
TOPOLOGIES OF SOCIAL INTERACTIONS

by

Yannis M. Ioannides 1

Department of Economics
Tufts University

Medford, MA 02155
+ 1 617 627 3294 yannis.ioannides@tufts.edu

December 23, 2003

Abstract

The paper extends the Brock-Durlauf model of interactive discrete choice, where individuals’
decisions are influenced by the decisions of others, to richer social structures. Social structure is
modelled by a graph, with individuals as vertices and interaction between individuals as edges.
The paper extends the mean field case to stylized interaction topologies like the Walrasian star,
the cycle and the one-dimensional lattice (or path) and compares the properties of Nash equilibria
when agents act on the basis of expectations over their neighbors’ decisions versus actual knowl-
edge of neighbors’ decisions. It links links social interactions theory with the econometric theory of
systems of simultaneous equations modelling discrete decisions. The paper obtains general results
for the dynamics of adjustment towards steady states and shows that they combine spectral prop-
erties of the adjacency matrix with those associated with the nonlinearity of the reaction functions
that lead to multiplicity of steady states. When all agents have the same number of neighbors the
dynamics of adjustment exhibit relative persistence. Cyclical interaction is associated with endoge-
nous and generally transient spatial oscillations that take the form of islands of conformity, but
multiplicity of equilibria leads to permanent effects of initial conditions. The paper also analyzes
stochastic dynamics for general interaction topologies, when agents acts with knowledge of their
neighbors’ actual decisions, which involve networked Markov chains in sample spaces of very high
dimensionality.
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1 Introduction

This paper studies properties of economies where interdependence across agents exhibit explicit
spatial interaction, which is interpreted as social interaction. It compares against the benchmark
case of interaction being assumed to be uniform and global, like when each individual is assumed
to be influenced by the sum of decisions of all other agents. The paper examines how the actual
topology of interaction matters by comparing stylized social interaction topologies, such as where
individuals are connected through a common intermediary, where the pattern of interactions forms
a cycle, and where it forms an one-dimensional lattice. We show that the tools developed for the
case of global interactions, which is known as the mean field case, allow us to analyze richer social
interaction patterns. An important property of the dynamics of adjustment, which is shared by all
regular interaction structures, that is when all agents have the same number of neighbors, is relative
persistence. Some results for general interaction structures are qualitatively similar to the mean
field case, but a richer class of anisotropic equilibria may arise, for the case of the cycle and one-
dimensional lattice topologies in static settings if the backward and forward interaction coefficients
differ. Equilibria with social interactions when individuals’ behavior is affected by the actual
behavior of their neighbors differ qualitatively from those when individuals base their behavior on
their expectations of their neighbors’ decisions, both in static and dynamic settings. The paper links
social interactions theory with the econometrics of systems of simultaneous equations expressing
discrete decisions.

The topology of interactions has been addressed by other sciences, too. The study of dynamic
spatial interaction in mathematical population biology pays special attention to the specific features
of spatial interaction [ Durrett and Levin (1994) ]. Similarly, in mathematical sociology, graph-
theoretic models of social interactions pay close attention to such issues [ Burt (1980); Watts and
Strogatz (1998) ].

Even in economics, we often make some very specific assumptions about interaction patterns
in order to obtain analytically tractable models for particular problems. These assumptions could
be critically important for the properties of the economies we study. The overlapping generations
model may accommodate different intertemporal interaction structures, which maps to a specific
spatial structure. Cass and Yaari (1966) were the first to make this connection. For this work-horse
of modern macroeconomics, economists are indeed aware of some consequences of which markets
individuals have access to upon properties of competitive dynamic equilibrium in overlapping gener-
ations economies. Perhaps because intertemporal interactions in that model are mediated through
markets, we might forget that market access is defined conditionally in terms of a particular inter-
action pattern. In fact, the originally puzzling results on the indeterminacy of equilibria, explored
by Kehoe and Levine (1990) and many others, are in a sense a demonstration of the importance of
the topology of interactions. Results by Puga and Venables (1997) on the consequences of patterns
of preferential trading arrangements among countries again can demonstrate the same point.

Current interest in the study of direct interactions by the emerging literature on economies with
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interacting agents aims at a better understanding of conditions under which extreme, or “polarized
behavior may occur solely due to collective interdependence in decision-making” [ Durlauf (1997),
p. 82 ]. Durlauf also considers the coexistence of local and global interactions. Kirman (1993)
emphasizes the importance of aggregation rather than summation. More recently, Young (1998)
has studied coordination games that emphasize individual agent’s behavior being affected by the
behavior of a subset of other agents, rather than of all other agents. Kirman (1997) provides an
excellent review of the overall interacting agents literature.

The possible role of an economy’s interaction topology in the context of the interacting agents
literature was first posed informally by Ioannides (1997). Some of the interaction topologies we
examine here have been used separately by various researchers before. E.g., Ellison (1993) and
Glaeser, Sacerdote and Scheinkman (1996) work with the cyclical interaction topology. Ellison
considers cyclical interaction in order to work with local matching, where agents interact with a
few close friends. Glaeser et al. adopt cyclical interaction because it lends itself easily to study
of tractable structures when the number of agents is large. This paper is the first to bring them
together under the same overarching model. Other notable contributions that underscore the
importance of interaction topology are Bala and Goyal (1998), Bramoullé (2001), Haag and Lagunoff
(2001), Haller and Outkin (1999) and Morris (2000). One of the contributions of the present paper
is to integrate the treatment of interactions in the presence of different topologies and to identify
a distict role of interaction topology in static and dynamic settings. Our results extend Brock
and Durlauf (2001) in a number of ways and complement contributions by others, including in
particular, Horst and Scheinkman (2003), who emphasize continuous decisions and also allow for
random topologies in static models, and Bisin (2002) et al. (2002), who also emphasize continuous
decisions with fixed one-sided interactions and allow for dynamics with rational expectations but
exclude multiple equilibria.

In the remainder of the paper, we start first with the basic framework of interactive discrete
choice and social equilibrium proposed by Brock and Durlauf (2001), which we employ as a basic
building block. If an individual’s behavior depends upon the sum total of the behavior of all other
members of the economy, then in a Nash equilibrium setting, where each individual takes others’
decisions as given and makes her own decision subject to an independent source of randomness,
social equilibrium is determined as a fixed point in terms of the equilibrium value of the mean
decision. The paper shows, in section 2, that it can be extended to accommodate asymmetric
interaction patterns including a Walrasian star and interaction along an one-dimensional lattice
with and without closure. Section 3 examines the case where individuals’ behavior is based on
the actual decisions of their neighbors. We obtain the equilibrium probability distributions for the
case of Walrasian-star interactions, by working from first principles, and of circular interaction,
by drawing on the statistical mechanics literature on the one-dimensional Ising model. We also
examine the properties of the equilibrium probability distributions for the decisions of all agents by
linking interactive discrete choice models with the econometric theory of simultaneous systems of
equations modelling discrete decisions. The dynamics of social equilibria are examined in Section
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4, both for the case where individuals act with knowledge of their neighbors’ actual past decisions
and with expectations of their neighbors’ decisions being equal to their mean past decisions. The
dynamics are stochastic and thus vastly more complicated if agents use their neighbors’ actual past
decisions as the expectation of their future decisions. The most general case of arbitrary social
interactions topology may be studied as a system of networked interactive Markov chains, but
because it is defined over a very large sample sample space, its high dimensionality make it unwieldy.
Nonetheless, it is associated with a stationary distribution. We characterize the stochastic dynamics
in such settings for the cases when interaction topologies are translation-invariant and interaction
structures reversible. These conditions are satisfied in the cases of symmetric circular interaction
and of global interaction, in particular. The stochastic dynamics of the Walrasian star interaction
model do not satisfy these conditions but are amenable to specific treatment. Special attention
is given to the qualitative importance for the dynamics of adjustment of the social structure’s
exhibiting closure and regularity, that is when all individuals have the same number of neighbors.
This is based on contrasting cyclical local interaction with local interaction on a path without
closure. Section 5 explores possible extensions of the basic models introduced in the paper and
Section 6 concludes. Proofs and technical material have been relegated to an appendix.

2 Interactive Discrete Choice

Let the elements of a set I represent individuals. Social interactions among individuals I are
defined by an undirected graph G(V, E), where: V is the set of vertices, V = {v1, v2, . . . , vI}, an
one-to-one map of the set of individuals I onto itself (the graph is labelled), and I = |V | is the
number of vertices (nodes), (known as the order of the graph); E is a subset of the collection of
unordered pairs of vertices and q = |E| is the number of edges, (known as the size of the graph).
We say that agent i interacts with agent j if there is an edge between nodes i and j. Let ν(i) define
the local neighborhood of agent i : ν(i) = {j ∈ I|j 6= i, {i, j} ∈ E}. The number of i’s neighbors is
the degree of node i : di = |ν(i)|.

Graph G(V, E) may be represented equivalently by its adjacency matrix, Γ, an I × I matrix
whose element (i, j) is equal to 1, if there exists an edge connecting agents i and j, and is equal to 0,
otherwise. For undirected graphs, matrix Γ is symmetric and its spectral properties are important
in the study of dynamics of social interactions, as we see further below. We define the diagonal
matrix with 1

|ν(i)| as its diagonal elements as N−1.

This section develops models where agents’ utility-maximizing behavior gives rises to nonlinear
response rules and explores the importance of nonlinearity in conjunction with differences in the
topology of social interactions for social equilibrium. We adapt the Brock- Durlauf model of
interactive discrete choice that restricts attention to binary (discrete) choices [ Brock and Durlauf
(2001); Durlauf (1997) ] and examine topologies of interaction other than the global one.2 By

2McKelvey and Palfrey (1995) and Chen, Friedman and Thisse (1997) develop game-theoretic discrete choice
models with interactive features that are based on the logit model. However, these works do not appear to have
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conforming to this literature and defining the binary choice set for each individual as S = {−1, 1},
we avail ourselves of the convenience of some of the analytical tools that earlier authors have already
developed.

2.1 The Brock-Durlauf Interactive Discrete Choice Model

Let agent i choose ωi, ωi ∈ S, so as to maximize her utility, which depends on the actions of her
neighbors: Ui = U(ωi;

∼
ων(i)), where

∼
ων(i) denotes the vector of dimension di containing as elements

the decisions made by each of agent i’s neighbors, j ∈ ν(i). The I vector of all agents’ decisions,
∼
ω= (ω1, . . . , ωI), is also known as a configuration, and

∼
ων(i) is known as agent i’s environment.

We assume that an agent’s utility function Ui is additively separable in a private utility com-
ponent, which without loss of generality (due to the binary nature of the decision) may be written
as hωi, h > 0, in a social interactions component, which is written in terms of quadratic inter-
actions between her own decision and of the expectation of the decisions of her neighbors,

∼
ων(i),

ωiEi

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

}
, and a random utility component, ε(ωi), which is observable only by the

individual i. That is, Ui may be written as:

Ui(ωi; Ei

{∼
ων(i)

}
) ≡ hωi + ωiEi





1
|ν(i)|

∑

j∈ν(i)

Jijωj



 + ε(ωi). (1)

The interaction coefficients may be positive — individuals are conformist — or negative — in-
dividuals are non-conformist. It will be helpful to later to define J as the matrix of interaction
coefficients, a I × I matrix with element Jij .

Following Brock and Durlauf (2001), in view of McFadden (1981), and under the additional
assumption that ε(ωi) is independently and identically type I extreme-value distributed3 across all
alternatives and agents i ∈ I, we may write closed form expressions for the choice probabilities.
For a binary choice set S, individual i chooses ωi = 1 with probability

Prob(ωi = 1) = Prob



2h + 2Ei





1
|ν(i)|

∑

j∈ν(i)

Jijωj



 ≥ −(ε(1)− ε(−1))



 . (2)

In view of the above assumptions, this may be written in terms of the logistic cumulative distribution
function:

Prob(ωi = 1) =
exp

[
β

(
2h + 2Ei

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

})]

1 + exp
[
β

(
2h + 2Ei

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

})] , (3)

influenced the latest developments in this literature.
3If two independent and identically distributed random variables, ε(−1), ε(1), obey type I extreme-value distribu-

tions, then their difference has a logistic distribution:

Prob{ε(−1)− ε(1) ≤ x} =
exp[βx]

1 + exp[βx]
.
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where β > 0 is a behavioral parameter that denotes the degree of dispersion in the random com-
ponent of private utility, ε(ωi) in (1). The case of β = 0 implies purely random choice: the two
outcomes are equally likely. The higher is β the more concentrated is the distribution. To see
this, note that when β is large, the values of exp[−βx] become small (large) quickly as x increases
(decreases), when x > 0 (x < 0). Therefore, a lot of probability is assigned to x = 0.4

The extreme-value distribution assumption for the ε’s is made because it yields a simple and
very convenient form for the choice probabilities. It gets us a lot, by being responsible for linking
with the machinery of the Gibbs distributions theory [Blume (1997); Brock and Durlauf (2001)].5

2.1.1 Mean Field Theory

For the mean field theory case, considered by Brock and Durlauf (2001), if each individual’s sub-
jective expectations of other agents’ decisions are equal,

Ei(ωj) = m,∀i, j ∈ I, (4)

then the interaction term in individual i’s utility function (1), and with the additional assumption
that Jij = J, becomes ωi

1
|ν(i)|

∑
JEi(ωj) = ωiJm. Using (3) allows us to write E(ωi) as a function

of m. Therefore, when individuals’ subjective expectations of others’ decisions are equal, m, then
the typical individual’s mean choice, E(ωi) = Prob(ωi = 1)− Prob(ωi = −1), may be written from
(3) as a function of his subjective expectation of the decisions by others, m. For Nash equilibrium,
m = E(ωi) = exp[2βh+2βJm]−1

1+exp[2βh+2βJm] , or
m = tanh(βh + βJm), (5)

where tanh(·), the hyperbolic tangent function, is defined as: tanh(x) ≡ exp(x)−exp(−x)
exp(x)+exp(−x) , −∞ < x <

∞.6

4Translating this to the case of (3) above, we see that when
(
2h + 2

∑
j∈ν(i)

Jijωj ]
)

> 0, the term

exp
[
β

(
2h + 2Ei

{∑
j∈ν(i)

Jijωj

}
]
)]

becomes large quickly, thus increasing the probability assigned to the event

ωi = 1.
5There are, however, several additional arguments in favor of this assumption. First, the logistic integral is a

fairly good approximation to the normal. Second, the extreme value distribution is the asymptotic distribution for
the maximum of a set of independent random variables. That is, as n →∞, Yn = max1≤i≤n{X1, . . . , Xn} − `nn, is
asymptotically extreme value distributed, where X1, . . . , Xn, are independently and identically distributed random
variables with zero mean, drawn from a fairly large class of distributions [Cox and Hinkley (1974)].This class is
defined as follows. If F (x) and f(x) denote the probability distribution and probability density functions of the X’s,

and d
dx

1−F (x)
f(x)

→ 0, as x →∞, then the standardized variable Yn−an
bn

, with an = F−1(1− 1
n
), b−1

n = nf(an), has an

extreme value distribution, i.e., its probability distribution function is given by exp[− exp[−y]]). This standardized
extreme value distribution is skewed, with a long upper tail, and a mode at 0; its mean is equal to Euler’s Constant,

0.57722, and its variance π2

6
. [Cox and Hinkley (1974), p. 473.]

