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Abstract

We propose a simultaneous model specification procedure for the conditional mean and condi-

tional variance in nonparametric and semiparametric time series econometric models. An adaptive

and optimal model specification test procedure is then constructed and its asymptotic properties

are investigated. The main results extend and generalize existing results for testing the mean of a

fixed design nonparametric regression model to the testing of both the conditional mean and con-

ditional variance of a class of nonparametric and semiparametric time series econometric models.

In addition, we develop computer–intensive bootstrap simulation procedures for the selection of an

interval of bandwidth parameters as well as the choice of asymptotic critical values. An example

of implementation is given to show how to implement the proposed simultaneous model specifica-

tion procedure in practice. Moreover, finite sample studies are presented to support the proposed

procedure.

KEYWORDS: Continuous–time model, diffusion process, kernel estimation, nonparametric esti-

mation, optimal test, semiparametric method, time series econometrics.

1. Introduction and Motivation

Consider a continuous–time diffusion process of the form

drt = µ(rt)dt+ σ(rt)dBt,

where µ(·) and σ(·) > 0 are respectively the univariate drift and volatility functions of the

process, and Bt is standard Brownian motion. Recently, Aı̈t-Sahalia (1996a) developed a

simple methodology for testing both the drift and the diffusion. Through using the forward

Kolmogorov equation, the author derived a corresponding relationship between the marginal

density of rt and the pair (µ, σ). Then, instead of testing both the drift and the volatility

1The first author would like to thank Song Xi Chen, Oliver Linton and Dag Tjøstheim for some constructive

discussions. The authors also acknowledge comments from seminar participants at University of Western

Australia, Monash University, Catholique University de Louvain in Belgium, London School of Economics,

Cornell University and Yale University, in particular, Donald Andrews, Iréne Gijbels, Yongmiao Hong, Peter
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simultaneously, the author considered testing whether the density function belongs to a

parametric family of density functions. The approach has the advantage of using discrete data

without discretizing the continuous–time model (see also Aı̈t-Sahalia 1996b). The use of the

marginal density is computationally convenient and can detect a wide range of alternatives.

For a discrete time series regression model, however, it is difficult to establish a corre-

sponding relationship between the marginal density of the time series and the pair of the con-

ditional mean and the conditional variance of the model. Therefore, to specify the marginal

density only may not be adequate for the specification of both the conditional mean and the

conditional variance of a general time series regression model. This motivates the discus-

sion of a simultaneous model specification for both the conditional mean and the conditional

variance of a class of time series econometric models of the form

Yt = g(Xt) + σ(Xt)et, t = 1, 2, . . . , T (1.1)

where both g(·) and σ(·) > 0 are unknown functions defined over Rd, the data {(Xt, Yt) : t ≥
1} are either independent observations or dependent time series, {et} is an independent and

identically distributed (i.i.d.) error with mean zero and variance one, and T is the number

of observations.

In recent years, nonparametric and semiparametric techniques have been used to construct

model specification tests for the mean function of model (1.1). Interest focuses on tests for

a parametric form versus a nonparametric form, tests for a semiparametric (partially linear

or single-index) form against a nonparametric form, and tests for the significance of a subset

of the nonparametric regressors. For example, Härdle and Mammen (1993) have developed

consistent tests for a parametric specification by employing the kernel regression estimation

technique; Hong and White (1995) and others have applied the method of series estimation to

consistent testing for a parametric regression model; Eubank and Spiegelman (1990), Eubank

and Hart (1992), Wooldridge (1992), Yatchew (1992), Gozalo (1993), Samarov (1993), Whang

and Andrews (1993), Horowitz and Härdle (1994), Hjellvik and Tjøstheim (1995), Fan and Li

(1996), Jayasuriva (1996), Zheng (1996), Hjellvik, Yao and Tjøstheim (1998), Li and Wang

(1998), Chen and Fan (1999), Li (1999), Gao and King (2001), Chen, Härdle and Li (2003),

and others have developed consistent tests for a semiparametric model (partially linear or

single-index) versus a nonparametric alternative for either the independent and identically

distributed (i.i.d.) case or the time series case. Other related studies include Robinson (1988,

1989), Andrews (1997), Li and Hsiao (1998), Whang (2000), Aı̈t-Sahalia, Bickel and Stoker

(2001), Fan and Huang (2001), Gozalo and Linton (2001), Gao, Tong and Wolff (2002), Hong

and Lee (2002), and Sperlich, Tjøstheim and Yang (2002).

Recently, Horowitz and Spokoiny (HS) (2001) have developed a new test of a parametric

model of a mean function against a nonparametric alternative. The test adapts to the

unknown smoothness of the alternative model and is uniformly consistent against alternatives
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whose distance from the parametric model converges to zero at the fastest possible rate. This

rate is slower than T−1/2, where T is the number of observations. Another feature of the HS

test is that one can avoid choosing a particular bandwidth parameter for testing purposes

when using kernel based test statistics. Existing studies consider using an estimation based

optimal value4 for fixing the bandwidth parameter involved. This choice may not be justified

in both theory and practice, as estimation based optimal values may not be optimal for

testing purposes. For a kernel based testing problem, as suggested in the HS paper, one

needs to choose an optimal bandwidth parameter to ensure that the power of the resulting

test can be maximized at (or near) the optimal bandwidth. The HS paper has successfully

used an interval of bandwidth parameters for constructing an adaptive and optimal test for

testing the mean of a fixed design nonparametric regression model.

To the best of our knowledge, however, the problem of testing both the conditional mean

and the conditional variance of model (1.1) simultaneously has attracted less attention. Re-

cently, Chen and Gao (2003) constructed an empirical likelihood (EL) based test statistic

to test both the mean and the variance of a nonparametric regression model, and proposed

a bootstrap simulation procedure for the implementation of the proposed test. The current

paper proposes two novel classes of test statistics and constructs an adaptive and optimal

test. The proposed adaptive test is consistent against some local alternatives with an optimal

rate. In addition, this paper develops computer–intensive simulation procdures for the choice

of kernel bandwidth parameters and asymptotic critical values.

In summary, our approach has the following features:

(i) It proposes simultaneous test procedures for testing both the conditional mean and

the conditional variance of a class of nonparametric time series econometric models for both

independent and strongly dependent error processes. Sound and novel theoretical properties

for the simultaneous test procedures are established.

(ii) It extends and generalizes the results of Horowitz and Spokoiny (2001) for testing

the mean of fixed design nonparametric regression to the simultaneous tesing of both the

conditional mean and the conditional variance of a class of nonparametric and semiparametric

time series econometric models.

(iii) It is applicable to a wide variety of models, which include general nonparametric

regression models for both the i.i.d. case and the time series case. The test procedure is also

applicable to continuous–time model specification. Both the methodology and theoretical

techniques developed in this paper can be used to improve economic and financial model

building and forecasting.

4Usually, a cross–validation selection procedure is used for choosing an optimum bandwidth parameter

to ensure that the average mean square of the resulting estimator is minimized. See Härdle, Liang and Gao

(2000, §2.1.3) for example.
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The rest of the paper is organised as follows. Section 2 proposes two class of model

specification test statistics. An adaptive test procedure is discussed in Section 3 and some

asymptotic consistency results are established. Section 4 provides an application of the

adaptive test procedure to a discrete nonlinear time series model. Section 5 concludes the

paper with some remarks on extensions. Mathematical details are relegated to Appendices

A and B.

2. Model specification tests

Throughout this section, we consider model (1.1). For convenience, let

m1(x) = E(Yt|Xt = x) = g(x) and m2(x) = var(Yt|Xt = x) = σ2(x)

for x ∈ S ⊂ Rd. Define m(x) = (m1(x),m2(x))τ be a bivariate vector and {mθ(·) =

(m1,θ(·),m2,θ(·))τ |θ ∈ Θ} be a parametric model that specifies parametric forms for the

conditional mean and conditional variance of Yt conditional on Xt, where θ ∈ Rq is an

unknown parameter taking a value in the parameter space Θ ⊂ Rq.

The interest of this paper is to test

H0 : m1(x) = m1θ(x) and m2(x) = m2θ(x) (2.1)

for some θ ∈ Θ against

H1 : m1(x) = m1θ(x) + C1T∆1T (x) and m2(x) = m2θ(x) + C2T∆2T (x),

where both ∆1T (x) and ∆2T (x) are continuous and bounded functions over Rd.

Note that the above hypotheses are equivalent to

H0 : m(x) = mθ(x) versus H1 : m(x) = mθ(x) + CT∆T (x) for all x ∈ S,

where CT = (C1T , C2T )τ is a vector of two non–random sequences tending to zero as T →∞
and ∆T (x) = (∆1T (x),∆2T (x))τ . This contains the parametric case where ∆T (·) ≡ 0. Let

θ0 ∈ Θ denote the true value of θ if H0 is true. That is, m(x) = mθ0(x) for all x ∈ S if H0 is

true.

We first introduce a nonparametric kernel estimator for m(·). Let K be a d-dimensional

bounded probability density function with a compact support on the d-dimensional cube

[−1, 1]d. Assume that K(·) satisfies the moment conditions:

∫
uK(u)du = 0 and

∫
uuτK(u)du = σ2

KId,

where Id is the d-dimension identity matrix and σ2
K is a positive constant. Let h be a

smoothing bandwidth satisfying h→ 0 and Thd →∞ as T →∞.
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Define Kh(u) = h−dK(u/h). The Nadaraya-Watson (NW) estimators of ml(x) for l = 1, 2

are defined by

m̂1(x) =

∑T
t=1 Kh(x−Xt)Yt∑T
t=1 Kh(x−Xt)

and m̂2(x) =

∑T
t=1 Kh(x−Xt)(Yt − m̂1(Xt))

2

∑T
t=1 Kh(x−Xt)

. (2.2)

This paper considers using the only one smoothing parameter h. One can use two different

bandwidth parameters h1 and h2 for l = 1 and l = 2 respectively. The representation for this

case will be complicated. See Chen and Gao (2003).

Similarly, for the parametric models, one can estimate ml,θ by

m̃l,θ̃(x) =

∑T
t=1 Kh(x−Xt)ml,θ̃(Xt)
∑T
t=1 Kh(x−Xt)

(2.3)

for l = 1, 2, where θ̃ is a consistent estimator of θ under H0.

Let m̂(x) = (m̂1(x), m̂2(x))τ and m̃θ(x) = (m̃1,θ(x), m̃2,θ(x))τ . The test statistics we are

going to consider are based on the difference between m̃θ̃(·) and m̂(·), rather than directly

between mθ̃(·) and m̂(·). Due to the use of (2.2) and (2.3), one can avoid the bias associated

with the nonparametric estimation.

The local linear estimator can also be used to replace the NW estimator in estimating m(·).
As we use m̂ and m̃θ̃ to construct each test statistic, however, the possible bias associated

with the NW estimator is not an issue here. In addition, the NW estimator has a simpler

analytic form. Extension of our approach to the local linear estimator based test procedure

can be discussed in a similar fashion, although the proof will be more technical.

We now introduce the following notation.

εt = Yt −m1(Xt), ηt = ε2t −m2(Xt),

σij(x) = E
[
εitη

j
t |Xt = x

]
for i = 0, 1, 2 and s0(x) = |Σ0(x)|−1,

where |A| is the determinant of a matrix A and

Σ0(x) =


 σ20(x) σ11(x)

σ11(x) σ02(x)


 .

Let f(x) be the marginal density of {Xt}. We assume without loss of generality that R(K) =
∫
K2(x)dx = 1. Let

Σ(x) = f−1(x)Σ0(x).

In this section, we then construct two different classes of model specification tests and

establish their asymptotic distributions. Section 3 discusses an optimal version of one of the

proposed tests. Empirical comparisons of the two tests are given in Section 4.

2.1. Class I of Test Statistics
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To construct the first class of our test statistics, we have a look at the following null

hypothesis:

H01 : m1(x) = m1θ(x) against H11 : m1(x) = m1θ(x) + C1T∆1T (x). (2.4)

For testing (2.4), Härdle and Mammen (1993) suggested using the following test statistic

HMT = (Thd)
∫

(m̂1(x)− m̃1θ̃(x))2 π(x)dx, (2.5)

where π(x) is a positive weight function satisfying
∫
π2(x)dx <∞. The authors showed that

under H01

HMT =
HMT − µ0

σ0h

→D N(0, 1), (2.6)

where µ0 = K(2)(0)
∫ σ2(x)π(x)

f(x)
dx and σ2

0h = 2hdK(4)(0)
∫ (σ2(x)π(x)

f(x)

)2
dx, in which f(x) is the

density function of Xt and σ2(x) = Var(Yt|Xt = x).

For testing (2.1), equation (2.5) thus motivates the use of a test statistic of the form

N1T (h) = (Thd)
∫
{m̂(x)− m̃θ̃(x)}τ Σ̂−1(x){m̂(x)− m̃θ̃(x)}π(x)dx (2.7)

provided that Σ̂−1(x) exists, where

Σ̂−1(x) = f̂(x)Σ̂−1
0 (x), Σ̂0(x) =


 σ̂20(x) σ̂11(x)

σ̂11(x) σ̂02(x)


 , (2.8)

f̂(x) = 1
Thd

∑T
t=1 K

(
x−Xt
h

)
and for i, j = 0, 1, 2,

σ̂ij(x) =

∑T
t=1 K

(
x−Xt
h

)
ε̂itη̂

j
t

∑T
t=1 K

(
x−Xt
h

) , ε̂t = Yt − m̂1(Xt), η̂t = ε̂2t − m̂2(Xt).

The use of the weight function, π(·), is due to both theoretical and practical considera-

tions. For the theoretical consideration, one does not need to assume that the support of the

marginal density, f(·), of {Xt} is compact. This will not exclude some important distribu-

tions such as Gaussian distributions, which is particularly important in financial modelling.

For the practical consideration, when the support of f(·) is not compact, one can use π(·)
for approximation and truncation purposes.

Before establishing the asymptotic distribution of (2.7), we give the following remark.

Remark 2.1. We should point out that (2.7) is a natural extension of (2.5) and is asymp-

totically equivalent to the test statistic based on the empirical likelihood method (see Chen

and Gao 2003).

We now state the main result of this section and the proof is relegated to Appendix A.
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Theorem 2.1. (i) Suppose that Assumptions A.1–A.4 hold. Then under H0

L1T = L1T (h) =
N1T (h)− 2µπ

σh
→D N(0, 1) as T →∞, (2.9)

where µπ =
∫
π(x)dx, σ2

h = 4hdC(K, π), C(K, π) = K(4)(0)R−2(K)
∫
π2(x)dx, K(j)(·) de-

notes the j-times convolution product of K(·), and R(K) =
∫
K2(u)du.

(ii) Assume that the conditions of (i) hold. In addition, assume that there is a random

data–driven ĥ such that ĥ
h
− 1→p 0 as T →∞. Then under H0

L̂1T = L1T (ĥ) =
N1T (ĥ)− 2µπ

σĥ
→D N(0, 1) (2.10)

as T →∞.

Remark 2.2. One needs to point out that either (2.9) or (2.10) is already a normalized form.

