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ABSTRACT

This article analyzes the specifications of option pricing models based on time-changed Lévy

processes. We classify option pricing models based on (i) the structure of the jump component in

the underlying return process, (ii) the source of stochastic volatility, and (iii) the specification of the

volatility process itself. Estimation of a variety of model specifications indicates that, to capture the

behavior of the S&P 500 index options, one needs to incorporate a jump component withinfinite

activity and generate stochastic volatilities from twoseparatesources: the jump component and

the diffusion component.



Specification Analysis of Option Pricing Models
Based on Time-Changed Ĺevy Processes

The seminal work of Black and Scholes (1973) has spawned an enormous literature on option

pricing and also played a key role in the tremendous growth of the derivatives industry. However, the

model has been known to systematically misprice equity index options. While various extensions of

the Black and Scholes model have been proposed and tested, researchers are still facing the challenge

of finding a model that can capture both the time series and cross-sectional – across both the option

strike and maturity – behavior of index options. Obviously such a model would be very valuable to

participants of option markets. Perhaps equally important, this line of research would also help us

understand the dynamics of the underlying return process given the cross-sectional feature of option

price data. In this article we synthesize the ongoing efforts in searching for the “true” underlying

return process by performing a specification analysis of option pricing models within a new general

framework. We then apply this analysis to S&P 500 index options and empirically investigate some

open issues regarding the specification of the index return process.

The empirical option pricing literature has documented three “anomalies” or inconsistencies with

the Black and Scholes (1973) model in the data. First, the model assumes that the underlying asset

return is normally distributed. However, the cross-sectional behavior of the equity index options along

the strike price dimension indicates that the conditional index return distribution under the risk-neutral

measure is not normally distributed. In particular, the risk-neutral distribution for the index return in-

ferred from the options data is highly skewed to the left; see, for example, Aït-Sahalia and Lo (1998),

Jackwerth and Rubinstein (1996), and Rubinstein (1994) for empirical evidence from the S&P 500 in-

dex options. To generate return non-normality and hence to reduce the mispricing of the Black-Scholes

model along the strike dimension, one response of the literature is to incorporate a jump component

into the underlying asset return process (e.g. Merton (1976)).

Second, the assumption of a constant return volatility made in the Black and Scholes model has

also been shown to be violated in practice. For instance, empirical studies have documented so called

“volatility clustering” and the “leverage effect.” The former refers to the observation that while stock re-



turns are approximately uncorrelated, the return volatility exhibits strong serial dependence (e.g., Ding,

Engle, and Granger (1993) and Ding and Granger (1996)). The latter stylized fact refers to observed

negative correlation between stock returns and return volatilities (Black (1976)). To accommodate

these stylzed facts, one direction taken in the literature is to allow return volatility to be stochastic (e.g.,

Heston (1993), Hull and White (1987)).

The third stylized empirical fact that cannot be explained by the Black-Scholes model is the matu-

rity pattern of the model pricing bias along the strike dimension mentioned earlier. It has been recog-

nized that this bias across strike (so called volatility smile/smirk) is most significant at short maturities

and then flattens out as option maturity increases (e.g. Bates (1996)). More recently, Carr and Wu

(2002a) document that volatility smirk in the S&P 500 index options persists even as option maturity

increases up to the observable horizon of two years. This evidence implies that the conditional non-

normality of the index returns does not die away with increasing horizon, in contrast to the implication

of the classic central limit theorem. The literature tries to accommodate this maturity pattern by in-

troducing jumps into the (underlying asset) return process as well as allowing for stochastic volatility

with mean reversion. The rational behind this is while jumps can generate non-normal returns at very

short horizons, a persistent stochastic volatility process can slow down the convergence of the return

distribution to normality as maturity increases.

On balance, the consensus from the empirical option pricing literature is that in order to capture

the behavior of equity index options as well as the index returns, we need stochastic volatility jump-

diffusion models – models that include both stochastic return volatility and jumps in the return process.

Existing stochastic volatility jump-diffusion models of option pricing are often specified within

the jump-diffusion affine framework of Duffie, Pan, and Singleton (2000). Recent examples include

Bakshi, Cao, and Chen (1997), Bates (1996, 2000), Das and Sundaram (1999), Pan (2002), and Scott

(1997). In these models, the underlying asset return innovation is generated by a jump-diffusion pro-

cess. The diffusion component captures small and frequent market moves. The jump component,

which is assumed to follow a compound Poisson process as in Merton (1976), captures the rare and

large events. This is because the number of jumps within any finite time interval is assumed to be

finite in the compound Poisson model. The empirical estimates for the Poisson arrival rate are usually

small, averaging about one jump for every one or two years in equity indices (e.g. Andersen, Benzoni,
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and Lund (2002)). This is not surprising since these models implicitly assume that the market move-

ments can be characterized either as small diffusive moves or as rare large events. In practice, however,

one often observes much more frequent discontinuous movements of different sizes in equity indices.