6While the hyperbolic tangent function is commonly used in statistical physics, it is rather infrequently used in
economics outside the interacting agents literature. Its basic properties follow from first principles [See also Courant
(1988), p. 184]. The function y = tanh(x), defined for all real values of x, is an increasing function with range [−1, 1].
As x → −∞(+∞), tanh(x) → −1(1). Since tanh(x)′ = 1− (tanh(x))2, x = 0 is both a zero and an inflection point.
Therefore, the 45o line through (0, 0) is tangent to the graph of tanh(x), leaving it above itself, for x < 0, and below
itself, for x > 0.
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We adapt to our notation and summarize here the results of Durlauf (1997) and Brock and
Durlauf (2001) regarding existence and multiplicity of the Nash equilibria given by the roots of
Equ. (5). If βJ > 1, and h = 0, then the function tanh(βh + βJm) is centered at m = 0, and
Equ. (5) has three roots: a positive one (“upper”), (m∗

+), zero (“middle”), and a negative one
(“lower”), (m∗−), where m∗

+ = |m∗−|. If h 6= 0 and J > 0, then there exists a threshold H∗, which
depends on β and J, such that if βh < H∗, Equ. (5) has a unique root, which agrees with h in
sign. That is, given a private utility difference, if the dispersion of the random utility component
is large, the random component dominates choice. If, on the other hand, βh > H∗, then Equ. (5)
has three roots: one with the same sign as h, and the others of the opposite sign. That is, given a
private utility difference, if the dispersion of the random utility component is small, then the social
component dominates choice and is capable of producing self-consistent behavior. If J < 0, then
there is a unique equilibrium that agrees with the sign of h. In other words, as Durlauf underscores,
Durlauf (1997), p. 88, economic fundamentals that drive private decisions and social norms play
complementary roles.

We note that the model exhibits nonlinear behavior with respect to both the parameters βh,

and βJ. Conditional on a given private utility difference between the choices 1 and −1, which
equals h, there is a level which the conformity, i.e., the interaction effect must reach in order to
produce multiple self-consistent mean choice behavior. However, as βh increases in magnitude, the
importance of the conformity effect βJ diminishes in a relative sense, and thus becomes unable to
produce a self-consistent mean with the opposite sign. If there exist three equilibria, we will refer
to the middle one (m∗), as symmetric and to the upper and lower ones as asymmetric (m∗−,m∗

+) [
Figure 1]. Even if private incentives, expressed by h, favor a particular decision, sufficiently strong
social conformity effects can bring about equilibria, in which individuals conform. Brock and
Durlauf (2001) show that the model admits the possibility of individually optimal but collectively
undesirable behavior.

2.2 Complete Interaction

The case of complete pairwise interaction is obtained from the general case of (1) by specifying
that for each i, ν(i) = I − {i}, and Jij ≡ JP , ∀j ∈ I − {i} :

Ui(ωi) = hωi + ωiJP
1

I − 1
E





∑

∀j 6=i

ωj



 + ε(ωi). (6)

Under symmetry, 1
I−1Ei

{∑
∀j 6=i ωj

}
= m. Therefore, the Nash equilibrium condition is given by

Equ. (5) above, with JP in the place of J. Therefore, the complete pairwise interaction case is
nothing more than a way to visualize the Brock-Durlauf mean field case. We will refer to it below
interchangeably as the mean field case, as well. The equilibria are obtained as the fixed points of
tanh(βh + βJP m). The properties of the results of the mean field case discussed above apply here
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as well.7

2.3 “Walrasian-Star” Interaction

This interaction model introduces a modicum of asymmetry. It is obtained from the general case
above by treating agent 1 as located at the center of a “Walrasian-star”, so that all others are her
neighbors, ν(1) = I−{1}. All others have only agent 1 as their only neighbor: ∀i, i 6= 1, ν(i) = {1}.
We allow for a possibly asymmetric interaction intensity, by assuming J1i ≡ J, Ji1 ≡ JS , ∀i 6= 1,
and Jij = 0, otherwise.8 For the discrete choice model generated by (1) we have:

U1(ω1) ≡ hω1 + ω1JS
1

I − 1
E1

{
I∑

i=2

ωi

}
+ ε(ω1); (7)

Ui(ωi) ≡ hωi + ωiJEi {ω1}+ ε(ωi); i = 2, . . . , I. (8)

Let us assume that agents are aware of the symmetric situation of agents i = 2, . . . , I. They
make decisions before they know the decisions of their neighbors. Individuals 2, . . . , I hold common
expectations of individual 1’s decision, Ei {ω1} = m1, i = 2, . . . , I and that individual 1’s expec-
tations of all others’ decisions are equal: E1{ωi} = m−1, i 6= 1. By working with the interactive
discrete choice probabilities from (3) for agent 1 and agents i = 2, . . . , n, whose utility functions
are given by (7) and (8), respectively, we may obtain conditions for social equilibrium. First, we
require that the mean decision of agent 1, as perceived by individuals outside the center, m1, be
equal to what is implied by agent 1’s choice, E(ω1) = Prob(ω1 = 1) − Prob(ω1 = −1). From (3),
this may be expressed as a function of agent 1’s expectation of all others’ decisions, m−1. That is:

m1 = tanh(βh + βJSm−1). (9)

Second, individual 1’s expectation of all others’ decisions should be consistent with what is im-
plied by all others’ expected decisions. The latter may in turn be written in terms of all others’
expectation of agent 1’s decision, m1. That is:

m−1 = tanh(βh + βJm1). (10)
7An interesting extension of this approach would be to assume that while every agent may interact with everyone

else, a cost is involved in sampling everyone else’s decisions. Therefore, the typical agent samples a finite sample
of all others, and the agent’s utility reflects randomness associated with this sampling. It would be interesting to
investigate the dynamics of this process in view of the basic dynamics of the mean field theory model. This approach is
promising, in view of the results obtained by random graph theory and of the difficulty of expressing decision-making
within random graph theory models.

8Walrasian-star interaction is seen here as a prototype for trees. The model may be augmented to allow for
branches with different number of nodes and may also serve as a prototype for hierarchical structures. It could
represent a model for an organization where agent 1 is the principal who reacts to input by agents 2, . . . , I. Agent
1, in turn, influences each of them in turn, by setting the organizational priorities. Other economic settings may be
explored with this model. The extreme value distribution assumed by the behavioral model fits quite naturally a
situation where agent 1 conducts an auction based on offers by agents 2, . . . , I. See footnote 4. Alternatively, each
of the agents on the periphery may specialize in the production of a differentiated product. The number of agents I
may thus reflect the demand for variety, and in fact we return to such a motivation for the model further below.
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The equilibria in this economy are described by the fixed points of the system of equations (9) and
(10).

This case admits more possibilities than the mean field case. The equilibria are obtained as
the fixed points of the mapping M, defined from [−1, 1] × [−1, 1] into itself, according to Equ.
(9) and (10). The results are summarized in the following proposition, whose proof is relegated
to the Appendix, section 8.1. To visualize them, one could invoke a two-dimensional set of axes
designated by (m1,m−1). Then it is straightforward to draw the graphs Equ. (9) and (10), from
which the solutions follow. See Figure 2. Without loss of generality, we assume that h > 0 and
recall that β > 0.

Proposition 1. The system of Equations (9)–(10) admits the following roots for (m1,m−1).
(a) If J, JS > 0, then there exist at least one root that lies in the set (0, 1)× (0, 1). If, in addition,
βJ > 1, and βJS > 1, then there exists a threshold H+, such that if βh < H+, then there exist two
additional roots that lie in (−1, 0)× (−1, 0).
(b) If J > 0, JS < 0, then there always exist a single root, such that lie in (−1, 1)× (0, 1).
(c) If J < 0, JS > 0, then there always exist a single root, such that lie in (0, 1)× (−1, 1).
(d) If J < 0, JS < 0, then there exist at least one root that lies in the set (0, 1) × (−1, 0). If, in
addition, βJ < −1, and βJS < −1, then there exists a threshold H−, such that if βh < H−, then
there exist two additional roots that lie in (−1, 1)× (0, 1).

As in the mean field case, if there exist three equilibria, we refer to the “middle” one as symmetric
and the other two as asymmetric. It is interesting that when both interaction coefficients have the
same sign the resulting equilibria are characterized by the following properties. If both interaction
coefficients are positive then there is always at least one root that is in the positive orthant of
(m1,m−1) space. That is, if agents 1, . . . , I, are optimistic about agent 1, and agent 1 optimistic
about agents 1, . . . , I, the upper equilibrium prevails: conformism is an equilibrium. If both groups
of agents are pessimistic about the other group the lower equilibrium is also possible, provided
that the interactions effect is sufficiently strong to overcome the private effect. If both interaction
coefficients are negative then at least one root is associated with a positive solution for m1 and a
negative one for m−1 : conformism is again an equilibrium. When, on the other hand, preferences
are different, in the sense that agent 1 does not wish to conform but the agents 2, . . . , I do, then
agents 2, . . . , I choose an expected decision in the positive orthant, m−1 > 0, but agent 1 might
not, m1 may be positive or negative. If, on the other hand, agent 1 does not wish to conform but
agents 2, . . . , I do, agents 2, . . . , I choose an expected decision in the positive orthant, m1 > 0, but
agent 1 might not, m−1 may be positive or negative.

The equilibria of the Walrasian interaction model that are established by Proposition 1 allow
for the possibility of qualitatively different behavior by the two groups of agents. Still, the different
Nash equilibria of the economy must be understood as pairs of consistent outcomes.
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2.4 Cyclical Interaction

Cyclical interaction occurs when each agent interacts only with the agent to her right and to her left.
That is, for each i, her neighborhood is defined ν(i) = {i− 1, i + 1}, and Ji,i−1 ≡ JB, Ji,i+1 ≡ JF .

For symmetry, the agent to agent I’s right is agent 1,{I + 1} = {1}, and the agent to agent 1’s
left is agent I, {1− 1} = {I}. Cyclical interaction has been used before, notably by Glaeser et al.
(1996) and by Young (1998), p. 6–10, but in applications that are somewhat different from the
present one.

From the discrete choice model generated by (1) we have by using the above restrictions:

Ui(ωi) ≡ hωi + ωi
1
2
Ei {JBωi−1 + JF ωi+1}+ ε(ωi). (11)

Let agent i’s expectation of the decision by her neighbor to her left be mi−1 and to her right be
mi+1. Again, individuals make decisions under expectations over the decisions of their neighbors
and before finding out their neighbors’ decisions. Then, for consistency, agent i’s expected decision,
mi, must be equal to that implied her own decision, E(ωi) = Prob(ωi = 1)−Prob(ωi = −1), which
may be expressed in terms of mi−1 and mi+1:

mi = tanh[βh +
1
2
β(JBmi−1 + JF mi+1)]. (12)

By symmetry, the above condition applies for all is. We thus have a system of I equations in the
I unknowns mi, i = 1, . . . , I, with “initial” conditions mI+1 = m1, and mI+2 = m2.

It is straightforward to show that if we impose that all agents’ expected decisions are equal,
then the Nash equilibria of this setting are similar to those of the mean field case. In the context
of the cyclical interaction model, we refer to such equilibria as isotropic. The following question
then arises. Is it possible to have as equilibria a sequence of numbers that may differ from one
another and also obey circular symmetry? It turns out that this is possible only if the backward and
forward interaction coefficients are different: JB 6= JF . These results are established by Proposition
2, whose proof is given in the Appendix, section 8.2. We refer to such equilibria as anisotropic.
Proposition 2. The system of Equations (12), i = 1, . . . , I, that describe cyclical interaction defines
a mapping in RI into itself

C : RI → (−1, 1)× . . . (−1, 1)︸ ︷︷ ︸
I

.

It may have, in general, two classes of solutions, isotropic and anisotropic ones.
(a) There exist, in general, isotropic solutions, mi = m∗

CI , ∀i, where m∗
CI is a root of

m = tanh
[
βh +

1
2
β(JB + JF )m

]
. (13)

Their properties are identical to those obtained by Durlauf (1997), Theorem 1, p. 88, discussed
above, with the only difference being that 1

2(JB + JF ) takes the place of J in ibid. There may be
either three distinct roots, or a single root, that all lie in (−1, 1).
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(b) If JB = JF , then all solutions are isotropic. If JB 6= JF , then anisotropic solutions may exist
and are given by the fixed points of Θ[I−2], the I − 2th iterate of a mapping Θ = (Θ1, Θ2), defined
as follows:

Θ1(m′,m′′)
Θ2(m′,m′′)

≡
≡

1
1
2
βJF

[
tanh−1(m′)− βh

]
− JB

JF
m′′,

m′,
(14)

where (m′,m′′) ∈ (−1, 1)× (−1, 1), and tanh−1(·) denotes the inverse hyperbolic tangent function.
(c) Anisotropic solutions may exist for the case of I = 3 agents and are given by the fixed points of
Θ[1], the first iterate of Θ.