It follows from (2.9) or (2.10) that L1T or L̂1T has an asymptotic normality distribution under

the null hypothesis H0. In general, H0 should be rejected if L1T or L̂1T exceeds a critical

value, L∗10, of the normal distribution. As can be seen from (2.10), the test statistic, L̂1T ,

involves the kernel function only and is therefore applicable to real data implementation.

Remark 2.3. Theorem 2.1(ii) shows that the asymptotic normality remains unchanged

when h is replaced with the random data–driven ĥ, which is known as the plug–in method.

Recently, Gao and King (2001), and Lavergne (2001) suggested using the plug–in method.

Apart from using the plug–in method for testing purposes, there are some other methods.

For example, Horowitz and Spokoiny (2001) adopted the maximum of a test statistic over a

bandwidth interval. For our case, their test statistic is similar to maxh∈HT L1T (h), in which

HT is an interval of bandwidths. We discuss an extension of Horowitz and Spokoiny (2001)

to our case in Section 3.

Theorem 2.1 gives the asymptotic normality of the test statistics for the simultaneous

testing problem. When the null hypothesis is rejected, one needs to further test

H01 : m1(x) = m1θ(x) against H11 : m1(x) = m1θ(x) + C1T∆1T (x)

or

H02 : m2(x) = m2θ(x) against H12 : m2(x) = m2θ(x) + C2T∆2T (x).

Define

N11T (h) = (Thd)
∫
{m̂1(x)− m̃1,θ̃(x)}2σ̂−1

20 (x)π(x)dx

and

N12T (h) = (Thd)
∫
{m̂2(x)− m̃2,θ̃(x)}2σ̂−1

02 (x)π(x)dx.

We now have the following theorem.
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Theorem 2.2. (i) Under the conditions of Theorem 2.1(i), under H01 or H02 we have for

i = 1 or 2,

L1iT =
N1iT (h)− µπ

σ1h

→D N(0, 1) (2.11)

as T →∞, where σ2
1h = 2hdC(K, π).

(ii) Under the conditions of Theorem 2.1(ii), under H01 or H02 we have for i = 1 or 2,

L1iT (ĥ) =
N1iT (ĥ)− µπ

σ̂1h

→D N(0, 1) (2.12)

as T →∞, where σ̂2
1h = 2ĥdC(K, π).

Theorem 2.2 shows that we can test either the conditional mean or the conditional vari-

ance. The conclusion of Theorem 2.2(i) is similar to those obtained previously for kernel

estimation or series estimation based test statistics. Unlike the existing test statistics, our

test statistics depend only on h and K. It follows from (2.4) and (2.5) that the test statistic

of Härdle and Mammen (1993) depends on σ2(x) = Var(Yt|Xt = x). Obviously, σ0h of (2.6)

needs to be estimated when using L0T in practice. By contrast, σ1h of (2.11) does not involve

any unknown function such as σ2(x).

As can be seen from the construction of L1T , random denominators are involved in the

form. Our experience suggests that the involvement of random denominators could reduce

the power of the proposed tests. This motivates the construction of the second class of our

test statistics below.

2.2. Class II of Test Statistics

In order to explain the motivation for the construction of the second class of our test

statistics, we need to have a look at some relevant test statistics for testing the null hypothesis

(2.4):

H01 : m1(x) = m1θ(x) against H11 : m1(x) = m1θ(x) + C1T∆1T (x).

For testing (2.4), several authors have proposed novel test statistics. See Li and Wang

(1998), and Gao and King (2001). Let pst = K((Xs−Xt)/h). To test (2.4), we suggest using

a test statistic of the form

L21T = L21T (h) =

∑T
s=1

∑T
t=1, 6=s pstÛtÛs
S21T

, (2.13)

where S2
21T = 2

∑T
s,t=1 p

2
stÛ

2
t Û

2
s and Ût = Yt −m1,θ̃(Xt).

Similar to Th of Horowitz and Spokoiny (2001, pp.606), we construct a test statistic of

the form

L̂21T = L̂21T (h) =

∑T
t=1

∑T
s=1, 6=tAstÛsÛt

Ŝ21T

, (2.14)
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where Ŝ2
21T = 2

∑T
t=1

∑T
s=1 A

2
stÛ

2
t Û

2
s , {Ast} is the (s, t) element of the T × T matrix Ah =

W τ
hWh, and Wh is the T × T matrix whose (s, t) element is

wh(Xs, Xt) =
K((Xs −Xt)/h)

∑T
u=1 K((Xs −Xu)/h)

.

Theoretically, L̂21T is much more complicated than L21T , as the latter involves only a

double summation while the former involves not only a triple summation, but also several

random denominators.

Let P = {pst} be a T × T matrix with pst as its (s, t) element and Û = (Û1, . . . , ÛT )τ .

Then the numerator of (2.13) can be expressed as

T∑

t=1

∑

s 6=t
pstÛtÛs = Û τPÛ −

T∑

t=1

pttÛ
2
t .

This suggests using the following form for testing the null hypothesis (2.1):

(Û τ , V̂ τ )


 P P

P P




 Û

V̂


 ,

where V̂ = (V̂1, . . . , V̂T )τ and V̂t = Û2
t −m2,θ̃(Xt).

A simple decomposition implies that

(Û τ , V̂ τ )


 P P

P P




 Û

V̂


 = (Û + V̂ )τP (Û + V̂ ). (2.15)

Equations (2.13) and (2.15) finally motivate the use of the following test statistic for

testing the null hypothesis (2.1):

L2T = L2T (h) =

∑T
t=1

∑T
s=1, 6=t pstŴsŴt

σ̂h
=
Ŵ τPŴ − µ̂h

σ̂h
, (2.16)

where σ̂2
h = 2

∑T
s,t=1 p

2
stŴ

2
t Ŵ

2
s , Ŵt = Ût + V̂t, Ŵ = (Ŵ1, . . . , ŴT )τ , and µ̂h =

∑T
t=1 pttŴ

2
t =

K(0)
∑T
t=1 Ŵ

2
t .

Other alternatives include

L̂2T = L̂2T (h) =

∑T
t=1

∑T
s=1, 6=tAstŴsŴt

σ̄h
, (2.17)

where σ̄2
h = 2

∑T
s,t=1 A

2
stŴ

2
t Ŵ

2
s and {Ast} is as defined in (2.14).

As can be seen from (2.16) and (2.17), there are some similarities theoretically. Empiri-

cally, our small sample studies suggest that L2T is more powerful than L̂2T . Thus, we suggest

using L2T of (2.16) throughout the rest of this paper.
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We now conclude our construction and discussion with the following remark.

Remark 2.4. (i) Equation (2.16) extends (2.13) for the univariate case to the bivariate case.

When comparing (2.13) with (2.16), one can see the similarities of the two forms. This also

suggests that one can easily construct a similar form for other multiple test problems, such

as testing the first four moments.

(ii) It follows from the construction of L2T that the form of L2T depends on the use of

(2.15). Before finally using (2.15), we also considered the following alternative:

(Û τ , V̂ τ )


 P −P
−P P




 Û

V̂


 = (Û − V̂ )τP (Û − V̂ ).

Obviously, one can replace Ŵt = Ût+ V̂t by Ŵt = Ût− V̂t in (2.16). As our asymptotic and

empirical studies show that there is little difference between using the two different forms,

we suggest using L2T of (2.16) throughout this paper.

(iii) As can be seen from (2.7) and (2.16), the test statistic L1T involves not only a triple

summation, but also several random denominators. By contrast, L2T involves just a double

summation and no random denominator is involved in the numerator. Theoretically, the form

of (2.7) looks much more complicated than that of (2.16), although the two test statistics

have similar asymptotic properties. Empirically, our small sample studies in Section 4 show

that L2T is more powerful than L1T .

We now state the main result of this section and the proof is relegated to Appendix A.

Theorem 2.3. (i) Suppose that Assumptions A.1–A.4 hold. Then under H0

L2T = L2T (h)→D N(0, 1) as T →∞.

(ii) Assume that the conditions of (i) hold. In addition, assume that there is a random

data–driven ĥ such that ĥ
h
− 1→p 0 as T →∞. Then under H0

L2T (ĥ)→D N(0, 1)

as T →∞.

Similar to (2.13), we can construct a test statistic for the univarate test problem H02

proposed above Theorem 2.2. The test statistic is given by

L22T = L22T (h) =

∑T
t=1

∑T
s=1, 6=t pstV̂sV̂t
S22T

, (2.18)

where S2
22T = 2

∑T
t=1

∑T
s=1 p

2
stV̂

2
s V̂

2
t .

We now have the following theorem and its proof follows from that of Theorem 2.3.
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Theorem 2.4. (i) Under the conditions of Theorem 2.3(i), under H01 or H02 we have for

i = 1 or 2,

L2iT (h)→D N(0, 1)

as T →∞.

(ii) Under the conditions of Theorem 2.3(ii), under H01 or H02 we have for i = 1 or 2,

L2iT (ĥ)→D N(0, 1)

as T →∞.

Sections 2.1–2.2 mainly discuss how to establish asymptotically consistent test statistics

for the null hypothesis problem of the form (2.1), in which both m1θ(·) and m2θ(·) are

parametric functions. As a matter of fact, one can construct similar test statistics for two

different test problems–the first one is that both m1θ(·) and m2θ(·) are of partially linear

forms, and the second problem is that both m1θ(·) and m2θ(·) are of single–index forms. This

extension includes some semiparametric models as alternatives to the nonparametric null

models.

2.3. Some extensions and generalizations

Assume that there are two pairs of unknown parameters, (α, β) and (γ, δ), and a pair of

unknown functions, (φ, ψ) such that

m1θ(Xt) = U τ
t α + φ(Vt) and m2θ(Xt) = Zτ

t β + ψ(Wt) (2.19)

or

m1θ(Xt) = U τ
t α + φ(V τ

t γ) and m2θ(Xt) = Zτ
t β + ψ(W τ

t δ), (2.20)

where θ = (α, β) for (2.19), θ = (α, γ, β, δ) for (2.20), and Ut, Vt, Zt and Wt are either subsets

of Xt or the entire Xt.

When {Xt} is a sequence of i.i.d. random variables and Ut, Vt, Zt and Wt are subsets of Xt,

Härdle, Liang and Gao (2000, Chapter 2) constructed some consistent estimators for (α, β)

and (φ, ψ) in (2.19). Similarly, one can establish consistent estimators for the parameters

and functions when {Xt} is a stationary process. See Härdle, Liang and Gao (2000, Chapter

6). Li (1999) already considered testing the conditional mean of the form of the first part of

(2.19).

When Ut = Vt = Xt and {Xt} is a sequence of dependent processes in (2.20), the condi-

tional mean becomes

m1θ(Xt) = Xτ
t α + φ(Xτ

t γ). (2.21)

For model (2.21), Xia, Tong and Li (1999) established asymptotically normal estimators for

the parameters and function involved. Li (1999) already constructed a consistent test statistic
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for testing the null hypothesis of the form of (2.21) with α ≡ 0. Similarly, one can establish

asymptotically normal estimators for the parameters and functions involved in model (2.20).

Assume that α̃, β̃, γ̃, δ̃, φ̃(·), and ψ̃(·) are consistent estimators of the parameters and

functions involved in (2.19) or (2.20). The detailed construction of the estimators is similar

to Li (1999) and Härdle, Liang and Gao (2000, Chapter 2) for (2.19) or Li (1999), Xia, Tong

and Li (1999) and Härdle, Liang and Gao (2000, Chapter 2) for (2.20). We now define

m̃1,θ̃(Xt) = U τ
t α̃ + φ̃(Vt) and m̃2,θ̃(Xt) = Zτ

t β̃ + ψ̃(Wt)

for (2.19), and

m̃1,θ̃(Xt) = U τ
t α̃ + φ̃(V τ

t γ̃) and m̃2,θ̃(Xt) = Zτ
t β̃ + ψ̃(W τ

t δ̃)

for (2.20).

Substituting the new estimator m̃θ̃(x) = (m̃1,θ̃(x), m̃2,θ̃(x))τ into (2.7), one can establish

the corresponding test statistic L1T (h) of (2.9) for testing the null hypothesis problem of

the form (2.19) or (2.20). Similarly, for the construction of the corresponding test statistic

L2T (h) of (2.16), one needs to replace Ût and V̂t there by

Ût =
[
Yt − m̃1,θ̃(Xt)

]
f̃(Vt) and V̂t =

{[
Yt − m̃1,θ̃(Xt)

]2 − m̃2,θ̃(Xt)
}
f̃ 2(Vt)f̃(Wt)

for the case of (2.19), and

Ût =
[
Yt − m̃1,θ̃(Xt)

]
f̃(V τ

t γ̃) and V̂t =
{[
Yt − m̃1,θ̃(Xt)

]2 − m̃2,θ̃(Xt)
}
f̃ 2(V τ

t γ̃)f̃(W τ
t δ̃)

for the case of (2.20), where f̃(·) is the usual kernel density estimator based on the data

involved.

Therefore, for the null hypothesis problem (2.19) or (2.20), we can establish the corre-

sponding Theorems 2.1 and 2.3. The detailed conditions and the proofs of the resulting

theorems are similar to those for Theorems 2.1 and 2.3. Similarily, one can consider non-

parametric significance testing for both the conditional mean and conditional variance of

model (1.1). To do so, one needs to extend some existing results, such as Fan and Li (1996),

Lavergne and Vuong (2000), and Aı̈t-Sahalia, Bickel and Stoker (2001) to the simultaneous

setting. As they are extremely technical, we shall not provide the details, which, however,

are available upon request from the first author.

We need to point out that the test statistics proposed in Sections 2.1 and 2.2 are al-

ready normalized test statistics and their asymptotic distributions are standard normal. It

is expected that the rate of convergence may not be fast. Thus, Theorems 2.1–2.4 can only

give some rough idea about the asymptotic behaviour of the test statistics involved when the

sample size is small. Thus, in practice we need to consider using a bootstrap method when

12



           

implementing the test statistics in practice. As our small sample studies suggest that L2T (h)

is at least as powerful as L1T (h) for each fixed h, we need only to modify L2T (h) to an optimal

test statistic and show that the modified test statistic is consistent against alternatives of the

form (2.1) in Section 3 below.

3. An adaptive test procedure

Section 2 establishes the asymptotic normality of the test statistics for testing

H0 : m(x) = mθ(x) versus H1 : m(x) = mθ(x) + CT∆T (x),

where ∆T (x) is as defined before. The test statistics have nontrivial power only if CT con-

verges more slowly than T−1/2. Define ||CT || =
√
C2

1T + C2
2T .

In this section, we consider that the form of the local alternative models is

mT (x) = mθ1(x) + CT∆T (x), (3.1)

where θ1 ∈ Θ.

Similar to our tests, the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger

(1997), and Hart (1997) are consistent against alternatives of the form (3.1) whenever CT

converges more slowly than T−1/2. This section considers the case where the testing problem

is a simultaneous one for the dependent time series case. The main results of this section

correspond to Theorems 1–4 of Horowitz and Spokoiny (2001).