These high frequency jumps are difficult to capture using a compound Poisson model.

Another notable feature of the existing option pricing models is that the stochastic volatility is

often assumed to come solely from the diffusion component of the underlying return process. Even in

models that incorporate jumps, the arrival rate of the jump events is assumed to be either a constant or a

linear function of the diffusion variance. However, such specifications are mainly driven by analytical

tractability. In practice, the variation in return volatility can be driven by stochastic diffusion variance

as well as by variation in the arrival rates of jumps. How these two components of stochastic volatility

vary over time and relatively to each other is purely an empirical issue. In this paper, we examine a

sample of S&P 500 index options to determine what type of jump structure best captures the index

movement. We also investigate whether arrival rates of jump events depend on the diffusion variance

or depend on different factors.

The specification analysis and empirical study in this paper are based on Carr and Wu (2002b), who

propose a theoretical framework of option pricing with time-changed Lévy processes. A Ĺevy process

is a continuous time stochastic process with independent stationary increments, analogous to iid inno-

vations in a discrete setting. In general, a Lévy process can be decomposed into a diffusion component

and a jump component. In addition to the Brownian motion and the compound Poisson jump process

used widely in the traditional option pricing literature, the class of Lévy processes also includes other

jump processes that exhibit higher jump frequencies and hence may better capture the dynamics of

equity indices than the compound Poisson process. Heuristically, a time change is a monotonic trans-

formation of the time variable. Stochastic volatility can be generated by applying random or locally

deterministic time changes to (the original time variable of) individual components of a Lévy process.

In particular, stochastic volatility can be generated by applying different time changes to the diffusion

and the jump components of a Lévy process. As a consequence, time-changed Lévy processes include

a rich class of jump-diffusion stochastic volatility models. Furthermore, option pricing models in this

new framework can have the same analytical tractability as those in the affine framework of Duffie,

Pan, and Singleton (2000).
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Within the class of time-changed Lévy processes, we classify model specifications into three sep-

arate but interrelated dimensions: (i) the choice of a jump component, (ii) the identification of the

sources for stochastic volatility, and (iii) the specification of the volatility process itself. Such a clas-

sification scheme encompasses almost all existing option pricing models in the literature and provides

a framework for future modeling efforts. Based on this framework, we design and estimate a series

of models using S&P 500 index options data and test the relative goodness-of-fit of each specification.

The specification analysis focuses on addressing two important questions on model design. (Q1) What

type of jump structure best describes the underlying price movement and the return innovation distri-

bution? (Q2) Where does stochastic volatility come from?To our knowledge, this paper represents

the first extensive empirical study in option pricing based on the framework of time-changed Lévy

processes.

The empirical analysis in this paper focuses on the performance of twelve option pricing models

generated by a combination of three jump processes and four stochastic volatility specifications. The

three jump processes include the standard compound Poisson jump process used in Merton (1976), the

variance-gamma jump model (VG) of Madan, Carr, and Chang (1998), and the log stable model (LS)

of Carr and Wu (2002a). Unlike the compound Poisson jump model (which generates a finite number

of jumps within any finite time interval), both VG and LS allow an infinite number of jumps within

any finite interval and hence are better suited to capture highly frequent discontinuous movements.

These three different jump structures are used to answer questionQ1 posed above. The four stochastic

volatility specifications considered in our empirical analysis include traditional ones such as those

used in Bates (1996) and Bakshi, Cao, and Chen (1997), where the diffusion component of the total

return variance is stochastic but the jump component is constant. However, we also introduce new

specifications that allow stochastic volatility to be generated separately from the jump component and

the diffusion component. This is motivated by questionQ2 posed earlier.