(d) Anisotropic solutions do not exist in the case of either only backward interaction, JF = 0, or
only forward interaction, JB = 0.

I have not been able to prove the general case for I > 3. I note, however, that the possibility
of an anisotropic solution rests on the bilateral nature of the interactions, in view of part d, and
on the nonlinearity of the problem.9 This is demonstrated by the following result, whose proof is
given in the Appendix, section 8.3.
Proposition 3. The system of Equations (12), i = 1, . . . , I, do not possess an anisotropic solution
in the vicinity of one of its isotropic solutions.

2.5 Path Interaction

With the set of agents being defined as I = {−L, . . . , 0, . . . , L}, the equilibrium conditions for
agents i = −L + 1, . . . , L − 1, are as in (12), −L + 1 ≤ i ≤ L − 1. For agents −L and L, the
equilibrium conditions are:

m−L = tanh[βh + βJF m−L+1]; (15)

mL = tanh[βh + βJBmL−1]. (16)

Equ. (12), for i = −L + 1, . . . , L − 1, and Equ. (15) and (16), form a system of 2L + 1 equations
in the 2L + 1 unknowns, the expected states of all agents.

This setting is similar to the cyclical interaction case, except for the presence of two end agents.
To see this intuitively, consider the classic example from Schelling (1978): “If everybody needs
100 Watts to read by and a neighbor’s bulb is equivalent to half one’s own, and everybody has
a 60-Watt bulb, everybody can read as long as he and both his neighbors have their lights on.
Arranged on a circle, everybody will keep his lights on if everybody else does (and nobody will if
his neighbors do not); arranged in a line, the people at the ends cannot read anyway and turn their
lights off, and the whole thing unravels” [ibid. p. 214]. One would expect that the importance of
the two end agents would wane as the number of agents increases and as preferences differ from
the fixed-proportions case implied by the above example. Also, the above example suggests that it
might be important to allow for boundary conditions, as when the end agents, or the agent at 0,
are constrained to be in a particular state.

9In that sense, the search for anisotropic solutions resembles the establishment of periodic solutions in the theory
of nonlinear difference equations [ See Azariadis (1993), p. 85–88 ].
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We improve our intuition of interaction on a path by considering two extreme cases, one where
there are just three agents, L = 1, and another where there are an infinite number of agents. The
proposition that follows treats separately the case of just three agents, L = 1, from that of the
general case. Starting with the three-agent case, L = 1, Equ. (15) yields m−1 as a function of
m0, and Equ. (16) yields m1 as a function of m0. By substituting back into the R.H.S. of (12)
we obtain a single equation in m0. Under the assumption that the interaction coefficients are both
positive, we can easily see that the existence of the end agents strengthens the case for multiplicity
of equilibria. Our results are summarized in the following proposition, whose proof is given in the
Appendix, section 8.4.

Proposition 4. The system of Equations (12), −(L − 1) ≤ i ≤ L − 1, and Equations (15) and
(16) that describe interaction on a path defines a mapping in RI into itself:

C : RI → (−1, 1)× . . . (−1, 1)︸ ︷︷ ︸
I

.

It has two classes of solutions, isotropic and anisotropic ones.
(a) There exist in general isotropic solutions, mi = m∗

LI , −(L− 1) ≤ i ≤ L− 1, which are the roots
of

m = tanh[βh +
1
2
β(JB + JF )m]; (17)

and m−L,mL, follow from (15) and (16), as functions of m∗
LI . Their properties are identical to

those obtained by Durlauf (1997), Theorem 1, p. 88, discussed above, with 1
2(JB + JF ) in the place

of J in Equ. (5). There may be either three distinct roots, or a single root, that all lie in (−1, 1).
(b) For L = 1, the case of three agents, the solution for m0 is obtained as a solution of,

tanh−1(m0) = βh +
1
2
βJB tanh[βh + βJF m0] +

1
2
βJF tanh[βh + βJBm0] (18)

and m−1,m1, follow from (15) and (16), as functions of m∗
0. Equ. (18) has, depending upon

parameter values, either three distinct roots, of which one has the same sign as h and the other two
with the opposite sign, or a single root with the same sign as h. Furthermore, m−1 = m0 = m1,

only if JB = JF ; otherwise, they are different.
(c) The anisotropic solutions are given in terms of the solutions of

tanh−1(m0) = βh +
1
2
βJBΘ+

L−1(m0) +
1
2
βJF Θ−

L−1(m0), (19)

where the mappings Θ+
L−1(·), Θ−

L−1(·), are defined in an iterative fashion below.
As in the case of cyclical interaction, the possibility of an anisotropic solution rests entirely on

the nonlinearity of the problem. This is demonstrated by the following result, whose proof is given
in the Appendix, section 8.5.
Proposition 5. The system of Equations (12), −(L− 1) ≤ i ≤ L− 1, and Equations (15) and (16)
that describe interaction on a path do not, in general, possess an anisotropic solution in the vicinity
of one of its isotropic solutions.
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For the case of the infinite line, equilibrium interactions are described by infinite sequences
{mi}∞−∞ that satisfy Equ. (12). Consideration of an infinite economy attenuates the role of the
end agents and prompts the following question. Does a spatial anisotropic equilibrium exist, that
is, are there anisotropic sequences with mi 6= mi+1 that satisfy Equ. (12)? We have not been able
to explore this formally, but it appears, intuitively, that the answer to this question is negative.

2.6 Remarks

Three remarks are in order. First, if we assume that all interaction coefficients in all of the above
models are equal to one another, JP = JB = JF = JS = J, then the equilibria of all models
coincide with those of the Brock-Durlauf mean field case, Equ. (5). While not surprising, as that
assumption imposes symmetry, it will be useful to bear in mind this property when we discuss
equilibrium with interactions that depend on agents’ actual environments, in static and dynamic
settings, sections 3 and 4.1, respectively.

Second, at any of the isotropic equilibria examined above, which are associated with individuals’
making decisions, conditional on their expectations of their neighbors’ decisions, individuals’ states
are described by means of independent Bernoulli distributed random variables. These are defined
by the respective choice probabilities as functions of the mean values at equilibrium. A most
noteworthy property that all three models share is that the social equilibrium may be characterized
by aggregate uncertainty, even when individual states are purely random. That is, consider the
case when h = 0, the two states equally likely in terms of fundamentals. Then, even in the mean
field case, the economy has three isotropic equilibria, associated with the roots of Equ. (5), for
h = 0. One of them is m = 0, and indeed implies no aggregate uncertainty: the expected outcome
is equal to 0. However, this social equilibrium is unstable. If βJ > 1, then the other two roots
imply aggregate activity, and the corresponding equilibria are stable. Naturally, the emergence of
aggregate activity is due to the synergistic effects operating at the individual level.

Third, since anisotropic equilibria will be excluded by the assumptions we make in the remainder
of the paper, it is important to stress that they model the consequences of a basic lack of symmetry
in the economy. The islands of conformity that would appear, which become clearer below in
the analysis of circular interaction when agents make decisions based on their neighbors’ actual
decisions, are not completely random; they are instead skewed.

3 Interactions based on Agents’ Actual Environments

We have so far analyzed equilibria with social interactions under the assumption that each agent
acts with beliefs about expected decisions of her neighbors. It should not be surprising that all
social interaction structures that exhibit local symmetry, that is the complete, circular and path
interactions away from the two ends, have the same Nash equilibria, when all interaction coefficients
are assumed to be equal. With local interactions, where one knows one’s neighbors, it is reasonable
to assume that an individual observes her neighbors’ actions. It is therefore important to examine
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also the impact of interaction topology on equilibria when agents know the actual decisions of their
neighbors when they make their own decisions. The requirement that agents’ optimal decisions
be consistent with one another at equilibrium allows us, in principle, to obtain the probability
distribution functions for agents’ decisions in terms of fundamentals and of the distributions of the
random utility components. The aspect of the model examined here is novel in the context of the
interactive discrete choice literature.10

Specifically, the social component of individual i’s utility is defined according to (1) but without
expectations, ωi

∑
j∈ν(i) Jijωj . Utility maximization by individual i, conditional on

∼
ων(i) yields a

conditional version of (3):

Prob(ωi = 1| ∼ων(i)) =
exp

[
β

(
2h + 2 1

|ν(i)|
∑

j∈ν(i) Jijωj

)]

1 + exp
[
β

(
2h + 2 1

|ν(i)|
∑

j∈ν(i) Jijωj

)] , i = 1, . . . , I. (20)

This is a description of each agent’s best response conditional on her environment. It coincides
with the conditional specification of a Markov random field: the probability distribution of each
agent’s state depends on those of her neighbors. A key result from the literature on Markov random
fields states that if this is a strictly positive nearest neighbor specification, then there exists a single
probability distribution function for the state of the economy

∼
ω, known as global phase, which is

consistent with the local specification [Kindermann and Snell (1980)]. The global phase is a Markov
random field, and in fact every Markov random field is equivalent to a Gibbs state for some single
nearest neighbor potential [ Kindermann and Snell (1980) ].

Equilibrium with social interactions when agents know the actual decisions of their neighbors
thus have very different structure than those of the Brock-Durlauf model. Being described by means
of a probability distribution function that coincides with the global phase of the respective Markov
random field, this distribution is characterized by more general dependence than dependence on each
agent’s neighbors.11 We turn next to examine in detail two specific topologies. As an indication
of how they differ from the Brock-Durlauf setting, the explicit solutions for agents’ equilibrium
behavior that we obtain do not involve fixed points, unless agents’ behavior also depends on the
expected behavior of other agents because of presence of local and global interaction [cf. Horst and
Scheinkman (2003), sections 3, 4].

3.1 Cyclical Interaction as an One-Dimensional Nearest-Neighbor Ising Model

We demonstrate the power of this theory by applying the classic treatment of Baxter (1982), p.
32–36 to deriving expressions for the marginal probabilities of agents’ decisions for the model of
cyclical interaction, when agents observe the decisions of their neighbors. We present and discuss
here only the results and give the details of the derivations in the Appendix, section 8.7. For that

10Horst and Scheinkman (2003) examine the continuous decisions case with social interactions that depend on
actual decisions of their neighbors and on the empirical distribution of actions throughout the economy.

11As Horst and Scheinkman (2003), p. 26–27, put it in their analysis of continuous decisions: “the distributions of
equilibrium action profiles is not specified by the family of individual best response functions.”
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model, the probability of a social state
∼
ω is given by

Prob(
∼
ω) =

1
λI

1 + λI
2

exp


βJ

I∑

j=1

ωjωj+1 + βh
I∑

j=1

ωi


 , (21)

where λ1, λ2, λ1 > λ2, are the two distinct real eigenvalues of a positive symmetric matrix, which is
defined in the Appendix, section 8.7. It follows from the characteristic equation of this matrix that
the eigenvalues are either both positive, if J > 0, or one is positive (the absolutely larger of them)
and the other is negative, if J < 0. Therefore, the denominator in Equ. (21) is always positive.

The marginal probability for the state of each agent is:

Prob{ωi = 1} =
(cos ξ)2λI

1 + (sin ξ)2λI
2

λI
1 + λI

2

, (22)

where the auxiliary variable ξ is defined implicitly by:

cot2ξ = e2βJ eβh − e−βh

2
≡ e2βJ sinh(βh), 0 < ξ <

π

2
.

The marginal probability describing the state of each agent, the reduced form, is uniquely defined
in terms of the fundamentals. Therefore, outcomes for agents cannot be specified independently,
as functions of fundamentals, in a regression setting.

When I →∞, while j − i remains finite, Baxter, op. cit. shows that

E [ωi] = cos 2ξ; (23)

E [ωiωj ] = (cos 2ξ)2 +
(

λ2

λ1

)j−i

(sin 2ξ)2, j ≥ i, (24)

This implies that the covariance function between ωi and ωj is given by: gij =
(

λ2
λ1

)j−i
(sin 2ξ)2, j ≥

i. The variance of ωi is equal to (sin 2ξ)2. Therefore, the correlation between the decisions of agents
i and j depends only on the distance between them, j − i, and declines as that increases because
λ1 > λ2.

The larger is J, the social interaction coefficient, the smaller is ξ, the larger is the mean state of
the typical agent, the smaller its variance, and the smaller its correlation with other agents’ states.
Therefore, the more important are social interactions, the larger and less diverse is aggregate
activity. It is also interesting to note that if the social interaction coefficient is negative, J < 0,

that is individuals are nonconformist, then the correlation coefficient between the states of any
two agents alternates between being negative for adjacent agents and then positive for agents two
sites apart, and so on. We may interpret this as clustering. Non-conformism leads to “islands” of
individuals who are more likely to be in similar states, the closer they are to one another, and the
states of these islands alternate.

Although existence of a social equilibrium through existence of a global phase is guaranteed,
it is still interesting to compute the equilibrium probabilities associated with the different social
structures when individuals make decisions, conditional on their actual environments. Additional
intuition is gained by working from first principles and derive marginal probabilities for agents’
decisions in the context of the Walrasian-star and cyclical interaction topologies.
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3.2 Walrasian-star Interaction

We consider utilities being given by (7) and (8), except that instead of the expectations over the
neighbors’ states we have that utilities depend on the actual realizations, that is neighbors’ actual
decisions. The agents are assumed to make contingent plans, that is contingent on their neighbors’
decisions. The plans imply choice probabilities as follows:

Prob



ω1 = 1|

I∑

j=2

ωj



 =

exp
[
2βh + 2 1

I−1βJS
∑I

j=2 ωj

]

1 + exp
[
2βh + 2 1

I−1βJS
∑

j ωj

] , (25)

and
Prob {ωi|ω1} =

exp [2βh + 2βJω1]
1 + exp [2βh + 2βJω1]

; i = 2, . . . , I. (26)

Imposing the condition that agents’ plans are mutually consistent allows us to compute the marginal
probabilities of agents’ states.