3.1. Asymptotic Behaviour of the Test Statistic under the Null Hypothesis

As discussed in Section 2, the proposed test statistics depend on the bandwidth. This

section then suggests using

L∗2 = max
h∈HT

L2T (h), (3.2)

where HT =
{
h = hmaxa

k : h ≥ hmin, k = 0, 1, 2, . . .
}

, in which 0 < hmin < hmax, and 0 <

a < 1. Let JT denote the number of elements of HT . In this case, JT ≤ log1/a(hmax/hmin).

Simulation Scheme: Throughout this section, we use the notation of L∗ = L∗2. We now

discuss how to obtain a critical value for L∗. The exact α–level critical value, l∗α (0 < α < 1)

is the 1− α quantile of the exact finite-sample distribution of L∗. Because θ0 is unknown, l∗α
cannot be evaluated in practice. We therefore suggest choosing a simulated α–level critical

value, lα, by using the following simulation procedure:

1. For each t = 1, 2, . . . , T , generate Y ∗t = m1θ̃(Xt) +
√
m2θ̃(Xt)e

∗
t , where {e∗t} is sampled

randomly from a specified distribution with E [e∗t ] = 0 and E
[
(e∗t )

2
]

= 1. In addition,

assume that the third and fourth moments of {e∗t} exist.

13



         

2. Use the data set {Y ∗t , Xt : t = 1, 2, . . . , T} to estimate θ. Denote the resulting estimate

by θ̂. Compute the statistic L̂∗ that is obtained by replacing Yt and θ̃ with Y ∗t and θ̂

on the right–hand side of (3.2).

3. Repeat the above steps M times and produce M versions of L̂∗ denoted by L̂∗m for

m = 1, 2, . . . ,M . Use the M values of L̂∗m to construct their empirical bootstrap

distribution function, that is, F ∗(u) = 1
M

∑M
m=1 I(L̂∗m ≤ u). Use the empirical bootstrap

distribution function to estimate the asymptotic critical value, lα.

We now state the following result and its proof is relegated to Appendix B.

Theorem 3.1. Assume that Assumptions A.1–A.2 and B.1–B.3 hold. Then under H0

lim
T→∞

P (L∗ > lα) = α.

The main result on the behavior of the test statistic L∗ under H0 is that lα is an asymp-

totically correct α–level critical value under any model in H0.

3.2. Consistency Against a Fixed Alternative

We now show that L∗ is consistent against a fixed alternative model. Assume that model

(1.1) holds. Let the parameter set Θ be an open subset of Rq. Let M = {mθ(·) : θ ∈ Θ}
satisfy Assumption B.1 listed in Appendix B. For i = 1, 2, let

Mi(θ) = (miθ(X1), . . . ,miθ(XT ))τ , mi = (mi(X1), . . . ,mi(XT ))τ ,

M(θ) = (M1(θ)τ ,M2(θ)τ )τ and m = (mτ
1,m

τ
2)τ .

Measure the distance between m and M by the normalized l2 distance

ρ(m,M) =
[
inf
θ∈Θ

(
1

2T
||m−M(θ)||2

)]1/2

(3.3)

=
[
inf
θ∈Θ

(
1

2T
||m1 −M1(θ)||2 +

1

2T
||m2 −M2(θ)||2

)]1/2

.

If H0 is false, then ρ(m,M) ≥ cρ for all sufficiently large T and some cρ > 0. A consistent

test will reject a false H0 with probability approaching one as T →∞.

The following theorem establishes the consistency.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold. In addition, if there is

some Cρ > 0 such that limT→∞ P (ρ(m,M) ≥ Cρ) = 1 holds, then

lim
T→∞

P (L∗ > lα) = 1.

The proof of Theorem 3.2 is relegated to Appendix B.

3.3. Consistency Against a Sequence of Local Alternatives
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In this section, we consider the consistency of L∗ under local alternatives of the form

mT (x) = mθ1(x) + CT∆T (x)

with ||CT || ≥ C0T
−1/2h−d/4max (loglogT)1/4 for some constant C0 > 0 and θ1 ∈ Θ, where

mT (x) = (m1T (x),m2T (x))τ ,

m1T (x) = m1θ(x) + C1T∆1T (x) and m2T (x) = m2θ(x) + C2T∆2T (x).

Throughout this section, for i = 1, 2 let

miT = (miT (X1), . . . ,miT (XT ))τ , ∆iT = (∆i(X1), . . . ,∆i(XT ))τ ,

mT = (mτ
1T ,m

τ
2T )τ , ∆T = (∆

τ
1T ,∆

τ
2T )τ ,

For k = 1, 2, let 5θMk(θ) be the T ×q matrix whose (i, j) element is ∂mkθ(Xi)
∂θj

and 5θM(θ) =

((5θM1(θ))τ , (5θM2(θ))τ )τ .

We assume that ∆T (x) is a continuous function that is normalized so that

1

2T
||∆T ||2 =

1

2T

(
T∑

t=1

|∆1T (Xt)|2 +
T∑

t=1

|∆2T (Xt)|2
)
≥ 1. (3.4)

We also suppose that ∆T is not an element of the space spanned by the columns of ∆θM(θ).

That is,

|| 5θ M(θ)− Π15θ M(θ)|| ≥ δ|| 5θ M(θ)|| (3.5)

for some δ > 0, where

Π1 = 5θM(θ1) (5θM(51)τ 5θ M(θ1))−15θ M(θ1)τ

is the projection operator into the column space of 5θM(θ1).

Conditions (3.4) and (3.5) exclude functions ∆T (·) for which ||mT −M(θT,0)|| = o(||CT ||)
for some nonstochastic sequence {θT,0} ∈ Θ. Thus, (3.4) and (3.5) ensure that the rate of

convergence of mT to the parametric model M(θ1) is the same as the rate of convergence of

CT to zero. In particular, when (3.4) and (3.5) hold in probability,

[
inf
θ∈Θ

(
1

2T
||mT −M(θ)||2

)]1/2

≥ δ||CT ||(1− o(1)) (3.6)

holds in probability.

We now state the following consistency result and its proof is relegated to Appendix B.

Theorem 3.3. Assume that Assumptions A.1–A.2 and B.1–B.3 hold. Let θ̃ be a
√
T–

consistent estimator of θ. Let mT satisfy (3.1) with ||CT || ≥ CT−1/2h−d/4max (loglogT)1/4 for

some constant C > 0. In addition, let conditions (3.4) and (3.5) hold in probability. Then

lim
T→∞

P (L∗ > lα) = 1.
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The result shows that the power of the adaptive, rate-optimal test approaches one as

T → ∞ for any function ∆T (·) and sequence {CT} that satisfy the conditions of Theorem

3.3.

3.4. Consistency Against a Sequence of Smooth Alternatives

This section discusses that L∗ is consistent uniformly over alternatives in a Hölder smooth-

ness class whose distance from the parametric model approaches zero at the fastest possible

rate. The results can be extended to Sobolev and Besov classes under more technical condi-

tions.

Before specifying our smoothness classes, we introduce the following notation. Let j =

(j1, . . . , jd), where j1, . . . , jd ≥ 0 are integers, be a multi-index. For i = 1, 2, define

|j| =
d∑

i=1

ji and Djmi(x) =
∂|j|mi(x)

∂xj11 · · · ∂xjdd
whenever the derivative exists. Define the Hölder norm

||m||H,s = sup
x∈S

∑

|j|≤s

(
|Djm1(x)|+ |Djm2(x)|

)
.

The smoothness classes that we consider consist of functions m ∈ S(H, s) ≡ {m : ||m||H,s ≤
cH} for some (unknown) s ≥ max(2, d/4) and cH <∞.

For some s ≥ max(2, d/4) and all sufficiently large cm <∞, define

BH,T =

{
m ∈ S(H, s) : lim

T→∞
P

(
ρ(m,M) ≥ cm

(
T−1

√
loglogT

)2s/(4s+d)
)

= 1

}
, (3.7)

where ρ(m,M) is as defined in (3.3).

We now state the following consistency result and its proof is relegated to Appendix B.

Theorem 3.4. Assume that Assumptions A.1–A.2 and B.1–B.3 hold. Then for 0 < α < 1

and BH,T as defined in (3.7)

lim
T→∞

P (L∗ > lα) = 1.

Remark 3.1. Theorems 3.1–3.4 extend Theorems 1–4 of Horowitz and Spokoiny (2001) from

testing the mean of a fixed design regression model to the testing of both the conditional mean

and the conditional variance of nonparametric α–mixing time series. Moreover, we consider

the simultaneous test case where both the mean and variance functions can be simultaneously

tested. Due to the property, we do not need to estimate the conditional variance directly for

the simulation procedure proposed at the beginning of Section 3.

Remark 3.2. As can be seen from the above, the implementation of the adaptive test

requires an intensive computing process. In particular, one needs to select both the interval

of bandwidth parameters, HT , and the asymptotic critical value, lα. In particular, it is quite

difficult to select a bandwidth parameter, h, for implementing the test statistic, L1T , as
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existing theory provides no theoretical criteria on how this kind of choice should be done. It

should be pointed out that existing selection criteria for h for estimation purposes may not

be applicable and suitable, as estimation based optimal h values are not necessarily optimal

for testing purposes. Our experience suggests that the choice of h should be based on the

assessment of the power of the test involved. In Section 4 below, we provide two detailed

simulation procedures for the choice of both HT and the asymptotic critical value.

4. An example of implementation

This section then illustrates the proposed adaptive tests by a simulated example. In this

example, we use simulated data to compare some small sample properties of L1T (h) and the

adaptive test statistic L∗2 of (3.2).

Example 4.1. Consider a nonlinear time series model of the form

Yt = α + βXt + σ ·
√

1 + 0.5X2
t · et,

in which

Xt = 0.5Xt−1 + εt, t = 1, 2, . . . , T, (4.1)

where α, β and σ > 0 are unknown parameters to be estimated, both {εt : t ≥ 1} and

{et : t ≥ 1} are mutually independent and identically distributed, and independent of X0,

εt ∼ U(−0.5, 0.5), X0 ∼ U(−1, 1), and {et} is either the standard N(0, 1) or the normalized

exponential Exp(1)− 1 error, which has mean zero and variance one.

Define the true forms of the conditional mean and conditional variance by

gθ(Xt) = α + βXt and σθ(Xt) = σ
√

1 + 0.5X2
t .

We now consider a sequence of alternative models of the form

Yt = gT (Xt) + σT (Xt)et, (4.2)

where

gT (x) = gθ(x) + CTφ(x/DT ) and σT (x) = σθ(x) + CTφ(x/DT ), (4.3)

in which DT =
(
T−1
√

loglogT
)1/9

, CT = D4
T and φ(·) is the probability density function of

the standard normal distribution. The choice of (4.2) and (4.3) ensures that (3.7) holds with

s = 2 and d = 1. This implies that the adaptive test is consistent against the sequence with

an optimal rate.

In the following detailed simulation, we consider using a class of alternatives of the form

Yt = α + βXt +
1

ψ
φ(Xt/ψ) +

(
σ ·
√

1 + 0.5X2
t +

1

ψ
φ(Xt/ψ)

)
et, (4.4)
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where ψ 6= 0 is defined as the truncation parameter to be chosen, and the others are as

defined in (4.1). In Table 4.1 below, we calculate both the size and the power of our adaptive

test for various cases.

The vector of unknown parameters, θ = (α, β, σ), involved in (4.1) was then estimated

using the pseudo–maximum likelihood method, which is quite common in the estimation of

parametric ARCH models. Due to the structure of (4.1), we choose the following weight

function and the kernel function given by

π(x) =





1
2

if x ∈ [−1, 1]

0 otherwise
(4.5)

and

K(x) =





15
16

(1− x2)2 if x ∈ [−1, 1]

0 otherwise.
(4.6)

Let xi = i
n

and n = [T 1/5] ([x] ≤ x denotes the largest integer part of x). Define

N̂1T (h) =
1

n

n∑

i=1

(Th){m̂(xi)− m̃θ̃(xi)}τ Σ̂−1(xi){m̂(xi)− m̃θ̃(xi)}, (4.7)

where m̂(x) = (m̂1(x), m̂2(x))τ , m̃θ(x) = (m̃1,θ(x), m̃2,θ(x))τ , θ̃ is an estimator of θ,

m̂1(x) =

∑T
t=1 K((x−Xt)/h)Yt∑T
t=1 K((x−Xt)/h)

, m̂2(x) =

∑T
t=1 K((x−Xt)/h)(Yt − m̂1(Xt))

2

∑T
t=1 K((x−Xt)/h)

,

m̃l,θ(x) =

∑T
t=1 K((x−Xt)/h)ml,θ(Xt)∑T

t=1 K((x−Xt)/h)

for l = 1, 2, m1,θ(Xt) = α + βXt, m2,θ(Xt) = σ2 [1 + 0.5X2
t ],

Σ̂−1(x) = f̂(x)Σ̂−1
0 (x), Σ̂0(x) =


 σ̂20(x) σ̂11(x)

σ̂11(x) σ̂02(x)


 ,

f̂(x) = 1
Th

∑T
t=1 K

(
x−Xt
h

)
and for i, j = 0, 1, 2,

σ̂ij(x) =

∑T
t=1 K

(
x−Xt
h

)
ε̂itη̂

j
t

∑T
t=1 K

(
x−Xt
h

) , ε̂t = Yt − m̂1(Xt), η̂t = ε̂2t − m̂2(Xt),

and K(·) is as defined in (4.6). Alternatively, one can generate xi from the density π(·) as

many as Q = 1000 times and then define

N̂1T (h) =
Th

Q

∑

Q replications

{
1

n

n∑

i=1

{m̂(xi)− m̃θ̃(xi)}τ Σ̂−1(xi){m̂(xi)− m̃θ̃(xi)}
}
. (4.8)

With the choice of π(·) and K(·) in (4.5) and (4.6), the constant C(K, π) involved in L1T

is 93
10

. In order to calculate L∗2 of (3.2), one needs to find HT , which is chosen by the following

simulation procedure:
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• For the simulation, we start with some initial values for θ0 and X0.

• For each t = 1, 2, . . . , T , generate the data (Xt, Yt) from (4.2) and (4.3).

• Use the data set {(Yt, Xt) : t = 1, 2, . . . , T} to estimate θ. Denote the resulting estimate

by θ̃. For each fixed h, compute the resulting function of h given by

L̂1(h) = L̂1T (h) =
N̂1T (h)− 2√

186h
5

.

• Repeat the above steps M = 1000 times and produce M versions of L̂1(h) denoted by

L̂1m(h) for m = 1, 2, . . . ,M . Use the M functions of h, L̂1m(h) for m = 1, 2, . . . ,M , to

construct their empirical bootstrap distribution function, that is,

F1h(u) =
1

M

M∑

m=1

I(L̂1m(h) ≤ u),

where I(U ≤ u) is the usual indicator function.

• For the given empirical value l0.05 = 1.65, one can calculate the following power function

φ1(h) = 1− F1h(l0.05).

• Find approximately at which h value the power function φ1(h) is maximized. Denote

the maximizer by h∗. Similarly, one can find the maximizer, h∗, of the corresponding

power function φ2(h) for

L̂2(h) =

∑T
t=1

(∑T
s=1, 6=t pstŴs

)
Ŵt

σ̂h
,

where σ̂2
h = 2

∑T
t=1

∑T
s=1 p

2
stŴ

2
t Ŵ

2
s , Ŵt = Ût+V̂t, Ût = Yt−m1,θ̃(Xt), V̂t = Û2

t −m2,θ̃(Xt),

pts = K((Xt −Xs)/h), and K(·) and θ̃ are as defined before.

