N(θ, 1) (65)

θ ∼ N(0, 1) (66)

We draw an i.i.d. sample from (65) with θ = 0 resulting in {y1, y2, . . . , yn}. The likelihood

and the prior density are

f(y|θ) = (2π)−
n
2 exp

(
−

∑n
i=1(yi − θ)2

2

)
(67)

ϕ(θ) = (2π)−
1
2 exp

(
−θ2

2

)
(68)

We want to calculate the marginal likelihood
∫

f(y|θ)ϕ(θ)dθ which can be done analytically

by noticing that

f(y|θ)ϕ(θ) = (2π)−
n+1

2 exp
(
−

∑n
i=1(yi − θ)2 + θ2

2

)
(69)

= (2π)−
n+1

2 exp
(
−

∑n
i=1(yi − ȳ)2

2

)
exp

(
− nȳ2

2(n + 1)

)
× (70)

exp

(
− 1

2 1
n+1

(
θ − n

n + 1
ȳ

)2
)

(71)

which implies that

∫
f(y|θ)ϕ(θ)dθ = c

∫
exp

(
− 1

2 1
n+1

(
θ − n

n + 1
ȳ

)2
)

dθ (72)

= c(2π)
1
2 (n + 1)−

1
2 (73)

where c contains everything in (70).
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The Laplace approximation in (63) results in

∫
f(y|θ)ϕ(θ)dθ = f(y|θ̂) ϕ(θ̂) (2π)

1
2 (n + 1)−

1
2 (74)

= (2π)−
n
2 exp

(
−

∑n
i=1(yi − θ̂)2

2

)
(2π)−

1
2 exp

(
− θ̂2

2

)
(2π)

1
2 (n + 1)−

1
2

which is exactly the same as (73) because θ̂ = n
n+1 ȳ. This comes as no suprise since the

Laplace method approximates a quadratic function by a Taylor expansion of order two.

2. Beta distribution

Y |θ ∼ beta(θ, 3) (75)

θ ∼ constant (76)

The likelihood is

f(y|θ) =
(

Γ(θ + 3)
Γ(θ)Γ(3)

)n n∏

i=1

(
yθ−1

i (1− yi)2
)
. (77)

3. Product of two univariate normal distributions

Yi|θi ∼ N(θi, 1) i = 1, 2 (78)

θi ∼ N(0, 1) i = 1, 2 (79)

4. Product of two univariate beta distributions

Y1|θ1 ∼ beta(θ1, 3) (80)

Y2|θ2 ∼ beta(θ2, 3) (81)

θi ∼ constant i = 1, 2 (82)

The posterior kernel for these examples are displayed in Figure 9. The marginal likelihoods by

deterministic integration and the Laplace approximation are displayed in Table 13. Apparently,

both techniques deliver almost the same results.
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Figure 9: Posterior kernels

Table 13: Marginal likelihoods

n θ Simpson (1) Laplace (2) (1)/(2)

Univariate normal 20 0 6.7755e-012 6.7755e-012 1

Bivariate normal 10 (0 0)′ 4.4295e-008 4.42969e-008 0.99996

Univariate beta 20 3 6.0487e+049 6.04159e+049 1.0012

Bivariate beta 20 (3 3)′ 3.8004e+095 3.79763e+095 1.0007
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