From (26) we note that the states of agents ωi, i = 2, I, are conditionally independent. There-
fore, the random variable

∑I
j=2 ωj |ω1 may be studied in terms of the binomial distribution, the

probability of the number of successes in I−1 Bernoulli trials, conditional on ω1. Since any ωi may
assume the value of either 1 or −1, then

∑I
j=2 ωj takes values in the set {−I +1,−I +3, . . . , I−1}.

A realization
∑I

j=2 ωj = k, k ∈ {−I + 1,−I + 3, . . . , I − 1}, has a probability of occurrence equal
to that of 1

2(I + k − 1) successes in I − 1 Bernoulli trials, where a success is defined by an ωi’s
taking the value of 1. With the probabilities being computable in terms of the binomial distribu-
tion, we may compute the probabilities for the equilibrium state of the economy when individuals’
decisions are given by Equ. (25) and (26). For this, it suffices that the probability Prob {ω1} be
known as a function of fundamentals. We obtain the following by means of elementary but tedious
manipulations, which are given in the Appendix:

Prob {ω1 = 1}

=

∑
k Prob

{
ω1 = 1|∑I

i=2 ωi = k
}
· Prob

{∑I
i=2 ωi = k|ω1 = −1

}

1−∑
k Prob

{
ω1 = 1|∑I

i=2 ωi = k
}
·
[
Prob

{∑I
i=2 ωi = k|ω1 = 1

}
− Prob

{∑I
i=2 ωi = k|ω1 = −1

}] .

(27)
It is straightforward to establish that the expression on the r.h.s. is positive and less than 1.

The probabilities for all possible configurations may be computed. That is,

Prob {ω1, ω2, . . . , ωI} = Prob {ω1}
I∏

i=2

Prob {ωi|ω1} , (28)

where Prob {ω1} is given from (27) and Prob {ωi|ω1} from (26).
The respective mean states may also be computed. They would not, of course, coincide with

those from the case where individuals’ expected utilities depend upon the expectations of their
neighbors’ states. The differences in expected utilities between the former and the latter cases may
be interpreted as the expected value of perfect information over neighbors’ decisions.
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3.3 An Econometric Interpretation

The model of discrete decisions with social interactions, when utilities depend on the actual real-
izations of neighbors’ decisions, admits an interpretation as an econometric model of simultaneous
equations involving discrete decisions.12 Specifically, if the utility functions of agents i = 1, . . . , I,

as defined in (7) and (8), are interpreted as indicator functions for the discrete choices of the logit
models, then the discrete choice probabilities, given by (25) and (26), are the corresponding reduced
forms for the system of simultaneous equations of the logit type.

This remark is timely. The recent resurgence of interest in estimating models of discrete games
with multiple equilibria has led to econometric models similar to these. Tamer (2002; 2003) poses
models of strategic games that allow one to estimate multiple equilibria. In contrast, the earlier
literature on structural models of discrete choice, such as Schmidt (1981) and others, emphasizes
conditions for “internal consistency” or “coherency.” Such conditions guarantee that given the
values of exogenous variables, observed and unobserved, unique values for the dependent variables
are implied and the associated likelihood functions are well defined.

We may think of decisions by an interacting group of I agents with a more general interaction
topology instead of the Walrasian star. The counterpart of (25) and (26), may be written in concise
vector form as follows:

∼
ω= 1

[
2hI + 2N−1JΓ

∼
ω +

∼
ε
]
, (29)

where I, N−1, J, the matrix of interaction coefficients and Γ, the adjacency matrix of the interaction
topology, are I × I matrices defined in subsection 2, the I column vector

∼
ε is defined as the

difference of 2I independently and identically type I extreme-value distributed random variables,
εi = εi(1)− εi(−1), written as a column vector,

∼
ε≡∼ε (1)− ∼

ε (−1), and 1[R] is a I vector indicator
function of the I vector R, with its ith element equal to 1, if the ith element of R, Ri > 0, and is
equal to −1, otherwise. Equ. (29) represents a nonlinear spatial autoregressive model for discrete
endogenous variables.

The consistency conditions proposed by Schmidt (1981) applied to (29) reduce to the condition
that the model be recursive [ ibid., Condition 12.6, p. 429 ]. To see this, the case of Walrasian star

interaction, which involves an adjacency matrix ΓW of the form: ΓW =

[
0 1TI−1

1I−1 0I−1

]
, where

1I−1 = (1, . . . , 1), the column vector of 1’s of dimension I−1, and 0I−1 the (I−1)× (I−1) matrix
of 0’s. It follows that not all principal minors of N−1JΓ are equal to 0, and therefore, Condition
12.6, ibid., is not satisfied.13

3.3.1 Multiplicity of Equilibria

As Tamer (2003), shows, if one does not insist on coherency, which was employed by earlier re-
searchers to ensure unique outcomes, then social interactions econometric models may accommodate

12I am grateful to Chuck Manski for directing my attention to this interpretation.
13Neither is the system recursive for the cases of complete, cyclical, and path interaction topologies.
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economic models with multiple equilibria. The purpose of imposing coherency is to eliminate mul-
tiplicity of equilibria. That is, one wants to know whether unique or multiple social outcomes are
associated with a given set of parameter values and values of stochastic shocks. Therefore, what
may be desirable of some regression models, like those examined in ibid., is undesirable of models of
social interactions. That is, recursiveness would be undesirable in general, because it would imply
that a single agent’s decisions would determine those of all others’. This may well be a feature of
certain social interaction settings but should not be required of all. Furthermore, multiplicity of
equilibria may be interesting in their own right. In econometric practice, one needs to determine
how to handle possible multiplicities.14

Two observations are in order. First, enumeration of multiplicity of equilibria is appropriate
for finite numbers of agents. Second, any expressions for the probabilities of particular outcomes,
like for Prob {ω1 = 1} , obtained in (27) above for the case of the Walrasian star, is the equilibrium
value for the marginal probability of agent 1’s decisions, possibly associated with multiple outcomes.
Therefore, such probabilities cannot be specified independently, in a regression setting. They are
no longer in the logit form. The solution that we obtained coincides with the model’s reduced form.
Given appropriate data, Equ. (28) may be used to estimate the model’s fundamentals be means
of maximum likelihood. And third, as Soetevent (2003) underscores, the multiplicity of equilibria
is entirely due to the social interactions component of individual decisions. That is, if all Js, the
interaction coefficients, are equal to 0, then the number of equilibria, as enumerated by Equ. (5), in
ibid., are given by

∑2I

`=1

[
ΠI

i=11(2h + εi,` > 0)
1+ωi,`

2 1(2h + εi,` ≤ 0)
1−ωi,`

2

]
. This expression is equal

to 1. It is straightforward to adapt this expression for the cases of the stylized topologies of social
interactions examined in this paper. This is straightforward for the case of cyclical interactions, for
which the expression is symmetrical. For example, the number of equilibria in that case is given by

2I∑

`=1

[
ΠI

i=11 (2h + J(ωi−1,` + ωi+1,`) + εi,` > 0)
1+ωi,`

2 1 (2h + J(ωi−1,` + ωi+1,`) + εi,` ≤ 0)
1−ωi,`

2

]
.

The number of equilibria for this and the other stylized cases will be discussed further in a later
version of this paper.

4 Dynamic Analysis of Social Interactions

In moving to a dynamic analysis with social interactions in nonlinear settings, we wish to empha-
size the role of expectations and to distinguish between the particular impact of the topology of
interactions and that of the nonlinearity of the model. We approach the dynamic case as follows.
We start with the general case where each agent makes a decision with knowledge of the actual
state of her neighbors in the previous period, given an arbitrary interaction topology. This is novel
analysis in the context of the social interactions literature. We provide a general theorem for gen-
eral social interactions topologies that establishes the existence of a stationary distribution and

14Kooreman and Soetevent (2002) assume that all possible multiple equilibria are equally likely. Tamer (2003), on
the other hand, groups multiple outcomes.
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provide a specific result for the case of cyclical interactions. The complexity of the general case
suggests that it is interesting to examine the vastly simplifying case when individuals are assumed
to make decisions under the assumption that their expectations of their neighbors’s decisions are to
those agents’ mean choices in the previous period. This approach to dynamics provides important
insight into the general case. It allows us to generalize the Brock-Durlauf mean field model, which
continue to serve as a fundamental building block for the analysis of the other topologies we have
have examined in detail above. We see that the dynamics differ substantially between the mean
field case and the other topologies that exhibit local interaction.

4.1 Stochastic Dynamics for General Topologies

First we deal with the general case, where the state of the economy at time t,
∼
ωt, depends upon

the actual decision of each agent’s neighbors in period t− 1. This follows readily from each agent’s
making her decision at time t, given her knowledge of her neighbors’ actual decisions at time t− 1,
∼
ων(i),t−1, defined as the subvector of

∼
ωt−1 that pertains to agent i’s neighbors. That is, adapting

Equ. (3) in a dynamic setting, we have:

Prob(ωi,t = 1)|∼ων(i),t−1) =
exp

[
β

(
2h + 2 1

|ν(i)|
∑

j∈ν(i) Jijωj,t−1

)]

1 + exp
[
β

(
2h + 2 1

|ν(i)|
∑

j∈ν(i) Jijωj,t−1

)] .

The dynamic counterpart of the static model of interactions based on agents’ actual environments,
examined in Section 3, by adopting the concise notation of Equ. (29), may be written

∼
ωt= 1

[
2hI + 2N−1JΓ

∼
ωt−1 +

∼
εt

]
. (30)

This notation underscores that the interaction topology affects the dynamics via the properties of
the adjacency matrix Γ and of the matrices containing the number of each agent’s neighbors, N−1,

and the interaction coefficients, J.

Let us consider the state of the economy in two successive periods. For each of the 2I possible
realizations of

∼
ωt−1,

∼
ωt−1 ∈ {−1, 1} × . . .× {−1, 1}︸ ︷︷ ︸

I

, Equ. (30) defines conditional choice proba-

bilities for each agent in each of the models of social interaction, which are in effect transition
probabilities for each of the 2I possible realizations of

∼
ωt, given

∼
ωt−1. The dynamic counterparts of

Equ. (5), (9)–(10) and (12) are special cases of this definition.
The state of the economy evolves according to a Markov stochastic process which is defined

from the finite (but large, if I is large) sample space {−1, 1} × . . .× {−1, 1}︸ ︷︷ ︸
I

, into itself and has

fixed transition probabilities. That is, the transition probability from
∼
ωt−1 =

∼
ω
′
to

∼
ωt =

∼
ω
′′

is equal
to

I∏

i=1

Prob
{
ωi,t =

∼
ω
′′
i |

∼
ων(i),t−1=

∼
ω
′
ν(i)

}
.
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These probabilities sum to 1, when the sum is taken over all possible realizations of
∼
ω
′′
, for any

given
∼
ω
′
. Put differently, the above expression is the entry for row

∼
ω
′
and column

∼
ω
′′

of the 2I × 2I

stochastic transition matrix of the Markov process.
Taking cues from by Asavathiratham (2000) [ see also Asavathiratham et al. (2001) ] allows us

to transform the general case (30) to a form that is amenable to analysis by means of the standard
tools for Markov processes. To see how this may be done, consider representing the state of agent
i instead of the binary set of outcomes {−1, 1}, by the row vector (1 0), if ωi = 1, and by the
row vector (0 1), if ωi = 1. In this fashion, a realization

∼
ω may be represented by a row vector

(1 0|0 0| · · · |0 0) with 2I elements, with each two of them representing the state of an agent. By
stacking up all possible realization vectors we obtain a 2I × 2I matrix, known as the event matrix
[ Asavathiratham (2000), p. 109 ], which represents all possible states of the economy. Equ. (30)
allows us to define a 2I × 2I transition matrix, to be denoted by H, which is a stochastic matrix
that expresses the transition probabilities for the Markov process that describes the evolution of
the state of the economy from

∼
ωt−1 to

∼
ωt. Next, we define the column vector Ψt, with 2I rows, and

entries all zeroes, except one, which is 1 and indicates that the economy is at the corresponding
state, that is associated with the respective row of the event matrix. Accordingly, we may define
a probability distribution over the possible states of the economy, the rows of the event matrix.
Clearly, a stationary probability distribution over the states of the economy, if it exists, is given by
a positive eigenvector of H, Ψ̃, suitably normalized, that satisfies

HΨ̃ = Ψ̃. (31)

Since H is a stochastic matrix, its dominant eigenvalue (the Perron-Frobenius root) is 1, and such a
vector always exists. As Asavathiratham discusses [op. cit., Theorem 5.7, p. 109], the stationary
distribution might not be unique, if the corresponding dominant eigenvalue that is equal to 1 does
not have an algebraic multiplicity of 1. Because of the nature of the interaction topology, some of
the states of the economy may not communicate, and the process might not have a unique recurrent
class.

There is another payoff from working with the stationary distribution associated with an econ-
omy where agents act with knowledge of their neighbors’ actual decisions. It coincides with the
equilibrium distribution in the static case when interactions are based on agents’ actual environ-
ments, discussed in section 3 above. We rely on the intuitive appeal of this claim, which follows
from the definition of the agents’ optimal decisions and the associated probability distributions that
they imply, that is Equ. (20).15 However, this particular description of the equilibrium distribution
is rather unwieldy and it is for this reason that we turn to special cases that are amenable to exact
solution.