• Using h∗, construct HT .

We now can calculate the following test statistic

L∗1 = L̂1(h∗) =
N̂1T (h∗)− 2√

186h∗
5

. (4.9)

For the chosen HT , we can compute L∗2 of (3.2) given by

L∗2 = max
h∈HT



∑T
t=1

(∑T
s=1, 6=t pstŴs

)
Ŵt

σ̂h


 . (4.10)

In order to compute the rejection rates of the test statistics, one needs to find the corre-

sponding simulated critical values.

We suggest choosing two simulated 5%–level critical values, l1,0.05 and l2,0.05, by using the

following simulation procedure:
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• For the simulation, we start with some initial values θ0 and X0.

• For each t = 1, 2, . . . , T , generate the data (Xt, Yt) from model (4.1).

• Use the data set {(Yt, Xt) : t = 1, 2, . . . , T} to estimate θ. Denote the resulting estimate

by θ̃. For the chosen HT , compute the statistics L∗1 and L∗2 given by (4.9) and (4.10).

• Repeat steps 2–3 M = 1000 times and produce M versions of L∗1 and L∗2 denoted by

L∗1m and L∗2m for m = 1, 2, . . . ,M . Use the M values of L∗1m and L∗2m to construct

their empirical bootstrap distribution functions, that is, F ∗i (u) = 1
M

∑M
m=1 I(L∗im ≤ u)

for i = 1, 2. Use the empirical bootstrap distribution functions to calculate the two

bootstrap simulated critical values, l1,0.05 and l2,0.05.

For each case where both ψ and T are chosen, we can compute the rejection rates. For

calculating the rejection rates when H0 is true, one needs to use the data {(Xt, Yt)} where

each (Xt, Yt) is generated from (4.1). For calculating the rejection rates when H1 is true, one

needs to use the data {(Xt, Yt)} where each (Xt, Yt) is generated from (4.2). The number of

simulations in producing Table 4.1 below was 1000. The detailed results are given in Table

4.1 below.

Table 4.1 near here

Remark 4.1. (i) First, one needs to point out that before modifying L2T (h) of (2.16) to be

adaptive, we conducted some small sample studies for both L1T (h) and L2T (h). Our studies

showed that L2T (h) was more powerful than L1T (h) uniformly in h. Moreover, Table 4.1 shows

that L∗2 of (4.10) is more powerful than L∗1 of (4.9) for all the cases under consideration. We

were also trying to compare the power of L∗2 of (3.2) with that of the proposed CGL test

given in (3.1) of Chen and Gao (2003). Because the detailed comparison requires some

very intensive and extremely lengthy computation as well as the implementation of both

the proposed simulation scheme given in §3.1 and the so–called empirical likelihood based

bootstrap simulation procedure proposed in Chen and Gao (2003), we have not been able to

finish the detailed comparison for Example 4.1.

(ii) As can be seen from the first part of Table 4.1, for the standard Normal error the

power can be close to one when T = 500 and the value of ψ−1 is between 4% and 10%. This

may show that L∗2 is not only asymptotically optimal but also practically applicable to both

the small and medium sample cases, since the differences between H0 and H1 were made

deliberately close. We also computed the power of the tests for the case where ψ = 1 or

0.25, our small sample results showed that the power of L∗2 was already 100% even when

T = 250. In the second part of Table 4.1, we have provided some small sample results for

the case where the error is the normalized exponential random variable. The results show

that the power of L∗2 is uniformly higher than that for the standard N(0, 1) case. This may
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show that L∗2 is capable of capturing the skewness and kurtosis due to the flexible structure

of {e∗t} allowed in the Simulation Scheme.

As pointed out in Section 2.2, for some cases one may need only to test either the condi-

tional mean or the conditional variance. For the one–sided test case, it would be interesting

to know whether there would be any significant reduction of the power when using L∗2 while

H1 was different from H0 only in either the conditional mean or the conditional variance.

In other words, we would be interested to know whether L∗2 would be much more powerful

than either L∗21 = maxh∈H1T
L21T (h) or L∗22 = maxh∈H2T

L22T (h) when testing an one–sided

problem, where L21T (h) and L22T (h) are as defined in (2.13) and (2.18) respectively, and the

choice of H1T and H2T is similar to that for HT . We have conducted some small sample stud-

ies for L∗21, L∗22 and L∗2 for the one–sided test case. The number of simulations in producing

Table 4.1 below was 1000. The detailed results are given in Tables 4.2 and 4.3 below.

Table 4.2 near here

Table 4.3 near here

Remark 4.2. (i) Tables 4.2 and 4.3 provide some detailed values for the power of the

simultaneous test and the power of the two one–sided tests when C2T ≡ 0 or C1T ≡ 0.

Our small sample results show that the power of the simultaneous test was just slightly less

powerful than the corresponding one–sided test for both the cases even when the simultaneous

test was used for testing either the conditional mean or the conditional variance. This may

suggest that one can consider testing both the conditional mean and the conditional variance

simultaneously when it is difficult to determine which component (the conditional mean or

the conditional variance) may cause a model specification problem. We observed that the

reduction of the power of the simultaneous test for the case of C2T ≡ 0 was smaller than that

for the case of C1T ≡ 0. We also observed that both the simultaneous and the one–sided

tests for the case of C1T ≡ 0 were less powerful than the corresponding tests for the case of

C2T ≡ 0. We have not been able to explain these phenomena, although we think that this

may be due to the increase in variability when testing the conditional variance only. It is

also observed that the sizes of the three tests were all quite close to 5%.

(ii) When comparing the individual values for the power of the simultaneous test with

those for the power of the one–sided tests for the Normal error distribution and the nor-

malized exponential error distribution, we found some kind of superiority of the tests for

the normalized exponential error distribution over those for the Normal error distribution,

although the superiority may not be significant. This finding is similar to that drawn from

Table I of Horowitz and Spokoiny (2001).

5. Conclusion
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In this paper, we considered the general nonparametric time series regression model (1.1)

and then proposed several model specification test statistics for testing the mean and the

variance under the α–mixing condition. Furthermore, we established the adaptive test. Sev-

eral consistency results about the test power of the test statistics were then developed. The

consistency results extend the main results of Theorems 1–4 of Horowitz and Spokoiny (2001)

from the fixed design case to the α–mixing time series case. The proposed optimal tests were

illustrated through using a simulated example in Section 4.

The results given in this paper can be extended in a number of directions. First, the results

for the short-range dependent time series case can be extended to the long-range dependent

time series case, which is also relevant to some economic and financial data problems. Second,

one can relax the strict stationarity and the mixing condition, as the recent work by Karlsen

and Tjøstheim (2001) indicates that it is possible to do such work without the stationarity

and the mixing condition.5 This part is particularly important for the two reasons: (i) for

the long-range dependent case one needs to avoid assuming both the long-range dependence

and the mixing condition, as they contradict each other; and (ii) some important models are

nonstationary and long–range dependent. See for example, Robinson (1995, 1997), and Gao

(2002). Some of these issues are left for possible future research.

Appendix A

This appendix lists the necessary assumptions for the establishment and the proof of the main

results given in Section 2.

A.1. Assumptions

Assumption A.1. (i) Assume that the process (Xt, Yt) is strictly stationary and α-mixing with

the mixing coefficient α(t) = Cαα
t defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞s+t}

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and Ωj
i denotes the σ-field

generated by {(Xt, Yt) : i ≤ t ≤ j}.
(ii) Assume that P (0 < mint≥1 σ(Xt) ≤ maxt≥1 σ(Xt) <∞) = 1 and that for all t ≥ 1 and

1 ≤ i ≤ 4,

P
(
E[eit|Ωt−1] = µi

)
= 1,

where µ1 = 0, µ2 = 1, µ3 and µ4 are real constants, and Ωt = σ{(Xs+1, Ys) : 1 ≤ s ≤ t} is a

sequence of σ-fields generated by {(Xs+1, Ys) : 1 ≤ s ≤ t}.
(iii) Let ζt = εt or ηt. In addition,

E[|ζ4+α
t |] <∞ and E

[∣∣∣ζi1t1 ζ
i2
t2 · ζ

il
tl

∣∣∣
1+β

]
<∞

5One also needs to point out that for the continuous–time case, Aı̈t-Sahalia (1999) is applicable to the

nonstationarity case.
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for some small constants α > 0 and β > 0, where 2 ≤ l ≤ 4 is an integer, 0 ≤ ij ≤ 4 and
∑l
j=1 ij ≤ 8.

Assumption A.2. (i) Let ζt = εt or ηt and µi(x) = E[ζit |Xt = x] for 1 ≤ i ≤ 4. Assume that

the following Lipschitz condition is satisfied:

max
1≤i≤4

|µi(u+ v)− µi(u)| ≤ D(u)||v||

with v ∈ S (any compact set of Rq) and E
[
|D(Xt)|2+γ

]
<∞ for some small constant γ > 0, where

|| · || denotes the Euclidean norm.

(ii) Let Sπ be a compact subset of Rd. Assume that π(·) is a positive weight function supported

on Sπ and satisfies 0 <
∫
π2(x)dx ≤ C for some constant C. Let Sf = {x ∈ Rd : f(x) > 0} and SX

be the projection of Sπ in Sf .6 Assume that the marginal density function, f(x), of Xt, and that all

the first two derivatives of f(x) and mi(x), i = 1, 2, are continuous on Rd, infx∈SX m2(x) ≥ Cm > 0

for some constant Cm, and on SX the density function f(x) is bounded below by Cf and above by

C−1
f for some Cf > 0, where m1(x) = E[Yt|Xt = x] and m2(x) = var[Yt|Xt = x].

(iii) Let fτ1,τ2,···,τl(·) be the joint probability density of (X1+τ1 , . . . , X1+τl) (1 ≤ l ≤ 4). Assume

that fτ1,τ2,···,τl(·) exists and satisfies the following Lipschitz condition:

|fτ1,τ2,···,τl(x1 + v1, · · · , xl + vl)− fτ1,τ2,···,τl(x1, · · · , xl)| ≤ Dτ1,···,τl(x1, · · · , xl)||v||

for v ∈ S, where S is any compact subset of Rd and Dτ1,···,τl(x1, · · · , xl) is integrable and satisfies

the following conditions ∫
Dτ1,···,τl(x1, · · · , xl)||x||2θdx < M1 <∞,

∫
Dτ1,···,τl(x1, · · · , xl)fτ1,τ2,···,τl(x1, · · · , xl)dx < M2 <∞

for some θ > 1 and constants M1 > 0 and M2 > 0.

Assumption A.3. (i) Assume that the univariate kernel function k(·) is nonnegative, sym-

metric, and supported on [−1, 1]. In addition, k(x) is continuous on [−1, 1]. This paper considers

using

K(x1, · · · , xd) =
d∏

i=1

k(xi).

(ii) The bandwidth parameter h satisfies that

lim
T→∞

h = 0, lim
T→∞

Thd =∞ and lim sup
T→∞

Th5d <∞.

Assumption A.4. Assume that for any parametric estimator, θ, of θ

max
1≤i≤2

max
1≤t≤T

∣∣miθ(Xt)−miθ(Xt)
∣∣ = Op(T

−1/2).

6In other words, SX = Sπ ∩ Sf .

23



            

Remark A.1. Assumptions A.1(i)(ii), A.2(ii) and A.3 and A.4 are novel conditions. Assump-

tions A.1(iii) and A.2(i)(iii) are similar to some parts of Condition (A1) of Li (1999, p.107). All the

conditions are quite natural in this kind of problem. Note that we have not assumed the indepen-

dence between {Xt} and {et}. When {Xt} and {et} are independent, Assumption A.1(ii) holds natu-

rally. For this case, model (1.1) becomes a nonparametric ARCH model when Xt = (Yt−1, · · · , Yt−d)
and {et} is a sequence of i.i.d. random errors. We also have not assumed that the marginal den-

sity of Xt has a compact support. Instead, we impose some restrictions on the support of the

weight function π(·). Assumption A.2 ensures that 0 < infx∈SX µ2(x) ≤ supx∈SX µ2(x) < ∞ and

0 < infx∈SX µ4(x) ≤ supx∈SX µ2(x) <∞. These two conditions are required to ensure that Σ−1(x)

exists and that the smallest eigenvalue of Σ−1(x) is positive uniformly in x. Assumption A.4(i) that

requires the
√
T–rate of convergence for the parametric case is a standard condition. It holds when

each miθ(·) is differentiable in θ and θ is an
√
T–consistent estimator of θ.

A.2. Technical Lemmas

The following lemmas are necessary for the proof of the main results stated in Section 2.

Throughout the rest of this paper, we use f(xi1 , . . . , xid) to represent the joint density function

of (Xi1 , . . . , Xid) for 1 ≤ i1 < . . . < id ≤ d.

Lemma A.1. Suppose that Mn
m are the σ-fields generated by a stationary α-mixing process ξi

with the mixing coefficient α(i). For some positive integers m let ηi ∈ M ti
si where s1 < t1 < s2 <

t2 < · · · < tm and suppose ti − si > τ for all i. Assume further that ||ηi||pipi = E|ηi|pi <∞ for some

pi > 1 for which Q =
∑l
i=1

1
pi
< 1. Then

∣∣∣∣∣E
[

l∏

i=1

ηi

]
−

l∏

i=1

E[ηi]

∣∣∣∣∣ ≤ 10(l − 1)α(τ)(1−Q)
l∏

i=1

||ηi||pi .

Proof: See Roussas and Ionnides (1987).

Lemma A.2. Let ξt be a r-dimensional strictly stationary and strong mixing (α–mixing) stochas-

tic process. Let φ(·, ·) be a symmetric Borel function defined on Rr×Rr. Assume that for any fixed

x ∈ Rr, E[φ(ξ1, x)] = 0 and E[φ(ξi, ξj)|Ωj−1
0 ] = 0 for any i < j, where Ωj

i denotes the σ–field

generated by {ξs : i ≤ s ≤ j}. Let φst = φ(ξs, ξt), σ2
st = var(φst) and σ2

T =
∑

1≤s<t≤T σ
2
st. For some

small constant 0 < δ < 1, let

MT1 = max
1≤i<j<k≤T

max

{
E|φikφjk|1+δ,

∫
|φikφjk|1+δdP (ξi)dP (ξj , ξk)

}
,

MT21 = max
1≤i<j<k≤T

max

{
E|φikφjk|2(1+δ),

∫
|φikφjk|2(1+δ)dP (ξi)dP (ξj , ξk)

}
,

MT22 = max
1≤i<j<k≤T

max

{∫
|φikφjk|2(1+δ)dP (ξi, ξj)dP (ξk),

∫
|φikφjk|2(1+δ)dP (ξi)dP (ξj)dP (ξk)

}
,

MT3 = max
1≤i<j<k≤T

E|φikφjk|2, MT4 = max
1 < i, j, k ≤ 2T

i, j, k different

{
max
P

∫
|φ1iφjk|2(1+δ)dP

}
,
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where the maximization over P in the equation for MT4 is taken over the four probability mea-

sures P (ξ1, ξi, ξj , ξk), P (ξ1)P (ξi, ξj , ξk), P (ξ1)P (ξi1)P (ξi2 , ξi3), and P (ξ1)P (ξi)P (ξj)P (ξk), where

(i1, i2, i3) is the permutation of (i, j, k) in ascending order;

MT51 = max
1≤i<j<k≤T

max

{
E

∣∣∣∣
∫
φikφjkφikφjkdP (ξi)

∣∣∣∣
2(1+δ)

}
,

MT52 = max
1≤i<j<k≤T

max

{∫ ∣∣∣∣
∫
φikφjkφikφjkdP (ξi)

∣∣∣∣
2(1+δ)

dP (ξj)dP (ξk)

}
,

MT6 = max
1≤i<j<k≤T

E

∣∣∣∣
∫
φikφjkdP (ξi)

∣∣∣∣
2

.