Our estimation results show that, in capturing the behavior of the S&P 500 index options, models

based on VG and LS outperform those based on compound Poisson processes. This performance

ranking is robust to variations in the stochastic volatility specification and holds for both in-sample

and out-of-sample tests. These results suggest that the market prices index options as if there are

many (actually infinite) discontinuous price movements (jumps) of different magnitudes in the S&P
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500 index. This implication is in favor of incorporating high frequency jumps such as VG and LS in

the underlying asset return process. The LS model is especially useful in capturing the maturity pattern

of the volatility smirk in equity index options.1

The estimation results also indicate that variations in the index return volatility come from twosep-

aratesources: the instantaneous variance of the diffusion component and the arrival rate of the jump

component. One implication of this finding is that the intensities of both small and large index move-

ments vary over time and they vary separately. Furthermore, the model parameter estimates indicate

that the diffusion volatility and the jump volatility behave differently (in the risk-neutral measure). In

particular, while the former is more volatile, the latter exhibits much more persistence. As a result, the

behavior of short term options is influenced more by the randomness from the diffusive movements,

whereas the behavior of long term options is mostly influenced by the randomness in the arrival rate of

jumps.

The above specification of stochastic volatility is also consistent with empirical evidence from time

series that return volatilities are driven by multiple factors (e.g., Cont and da Fonseca (2002)). Using

multi volatility factors obviously increases the flexibility of a model in capturing the time series behav-

ior of the index option prices. Another implication of the above results is that a model specification

with stochastic volatility driven by both diffusion and jumps can also improve the model performance

cross-sectionally. The reason is as follows. Under such a specification, diffusion volatility and jump

volatility – two components of the total return variance – are driven by independent random sources so

their relative weight in the return variance varies along the option maturity dimension. In fact as men-

tioned above, our empirical evidence shows that the jump component dominates the behavior of long

term options. This implies that non-normality of the (risk-neutral) return distribution will not simply

reduce as the option maturity increases – since jumps are the main source of non-normality. Namely,

there will be a persistent volatility smirk across the option maturity. And this is consistent with the

maturity pattern of volatility smirk documented in equity index options.

To summarize, empirical results from our specification analysis of option pricing models based

on Lévy processes provide further evidence for stochastic volatility jump-diffusion models. However,

1Notice that the central limit theorem does not apply in this model since the return variance is infinite in the log stable
model. As a result, the return distribution remains to be non-normal even as the time horizon increases. Namely, the model
allows a persistent deviation from normality and therefore can capture the maturity pattern of the volatility smirk.
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one can improve the model by including high frequency jumps in the underlying return process and

allowing the stochastic return volatility to be driven independently by diffusion and jumps.

Time change is a standard technique for generating new processes in the theory of stochastic pro-

cesses. There is a growing literature on applying the technique to finance problems, which perhaps goes

back to Clark (1973). He suggests that a random time change be interpreted as a cumulative measure of

business activity. Ańe and Geman (2000) provide empirical evidence of this interpretation. Examples

of other applications include Barndorff-Nielsen and Shephard (2001), Carr, Geman, Madan, and Yor

(2001), and Geman, Madan, and Yor (2001).

The remainder of this paper is organized as follows. The first section constructs option pricing

models through time changing Lévy processes. Section II addresses the data and estimation issues.

Section III compares the empirical performance of different model specifications. Section IV analyzes

the remaining structures in the pricing errors for different models. Section V concludes with sugges-

tions for future research.

I. Model Specifications

In this section, we generate candidate option pricing models by modeling the underlying asset return

process as time-changed Lévy processes. Under our classification scheme, each model specification

requires the specification of the following aspects: (i) the jump component in the return process; (ii)

the source for stochastic volatility; and (iii) the dynamics of the volatility process itself. We consider 12

model specifications, under which the characteristic function of log returns has a closed-form solution.

We then price options via an efficient fast Fourier transform (FFT) algorithm.
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A. Dynamics of the Underlying Price Process

Formally, let(Ω,F ,(Ft)t≥0,Q) be a complete stochastic basis andQ be the risk-neutral probability

measure. Suppose that the logarithm of the underlying stock price (index level) process,(St ; t ≥ 0),

follows atime-changed Ĺevy processunderQ as the following:

lnSt = lnS0 +(r−q)t +
(

σWTd
t
− 1

2
σ2Td

t

)
+

(
JT j

t
−ξT j

t

)
, (1)

wherer denotes the instantaneous interest rate andq the dividend yield,2 σ is a positive constant,W is

a standard Brownian motion, andJ denotes a compensated pure Lévy jump martingale process, which

we will elaborate later. The vectorTt ≡
[
Td

t ,T j
t

]>
denotes potentialstochastic time changesapplied to

the two Ĺevy componentsWt andJt . By definition, the time changeTt is an increasing, right-continuous

process with left limits satisfying the usual regularity conditions.3

While stochastic time change has much wider applications, our focus here is its role in generating

stochastic volatilities. For this purpose, we further restrictTt to be continuous and differentiable with

respect tot. In particular, let

v(t)≡
[
vd(t),v j(t)

]>
= ∂Tt/∂t. (2)

Then,vd(t) is proportional to the instantaneous variance of the diffusion component, whilev j(t) is

proportional to the arrival rate of the jump component. Following Carr and Wu (2002b), we labelv(t)

as theinstantaneous activity rate. Intuitively speaking, one can regardt as the calendar time andTt

as the business time at calendar timet. A more active business day, captured by a higher activity rate,

generates higher volatility for asset returns. The randomness in business activity generates randomness

in volatility.