15For a proof, one may adapt the classic treatment of Preston (1974), p. 10–18.
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4.1.1 Cyclical Interaction Revisited

When the interaction structure is translation-invariant, that is when only relative distance between
agents matter and not their actual locations, and if the process is reversible, that is, the interaction
structure is symmetric so that the process may be reversed, just like a movie being played backwards
and still making sense, then an important result follows. Drawing from a recent paper by Bigelis
et al. (1999) we state (without proof) their result for the existence of a stationary distribution and
the closed form it actually assumes, in the proposition that follows. Here, we write the interaction
effect from j to i as J(i− j) so as to conform to the statement of the results in ibid., p. 3936.

Proposition 6. Let the total number of agents I be finite and Λ be a d-dimensional torus contain-
ing Ld lattice sites (that is, Λ is a cube in Zd containing Ld points and having periodic boundaries).
If the Markov process for

∼
ωt, defined on the configuration space {−1, 1}Λ, with fixed transition

probabilities, given by:

Prob
{
ωi,t = $| ∼ωt−1

}
=

1
2


1 + $ tanh


β

∑

j∈Λ

J(i− j)ωj,t−1 + βh





 , $ ∈ {−1, 1}, (32)

is reversible, for which it suffices that J(i − j) = J(−i + j), then the process (32) has a unique
stationary distribution given by:

Prob{∼ω} = Π̄−1
∏

i∈Λ

eβhωi cosh


β

∑

j∈Λ

J(i− j)ωj + βh


 , (33)

where Π̄ is a normalizing constant.
It is clear from the above expression for the stationary distribution that when individuals

are conformist, neighbors’ making similar decisions strengthen the likelihood that an agent would
conform. The cases of global interactions and circular interactions with symmetric interaction
coefficients, Ji−1 = Ji+1, are translation-invariant, and under the assumption of reversibility, they
become special cases of the above theory. This result encompasses our finding in section 3.1 as a
special case.

4.1.2 The Walrasian Star Revisited

The Walrasian star model, although not translation-invariant, is, however, amenable to specific
treatment, based first principles. Following up on subsection 3.2 above, when agents are influenced
by the actual decisions of their neighbors, the evolution of the economy may be defined as:

Prob



ω1,t = 1|

I∑

j=2

ωj,t−1 = Ω−1,t−1



 =

exp
[
βh + 1

I−1βJSΩ−1,t−1

]

1 + exp
[
βh + 1

I−1βJSΩ−1,t−1

] , (34)

Prob {Ω−1,t = K|ω1,t−1 = ω1} = B

(
1
2
(I + K − 1), I − 1; Prob {ωi,t = 1|ω1,t−1}

)
,

K ∈ {−I + 1,−I + 3, . . . , I − 1}, (35)
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where Ω−1,t =
∑I

j=2 ωj,t and B
(

1
2(I + K − 1), I − 1; Prob {ωi,t = 1|ω1,t−1}

)
denotes the value of

the binomial distribution for 1
2(I + K − 1) successes in I − 1 Bernoulli trials, with each success

having probability given by

Prob {ωi,t = 1|ω1,t−1} =
exp [βh + βJω1,t−1]

1 + exp [βh + βJω1,t−1]
; i = 2, . . . , I. (36)

Equ. (34) and (36) are the transition probability of a Markov process in terms of the pair of discrete-
values random variables, (ω1,t, Ω−1,t), where defined over the sample space {−1, 1}×{−I +1,−I +
3, . . . , I − 1}. It is straightforward to show that the stationary probability for the state of agent
1, Prob {ω1 = 1} distribution coincides with that given by Equ. (27) above and therefore for the
state of the economy by Equ. (28). This is not a coincidence, as we discussed earlier.

Obviously, the general treatment discussed earlier is quite unwieldy, except for some special
cases, because it is very difficult to obtain the spectral properties of the above transition matrix
directly. We have been able to solve for the equilibrium distributions in the cases of cyclical
interaction and for the Walrasian star. Unfortunately, it is impossible to make additional progress
in understanding qualitative properties of the dynamics, even if we are very specific about the
interaction topology, by means of this very general description. It is for this reason that it pays to
study dynamics under the assumption that each individual’s expectation of her neighbors’ choice
in the current period is equal to those agents’ mean choice in the previous period.

We see next how our approach adapts the Brock-Durlauf mean field model to richer interaction
structures and continues to lead to multiple equilibria. As Blume and Durlauf (2002) show for the
Brock-Durlauf model and for other models, these multiple equilibria characterize local extrema of
the stationary probability distribution functions, with the stable asymmetric equilibria being local
maxima and the symmetric unstable equilibrium being a local minimum.

4.2 Dynamics with Expectations Based on Lagged Mean Decisions of Neighbors

Here we work with the assumption that each individual’s expectation of her neighbors’ choice
at time t is equal to those agents’ mean choice at time t − 1, Ei {ωj,t} = mj,t−1. This allows us
to examine dynamics for the stylized topologies that we have been working with as well as to
obtain results for the case of general interaction topologies by working with nonlinear deterministic
difference equations.

We use again as a benchmark the mean field case of Brock and Durlauf, op. cit. for which Equ.
(5) allows us to write a nonlinear deterministic difference equation for the evolution of expected
choice by the typical agent mt, for the complete interactions model:

mt = tanh (βh + βJmt−1) . (37)

Working in like manner with (9)–(10) and (12) we obtain for the Walrasian-star model:

m1,t = tanh (βh + βJSm−1,t−1) ; (38)
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m−1,t = tanh (βh + βJm1,t−1) ; (39)

for the cyclical interaction model:

mi,t = tanh
(

βh +
1
2
β(JBmi−1,t−1 + JF mi+1,t−1)

)
, i = 1, . . . , I; (40)

and for the path interaction model:

m−L,t = tanh (βh + βJF m−L+1,t−1) ; (41)

mi,t = tanh
(

βh +
1
2
β(JBmi−1,t−1 + JF mi+1,t−1)

)
,−L + 1 ≤ i ≤ L− 1. (42)

mL,t = tanh (βh + βJBmL−1,t−1) . (43)

As we discuss above, with symmetry, J = JS = JF = JB, then the above equations imply the
same steady state equation, which coincides with that of the Brock-Durlauf mean field theory case,
Equ. (5). To understand how the interaction topology affects the dynamics of adjustment to a
steady state even when we do impose symmetry, we need to perturb the steady state equilibrium.
We set ideas with a brief analysis of the local dynamics around the steady states of the Brock-
Durlauf mean field model and then move to other topologies.

4.2.1 Dynamics of The Brock-Durlauf Mean Field Model

We recall that complete pairwise interactions are equivalent to the We briefly reproduce here the
Brock-Durlauf analysis of the mean field case, which serves as a benchmark. See Brock and Durlauf,
op. cit., p. 12–14, for more details. Consider Equ. (37), and use m∗ to denote a steady state. Note
that the steady state equilibrium condition coincides with the equilibrium of the static model. Let
∆mt ≡ mt −m∗ denote the deviation near the steady state. Linearization of Equ. (37) yields:

∆mt = βJ tanh′ (βh + βJm∗) ∆mt−1. (44)

Therefore, local stability depends entirely upon the magnitude and sign of the coefficient of ∆m(t−
1) above, that is βJ tanh′ (βh + βJm∗) .

The results may be summarized as follows. Considering for concreteness the case of βJ > 1, and
setting for simplicity h = 0, in which case the symmetric steady state is m∗ = 0, and in addition,
for the asymmetric ones, the upper is positive and the lower is negative, m∗

+,m∗−. The steady states
exhibit “symmetry breaking”: the symmetric is unstable, βJ tanh′(0) > 1, while the asymmetric
ones are stable:

βJ tanh′
(
βh + βJm∗

+

)
< 1;

βJ tanh′
(
βh + βJm∗

−
)

< 1.

It should be noted that although individuals may be in either of the two realizations of the
discrete state, the dynamic adjustment was defined earlier in terms of the expected choice of
neighbors in the previous period. In that case, when self-consistent expectations exist in the
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Brock-Durlauf model, then Proposition 6, ibid., guarantees that the sample average population
choice converges weakly to the self-consistent expectation, the steady state equilibrium solutions
of (37). Blume and Durlauf (2002) examine the stochastic dynamics of this model. They show
that when individuals revise their choices at independent random times given by a “Poisson” clock
by looking at all other agents’ lagged choices and if their number is large, then the mean decision
obeys the continuous-time counterpart of the mean-field equation Equ. (37).

4.2.2 Dynamics of the Walrasian-Star

Working next for the Walrasian-star case, linearization of Equ. (38)–(39) around a steady state
(m∗

1,m
∗−1) yields a two-dimensional system:

[
∆m1,t

∆m−1,t

]
=

[
0

βJτ−1

βJSτ1

0

] [
∆m1,t−1

∆m−1,t−1

]
, (45)

where τ1 ≡ tanh′
(
βh + βJm∗−1

)
and τ−1 ≡ tanh′ (βh + βJm∗

1) .

Working in the usual fashion, we obtain the characteristic equation for Equ. (45), whose
roots are the eigenvalues of the matrix in the R.H.S. of (45), which satisfy λ2 = τ1τ−1β

2JJS .

Therefore, if JJS > 0, and since τ1, τ−1 > (<)0, as β > (<)0, then the eigenvalues are real and
have equal magnitudes but opposite signs: |λ| = β

√
τ1τ−1JJS . If, on the other hand, JJS < 0,

then the eigenvalues are conjugate imaginary. In either case, we have that if the economy is
near an asymmetric equilibrium for the agents outside the center and for the agent in the center,
βτ1|JS | < 1, and βτ−1|J | < 1, the eigenvalues have absolute values less than 1, and the dynamic
adjustment is stable. If, on the other hand, the economy is near the symmetric equilibrium for
all agents, βτ1|JS | > 1, and βτ−1|J | > 1, the eigenvalues have absolute values greater than 1, and
the dynamic adjustment is unstable. Finally, if the economy is near an asymmetric equilibrium for
the agents outside the center and the symmetric one for the agent in the center, βτ1|JS | < 1, and
βτ−1|J | > 1, the eigenvalues may have absolute values greater than 1, depending upon parameter
values, and the dynamic adjustment would be unstable. The presence of factor β

√
τ1τ−1 carries

the impact of the nonlinearity of the dynamics for the approximate model. Again, the instability
of the symmetric steady state is more pronounced the larger are βτ1 and βτ−1.

16

4.2.3 Dynamics of Cyclical Interaction

Working next for the cyclical interaction case, linearization of Equ. (40) around its isotropic steady
state m∗, that is, one of the solutions of (13), yields:

∆mi,t = tanh′
(

βh +
1
2
β(JBm∗

i−1 + JF m∗
i+1)

)

16We note that the dynamics of the model continue to reflect properties of both the topology of interaction and
the nonlinearity. This is somewhat obscured by the fact that the product of the eigenvalues of the adjacency matrix,
−(I − 1), cancels out because of the division by I − 1.
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×
[
1
2
βJB∆mi−1,t−1 +

1
2
βJF ∆mi+1,t−1

]
, i = 1, . . . , I. (46)

Let ∆mt := (∆m1,t, . . . ,∆mI,t)T; This above system, for the case of JF = JB = J, may be written,
equivalently as:

∆mt = βτCJ · 1
2
ΓC ·∆mt−1, (47)

where τC := tanh′
(
βh + 1

2β(Jm∗
i−1 + Jm∗

i+1)
)

. The adjacency matrix ΓC has as rows the permu-
tations of (0, 1, 0, . . . , 1). The general solution to equation (47) can be written, in the usual fashion
for linear systems and after a number of tedious steps [ see Appendix, section 8.8 ], as a linear
combination of the eigenvectors, each multiplied by its respective eigenvalue raised to the power of
t, and weighted by arbitrary constants, which are determined by initial conditions. Specifically, let
us assume that I is odd and therefore write:




∆m1,t

.

.

.

∆mI,t




= A1(βJτC)t




1
.

.

.

1




+ A2

(
βJτC cos

(
2π

I

))t




cos
(

2π
I

)

cos
(

4π
I

)

.

.

1




+A3

(
βJτC cos

(
2π

I

))t




sin
(

2π
I

)

sin
(

4π
I

)

.

.

0




+ . . . , (48)

where A1, . . . , denote constants which are computed from initial conditions.
To see the implications of this model, consider that the system is originally at a steady state

equilibrium when it is shocked at time 0 by changing agent 1’s decision, say ∆m1,0 = 1, ∆m2,0 =
. . . , ∆mI,0 = 0. We thus have I equations (48) in the unknown constants A1, . . . , AI , that reflect
the initial conditions. These equations may be solved uniquely since the I eigenvectors span the
space.

The solution (48) implies oscillatory behavior in a spatial sense. If the factor βJτC were
not present, as in the linear case, as t tends to ∞, the system would tend to the eigenvector
corresponding to the maximal eigenvalue, which in that case would be 1. The corresponding
eigenvector is (1, 1, . . . , 1)T. The economy would exhibit persistence, in that case. However, the
factor βJτC changes this. The amplitude of the oscillations has a maximum given by the maximal
eigenvalue βJτC . The oscillations range from βJτC to −βJτC , depending upon the position of an
agent on the circle. If, as we assumed, the economy starts from an isotropic equilibrium, then the
eventual pattern of states would be determined by whether the starting isotropic equilibrium is a
stable or unstable one. If all agents start from a stable equilibrium, then these amplitudes all have
absolute values less than 1. It follows that the amplitudes of the oscillations diminish over time,
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and the economy tends to return to the same isotropic steady state that it started from. If, on the
other hand, the economy starts from the unstable isotropic equilibrium, βJτC > 1. Because the
magnitude of the oscillations varies spatially, depending upon the position of an agent on the circle,
and is bounded upwards by βJτC , even when the economy starts from the unstable equilibrium,
some agents would not be changing their decisions.

The system (46) can be studied further, even if JF 6= JB, because the matrix is circulant and
its diagonalization is accomplished by means of the Fourier matrix that diagonalizes all circulant
matrices [ Davis (1979), p. 73; Brockwell and Davis (1991), p. 135 ] The solution in the general
case of JF 6= JB, involves, intuitively, two “trains” of I oscillatory terms with different amplitudes,
indexed by the individuals and modulated by time-varying amplitudes, which move in opposite
directions around the circle. In either case, that is, in either the general or the specific case, the
spatial fluctuations can be interpreted as cluster emergence.