Assume that all the M ′T s are finite. Let

MT = max

{
T 2M

1
1+δ

T1 , T 2M
1

2(1+δ)

T51 , T 2M
1

2(1+δ)

T52 , T 2M
1
2
T6

}

and

NT = max

{
T

3
2M

1
2(1+δ)

T21 , T
3
2M

1
2(1+δ)

T22 , T
3
2M

1
2
T3, T

3
2M

1
2(1+δ)

T4

}
.

If limT→∞
max{MT ,NT }

σ2
T

= 0, then as T →∞

1

σT

∑

1≤s<t≤T
φ(ξs, ξt)→D N(0, 1). (A.1)

Remark A.2. Lemma A.2 establishes central limit theorems for degenerate U–statistics of

strongly dependent processes. The lemma extends and complements some existing results for the

β–mixing case. See for example, Lemma 3.2 of Hjellvik, Yao and Tjøstheim (1998) and Theorem

2.1 of Fan and Li (1999).

Proof: See the proof of Lemma B.1 of Gao and King (2001).

Before stating the next lemma, we define and recall the following notation.

Wt(x) =
1

Thd
K

(
x−Xt

h

)
, εt = Yt −m1(Xt), ηt = ε2t −m2(Xt),

σij(x) = E
[
εitη

j
t |Xt = x

]
for i = 0, 1, 2 and s0(x) = |Σ0(x)|−1

where |A| is the determinant of a matrix A and

Σ0(x) =

(
σ20(x) σ11(x)

σ11(x) σ02(x)

)
.

For s, t = 1, 2, . . ., let

ast = Thd
∫
Ws(x)Wt(x)σ02(x)s0(x)f−1(x)π(x)dx,

bst = Thd
∫
Ws(x)Wt(x)σ11(x)s0(x)f−1(x)π(x)dx,
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cst = Thd
∫
Ws(x)Wt(x)σ20(x)s0(x)f−1(x)π(x)dx,

φst = astεsεt − 2bstεsηt + cstηsηt,

N0T = N0T (h) =
T∑

s=1

T∑

t=1

φst. (A.2)

Without loss of generality, we assume throughout the rest of this paper that
∫
k(x)dx =

∫
k2(x)dx = R(k) ≡ 1 and

∫
π(x)dx =

∫
π2(x)dx ≡ 1.

Lemma A.3. Under Assumptions A.1–A.3, we have as T →∞

E [N0T (h)] = 2 and var [N0T (h)] = 4hdK(4)(0)(1 + o(1)).

Proof: It follows from Assumptions A.2–A.3 that as T →∞

att = Thd
∫
W 2
t (x)σ02(x)s0(x)f−1(x)π(x)dx

=

∫
1

Thd
K2

(
x−Xt

h

)
σ02(x)s0(x)f−1(x)π(x)dx

=
1

T

(∫
K2(u)du

)
σ02(Xt)s0(Xt)f

−1(Xt)π(Xt)(1 + o(1)). (A.3)

Thus, as T →∞
T∑

t=1

E
[
attε

2
t

]
= E

[
σ02(Xt)s0(Xt)f

−1(Xt)π(Xt)ε
2
t

]
(1 + o(1))

= E
[
σ02(Xt)s0(Xt)f

−1(Xt)π(Xt)σ20(Xt)
]

(1 + o(1))

=

∫
σ02(x)s0(x)π(x)σ20(x)dx(1 + o(1)). (A.4)

Similarly, we can obtain that as T →∞
T∑

t=1

E
[
cttη

2
t

]
= E

[
σ20(Xt)s0(Xt)f

−1(Xt)π(Xt)η
2
t

]
(1 + o(hd))

= E
[
σ20(Xt)s0(Xt)f

−1(Xt)π(Xt)σ02(Xt)
]

(1 + o(hd))

=

∫
σ20(x)s0(x)π(x)σ02(x)dx(1 + o(hd)) (A.5)

and

−2
T∑

t=1

E
[
bttη

2
t

]
= −2E

[
σ11(Xt)s0(Xt)f

−1(Xt)π(Xt)εtηt
]

(1 + o(hd))

= −2E
[
σ11(Xt)s0(Xt)f

−1(Xt)π(Xt)σ11(Xt)
]

(1 + o(hd))

= −2

∫
σ2

11(x)s0(x)π(x)dx(1 + o(hd)). (A.6)
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In view of (A.4)–(A.6), we have

E [N0T (h)] =
T∑

t=1

E [φtt]

= 2

∫ [
σ20(x)σ02(x)− σ2

11(x)
]
s0(x)π(x)dx = 2

∫
π(x)dx = 2.

This finishes the proof of the first part of Lemma A.3. For the proof of the second part of

Lemma A.3, let

σ2
st = E[φ2

st] and σ2
T = 2

∑

1≤s,t≤T
σ2
st.

Then

σ2
T = 2

∑

1≤s,t≤T
σ2
st = 2

T∑

t=1

T∑

s=1

E
[
φ2
st

]
= 2

T∑

t=1

T∑

s=1

E [astεsεt − 2bstεsηt + cstηsηt]
2

= 2
T∑

t=1

T∑

s=1

E
[
a2
stε

2
sε

2
t + 4b2stε

2
sη

2
t + c2

stη
2
sη

2
t + 2astcstεsεtηsηt − 4astbstε

2
sεtηt − 4bstcstεsηsη

2
t

]
.

We first look at the main part of σ2
T . Similar to (A.3), we can have

a2
st =

∫ ∫
1

(Thd)2
K

(
x−Xs

h

)
K

(
y −Xs

h

)
K

(
x−Xt

h

)
K

(
y −Xt

h

)
×

σ02(x)s0(x)f−1(x)π(x)σ02(y)s0(y)f−1(y)π(y)dxdy.

Thus,

E
[
a2
stε

2
sε

2
t

]
= E

{
a2
stE

[
ε2sε

2
t |(Xs, Xt)

]}
= E

[
a2
stσ20(Xs)σ20(Xt)

]

=
1

(Thd)2

∫ ∫
σ02(x)s0(x)f−1(x)π(x)σ02(y)s0(y)f−1(y)π(y)×

E

[
K

(
x−Xs

h

)
K

(
y −Xs

h

)
K

(
x−Xt

h

)
K

(
y −Xt

h

)
σ20(Xs)σ20(Xt)

]
dxdy.

We now have a look at the following component. Using Assumptions A.2 and A.3, we have as

T →∞
E

[
K

(
x−Xs

h

)
K

(
y −Xs

h

)
K

(
x−Xt

h

)
K

(
y −Xt

h

)
σ20(Xs)σ20(Xt)

]

=

∫ ∫
K

(
x− u
h

)
K

(
y − u
h

)
K

(
x− v
h

)
K

(
y − v
h

)
σ20(u)σ20(v)f(u, v)dudv

=

∫ ∫
K

(
x− y
h

+
y − u
h

)
K

(
y − u
h

)
K

(
x− v
h

)
K

(
x− v
h
− x− y

h

)
σ20(u)σ20(v)f(u, v)dudv

= h2d
∫ ∫

K

(
s+

x− y
h

)
K(s)K(t)K

(
t− x− y

h

)
σ20(x− th)σ20(y − sh)f(x− th, y − sh)dsdt

= h2dL

(
x− y
h

)
L

(
y − x
h

)
σ20(x)σ20(y)f(x, y)(1 + o(1)),

where L(x) =
∫
K(x+ y)K(y)dy.
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Therefore, as T →∞
T∑

s=1

T∑

t=1

E
[
a2
stε

2
sε

2
t

]
=

∫ ∫
σ02(x)s0(x)f−1(x)π(x)σ02(y)s0(y)f−1(y)π(y)σ20(x)σ20(y)×

L

(
x− y
h

)
L

(
y − x
h

)
f(x, y)dxdy(1 + o(1)). (A.7)

Similarly,

T∑

s=1

T∑

t=1

E
[
c2
stη

2
sη

2
t

]
=

∫ ∫
σ02(x)s0(x)f−1(x)π(x)σ02(y)s0(y)f−1(y)π(y)σ20(x)σ20(y)×

L

(
x− y
h

)
L

(
y − x
h

)
f(x, y)dxdy(1 + o(1)),

T∑

s=1

T∑

t=1

E
[
b2stε

2
sη

2
t

]
=

∫ ∫
σ2

11(x)s0(x)f−1(x)π(x)σ2
11(y)s0(y)f−1(y)π(y)×

L

(
x− y
h

)
L

(
y − x
h

)
f(x, y)dxdy(1 + o(1)), (A.8)

and
T∑

s=1

T∑

t=1

E
[
astcstεsεtηsηt − 2astbstε

2
sεtηt − 2bstcstεsηsη

2
t

]

= −2

∫ ∫
σ20(x)s0(x)f−1(x)π(x)σ02(y)s0(y)f−1(y)π(y)σ11(x)σ11(y)×

L

(
x− y
h

)
L

(
y − x
h

)
f(x, y)dxdy(1 + o(1)). (A.9)

In view of (A.7)–(A.9), as as T →∞

σ2
T =

∫ ∫ [
σ02(x)σ02(y)σ20(x)σ20(y) + σ2

11(x)σ2
11(y)− 2σ20(x)σ02(y)σ11(x)σ11(y)

]
×

s0(x)
π(x)π(y)

f(x)f(y)
s0(y)L

(
x− y
h

)
L

(
y − x
h

)
f(x, y)dxdy(1 + o(1))

= 4hdK(4)(0)

(∫
π2(x)dx

)
(1 + o(1)) (A.10)

using s0(x) =
(
σ02(x)σ20(x)− σ2

11(x)
)−1

, where K(4) denotes the 4-times convolution product of K.

By Lemma A.1 (with η1 = φik, η2 = φjk, l = 2, pi = 2(1 + δ) and Q = 1
1+δ ),

E |φikφjk| ≤ 10M
1

1+δ

T1 α
δ

1+δ (j − i),

where MT1 is as defined in Lemma A.2.

Therefore, using the fact that
∑∞
i=1 α

δ
1+δ (i) <∞,

∑

1≤i<j<k≤T
E |φikφjk| ≤ 10T 2M

1
1+δ

T1

T∑

i=1

(
1− i

T

)
α

δ
1+δ (i) ≤ CT 2M

1
1+δ

T1 = o(σ2
T ), (A.11)

which follows from (A.13)–(A.15) below.
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Equations (A.10) and (A.11) imply

VAR [N0T (h)] = 4


 ∑

1≤s<t≤T
var(φst) + 2

∑

1≤i<j<k≤T
E (φikφjk)




= 4hdK(4)(0)

(∫
π2(x)dx

)
(1 + o(1)).

This finishes the proof of the second part of Lemma A.3.

A.3. Proof of Theorem 2.1

Proof of Theorem 2.1(i): To prove Theorem 2.1(i), we first show that as T →∞

N0T (h)− 2

σh
→ N(0, 1).

To apply Lemma A.2, let ξt = (εt, ηt, X
τ
t ) and φ(ξs, ξt) = φst defined in (A.2). Let MT and NT

be defined as in Lemma A.2. We now verify only the following condition listed in Lemma A.2,

max{MT , NT }
σ2
h

→ 0 as T →∞ (A.12)

for MT1, MT21, MT3, MT51, MT52 and MT6. The others follow similarly.

For the MT part, one justifies only

T 2M
1

1+δ

T1

σ2
h

→ 0 as T →∞.

The others follow similarly.

Let ψst = astεsεt. It follows that for some 0 < δ < 1 and 1 ≤ i < j < k ≤ T

E
[
|ψikψjk|1+δ

]
= E

[
|εiεjε2kaikajk|1+δ

]

≤
{
E
[
|εiεjε2k|2(1+δ)(1+δ2)

]} 1
2(1+δ2)

{
E
[
|aijaik|(1+δ)(1+δ1)

]} 1
(1+δ1)

≤ Cε
{
E
[
|aijaik|(1+δ)(1+δ1)

]} 1
(1+δ1) , (A.13)

using Assumption A.1(iii), where Cε is a constant.

Since 0 < δ1 < 1 and 0 < δ2 < 1 satisfy 1
1+δ1

+ 1
2(1+δ2) = 1 and 1+δ

3−δ < δ1 <
1−δ
1+δ , we have that

1 < ζ1 = (1 + δ)(1 + δ2) < 2 and 1 < ζ2 = (1 + δ)(1 + δ1) < 2.

Let p(x) = σ02(x)s0(x)π(x)f−1(x). Similar to (A.3), we have

aikajk = (Thd)−2
∫ ∫

K

(
x−Xi

h

)
K

(
x−Xk

h

)
K

(
y −Xj

h

)
K

(
y −Xk

h

)
p(x)p(y)dxdy

= T−2
∫ ∫

K(u)K

(
u+

Xi −Xk

h

)
K(v)K

(
v +

Xj −Xk

h

)
p(Xi + uh)p(Xj + vh)dudv

= T−2p(Xi)p(Xj)L

(
Xi −Xk

h

)
L

(
Xj −Xk

h

)
(1 + o(1)).
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For convenience, we use ζ = ζ2 and ignore the small order o(1) throughout the rest of the proof

of Theorem 2.1(i). For the given 1 < ζ < 2 and T sufficiently large, we obtain

MT11 = E |aikajk|ζ

= T−2ζ
∫ ∫ ∫

|p(u)p(v)|ζ
∣∣∣∣L
(
u− w
h

)∣∣∣∣
ζ ∣∣∣∣L

(
v − w
h

)∣∣∣∣
ζ

f(u, v, w)dudvdw

= T−2ζh2d
∫ ∫ ∫

|p(z + xh)p(z + yh)|ζ |L(x)L(y)|ζf(z + xh, z + yh, z)dxdydz

= CpT
−2ζh2d, (A.14)

using Assumptions A.2 and A.3, where Cp is a constant.

Thus, as T →∞
T 2M

1
1+δ

T11

σ2
h

= C
T 2
(
T−2ζh2d

)1/ζ

hd
= h

(2−ζ)d
ζ → 0. (A.15)

Hence, (A.13)–(A.15) show that (A.12) holds for the first part of MT1. The proof for the second

part of MT1 follows similarly.