Note that in equation (1), we apply stochastic time changes only to the diffusion and jump martin-

gale components, but not to the instantaneous drift. The reason is that the equilibrium interest rate and

dividend yield are defined on the calendar time, not on business event time. Furthermore, we apply

2Bakshi, Cao, and Chen (1997) also consider the role played by stochastic interest rates but find that the impact on option
pricing is minimal. Here we treat bothr andq as deterministic.

3Tt is finiteQ-a.s. for allt ≥ 0 and thatTt → ∞ ast → ∞.
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separatetime changes on the diffusion martingale component and on the jump martingale component,

allowing potentially different time-variation in the intensities (activity rates) of small and large events.

Also note that in this article, “volatility” is used as a generic term capturing the financial activities

of an asset. It is not used as a statistical term for standard deviation. Just like in Heston (1993) and in

many other papers, we model the stochastic “volatility” from the diffusion component by specifying

a stochastic process forvd(t), which is proportional to the instantaneousvarianceof the diffusion

component. In addition, we model stochastic “volatility” from the jump component by specifying a

stochastic process forv j(t), which is proportional to the arrival rate of the jump component.

B. Option Pricing via Generalized Fourier Transforms

To derive the time-0 price of an option expiring at timet, we first derive the conditional generalized

Fourier transform of the log returnst ≡ ln(St/S0) and then obtain the option price via an efficient

fast Fourier inversion. Since the underlying asset return is modelled as a time-changed Lévy process,

we derive the generalized Fourier transform of the return process in two steps. First, we derive the

generalized Fourier transform of the Lévy process prior to the time change. Then, the generalized

Fourier transform of the time changed Lévy process is obtained by solving the Laplace transform of

the stochastic time under an appropriate measure change.

Consider first the return process before a time change. Equation (1) implies that prior to any time

changes, the log returnst = ln(St/S0) follows the following Ĺevy process:

st = (r−q)t +
(

σWt − 1
2

σ2t

)
+(Jt −ξt) . (3)

Notice that the log returnst is decomposed into three components in (3). On the right-hand side of (3),

the first term,(r−q)t, is from the instantaneous drift, which is determined by no-arbitrage. The second

term,
(
σWt − 1

2σ2t
)
, comes from the diffusion component where1

2σ2t is the concavity adjustment. The

last term,(Jt −ξt), represents the contribution from the jump component withξ being the analogous

concavity adjustment forJt . The generalized Fourier transform forst under (3) is given by

φs(u)≡ EQ [
eiust

]
= exp(iu(r−q)t− tψd− tψ j) , u∈D ∈ C, (4)
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whereEQ [·] denotes the expectation operator under the risk-neutral measureQ, D denotes a subset of

the complex domain (C) where the expectation is well-defined, and

ψd =
1
2

σ2[
iu+u2] ,

is thecharacteristic exponentof the diffusion component. The characteristic exponent of the jump

component,ψ j , depends upon the exact specification of the jump structure.4 As a key feature of Ĺevy

processes (See Bertoin (1996) and Sato (1999)), neitherψd nor ψ j depends upon the time horizont.

Note thatφs(u) is essentially the characteristic function of the log return whenu is real. The extension

of u to the admissible complex domain is necessary for the application of the fast Fourier transform

algorithm; see Titchmarsh (1975) for a comprehensive reference on generalized Fourier transforms.