How will the economy move if it starts with some of the agents in either of the asymmetric
equilibria and others at the symmetric one? Roughly speaking, the evolution of the components of
the economy when adjacent sets of agents are perturbed away from the same isotropic equilibrium
may be handled by means of the above techniques, applied to the model of path interaction, which
we discuss further below. The properties of the global dynamics are much harder to characterize.

Cyclical interactions are ubiquitous in social settings but imply no obvious empirical tests. Sup-
port for the model’s predictions comes from computational results obtained by Fujita, Krugman
and Venables (1999) and Epstein and Axtell (1996), although those models have different motiva-
tions and structures. In the latter, the sugarscape economy has also been adapted to a ring world,
by which it is meant that agents interact in a cyclical fashion. The Epstein-Axtell simulations
show, ibid., p. 170–176, that agents who can move tend to cluster into groups, often of comparable
size. They interpret this outcome as seemingly social behavior, which “is not driven by any social
impulse but is solely a product of the agent-environment coupling” [ ibid., p. 172 ].

Our results are also consistent with Danny Quah’s findings on cluster emergence in continuous
spatial settings, which occurs for reasons that are identical to ours [ Quah (1999; 2000) ]. Techni-
cally, the similarity of these results originates in the fact that for consistency, the solution must obey
cyclical symmetry, which brings us to circulant matrices, whose eigenvalues involve the complex
roots of 1. In contrast, Quah works with Toeplitz operators, which are the continuous time and
space counterparts of circulant matrices. Aside from such obvious differences from Quah’s model as
his use of continuous space and time, the present model has a different implication that is entirely
due to the multiplicity of steady state equilibria. Once disturbed, all agents in the system will
ultimately return to a steady state, which may be either the upper or the lower, as the symmetric
one is unstable. This feature is particularly important in our case and distinguishes our results
from those of Quah’s. While after the symmetric steady state equilibrium is disturbed, adjustment
to a new steady state is associated, as in Quah’s case, with spatial clustering, where some individ-
uals may end up in the positive and other in the negative steady states. However, unlike Quah’s
case, clustering here is permanent. This possibility is entirely due to the multiplicity of steady
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state equilibria in our model, unlike uniqueness of equilibrium in Quah’s model. We note that our
results are broadly consistent with those by Elkhader (1992), who studies the general properties
of bounded orbits of deterministic systems of differential equations roughly corresponding to our
cyclical interaction case. Elkhader shows that the omega limit set of such orbits contains a steady
state or a nonconstant periodic orbit.

4.2.4 Small versus Large Neighborhoods

Does the speed of adjustment vary with neighborhood size? We can address this question by
extending the range of local interactions in the model that leads to Equ. (40) so that agent i

is influenced by agents {i − Ln, . . . , i − 1, i + 1, . . . , i + Ln}, Ln ≤ I − 1. We set JB = JF . The
counterpart of Equ. (40) implies that the cyclical interaction model with larger neighborhoods
possesses the same steady states as the solutions of (13). The counterpart of Equ. (46) becomes:

∆mi,t = tanh′
(

βh +
1

2Ln
βJ(

Ln∑

`=1

[m∗
i−` + m∗

i+`])

)

×βJ
1

2Ln

[
Ln∑

`=1

[∆mi−`,t−1 + ∆mi+`,t−1]

]
, i = 1, . . . , I. (49)

The counterpart of Equ. (47) for Equ. (49) involves a real symmetric circulant matrix ΓCN , whose
eigenvalues and eigenvectors are known in closed form [ Proposition 4.5.1, p. 134–135, Brockwell
and Davis (1991) ]. 17 Let us define τS ≡

(
βh + 1

2LβJ(
∑L

`=1[m
∗
i−` + m∗

i+`])
)

βJ. The eigenvalues
and eigenvectors of matrix 1

2ΓCN again involve sine and cosine terms. The maximal eigenvalue is
equal to 1, and the corresponding eigenvector is (1, 1, . . . , 1). The remaining eigenvalues come in
pairs, if I is odd, or there are I−2

2 pairs of double eigenvalues and an additional distinct one, if I

is even.
The speed of adjustment associated with this model may be compared analytically between two

benchmark cases, namely the case of complete (global) interaction (Ln = I − 1), and the case of
the smallest possible neighborhood, which in this case is given by the cyclical interaction model
examined earlier. The local dynamics of both those models near steady states possess the same
maximal eigenvalue.18 Therefore, the speed of adjustment to the steady state is determined by
the second largest eigenvalue. This is equal to βJτC cos

(
2π
I

)
, for the cyclical interaction, and

to −1
I−1βJτC , for the complete interaction topologies, respectively. The former is absolutely larger

17From Davis (1979), p. 72–73, we have that all circulant matrices of the same order have the same set of
(right) eigenvectors, the columns of F ∗, ibid., 32. Let a circulant matrix be defined by rows being permutations of
(c1, c2, . . . , cI). Its eigenvalues are given by λj = φ

(
2π
I

(j − 1)
)

, j = 1, 2, . . . , I, where

φ
(

2π

I
(j − 1)

)
≡ c1 + c2 exp[

√−1
2π

I
(j − 1)] + . . . + cI exp[

√−1
2π

I
(j − 1)(I − 1)].

However, this general treatment is in practice a bit unwieldy, because it involves complex numbers, while we would
to work with real eigenvalues and eigenvectors.

18This is equal to βJτC , for the cyclical interaction, and 1
I−1

βJ tanh′(βh+βJm∗)(I−1), for the complete interaction

topologies, respectively. But, τC = tanh′(βh + βJm∗).
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than the latter, for large I, and therefore adjustment is faster in the case of global than of local
interaction, which does conform with intuition on the role of greater interconnectedness. It is an
open question whether the result of Young (1998) on the role of close-knit social groups in the
diffusion of innovations may be also shown to apply here.

Dynamics for more general cyclical interaction cases may be studied even when the backward
and forward interaction coefficients differ, as long as the pattern of dependence gives rise to a
circulant matrix. The presence of both local and global interactions, that is where agent i is
influenced by agents {i− 1, i + 1} and by the mean state of all agents, can also be handled. It may
be put in the above form and its dynamic analysis involves a circulant matrix.

4.2.5 Dynamics of Path Interaction

Next we consider the case of path interaction, where the agents are placed on a lattice on the real
line. It is interesting that the equilibrium is still characterized by “spatial waves,” as in the cyclical
interaction case.

The key issue at this point is whether equilibrium is still characterized by “spatial waves,” as
in the circular interaction case. In fact, the question of whether this particular characteristic of
social interaction is due to closure of the social structure or to the impact of local interactions may
be resolved only by means of a comparison with the linear interaction case.

In working with the linear interaction case, Equ. (41) – Equ. (43), again, we linearize around
an isotropic equilibrium, and write the solution [ see Appendix, section 8.9, for the technical details
]for the deviations from an isotropic steady state under symmetry:




∆m−L(t)
.

∆m0(t)
.

∆mL(t)




= A−L

(
1
2
βJτL cos

(
π

2(L + 1)

))t




sin
(

π
2(L+1)

)

sin
(

π2
2(L+1)

)

.

.

sin
(

π(2L+1)
2(L+1)

)




+A−L−1

(
1
2
βJτL cos

(
π2

2(L + 1)

))t




sin
(

π2
2(L+1)

)

sin
(

π4
2(L+1)

)

.

.

sin
(

π2(2L+1)
2(L+1)

)




+ . . . , (50)

where , A−L, . . . , AL, denote constants which are computed from initial conditions.
There is an important, though subtle, difference from the circular interaction case, in that 1

would not be an eigenvalue of the dynamic system that describes adjustment near a steady state for
interactions along a line even if the factor βJτL were not present. The dynamics are characterized
by spatial oscillations that are again transitory but there is no relative persistence. However, the
importance of this fact vanishes asymptotically, as L → ∞. In fact, the case of interactions along
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an infinite line is particularly interesting and fortunately, lends itself to explicit treatment. Before
turning to that immediately below, we underscore that while local interaction is responsible for
clustering, closure is responsible for persistence, which we would expect with 1 being an eigenvalue
in the case of circular interaction.

It is for this reason that we limit our attention to the infinite path case: L → ∞. The details
of the analytics are given in the Appendix, section 8.10. When we let the number of agents
tend to infinity, the role of the end agents vanishes asymptotically. When we linearize around a
stable isotropic steady state, the term

(
1
2βJτL

)t
tends to 0 as t tends to ∞. As the “disturbance”

propagates through social interactions over time, it has a transient effect on each agent: the change
originally increases, reaches a peak and then decreases. This response is like two blips that move
in opposite directions away from agent 0. However, the symmetry and the setting and intuition
from the spectral theory of random fields suggest that this infinite path case should be equivalent
to the infinite circle case.

In concluding the analysis of local interaction, as represented by cyclical interaction and by
path interaction, we wish to underscore, once again, important similarities and differences. Dy-
namics in both cases involves spatial oscillations. The cyclical interaction case involves exhibits
relative persistence. We see further below that relative persistence follows from regularity of social
interaction.

4.2.6 Dynamics with General Topologies

While the qualitative differences between the various cases we examined above justify the separate
treatment, we can in fact obtain a general result regarding stability, provided that we restrict the
social interactions topology to be represented by a regular graph and uniform interaction structure.
This is when all agents have the same number of neighbors, the same degree, d = ν(i), and the
same interaction coefficients. These particular assumptions may be relaxed at the cost of notational
complexity.

Working with a dynamic adaptation of (3), with each individual’s expectation of her neighbors’
choice at time t being equal to those agents’ mean choice at time t− 1, we have:

mi,t = tanh
[
βh + β

1
d
JΓimt−1

]
i = 1, . . . , I, (51)

where Γi denotes the ith row of the adjacency matrix, and mt the I−vector consisting of the mi,t’s.
The stability of the system is characterized by the following proposition, which utilizes standard

results based on the theory of dynamical systems and the Perron-Frobenius Theorem for symmetric
positive matrices and holds for any social interactions topology.

Proposition 7.
Part I. If the topology of interaction is represented by a regular graph, whose degree is |ν(i)| = d

and otherwise arbitrary, and a constant interaction coefficient J, then the following hold.
(a) The economy’s steady states satisfy Equ. (5) and are isotropic. They are generically hyper-

bolic fixed points of the I−order dynamical system defined by Equ. (51).
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(b) small perturbations around a steady state m satisfy:

∆mt = βτ
1
d
JΓ∆mt−1, (52)

where τ := tanh′
[
βh + β 1

dJΓim
]
.

(c) A necessary and sufficient condition for the local dynamics of (52) at a steady state mi = m

to be stable (unstable) is:
βJ tanh′(βh + βJm) < (>)1. (53)

Part II. An economy with an arbitrary topology of social interactions possesses at least one
steady state.

Part III. A necessary and sufficient condition for the local dynamics of (52) at a steady state
mi = m to be stable (unstable) is (53), even for an economy with an arbitrary topology of social
interactions.

A number of remarks are in order. First, by Theorem 3.33, p. 104, Cvetković et al., op.
cit., the eigenvector associated with the maximal eigenvalue is (1, 1, . . . , 1)T. As a result, the role
played by this eigenvector in the qualitative discussion of circular interaction pertains to all social
interactions settings represented by regular graphs, that is where all agents have the same number
of neighbors. In other words, the relative persistence result that we associated above with the
circular interaction topology actually applies to all regular interaction topologies. Second, isotropic
steady states for the entire economy would be either stable, as when m = m∗−, m∗

+, or unstable,
m = m∗. Third, the nature of the time map suggests that the dynamical system (51) possesses
no periodic orbits. Fourth, and most noteworthy, the analysis following Equ. (51) above may be
extended, in particular, to the case where the interaction topology results from a random graph,
where any two agents may be connected with probability p [ Erdös and Renyi (1960) ], provided
that we normalize by means of the largest possible degree, that is the size of the interaction graph,
I. From Cvetković et al. (1988), p. 79, it follows that the largest eigenvalue of the adjacency matrix
grows according to pI, as I tends to infinity. The above existence and stability results carry over.

5 Extensions

Several possible extensions come to mind. First, it is possible to study the evolution of the second
moments of individuals’ decisions. But more generally, it would be interesting to analyze fully
the general framework for dynamics, proposed in subsection 4.1 above, and link with the results
obtained for the dynamic evolution of the mean for all topologies of interest. Second, the model
pretty much as it stands admits a neural networks interpretation. Third, it would be interesting
to examine the impact of the spatial extent of interactions upon the speed of adjustment. With
respect to the latter, Ellison (1993) and Young (1998) have emphasized the importance of local
interaction for the speed of adoption of norms and development of institutions more generally. The
issue is a subtle one, in that when individuals interact mainly with small groups of neighbors, then
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“shifts of regime can occur exponentially faster than in the case of uniform interaction. [...] All
else being equal, the smaller the size of the neighborhood groups, and the more close-knit they are,
the faster the transition time for the whole population ” [Young, op. cit., 98–99].

There are several additional ways in which the model could be extended. Two are noteworthy.
First, the model may be given a production function interpretation. That is, agents’ decisions may
be interpreted as production decisions, and the sum of all decisions is the total output of an orga-
nization. Interactions represent synergies. Padgett (1997) also works with a production function
interpretation of a cyclical interaction setting, the “hypercycle”. A firm will want to design the
topology of interactions in order to satisfy a profit objective, taking the synergies into consider-
ation. This is, of course, a departure from the current setting, where we envision decentralized
noncooperative behavior.