Similar to (A.8) and (A.14), we have that as T →∞

MT3 = E |ψikψjk|2 = E
[
a2
ika

2
jkε

2
i ε

2
jε

4
k

]

= (Thd)−4h4dE

[
p2(Xi)p

2(Xj)L
2
(
Xi −Xk

h

)
L2
(
Xj −Xk

h

)
σ20(Xi)σ20(Xj)µ4(Xk)

]

= T−4
∫ ∫ ∫

p2(x)p2(y)L2
(
x− z
h

)
L2
(
y − z
h

)
σ20(x)σ20(y)µ4(z)f(x, y, z)dxdydz

= T−4h2d
∫ ∫ ∫

p2(uh+ w)p2(vh+ w)L2(u)L2(v)σ20(uh+ w)σ20(vh+ w)µ4(w)dudvdw

= CT−4h2d, (A.16)

using Assumptions A.2–A.3, where µ4(x) = E[ε4k|Xk].

This implies that as T →∞

T 3/2M
1
2
T3

σ2
h

= C
T 3/2T−2hd

hd
= CT−1/2 → 0. (A.17)

Thus, (A.16) and (A.17) now show that (A.12) holds for MT3. It follows from the structure of

{ψij} that (A.12) holds automatically for MT51, MT52 and MT6, since E[εi|Xi] = 0.

We now start to prove that (A.12) holds for MT21.

Similar to (A.13), it follows that for some 0 < δ < 1 and 1 ≤ i < j < k ≤ T

MT21 = E
[
|ψikψjk|2(1+δ)

]
= E

[
|εiεjε2kaikajk|2(1+δ)

]

≤
{
E
[
|εiεjε2k|2(1+δ)(1+δ3)

]} 1
1+δ3

{
E
[
|aijaik|2(1+δ)(1+δ4)

]} 1
(1+δ4) ,

where 0 < δ3 < 1 and 0 < δ4 < 1 satisfy 1
1+δ3

+ 1
1+δ4

= 1,

1 < ζ3 = (1 + δ)(1 + δ3) < 2 and 1 < ζ4 = (1 + δ)(1 + δ4) < 2.
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Similar to (A.14) and (A.15), we obtain that as T →∞

T 3/2M
1

2(1+δ)

T21

σ2
h

= C
T 3/2T−2

(
h2d
)1/(2ζ4)

hd
= C

1

T 1/2h(1−ζ−1
4 )d

→ 0

using the fact that limT→∞ Thd =∞ and (1− ζ−1
4 ) < 1

2 .

This finally completes the proof of (A.12) for MT21 and thus (A.12) holds for the first part of

{φst}. Similarly, one can show that (A.12) holds for the other parts of {φst}. Thus, we have shown

that under H0
N0T (h)− 2

σh
→ N(0, 1) as T →∞. (A.18)

The proof of Theorem 2.1(i) therefore follows from (3.6) and Assumptions A.3(ii) and A.4.

Proof of Theorem 2.1(ii): Note that as T →∞

L1T (ĥ) =
N1T (ĥ)− 2

σĥ
=

N1T (ĥ)
N1T (h) [N1T (h)− 2] + 2

[
N1T (ĥ)
N1T (h) − 1

]

[
σĥ
σh
− 1

]
σh + σh

=

N1T (ĥ)
N1T (h) [N1T (h)− 2] + 2

[
N1T (ĥ)
N1T (h) − 1

]

[
ĥd/2

hd/2
− 1

]
σh + σh

=
N1T (h)− 2

σh
(1 + op(1))

using the continuity of N1T (h) in h. This completes the proof of Theorem 2.1(ii).

Proof of Theorems 2.2: The proof follows immediately from that of Theorem 2.1.

Proof of Theorems 2.3: As expected, the proof of Theorem 2.3 is much less complicated

than that of Theorem 2.1. To prove Theorem 2.3, it suffices to show that as T →∞
∑T
t=1

∑T
s=1, 6=t pstξsξt√

2
∑T
s,t=1 p

2
stξ

2
sξ

2
t

→D N(0, 1)

under H0, where ξt = εt + ηt.

The main technique is still Lemma A.2. The detailed proof is very similar to that of Theorem

3.1 of Gao and King (2001) for the univariate case. Thus, we shall not provide the detailed proof.

However, it is available upon request.

Appendix B

This appendix lists the necessary assumptions for the establishment and the proof of the main

results given in Section 3.

B.1. Assumptions

Let the parameter set Θ be an open subset of Rq. LetM = {mθ(·) : θ ∈ Θ}. For i = 1, 2, define

5θmiθ(x) = ∂miθ(x)
∂θ , 52

θmiθ(x) = ∂2miθ(x)
∂θ∂θ′ , and 53

θmiθ(x) = ∂3miθ(x)
∂θ∂θ′∂θ′′ whenever these derivatives

exist. For any q × q matrix D, define

||D||∞ = sup
v∈Rq

||Dv||
||v|| ,
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where ||v||2 =
∑q
i=1 v

2
i for v = (v1, . . . , vq)

τ .

Assumption B.1. The parameter set Θ is an open subset of Rq for some q ≥ 1. The parametric

family M = {mθ(·) : θ ∈ Θ} satisfies:

(i) For each x ∈ Rd and i = 1, 2, miθ(x) is three times differentiable almost surely with respect to

θ ∈ Θ. Assume that {G(x)} is a positive and integrable function with E[G(Xt)] < ∞ uniformly in

t ≥ 1 such that max1≤i≤2 supθ∈Θ |miθ(Xt)|2 ≤ G(Xt) and max1≤i≤2 supθ∈Θ ||5j
θmiθ(Xt)||2 ≤ G(Xt)

for j = 1, 2, 3, where for B = {bij}1≤i,j≤q, ||B||2 =
∑q
i=1

∑q
j=1 b

2
ij .

7

(ii) For each i = 1, 2 and θ ∈ Θ, miθ(x) is continuous with respect to x ∈ Rd. 8

(iii) Assume that there is a finite CI > 0 such that for every ε > 0

inf
θ,θ′∈Θ:||θ−θ′||≥ε

min
1≤i≤2

[miθ(X1)−miθ′(X1)]2 ≥ CIε2

holds with probability one (almost surely). 9

Assumption B.2. (i) Let H0 be true. Then θ0 ∈ Θ and

lim
T→∞

P
(√

T ||θ̃ − θ0|| > CL
)
< ε

for any ε > 0 and all sufficiently large CL.

(ii) Let H0 be false. Then there is a θ∗ ∈ Θ such that

lim
T→∞

P
(√

T ||θ̃ − θ∗|| > CL
)
< ε

for any ε > 0 and all sufficiently large CL.

(iii) Let {θT,0 : T = 1, 2, . . .} be a sequence in Θ whose limit points, if any, are all in Θ. Define

Y ∗t = m1θT,0(Xt) +
√
m2θT,0(Xt)e

∗
t , where {e∗t } is sampled randomly from the specified distribution

defined in the Simulation Scheme of Section 3.1. Let θ̂T be the estimator of θT,0 that is obtained

from the data set {Y ∗t , Xt : t = 1, 2, . . . , T}. Then

lim
T→∞

P
(√

T ||θ̂T − θT,0|| > CL
)
< ε

for any ε > 0 and all sufficiently large CL.

Assumption B.3. (i) Assume that Assumption A.3(i) holds.

(ii) Assume that the set HT has the structure of (3.2) with hmax > hmin ≥ T−γ for some constant

γ such that 0 < γ < 1/(d+ 2), and J2
Th

d
max → 0 as T →∞.

Remark B.1. Assumptions B.1–B.3 are quite standard in this kind of problem. Assumptions

B.1 and B.2 extend Assumptions 1–2 and 4 of Horowitz and Spokoiny (2001) to the time series

7Note that Condition (i) may not be the weakest set of conditions imposed on {miθ(x)}. For example,

one can modify the corresponding restrictions on {miθ(x)} to: max1≤i≤2 supθ∈ΘE
[
miθ(Xt)

2
]
< ∞ and

max1≤i≤2 supθ∈ΘE
[
|| 5jθ miθ(Xt)||2

]
<∞ for 1 ≤ j ≤ 3. For this case, the proof of (B.15) and (B.18) below

will become more tedious.
8Note that in Assumption A.2(ii), some smoothness conditions on {mi(x)} have already been imposed.

We therefore do not need to impose similar conditions on {miθ(x)}, as mi(x) = miθ(x) holds for some θ

when H0 holds and mi(x) = miθ(x) + CiT∆iT (x) when H1 holds.
9This condition is to ensure that {miθ(x)} is identifiable with respect to θ.
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case. Assumption B.3 is silghtly different from Assumption 6 of Horowitz and Spokoiny (2001).

Actually, we have been unable to verify whether Assumption 6 is necessary for the proof of Lemma

10 in particular. Assumption B.3 holds in many cases. For example, it allows the use of the esti-

mation based optimal value hoptimal = CT−
1

2s+d in case it can also be optimal for testing purposes.

Assumption B.3(ii) holds when hmax = (log(T ))−
2
d
−ε for some small ε > 0.

B.2. Technical Lemmas

Before stating the necessary lemmas for the proof of the results given in Section 3, we introduce

the following notation.

For j = 1, 2, let εt = Yt −m1(Xt), ηt = ε2t −m2(Xt), ξt = εt + ηt,

λjt(θ) = λj(Xt, θ) = mj(Xt)−mjθ(Xt) = mjθ0(Xt)−mjθ(Xt),

πt(θ) = λ2
1t(θ) + 2εtλ1t(θ), π(θ) = (π1(θ), . . . , πT (θ))τ ,

λt(θ) = λ(Xt, θ) = λ1t(θ) + λ2T (θ), λ(θ) = (λ1(θ), . . . , λT (θ))τ ,

QT (θ) = λ(θ)τPλ(θ) =
T∑

s=1

T∑

t=1

pstλs(θ)λt(θ),

ΠT (θ) = π(θ)τPπ(θ) =
T∑

s=1

T∑

t=1

pstπs(θ)πt(θ), (B.1)

where pst = K((Xs −Xt)/h).

Lemma B.1. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold.

(i) For every δ > 0

max
h∈HT

sup
||θ−θ0||≤δ

QT (θ)

T 2hd
≤ Cδ2

in probability, where C > 0 is a constant.

(ii) For each θ ∈ Θ,

lim
T→∞

P

(
QT (θ)

λ(θ)τλ(θ)
≥ Thd+1

)
= 1.

Proof: (i) It follows from the definition of QT (θ) that QT (θ) ≤ ||P ||∞||λ(θ)||2.

In order to prove Lemma B.1(i), one first needs to show that

||P ||∞ ≤ CThd (B.2)

in probability for some constant C > 0.

It follows from the uniform convergence of f̂(Xt) (see Lemmas A.1 and A.3 of Härdle, Liang

and Gao 2000) that max1≤t≤T
∣∣∣f̂(Xt)− f(Xt)

∣∣∣ = op(1) as T →∞.

This implies that as T →∞

max
1≤t≤T

1

Thd

T∑

s=1

pts = max
1≤t≤T

1

Thd

T∑

s=1

K

(
Xt −Xs

h

)
= max

1≤t≤T
f̂(Xt) ≤ C

in probability. This finally finishes the proof of (B.2).
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In view of (B.2), in order to prove Lemma B.1(i), it suffices to show that

sup
||θ−θ0||≤δ

||λ(θ)||2 ≤ CTδ2 (B.3)

in probability.

A Taylor series expansion to miθ(Xt)−miθ0(Xt) and an application of Assumption B.1(i) imply

(B.3). This finishes the proof of Lemma B.1(i).

(ii). To prove Lemma B.1(ii), it suffices to show that as T →∞

P
(
λ(θ)τλ(θ) > T−1h−d−1λ(θ)τPλ(θ)

)
→ 0.

In view of the definition of QT (θ), one needs only to show that for any given small ε > 0

P

(
λ(θ)τλ(θ)

E [λ(θ)τPλ(θ)]
> T−1h−d−1

)
< ε.

Similar to the proof of Lemma A.3, we can easily calculate that as T →∞

E [λ(θ)τPλ(θ)] = T 2
∫ ∫

K2
(
u− v
h

)
λ(u, θ)λ(v, θ)f(u, v)dudv = CT 2hd(1 + o(1)) (B.4)

and

E [λ(θ)τλ(θ)] = T

∫
λ2(x, θ)f(x)dx. (B.5)

Thus, equations (B.4) and (B.5) imply

P

(
λ(θ)τλ(θ)

E [λ(θ)τPλ(θ)]
> T−1h−d−1

)
≤ Thd+1 E [λ(θ)τλ(θ)]

E [λ(θ)τPλ(θ)]
= C

T 2hd+1

T 2hd
≤ Ch→ 0

as T →∞. This finally finishes the proof of Lemma B.1(ii).

For simplicity, in the following lemmas and their proofs, we let q = 1. For 1 ≤ i ≤ 2 and

1 ≤ j ≤ 3, define

ψij(Xt, θ) = m
(j)
iθ (Xt) =

djmiθ(Xt)

dθj
.

Lemma B.2. Under Assumptions A.1–A.2 and B.1–B.3, we have for any given θ ∈ Θ and

i, j = 1, 2

T−1J
−1/2
T max

h∈HT
h−d/2

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψij(Xt, θ)

∣∣∣∣∣ = Op(1). (B.6)

Proof: It suffices to show that for any large constant C0 > 0

P

[
T−1J

−1/2
T max

h∈HT
h−d/2

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψij(Xt, θ)

∣∣∣∣∣ > C0

]

≤
∑

h∈HT
P

[∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψij(Xt, θ)

∣∣∣∣∣ > C0TJ
1/2
T hd/2

]
≤

∑

h∈HT

1

C2
0T

2JThd
E

[
T∑

s=1

T∑

t=1

pstξsψij(Xt, θ)

]2

≤
∑

h∈HT

1

C2
0T

2JThd

{
T∑

s=1

T∑

t=1

E [pstξsψij(Xt, θ)]
2 + ΛijT (θ)

}
, (B.7)
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where

ΛijT (θ) = E

[
T∑

s=1

T∑

t=1

pstξsψij(Xt, θ)

]2

−
T∑

s=1

T∑

t=1

E [pstξsψij(Xt, θ)]
2 .

Similar to (A.7) and (A.8), one can show that as T →∞
T∑

s=1

T∑

t=1

E [pstξsψij(Xt, θ)]
2 = T 2

∫ ∫
K

(
x− y
h

)
σ2
ξ (x)ψ2

i1(y, θ)f(x, y)dxdy

= C(θ)T 2hd(1 + o(1)) (B.8)

for some function C(θ), where σ2
ξ (x) = E[ξ2

t |Xt = x].

Similar to (A.11), one can show that as T →∞

ΛijT (θ) = o(T 2hd). (B.9)

Thus, equations (B.7)–(B.9) complete the proof.

Lemma B.3. Under Assumptions A.1–A.2 and B.1–B.3, we have as T →∞

T−1J
−1/2
T max

h∈HT
h−d/2 max

1≤s≤T

∣∣∣∣∣
T∑

t=1

pstξt

∣∣∣∣∣ = Op(1). (B.10)

Proof: Similar to (B.7), we have for large constant C0 > 0

P

[
T−1J

−1/2
T max

h∈HT
h−d/2 max

1≤s≤T

∣∣∣∣∣
T∑

t=1

pstξt

∣∣∣∣∣ > C0

]

≤
∑

h∈HT

T∑

s=1

P

[
T−1J

−1/2
T h−d/2

∣∣∣∣∣
T∑

t=1

pstξt

∣∣∣∣∣ > C0

]
≤ 1

C2
0JTT

2

∑

h∈HT
h−d

T∑

s=1

E

[
T∑

t=1

pstξt

]2

=
1

C2
0JTT

2

∑

h∈HT
h−d





T∑

s=1

T∑

t=1

E
[
p2
stξ

2
t

]
+

T∑

s=1

T∑

t1 6=t2
E [pst1pst2ξt1ξt2 ]



 . (B.11)

Similar to (B.8), we can have as T →∞
T∑

s=1

T∑

t=1

E
[
p2
stξ

2
t

]
= T 2

∫ ∫
K2

(
x− y
h

)
σ2
ξ (x)f(x, y)dxdy = CT 2hd(1 + o(1)). (B.12)

Analogous to (B.9), one can show that as T →∞
T∑

s=1

∑

t1 6=t2
E [pst1pst2ξt1ξt2 ] = o(T 2hd). (B.13)

Thus, equations (B.11)–(B.13) complete the proof of (B.10).

Lemma B.4. Under Assumptions A.1–A.2 and B.1–B.3, we have for each u > 0 and i, j = 1, 2,

max
h∈HT

sup
|θ−θ0|≤T−1/2u

h−d/2
∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ
j
it(θ)

∣∣∣∣∣ = Op
(
J

1/2
T T 1/2

)
(B.14)
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under H0.

Proof: We prove (B.14) for i = j = 1 only. Using a Taylor series expansion to m1θ(Xt) −
m1θ0(Xt) and Assumption B.1, we have for θ′ between θ and θ0

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1t(θ)

∣∣∣∣∣ =

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξs [m1θ(Xt)−m1θ0(Xt)]

∣∣∣∣∣

≤
∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψ11(Xt, θ0)

∣∣∣∣∣+
1

2

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψ12(Xt, θ0)

∣∣∣∣∣ |θ − θ0|2

+
1

6

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψ13(Xt, θ
′)

∣∣∣∣∣ |θ − θ0|3 ≤
∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψ11(Xt, θ0)

∣∣∣∣∣ |θ − θ0|

+
1

2
T |θ − θ0|2

∣∣∣∣∣
T∑

s=1

pstξsψ12(Xt, θ0)

∣∣∣∣∣+
1

6
T |θ − θ0|3 max

1≤t≤T

∣∣∣∣∣
T∑

s=1

pstξs

∣∣∣∣∣ · max
1≤t≤T

∣∣ψ13(Xt, θ
′)
∣∣ . (B.15)

Hence, (B.6), (B.10), (B.15) and Assumption B.1(i) imply

max
h∈HT

sup
||θ−θ0||≤T−1/2u

h−d/2
∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1t(θ)

∣∣∣∣∣ ≤ Op
(
J

1/2
T T 1/2

)
. (B.16)

The proof of (B.14) follows from (B.15) and (B.16).

Lemma B.5. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Then for every u > 0,

i, j = 1, 2, some h ∈ HT and as T →∞

sup
|θ−θ∗|≤T−1/2u

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ
j
i (Xt, θ)

∣∣∣∣∣ = op(QT (θ∗)). (B.17)

under H1.

Proof: Similar to the proof of Lemma B.1(ii), in order to prove (B.17), it suffices to show that

sup
|θ−θ∗|≤T−1/2u

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ
j
i (Xt, θ)

∣∣∣∣∣ = op(qT ), (B.18)

where qT = E [QT (θ∗)].

We consider the case of i = j = 1 only, as the others follow similarly. Note that

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1(Xt, θ)

∣∣∣∣∣ ≤
∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1(Xt, θ
∗)

∣∣∣∣∣

+

∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsψ11(Xt, θ
∗)

∣∣∣∣∣ |θ − θ
∗|+ 1

2
T |θ − θ∗|2

∣∣∣∣∣
T∑

s=1

pstξsψ12(Xt, θ
∗)

∣∣∣∣∣

+
1

6
T |θ − θ∗|3 max

1≤t≤T

∣∣∣∣∣
T∑

s=1

pstξs

∣∣∣∣∣ · max
1≤t≤T

∣∣ψ13(Xt, θ
′)
∣∣ , (B.19)

where θ′ lies between θ and θ∗.
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In view of (B.6), (B.10), (B.19), Assumptions B.1(i) and B.3(ii), in order to prove (B.17), it

suffices to show that for any δ > 0 and as T →∞

P

[∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1(Xt, θ
∗)

∣∣∣∣∣ > δqT

]
→ 0.

Similar to (B.8) and (B.9), one can show that as T →∞

E

[
T∑

s=1

T∑

t=1

pstξsλ1(Xt, θ
∗)

]2

= CT 2hd(1 + o(1)). (B.20)

Thus, equations (B.19) and (B.20) imply that as T →∞

P

[∣∣∣∣∣
T∑

s=1

T∑

t=1

pstξsλ1(Xt, θ
∗)

∣∣∣∣∣ > δqT

]
≤ 1

δ2q2
T

E

[
T∑

s=1

T∑

t=1

astξsλ1(Xt, θ
∗)

]2

=
CT 2hd(1 + o(1))

q2
T

→ 0

using qT = CT 2hd(1 + o(1)) given in (B.4) above, where C is a constant independent of T . Lemma

B.5 is therefore proved.

Before establishing some other lemmas, we introduce the following notation. Let ξt = εt + ηt,

ξ = (ξ1, . . . , ξT )τ ,

N20(h) = ξτPξ, and N2T (h) = N2T (h, θ̃) = Ŵ τPŴ .

Let µh = E [µ̂h] and σ2
h = E

[
σ̂2
h

]
. It can easily be calculated that

µh = T (1 + o(1))K(0)σ2
ξ (x)f(x)dx,

σ2
h = E

[
σ̂2
h

]
= 2

T∑

s,t=1

E
[
p2
stŴ

2
s Ŵ

2
t

]

= 2T 2hd(1 + o(1))

∫
K2(x)dx ·

∫
σ4
ξ (y)f2(y)dy ≡ C2

σT
2hd(1 + o(1)),

where σ2
ξ (x) = E[ξ2

t |Xt = x], f(x) is the marginal density of {Xt}, and C2
σ > 0 is a constant.

It follows that

N2T (h, θ) = N20(h) +QT (θ) + ΠT (θ) +RT (θ), (B.21)

where QT (θ) and ΠT (θ) are as defined in (B.1) above, and RT (θ) is the remainder term given by

RT (θ) = N2T (h, θ)−N20(h)−QT (θ)−ΠT (θ).

Define

L20(h) =
N20(h)− µh

σh
, L2T (h) =

N2T (h, θ̃)− µ̂h
σ̂h

and L̃2T (h) =
N2T (h, θ∗)− µh

σh
. (B.22)

Note that L20(h) = L̃2T (h) when θ∗ = θ0.

Assume that {e∗t } is as defined in the Simulation Scheme of Section 3.1. Let

ε̃t = σ(Xt)e
∗
t and η̃t = σ2(Xt)[(e

∗
t )

2 − 1].
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Let L̃20(h) be the version of L20(h) with εt = σ(Xt)et and ηt = σ2(Xt)[e
2
t − 1] be replaced with

ε̃t and η̃t respectively.

For each t = 1, 2, . . . , T , generate Y ∗t = m1θ̃(Xt) +
√
m2θ̃(Xt)e

∗
t . Use the data set {Y ∗t , Xt : 1 ≤

t ≤ T} to re-estimate θ. Denote the resulting estimate by θ̂. Let L̂2T (h) be the version of L2T (h)

of (B.22) with θ̃, εt and ηt replaced with θ̂,
√
m2θ̂(Xt)e

∗
t and m2θ̂(Xt)[(e

∗
t )

2 − 1] respectively.

Lemma B.6. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Then as T →∞

L2T (h) = L̃2T (h) + op(1) and L̂2T (h) = L̃20(h) + op(1) (B.23)

uniformly over h ∈ HT .

Proof: The proof of (B.23) follows from Lemmas B.1–B.5.

Lemma B.7. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Then maxh∈HT L̃2T (h) and

maxh∈HT L̃20(h) have identical asymptotic distributions under H0.

Proof: In view of Lemmas B.1–B.6, in order to prove Lemma B.7, it suffices to show that

maxh∈HT L20(h) and maxh∈HT L̃20(h) are asymptotically the same. For h ∈ HT , let ut = ξt or

ξ̃t = ε̃t + η̃t, define

BhT (u1, . . . , uT ) = (CσTh
d/2)−1


∑

s 6=t
pstusut


 . (B.24)

Let BT (u1, . . . , uT ) be the sequence obtained by stacking the corresponding BhT (u1, . . . , uT ).

Let G(·) = GT (·) be a 3–times continuously differentiable function over RJT . Define

CT (G) =
∑

x∈RJT
max

i,j,k=1,2,...,JT

∣∣∣∣∣
∂3G(v)

∂vi∂vj∂vk

∣∣∣∣∣ .

The proof of Lemma B.7 is divided into two steps. The first step is to show that

∣∣∣E [G(BT (ξ1, . . . , ξT ))]− E
[
G(BT (ξ̃1, . . . , ξ̃T ))

]∣∣∣ ≤ C0CT (G)J2
Th

d
max (B.25)

for any 3–times differentiable G(·), some finite constant C0, and all sufficiently large T .

The second step is to use (B.25) to show that BT (ξ1, . . . , ξT ) and BT (ξ̃1, . . . , ξ̃T ) have the same

asymptotic distribution.

Throughout the rest of the proof of Lemma B.7, we assume without loss of generality that

σ(Xt) = Cσ = 1 and replace pst in (B.24) with p̃st(h) = (Thd/2)−1pst.

We can easily show that

∣∣∣E [G(BT (ξ1, . . . , ξT ))]− E
[
G(BT (ξ̃1, . . . , ξ̃T ))

]∣∣∣

≤
T∑

t=1

∣∣∣E
[
G(BT (ξ1, . . . , ξt, ξ̃t+1, · · · , ξ̃T ))

]
− E

[
G(BT (ξ1, . . . , ξt−1, ξ̃t, . . . , ξ̃T ))

]∣∣∣ , (B.26)

where BT (ξ1, . . . , ξT , ξ̃T+1) = BT (ξ1, . . . , ξT ) and BT (ξ0, ξ̃1, . . . , ξ̃T ) = BT (ξ̃1, . . . , ξ̃T ).

We now derive an upper bound on the last term of the sum on the right–hand side of (B.26).
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Let UT−1, ΛT and Λ̃T , respectively, denote the vectors that are obtained by stacking

Uh,T =
T−1∑

s=1

T−1∑

t=1, 6=s
p̃st(h)ξsξt, Λh,T = 2ξT

T−1∑

s=1

p̃sT (h)ξs, Λ̃h,T = 2ξ̃T

T−1∑

s=1

p̃sT (h)ξs.

Then a Taylor expansion of the last term of the sum on the right–hand side of (B.26) about

ξT = ξ̃T = 0 yields

∣∣∣E [G(BT (ξ1, . . . , ξT ))]− E
[
G(BT (ξ1, . . . , ξT−1, ξ̃T ))

]∣∣∣ ≤
∣∣∣E
[
G′(UT−1)(ΛT − Λ̃T )

]∣∣∣

+
C1T (G)

2

{
E
[
||ΛT ||2

]
+ E

[
||Λ̃T ||2

]}
+
C2T (G)

6

{
E
[
||ΛT ||3

]
+ E

[
||Λ̃T ||3

]}
,

where G′ and G′′ denote the gradient and matrix of second derivatives of G, and C1T (G) and C2T (G)

are positive constants possibly depending on T .

Since Assumption A.1(ii) implies

E[ξT |ξ1, . . . , ξT−1] = E[ξ̃T |ξ1, . . . , ξT−1] = 0,

we have

E
[
ΛT − Λ̃T |ξ1, . . . , ξT−1

]
= 0.

Therefore ∣∣∣E [G(BT (ξ1, . . . , ξT ))]− E
[
G(BT (ξ1, . . . , ξT−1, ξ̃T ))

]∣∣∣

≤ C1T (G)

2

{
E
[
||ΛT ||2

]
+ E

[
||Λ̃T ||2

]}
+
C2T (G)

6

{
E
[
||ΛT ||3

]
+ E

[
||Λ̃T ||3

]}
. (B.27)

To find an upper bound for the right–hand side of (B.27), let P̃sT be the vector that is obtained

by stacking p̃sT (h) (h ∈ HT ). Let C1 = 4E
[
ξ2
T

]
and C2 = 8E

[
|ξT |3

]
. We then have as T →∞

E
[
||ΛT ||2

]
= 4E

[
|ξT |2

]
E



∣∣∣∣∣

∣∣∣∣∣
T−1∑

s=1

P̃sT ξs

∣∣∣∣∣

∣∣∣∣∣

2

 = 4E

[
|ξT |2

]
· E


 ∑

h∈HT

(
T−1∑

s=1

p̃sT (h)ξs

)


2

= C1

∑

k∈HT

∑

h∈HT
E



T−1∑

s=1

p̃sT (h)p̃sT (k)ξ2
s +

T−1∑

s=1

T−1∑

t=1,t 6=s
p̃sT (h)p̃tT (k)ξsξt




= C1

∑

k∈HT

∑

h∈HT
(hk)−d/2T−2



T−1∑

s=1

E
[
psT (h)psT (k)ξ2

s

]
+
T−1∑

s=1

T−1∑

t=1,t 6=s
E [psT (h)ptT (k)ξsξt]




=
C1

T

∑

k∈HT

∑

h∈HT
(hk)−d/2

∫ ∫ ∫
K

(
u− w
h

)
K

(
u− w
k

)
x2f(u,w, x)dudwdx

+C1

∑

k∈HT

∑

h∈HT
(hk)−d/2

∫
· · ·
∫
K

(
u− w
h

)
K

(
v − w
k

)
xyf(u, v, w, x, y)dudvdwdxdy

=
C1

T

∑

k∈HT

∑

h∈HT
hd/2k−d/2

∫ ∫ ∫
K(x1)K

(
h

k
x1

)
x2

3f(x2 + x1h, x2, x3)dx1dx2dx3

+C1

∑

k∈HT

∑

h∈HT
(hk)d/2

∫
· · ·
∫
K(x1)K(x2)x4x5f(x3 + hx1, x3 + kx2, x3, x4, x5)dx1 · · · dx5,
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≤ CJ2
Th

d
max,

where f(u,w, x) denotes the joint density function of (Xs, XT , ξs) and f(u, v, w, x, y) denotes the

joint density function of (Xs, Xt, XT , ξs, ξt).