Second, additional work can model trade among agents (nations), where the interactions may be
motivated as originating in pecuniary externalities associated with trade in differentiated products.
Puga and Venables (1997), who explore the impact upon welfare from the creation of free trade
areas, which would correspond to our complete pairwise interactions case, and “hub-and-spoke” ar-
rangements, whereby a country liberalizes bilateral trade with several other countries, with barriers
remaining among those other countries, show that the topology of pattern of trade arrangements
(interactions) does matter. In view of such potential applications, it would be interesting to see the
impact of interactions patterns on the persistence of center vs. periphery type phenomena among
countries engaging in liberalizing trade and the sequence with which they actually entered into such
arrangements.

Third, it would be interesting to further explore econometric properties of models describing
systems of interacting agents,when the interaction topology is not known in advance and agents to
choose whom to interact with. It would also be interesting to link with the work on endogenous
network formation, as by Bala and Goyal (2000) and others.

6 Summary and Concluding Remarks

We examine in this paper the role of topological features of an economy’s social interaction structure.
Our starting point is that individuals care about the decisions of their neighbors, where the specific
notion of neighborhood defines social structure. We examine the importance of specific topologies
of interactions by working with fully optimized nonlinear discrete-response rules and extending the
Brock-Durlauf model interactive discrete choice model to a number of stylized local interactions
topologies. We examine equilibria with social interactions in both static and dynamic settings and
also interpret them as models of aggregate uncertainty. When all interaction coefficients are equal,
all of our models, in static settings, are qualitatively similar to the mean field case examined by
Brock and Durlauf. We explore properties of a richer class of anisotropic equilibria, which appear
for the case of cyclical interaction and path interaction when interaction coefficients differ.

We also examine the model where individuals make decisions on the basis of observations on
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the actual decisions of their neighbors. We obtained the equilibrium probability distributions for
the case of Walrasian-star interactions, by working from first principles, and of circular interaction,
by drawing on the statistical mechanics literature for the one-dimensional Ising model. We also
examine the properties of the equilibrium probability distributions for the states of all agents by
linking interactive discrete choice models with the econometric theory of simultaneous systems of
equations modelling discrete decisions.

With local interaction either in the form of cyclical or of path interaction, synergistic effects
lead to spatial oscillations and clustering, with the “most unstable” states pushing the economy
away from the symmetric isotropic outcome, which is unstable. Those two interaction patterns give
broadly similar results but with one important exception, namely that the cyclical interaction case
is associated with greater persistence relative to the case of path interaction. We show that such
greater persistence is also present in models with arbitrary social interactions topologies, provided
that all agents have the same number of neighbors. In contrast to earlier findings in the literature
on the transient nature of clustering, the inherent multiplicity of equilibria in the models of this
paper allows for permanent effects of initial conditions. By exploring richer social settings, this
paper goes beyond previous work. It also reinforces the arguments made by Brock and Durlauf on
the importance of statistical mechanics models for the study of social interactions.

We examine the dynamics of social interaction with general topologies under the assumption
that agents use the expectation of their neighbors’ past decisions as the expectation of their neigh-
bors’ current decisions, which they consider as deterministic. We characterize fully existence and
dynamic stability in the case of regular topologies and of random topologies as well. The dynamics
of interdependent decisions depend critically on the assumption about expectations. The dynamics
are stochastic and thus vastly more complicated if agents use their neighbors’ actual past decisions
as the expectation of their future decisions. The most general case of arbitrary social interactions
topology may be studied as a Markov process, but because it is defined over a very large sample
sample space, its high dimensionality makes it unwieldy. Nonetheless, it is associated with a sta-
tionary distribution. We characterize in detail the stochastic dynamics in such settings for the cases
when interaction topologies are translation-invariant and interaction structures reversible. These
conditions are satisfied in the cases of symmetric circular interaction and of global interaction, in
particular. The stochastic dynamics of the Walrasian star interaction model do not satisfy these
conditions but they may be handled directly. The stationary distribution can be characterized fully
and coincides with the equilibrium distribution when agents make decisions with knowledge of their
neighbors’ actual decisions in a static setting.
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8 Appendix: Proofs and Technical Material

8.1 Proof of Proposition 1.

Proof of existence is guaranteed by Brower’s fixed point theorem. It can be demonstrated graph-
ically quite easily. Let the horizontal axis in Figure 2 denote m1 and the vertical axis m−1. Then
Equ. (9) is plotted by the dashed curve and Equ. (10) by the full curve. The set of possibilities
regarding the number and types of roots are obvious and summarized in the main text of the
proposition above.
2 Q.E.D.

8.2 Proof of Proposition 2.

(a) Equ. (13) follows from (12) after setting m = mi. The resulting solutions, designated as m∗
CI ,

are the spatial equivalent of a steady state, and it is for this reason that they are referred to as
isotropic. Clearly, if JB = JF = J, then these solutions coincide with those for the mean field case.
(b) This part of the proposition addresses the possibility that neighboring agents may not in the
same state, at equilibrium. Let us set mI = m̄I and m1 = m̄1. By solving (12) for mi+1 in terms
of (mi,mi−1), we have:

mi+1 =
1

1
2βJF

[tanh−1(mi)− βh]− JB

JF
mi−1.

The mapping Θ defined above transforms the second-order spatial dependence expressed by the
above equation into a first-order spatial dependence for a two-dimensional system, in terms of
(M1

i ,M2
i ), defined as M1

i = mi and M2
i = mi−1. This mimics, of course, such transformations

which are standard in the study of dynamical systems. It follows that

M1
i+1

M2
i+1

=
=

Θ1
(
M1

i ,M2
i

)

Θ2
(
M1

i ,M2
i

) . (54)

By iterating this mapping I − 1 times, we see that m1 and mI may be expressed as functions of
m̄1 and m̄I . Therefore, if anisotropic equilibria exist, they would be the non-isotropic fixed points
of the Ith iterate of the mapping Θ.
(c).Working from (14) and (54), let m1 = m̄1 and m3 = m̄3. We define Θ[1], Θ[2], the first and
second iterates of Θ, and thus m1 = m̄1 and m3 = m̄3 as a fixed point. That is:

m2 = Θ1(m̄1, m̄3)
m1 = Θ2(m̄1, m̄3)

(55)

m3 = Θ1
[1](m̄1, m̄3)

m2 = Θ2
[1](m̄1, m̄3)

=
=

1
1
2
βJF

[
tanh−1(Θ1(m̄1, m̄3))− βh

]
− JB

JF
Θ2(m̄1, m̄3),

Θ1(m̄1, m̄3),
(56)

m1 = Θ1
[2](m̄1, m̄3)

m3 = Θ2
[2](m̄1, m̄3)

=
=

1
1
2
βJF

[
tanh−1(Θ1

[1](m̄1, m̄3))− βh
]
− JB

JF
Θ2

[1](m̄1, m̄3),

Θ1
[1](m̄1, m̄3),

(57)

Or,

tanh−1(m̄1) =
1
2
βJF tanh

[
1
2
βJBm̄1+
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1
2
βJF tanh

[
1
2
βJF m̄1 +

JB

JF
[tanh−1(m̄1)− βh]− 1

2
β

J2
B

JF
m̄3 + βh

]
+ βh

]
+

1
2
βJBm̄3 + βh (58)

tanh−1(m̄1) =
1
2
βJBm̄3 +

1
2
βJF tanh

[
1
2
βJBm̄1 +

1
2
βJF m̄3 + βh

]
+ βh. (59)

Patient work shows that Equ. (58) and (59) admit the isotropic solution, and in addition have at
least one solution.

2 Q.E.D.

8.3 Proof of Proposition 3

Consider m∗
CI , where m∗

CI is one of the isotropic solutions of (12), i = 1, . . . , I, and linearize around
to get a linear system of equations in terms of ∆mi = mi −m∗

CI ,i = 1, . . . , I. That is,

JF ∆mi+1 − 1
1
2βτC

∆mi + JB∆mi−1, i = 1, . . . , I, (60)

where τC ≡ tanh′
(
βh + 1

2β(JBm∗
CI + JF m∗

CI)
)

, which is nonzero. In addition, we have the
“boundary condition” ∆m1 = ∆mI+1.

According to Theorem 3.7, Goldberg (1958), the general solution of (60) may be written in
terms of the roots of the characteristic equation

JF ζ2 − 1
1
2βτC

ζ + JB = 0,

where ζ1, ζ2 may be conjugate complex. That is, the general solution is of the form ∆mi =
C1ζ

i
1 +C2ζ

i
2, where ζ1, ζ2 are conjugate complex numbers and C1, C2 are constants. By substituting

into the boundary condition we get the condition that ζ must be a I-th complex root of 1. These two
conditions are mutually inconsistent and we therefore conclude that there cannot be an anisotropic
solution in the vicinity of an isotropic one, that is where the linearization of the nonlinear equations
(12) is appropriate.

2 Q.E.D.

8.4 Proof of Proposition 4

Part (a). The proof is straightforward.
Part (b). With L = 1, by inverting Equ. (12) and using Equ.’s (15) and (16), we may write for
m−1 and m1 in Equ. (12) as functions of m0. The examination of the multiplicity of the roots is
similar to the case of mean field theory. See Figure 3.
Part (c). The mappings Θ+

L−1(·), Θ−
L−1(·), are defined so as to express forward from the left end

and backward from the right end the dependence among neighboring agents up until agents -1 and
1, respectively. For Θ+

L−1,by working with Equ. (12) for i = −L + 1 in inverse form and by using
(15), we have:

m−L+2 =
1

1
2βJF

tanh−1
(

m−L+1 − 2
β

JF
h

)
− JB

JF
tanh[βh + βJF m−L+1], i = 1, . . . , I,

m−L+2 as a function of m−(L−1), is well defined over its entire range. However, it is the inverse of this
mapping, m−(L−1) = M+(m−(L−2)), is well defined only over two disconnected intervals, (−∞, θ−)
and (θ+,∞), over which it is monotonically increasing. Proceeding in this fashion, we apply Equ.

39



(12) for i = −L + 2 and use the definition of Θ1 to write m−L+3 = Θ1(m−(L−2),m−(L−1)) =
Θ1 (m−L+2,M(m−L+2)) . Again, it is the inverse mapping, m−L+2 = ϑ+(m−L+3), that is necessary
for expressing the forward recursion. And, for −(L− 4) ≤ i ≤ 1, we iterate in this fashion forward
until we get m−1 as a function of m0, which is referred to as m−1 = Θ+

L−1(m0).
For Θ−

L−1, we work in like manner but backwards from i = L− 1 to i = 1. Applying Equ. (12)
for i = L − 1 in inverse form, and by using (16), we may solve for mL−2 as a function of mL−1.
Let the inverse of this mapping be defined by: mL−1 = M−(mL−2). From the definition of Θ1, we
have that: mL−3 = Θ1(mL−2,mL−1). Or:

mL−3 = Θ1(mL−2,M−(mL−2)),

from which we define the inverse mapping mL−2 = ϑ+(mL−3). And, for 1 ≤ i ≤ L−4, we iterate in
this fashion backward until we get m1 as a function of m0, which is referred to as m1 = Θ−

L−1(m0).
Finally, by applying Equ. (12) for i = 0 yields (19). Working graphically, and under the

assumption that β > 0 [ β < 0 ] a solution for m∗
0 exists, lies in ((0, 1)) [(−1, 0)], and is single. We

note that this solution is different from the isotropic one, as the transformations we employ would
not hold. It follows by construction that the m∗

i s differ from one another. Again, if JB = JF , then
the solution is symmetric relative to i = 0.
2 Q.E.D.

8.5 Proof of Proposition 5

By substituting in (12), i = L− 1, for mL, from Equ. (15), and in (12), i = −L + 1, for m−L from
(16), we have, respectively, for i = L− 1, and for i = −L + 1,

mL−1 = tanh
[
βh +

1
2
βJBmL−2 +

1
2
βJF tanh[βh + βJBmL−1])

]
;

m−L+1 = tanh
[
βh +

1
2
βJF m−L+2 +

1
2
βJB tanh[βh + βJF m−L+1])

]
.

These equations along with (12), −L + 2 ≤ i ≤ L− 2, are 2L− 1 nonlinear equations in the 2L− 1
unknowns. Consider m∗

` , one of the isotropic solutions of (12), i = −L + 2, . . . , L − 2, and m∗
−`,

m∗
+`, the associated solutions from (15) and (16), and linearize around them to get a linear system

of equations in terms of the deviations ∆mi, of the anisotropic solution from the isotropic one, for
−L+2 ≤ i ≤ L−2. The corresponding equations for ∆m−L+1 and for ∆mL−1 are more complicated
but we ignore that complication by assuming that m−L+1 and mL−1 are fixed. Therefore,

∆m−L+1 = 0, ∆mL−1 = 0.

The remaining deviations satisfy Equ. (60), for−L+2 ≤ i ≤ L−2, where τL ≡ tanh′
(
βh + 1

2β(JBm∗
` + JF m∗

`)
)

,

which is nonzero. This together with the boundary conditions may be analyzed further by following
( in fact, replicating ) the analysis in Goldberg (1958), p. 184–188 to show that anisotropic solutions
exist for only certain specific values of the coefficients in Equ. (60). There is only a finite number
of those values, and therefore we conclude that, in general, there are no anisotropic solution in the
vicinity of one of the isotropic solutions.

2 Q.E.D.
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8.6 Derivation of Equ. (27).

To solve for Prob {ω1} next, we work with the probability of the event
{
ω1 ·

{∑i=I
i=2 ωi = k

}}
. By

summing over all possible values of k, we obtain an expression for the probability Prob {ω1} . That
is, the state of individual 1 must be consistent with all possible realizations of the states of her
neighbors i = 2, . . . , I:

Prob {ω1 = 1} =
∑

k

Prob

{
ω1 = 1|

I∑

i=2

ωi = k

}
· Prob

{
I∑

i=2

ωi = k

}
. (61)

The first term of the summand in the RHS above is given from (25). The second term may be
obtained as

∑

ω1=1,−1

Prob {ω1} · Prob

{
I∑

i=2

ωi = k|ω1

}
,

by summing over all values of ω1. That is, the state of the agents on the periphery must be consistent
with all possible realizations of the state of the central agent:

Prob

{
I∑

i=2

ωi = k

}

= Prob {ω1 = 1} · Prob

{
I∑

i=2

ωi = k|ω1 = 1

}
+ [1− Prob {ω1 = 1}] · Prob

{
I∑

i=2

ωi = k|ω1 = −1

}
.