Similarly, we obtain

∑

h,k∈HT
(hk)

−d
E

[
T−1∑

s,t,u,v=1

p̃sT (h)ξsp̃tT (h)ξtp̃uT (k)ξup̃vT (k)ξv

]

=
∑

h,k∈HT
(hk)

−d
E



T−1∑

s=1

[
p2
sT (h)p2

sT (k)ξ4
s

]
+

T−1∑

s 6=t

[
p2
sT (h)p2

tT (k) + 2psT (h)psT (k)ptT (h)ptT (k)
]
ξ2
sξ

2
t




+ 2
∑

h,k∈HT
(hk)

−d
E



T−1∑

s 6=t
p2
sT (h)psT (k)ptT (k)ξ3

sξt +

T−1∑

s 6=t 6=u
p2
sT (h)ptT (k)puT (k)ξ2

sξtξu




+ 2
∑

h,k∈HT
(hk)

−d
E




T−1∑

s 6=t 6=u 6=v
psT (h)ptT (k)puT (k)pvT (k)ξsξtξuξv




=
∑

h,k∈HT

(hk)−d

T 3

∫ ∫ ∫
K2

(
u− w
h

)
K2

(
u− w
k

)
x4f(u,w, x)dudwdx

+
∑

h,k∈HT

(hk)−d

T 2

∫
· · ·
∫
K2

(
u− w
h

)
K2

(
v − w
k

)
x2y2f(u, v, w, x, y)dudvdwdxdy

+
∑

h,k∈HT

2

T 2hdkd

∫
· · ·
∫
K

(
u− w
h

)
K

(
u− w
k

)
K

(
v − w
h

)
K

(
v − w
k

)
x2y2f(u, v, w, x, y)dudvdwdxdy

+
∑

h,k∈HT

4

T 2hdkd

∫
· · ·
∫
K2

(
u− w
h

)
K

(
u− w
k

)
K

(
v − w
k

)
x3yf(u, v, w, x, y)dudvdwdxdy

+
∑

h,k∈HT

4

Thdkd

∫
· · ·
∫
K2

(
u− w
h

)
K

(
v − w
k

)
K

(
s− w
k

)
x2yz

× f(u, v, w, s, x, y, z)dudvdwdsdxdydz

+
∑

h,k∈HT

1

hdkd

∫
· · ·
∫
K

(
u− w
h

)
K

(
v − w
h

)
K

(
s− w
k

)
K

(
t− w
k

)
x1x2x3x4

× f(u, v, w, s, t, x1, x2, x3, x4)dudvdwdsdtdx1dx2dx3dx4

≤ CJ2
Th

2d
max

using Assumptions A.1(iii), A.2(ii) and B.3, where C > 0 is a constant independent of T .

This implies that as T →∞

E
[
||ΛT ||3

]
= C2E



∣∣∣∣∣

∣∣∣∣∣
T−1∑

s=1

P̃sT ξs

∣∣∣∣∣

∣∣∣∣∣

3

 ≤ C2




E


 ∑

h∈HT

(
T−1∑

s=1

p̃sT (h)ξs

)2



2




3/4

= C2




∑

h∈HT

∑

k∈HT
E




T−1∑

s,t,u,v=1

p̃sT (h)ξsp̃tT (h)ξtp̃uT (k)ξup̃vT (k)ξv







3/4

≤ C
(
JTh

d
max

)3/2
.
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A similar result holds for E
[
||Λ̃T ||3

]
. Thus

E
[
||ΛT ||3

]
+ E

[
||Λ̃T ||3

]
≤ 2C

(
JTh

d
max

)3/2
. (B.28)

Equations (B.27)–(B.28) therefore imply

∣∣∣E [G(BT (ξ1, . . . , ξT ))]− E
[
G(BT (ξ̃1, . . . , ξ̃T ))

]∣∣∣

≤ C0CT (G)

(
J2
Th

d
max

[
1

Thdmin

+ 1

]
+
(
JTh

d
max

)3/2
)
≤ C0CT (G)J2

Th
d
max.

This finishes the first step.

Step 2: It suffices to show that for any real x

lim
T→∞

{
P

[
max
h∈HT

BhT (ξ1, . . . , ξT ) ≤ x
]
− P

[
max
h∈HT

BhT (ξ̃1, . . . , ξ̃T ) ≤ x
]}

= 0

or, equivalently, that

lim
T→∞

∣∣∣∣∣∣
E


 ∏

h∈HT
I [BhT (ξ1, . . . , ξT ) ≤ x]


− E


 ∏

h∈HT
I
[
BhT (ξ̃1, . . . , ξ̃T ) ≤ x

]


∣∣∣∣∣∣

= 0.

Assume that G(·) is a nondecreasing and three times continuously differentiable function on the

real line and that it satisfies G(v) = 0 if v ≤ −1 and G(v) = 1 if v ≥ 0. Let δT = J−2
T . A simple

calculation shows that
∣∣∣∣∣∣
E


 ∏

h∈HT
I [BhT (ξ1, . . . , ξT ) ≤ x]


− E


 ∏

h∈HT
I
[
BhT (ξ̃1, . . . , ξ̃T ) ≤ x

]


∣∣∣∣∣∣

≤
∣∣∣∣∣∣
E


 ∏

h∈HT
G

[
BhT (ξ1, . . . , ξT )− x

δT

]
− E


 ∏

h∈HT
G

[
BhT (ξ̃1, . . . , ξ̃T )− x

δT

]

∣∣∣∣∣∣

+
∑

h∈HT
E

∣∣∣∣G
[
BhT (ξ1, . . . , ξT )− x

δT

]
− I [BhT (ξ1, . . . , ξT ) ≤ x]

∣∣∣∣

+
∑

h∈HT
E

∣∣∣∣∣G
[
BhT (ξ̃1, . . . , ξ̃T )− x

δT

]
− I

[
BhT (ξ̃1, . . . , ξ̃T ) ≤ x

]∣∣∣∣∣ . (B.29)

Each term of the summands of the second two sums on the right–hand side of (B.29) is bounded

from above by JT δT = J−1
T . Thus, using (B.26) to bound the first term on the right–hand side of

(B.29) yields ∣∣∣∣P
[

max
h∈HT

BhT (ξ1, . . . , ξT ) ≤ x
]
− P

[
max
h∈HT

BhT (ξ̃1, . . . , ξ̃T ) ≤ x
]∣∣∣∣

≤ C0CT (G)J2
Th

d
max + 2J−1

T → 0 (B.30)

as T →∞. This finally completes the proof of Lemma B.7.

Remark B.2. As a result of Lemma B.7, we can obtain that both maxh∈HT L̃20(h) and

maxh∈HT L20(h) have identical asymptotic distributions. This result will be used in the proof

of Lemma B.10 below.
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Lemma B.8. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Then for any x ≥ 0,

h ∈ HT and all sufficiently large T

P
(
L̃20(h) > x

)
≤ exp

(
−x

2

4

)
.

Proof: Similar to the proof of (A.18), we obtain that for any small δ > 0 there exists a large

integer T0 ≥ 1 such that for T ≥ T0

∣∣∣P (L̃20(h) ≤ x)− Φ(x)
∣∣∣ < δ,

where Φ(x) = 1√
2π

∫ x
−∞ e

−u2

2 du.

This implies for any T ≥ T0 and x ≥ 0

P (L̃20(h) > x) ≤ 1− Φ(x) + δ

=
1√
2π

∫ ∞

x
e−

u2

2 du+ δ =
1√
2π

∫ ∞

x
e−

u2

4 e−
u2

4 du+ δ

≤ e−x
2

4
1√
2π

∫ ∞

x
e−

u2

4 du+ δ ≤ e−x
2

4
1√
2π

∫ ∞

0
e−

u2

4 du+ δ

= e−
x2

4

√
2√

2π

∫ ∞

0
e−

v2

2 dv + δ =

√
2

2
e−

x2

4 + δ

using 1√
2π

∫∞
0 e−

v2

2 dv = 1
2 .

The proof follows by letting 0 < δ ≤
(
1−

√
2

2

)
e−

x2

4 for any x ≥ 0.

For 0 < α < 1, define l̃α to be the 1− α quantile of maxh∈HT L̃20(h).

Lemma B.9. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Then for large enough T

l̃α ≤ 2
√

log(JT )− log(α).

Proof: The proof is trivial and similar to that of Lemma 12 of Horowitz and Spokoiny (2001).

Lemma B.10. Suppose that Assumptions A.1–A.2 and B.1–B.3 hold. Suppose that

lim
T→∞

P

(
QT (θ∗)
σh

≥ 2l̃∗α

)
= 1 (B.31)

for some h ∈ HT , where

l̃∗α = max

(
l̃α,

√
2 log(JT ) +

√
2 log(JT )

)
.

Then

lim
T→∞

P (L∗ > lα) = 1.

Proof: By Lemma B.6, L∗ can be replaced by maxh∈HT L̃2T (h). By Lemmas B.6 and B.7, lα

can be replaced by l̃α. Thus, it suffices to show that

lim
T→∞

P ( max
h∈HT

L̃2T (h) > l̃α) = 1,
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which holds if limT→∞ P (L̃2T (h) > l̃α) = 1 for some h ∈ HT . For any h ∈ HT , using Remark B.2

and then Lemma B.5 we have 10

L̃2T (h) = L20(h) +
QT (θ∗) + ΠT (θ∗)

σh
= L̃20(h) +

QT (θ∗) + ΠT (θ∗)
σh

+ op(1)

= L̃20(h) +
QT (θ∗)(1 + op(1))

σh
+ op(1). (B.32)

On the other hand, condition (B.31) implies that as T →∞

P

(
QT (θ∗)
σh

< 2l̃∗α

)
→ 0. (B.33)

Observe that

P (L̃2T (h) > l̃α) = P

(
L̃2T (h) > l̃α,

QT (θ∗)
σh

≥ 2l̃∗α

)
+ P

(
L̃2T (h) > l̃α,

QT (θ∗)
σh

< 2l̃∗α

)

≡ I1T + I2T .

Thus, it follows from (B.31)–(B.32) that as T →∞

I1T = P

(
L̃20(h) +

QT (θ∗) + ΠT (θ∗)
σh

> l̃α|
QT (θ∗)
σh

≥ 2l̃∗α

)
P

(
QT (θ∗)
σh

≥ 2l̃∗α

)

≥ P
(
L̃20(h) > l̃α − 2l̃∗α|

QT (θ∗)
σh

≥ 2l̃∗α

)
P

(
QT (θ∗)
σh

≥ 2l̃∗α

)
→ 1 (B.34)

because L̃20(h) is asymptotically normal and therefore bounded in probability and l̃α − 2l̃∗α → −∞
as T →∞.

Because of (B.33), as T →∞

I2T ≤ P
(
QT (θ∗)
σh

< 2l̃∗α

)
→ 0. (B.35)

Equations (B.34) and (B.35) complete the proof. B.3. Proofs of Theorems 3.1–3.4

Proof of Theorem 3.1: By Lemma B.6, maxh∈HT L̃2T (h) = maxh∈HT L2T (h) + op(1). By

Lemma B.7, maxh∈HT L̂2T (h) − maxh∈HT L̃20(h) → 0 in distribution as T → ∞. Furthermore,

Lemma B.6 implies maxh∈HT L2T (h) − maxh∈HT L̂2T (h) → 0 in distribution as T → ∞ when H0

holds. This finishes the proof.

Proof of Theorem 3.4: For the proof of Theorem 3.4, one needs to use the conditions of

Theorem 3.4 to finish the proof. For our case, we don’t need Lemma 14 of Horowitz and Spokoiny

(2001), although it holds in probability in our case. In our proof, we mainly use Lemma B.1(ii). It

follows from Lemma B.1(ii) that for every θ ∈ Θ

lim
T→∞

P
(
QT (θ) ≥ hd+1λ(θ)τλ(θ)

)
= 1. (B.36)

10Note that the derivation of Th0 = T̃h0 +
||bh(θ∗)||2+2bτh(θ∗)Whε

Vh
in the proof of Lemma 13 of Horowitz and

Spokoiny (2001) should be Th0 = T 0
h +

||bh(θ∗)||2+2bτh(θ∗)Whε
Vh

, where T 0
h = ||Whε||2−Nh

Vh
. Thus, in the proof of

Lemma 13 of Horowitz and Spokoiny (2001), one needs to use their Lemma 10 again.
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In view of (B.36) and the definition of l̃∗α, in order to verify (B.31), it suffices to show that

lim
T→∞

P
(
hd+ηλ(θ)τλ(θ) ≥ 4l̃∗αh

d/2
)

= 1,

which follows from the condition of Theorem 3.4 that

lim
T→∞

P

(
ρ(m,M) ≥ Cm

(
T−1

√
loglogT

)2s/(4s+d)
)

= 1

and the fact that for an absolute constant C0 > 0,

lim inf
T→∞

Th
(d+2)(4s+d)

2(2s+d)

√
loglogT

≥ lim inf
T→∞

Th
(d+2)(4s+d)

2(2s+d)

min√
loglogT

≥ C0

using Assumption B.3. This completes the proof of Theorem 3.4.

Proofs of Theorem 3.2–3.3: One can follow the corresponding proofs of Theorems 2–3 of

Horowitz and Spokoiny (2001). For the proofs of Theorems 3.2 and 3.3, one needs only to modify

the proofs of their Theorems 2 and 3 slightly by using the fact that conditions (3.3)–(3.5) now hold

in probability. Alternatively, similar to the proof of Theorem 3.4 above one can use (B.34) and the

fact that conditions (3.3)–(3.5) now hold in probability to complete the proofs.
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Table 4.1. Rejection Rates for the Simultaneous Tests at the 5% level

Normal Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗1 L∗2
250 0.054 0.060

500 0.063 0.056

Truncation Observation Null Hypothesis Is False

ψ T L∗1 L∗2
10 250 0.551 0.723

10 500 0.776 1.000

25 250 0.357 0.533

25 500 0.691 0.866

Normalized Exponential Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗1 L∗2
250 0.049 0.062

500 0.053 0.058

Truncation Observation Null Hypothesis Is False

ψ T L∗1 L∗2
10 250 0.679 0.887

10 500 0.847 1.000

25 250 0.462 0.667

25 500 0.717 0.933

Table 4.2. Rejection Rates for Testing the Conditional Mean at the 5% level
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Normal Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗2 L∗21

250 0.052 0.059

500 0.047 0.054

Truncation Observation Null Hypothesis Is False

ψ T L∗2 L∗21

40 250 0.198 0.267

40 500 0.401 0.478

25 250 0.602 0.667

25 500 0.827 0.866

Normalized Exponential Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗2 L∗21

250 0.047 0.053

500 0.057 0.049

Truncation Observation Null Hypothesis Is False

ψ T L∗2 L∗21

40 250 0.362 0.404

40 500 0.617 0.733

25 250 0.643 0.679

25 500 0.933 1.000
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Table 4.3. Rejection Rates for Testing the Conditional Variance at the 5% level

Normal Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗2 L∗22

250 0.052 0.046

500 0.061 0.058

Truncation Observation Null Hypothesis Is False

ψ T L∗2 L∗22

40 250 0.193 0.264

40 500 0.467 0.591

25 250 0.278 0.376

25 500 0.593 0.632

Normalized Exponential Error Distribution

Truncation Observation Null Hypothesis Is True

T L∗2 L∗22

250 0.051 0.055

500 0.047 0.059

Truncation Observation Null Hypothesis Is False

ψ T L∗2 L∗22

40 250 0.267 0.404

40 500 0.523 0.732

25 250 0.309 0.443

25 500 0.764 0.898
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