(62)
The probability distributions for the random variables

{∑I
i=2 ωi|ω1 = 1

}
and

{∑I
i=2 ωi|ω1 = −1

}

are given from the binomial distribution and thus obtained by means of the formula for 1
2(I +k−1)

successes in I − 1 independent Bernoulli trials. Therefore, by substituting from (62) into the RHS
of (61) we may solve the resulting linear equation for Prob {ω1 = 1} and obtain Equ. (27).

2 Q.E.D.

8.7 Derivations for the Cyclical Interaction Model as One-Dimensional Nearest
Neighbor Ising Model

For the cyclical interaction model, the probability of a social state
∼
ω is given by

Π(
∼
ω) =

1
D̄ exp[

∑

κ⊂V

Dκ(
∼
ω)], (63)

, with D defined as

D(
∼
ω) ≡ βJ

I∑

j=1

ωjωj+1 + βh
I∑

j=1

ωi, (64)

and D̄, the partition function defined as

D̄ =
∑
∼
ω

exp


βJ

I∑

j=1

ωjωj+1 + βh
I∑

j=1

ωj


 , (65)

where summation over
∼
ω is understood over all 2I possible realizations of the social state

∼
ω. Fol-

lowing the classic treatment of Baxter (1982), p. 32–36, we may work as follows.
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The exponential function in (65) may be factored into terms each of them being symmetric and
involving only neighboring states,

V (ω, ω′) ≡ exp
[
βJωω′ +

1
2
βh(ω + ω′)

]
,

thus yielding
D̄ =

∑
∼
ω

V (ω1, ω2) · V (ω2, ω3) · . . . · V (ωI−1, ωI) · V (ωI , ω1). (66)

From the definition of V (ω, ω′), we may write the 2×2 matrix with elements all possible values
of V (ω, ω′),

V =

[
eβJ+βh e−βJ

e−βJ eβJ−βh

]
.

Then the summation over ω2, . . . , ωI in (66) can be regarded as successive matrix multiplications
and the summation over ω1 as the taking of a trace, so that D̄ = Trace

{
VI

}
. It follows that:

D̄ = Trace

{
P

[
λI

1 0
0 λI

2

]
P−1

}
= λI

1 + λI
2, (67)

where λ1, λ2, λ1 > λ2, are the two distinct real eigenvalues of V, a positive symmetric matrix. It
follows from the characteristic equation of V that the eigenvalues are either both positive, if J > 0,
or one is positive (the absolutely larger of them) and the other is negative, if J < 0. Therefore, D̄
is always positive.

From (63), the probability of any social state
∼
ω is given by

Prob(
∼
ω)) =

exp[D(
∼
ω)]

Trace
{
VI

} . (68)

We may obtain expressions for the first, second as well as other moments of the elements of
∼
ω .

In particular, the mean state of an agent is:

E [ωi] =
Trace{SVI}
Trace{VI} ; (69)

the generalized second moment is:

E [ωiωj ] =
Trace{SVj−iSVI+i−j}

Trace{VI} , 0 ≤ j − i ≤ I, (70)

where S =

(
1 0
0 −1

)
. The marginal probability for the state of each agent is given in Equ. (22),

where the auxiliary variable ξ is defined implicitly by:

cot2ξ = eβJ eβh − e−βh

2
≡ eβJ sinh(βh), 0 < ξ <

π

2
.

Just as in the case of the Walrasian star model, the marginal probability describing the state of
each agent is uniquely defined in terms of the fundamentals.

When I →∞, while j − i remains finite, Baxter, op. cit. shows that the mean decision of each
agent is given by (23) and then product of any two decisions by (24).
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8.8 Analytics of the Dynamics of the Circular Interaction Model

We have in closed form, from Brockwell and Davis (1992), p. 133–138, and Anderson (1971),
Theorem 6.5.2, p. 279–281, the eigenvalues and eigenvectors of 1

2 times the adjacency matrix for
the cyclical interaction, ΓC . Specifically, if I is odd, the eigenvalues of this matrix are

{
cos 0 = 1, cos

(
2π

I

)
, cos

(
2π

I

)
, cos

(
4π

I

)
, cos

(
4π

I

)
, . . . , cos

(
(I − 1)π

I

)
, cos

(
(I − 1)π

I

)}
.

The eigenvalues come in pairs, so that there are 1+ I−1
2 distinct roots. The eigenvector correspond-

ing to the eigenvalue 1 is (1, 1, . . . , 1)T, and to the eigenvalues cos j2π
T , j 6= 0, I

2 , there correspond
the eigenvectors (

cos
(

j
2π

I

)
, cos

(
j
4π

I

)
, . . . , 1

)T
,

(
sin

(
j
2π

I

)
, sin

(
j
4π

I

)
, . . . , 0

)T
,

if I is odd. If I is even, the eigenvalues are
{

cos 0 = 1, cos
(

2π

I

)
, cos

(
2π

I

)
, cos

(
4π

I

)
, cos

(
4π

I

)
, . . . , cos

(
(I − 2)π

I

)
, cos

(
(I − 2)π

I
, cosπ = −1

)}
.

The eigenvector corresponding to the eigenvalue 1 is (1, 1, . . . , 1)T, and to the eigenvalues cos j2π
T , j 6=

0, I
2 , the same as above. The eigenvector corresponding to the eigenvalue −1, is (−1, 1,−1, . . . , 1)T.
Instead of this approach, we may work, following Turing (1952) and Glauber (1963)19, from

first principles and seek a general solution for Equ. (46) in the form Aζiρt, where A is a constant
and ρ, ζ are unknown, generally complex, numbers to be determined. Then we substitute into Equ.
(46) to find its general solution for the special case of JB = JF = J. We note that for cyclical
symmetry, it must be the case that ζI = 1. In other words, the complex number ζ must assume
the values of the I basic complex roots of 1, that is:

(
1, exp[2π

I

√−1], . . . , exp[2π(I−1)
I

√−1]
)

. We

then substitute into Equ. (46) and obtain the eigenvalues: ρ = τCJζ−1 + τCJζ, where τC :=
tanh′

(
βh + 1

2β(Jm∗
i−1 + Jm∗

i+1)
)

. Proceeding in this fashion is rather tedious, however.
This solution technique was employed by Turing (1952), and was adapted by Fujita, Krugman

and Venables (1999), p. 85–95, in a continuous space and time model of product differentiation, by
introducing finite Fourier transforms. A special case of Glauber’s model, the “infinite ring” case,
that is when I → ∞, is solved by Ellis (1985), Theorem V. 10.4, p. 190–203. The circle model,
studied in depth by Eisele and Ellis (1983), gives rise to some features which are absent from the
Curie-Weiss model, namely a new kind of phase transition described in terms of random waves.
Roehner (1995), p. 353–355 presents dynamic random fields on continuous spherical surfaces.

The general properties of the dynamics of differential equations of this type have received at-
tention in the literature. Notable are the contributions of Hirsch, who studies differential equations
whose Jacobian matrices have off-diagonal terms that are either non-positive (competitive) or non-
negative (cooperative). Hirsch (1982), in particular, shows that such systems of ordinary differential
equations have bounded solutions that converge to steady states or to periodic orbits. Mallet-Paret
and Smith (1990) allow only backward feedback and show that the Poincaré–Bendixson theorem

19I am grateful to Bertrand Roehner for bringing Glauber (1963) to my attention. Glauber works with the master
equation, a version of the Chapman-Kolmogorov equation in continuous time. This particular use of the Chapman-
Kolmogorov equation has become known as “Glauber dynamics” in the neural networks literature.
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holds, roughly speaking, for such equations. Elkhader (1992) is the only paper that allows for
backward and forward feedback. His model is general but slightly different from Equ. (40), in that
it lacks complete cyclical symmetry.

8.9 Dynamics with Path Interactions

By linearizing respectively for agents −L, −(L− 1), . . . , L− 1, and L,

τ−L := tanh′
(
βh + βJF m∗

−(L−1))
)

,

τL := tanh′
(

βh +
1
2
β(JBm∗

i−1 + JF m∗
i+1)

)
,

τ+L := tanh′
(
βh + βJBm∗

L−1)
)
.

For the symmetric case where JF = JB = J, and given that we linearize around an isotropic
equilibrium, we have that: τ−L = τ+L = τL. We express Equ. (41) – Equ. (43) as a system of
2L + 1 equations in matrix form:




∆m−L(t)
.

∆m0(t)
.

∆mL(t)




= βJτL 1
2




0
1
.
0
0

1
0
.
0
0

0
1
.
0
0

.

.

.

.

.

0
0
.
1
0

0
0
.
0
1

0
0
.
1
0







∆m−L(t− 1)
.

∆m0(t− 1)
.

∆mL(t− 1)




. (71)

The matrix in the r.h.s. of (71) is no longer a circulant. However, the eigenvalues and eigenvec-
tors of 1

2 times the adjacency , the matrix in the R.H.S. of (71) have been studied by Anderson, op.
cit., p. 290, Equ. (62). The adjacency matrix is an (2I + 1)× (2I + 1) matrix, whose first and last
rows are (0, 1, . . . , 0) and (0, 0, . . . , 1, 0) respectively and rows 2 through 2I are the 2I + 1 vector
(1, 0, 1, . . . , 0) and its permutations. Its eigenvalues are given by: 2 cos

(
π

2(I+1) i
)

, i = 1, . . . , 2I +1;
the corresponding eigenvectors are given by

(
sin

(
π

2
s

L + 1

)
, sin

(
π

2
2s

L + 1

)
, . . . , sin

(
π

2
s(2L + 1)

L + 1

))T
, s = 1, . . . , 2L + 1.

This result allows us to solve Equ. (71) in terms of the eigenvectors, just like (47) and obtain Equ.
(50) in the main text.

8.10 Dynamics with Path Interactions with z Transforms when L →∞
It is convenient to apply the z−transform to the entire system of equations (42).This is the discrete-
time counterpart of the treatment in continuous time by Glauber, op. cit., for the linear ring case.
We define L(z, t), the z−transform of the sequence of deviations DM(t) = {∆mi(t)}i=∞

i=−∞ :

L(z, t) =
i=∞∑

i=−∞
zi∆mi(t).

It follows that by multiplying both sides of (46) by zi and summing up for all i’s, we have:

L(z, t) =
1
2
βJτL(z + z−1)L(z, t− 1).
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This may be solved to yield

L(z, t) = L(z, 0)
(

1
2
βJτL

)t

z−t
(
z2 + 1

)t
.

L(z, t) may be obtained as power series by noticing that the term
(
z2 + 1

)t may be written in terms
of the binomial expansion formula.

Intuitively, L(z, 0) carries the impact of initial conditions. We may solve for L(z, t) by assuming
a set of initial conditions. Suppose, for example, that all deviations at 0 are equal to 0 except for
∆0(0) = 1. In that case, L(z, 0) = 1, and

L(z, t) =
(

1
2
βJτL

)t t∑

k=0

t!
k!(t− k)!

z2k−t. (A.1)

The solutions for ∆i(t) may be recovered from L(z, t) in the obvious way, as the coefficients of the
powers of the zi’s. That is, the solution for ∆mi(t) is given by the coefficient of zi in the power
expansion for L(z, t). Writing the terms of the summation in the r.h.s. of (A.1) above yields:

z−t + tz2−t +
(t− 1)t

2
z4−t +

(t− 2)(t− 1)t
6

z6−t + . . . + tzt−2 + zt.

Since for every t, the binomial coefficient in the r.h.s. of (A.1) increases with k, reaches a maximum,
and then declines, the impact on the coefficients of the powers of z depends on the magnitude of(

1
2βJτL

)t
, as well, which may be increasing or decreasing over time, depending upon the which

particular isotropic equilibrium we start from.

8.11 Proof of Proposition 7

Part I.
(a) This part follows from the discussion of subsection 2.1.1. That they are all isotropic follows

from symmetry. To see this, assume that for agent i, her neighbors are at nonisotropic steady
states. By iterating forward with respect to i we reach a contradiction. Therefore, when Equ. (51)
is taken at a steady state, Γim = dmi and mi = m∗, where m∗ is a solution of Equ. (5) is a
solution. It is easy to see that it is the only solution.

(b) This part is also obvious after we linearize around a uniform steady state and apply matrix
notation.

(c) Since the adjacency matrix Γ is symmetric and positive, it has real eigenvalues and a
non-negative maximal eigenvalue, whose magnitude absolutely exceeds all other eigenvalues. This
eigenvalue is “squeezed” between the average degree of G and is maximal degree, which in our case
is equal to I − 1 [ Cvetkovic, et al. (1995), 381–382 ]. However, all agents have the same number
of neighbors, therefore, the maximal eigenvalue is equal to d.

When the economy is at a steady state with all mi’s assuming either one of the asymmetric
values m∗−,m∗

+, or the symmetric value m∗, as defined in subsection 2.1.1 above, if they exist, then
τ simplifies to become equal to tanh′[βh+βJm]. Condition (53) follows as a necessary and sufficient
condition for the solution of (52) to be stable (unstable). It would be stable if mi = m∗−,m∗

+, and
unstable if mi = m∗, ∀i.
Part II. The proof readily follows from Brower’s fixed point theorem. The mapping from [−1, 1]I

into itself, defined by (51) for mt = m, has at least one fixed point.
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Part III. The proof follows from the fact that the row elements of the matrix consisting of rows
1

|ν(i)|Γi are positive and sum up to 1. Therefore, it is a stochastic matrix, whose maximal eigenvalue
is equal to 1. Condition (53) holds, provided that its l.h.s. is evaluated at the appropriate steady
state, at least one of which exists, by Part 2.
2 Q.E.D.
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