Next, we apply the time change through the mappingt → Tt as defined in (1). The generalized

Fourier transform of the time changed return process is given by

φs(u) = eiu(r−q)tEQ
[

e
iu

(
σW

Td
t
− 1

2σ2Td
t

)
+iu

(
J

T
j

t
−ξT j

t

)]

= eiu(r−q)tEM
[
e−ψ>Tt

]
≡ eiu(r−q)tLMT (ψ) , (5)

whereψ ≡ [ψd,ψ j ]
> denotes the vector of the characteristic exponents andLMT (ψ) represents the

Laplace transform of the stochastic timeTt under a new measureM. The measureM is absolutely

continuous with respect to the risk-neutral measureQ and is defined by a complex-valued exponential

martingale,

dM
dQ t

≡ exp

[
iu

(
σWTd

t
− 1

2
σ2Td

t

)
+ iu

(
JT j

t
−ξT j

t

)
+ψdTd

t +ψ jT
j

t

]
. (6)

Note that in (5), the issue of obtaining a generalized Fourier transform is converted into a sim-

pler problem, namely, one of deriving the Laplace transform of the stochastic time (see Carr and Wu

(2002b)). This Laplace transform depends both on the specification of the instantaneous activity rate

v(t) and the characteristic exponents, the functional form of which is determined by the specification

4Throughout the paper, we use a subscript (or superscript) ‘d’ to denote the diffusion component and ‘j ’ the jump com-
ponent.
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of the jump structureJt . In what follows, we address the specification issues of the jump structure and

stochastic volatility, as well as the corresponding solutions to the Laplace transform.

C. The Jump Structure

Depending upon the frequency of jump arrivals, Lévy jump processes can be classified into three cate-

gories: (1) finite activity, (2) infinite activity with finite variation, and (3) infinite variation (Sato (1999),

page 65). Each jump category exhibits distinct behavior and hence results in different option pricing

performance.

Formally, the structure of a Ĺevy jump process is captured by itsLévy measure, π(x), which controls

the arrival rate of jumps of sizex ∈ R0 (the real line excluding zero). Afinite activity jump process

generates a finite number of jumps within any finite interval. As such, the integral of the Lévy measure

is finite: Z

R0 π(dx) < ∞, (7)

so that the Ĺevy measure has the interpretation and property of a probability density function after be-

ing normalized by this integral. A prototype example of a finite activity jump process is thecompound

Poisson jumpprocess of Merton (1976) (MJ), which has been widely adopted by the finance literature.

For such a process, the integral in (7) defines thePoisson intensity, λ. The MJ model assumes that con-

ditional on one jump occurring, the jump magnitude is normally distributed with meanα and variance

σ2
j . The Ĺevy measure of the MJ process is given by

πMJ(dx) = λ
1√

2πσ2
j

exp

(
−(x−α)2

2σ2
j

)
dx. (8)

In essence, for all finite activity jump models, one can decompose the Lévy measure into two com-

ponents: a normalizing coefficient often labeled as the Poisson intensity, and a probability density

function controlling the conditional distribution of the jump size.

Unlike a finite activity jump process, aninfinite activityjump process generates an infinite number

of jumps within any finite interval. The integral of the Lévy measure for such processes is no longer

finite. Examples of this class include the normal inverse Gaussian model of Barndorff-Nielsen (1998),
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the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), and the variance-gamma (VG)

model of Madan and Milne (1991) and Madan, Carr, and Chang (1998). In our empirical studies, we

choose the relatively parsimonious VG model as a representative of the infinite activity jump type. The

VG process is obtained by subordinating an arithmetic Brownian motion with driftα/λ and variance

σ2
j /λ by an independent gamma process with unit mean rate and variance rate1/λ. The Ĺevy measure

for the VG process is given by

πVG(dx) =
µ2±
v±

exp
(
−µ±

v± |x|
)

|x| dx,

where

µ± =

√
α2

4λ2 +
σ2

j

2
± α

2λ
, v± = µ2

±/λ.

The parameters with plus subscripts apply to positive jumps and those with minus subscripts apply to

negative jumps. The jump structure is symmetric around zero when we drop the subscripts. Note that

as the jump size approaches zero, the arrival rate approaches infinity. Thus, an infinite activity model

incorporates infinitely many small jumps. The Lévy measure of an infinite activity jump process is

singular at zero jump size.

Nevertheless, for all the above mentioned infinite activity jump models, we have

Z

R0 (1∧|x|)π(dx) < ∞, (9)

so that the sample paths of the jump processes exhibitfinite variation. The function(1∧|x|) here

represents the minimum of1 and|x|. Since, under certain regularity conditions, the Lévy measure of

large jumps always performs like a density function, whether an infinite activity jump process exhibits

finite or infinite variation is purely determined by its property around the singular point at zero jump

size (x = 0). The function(1∧|x|) is a truncation functionused to analyze the jump properties around

the singular point of zero jump size (Bertoin (1996), page 15).5

5Other commonly used truncation functions for the same purpose includex1|x|<1, where1|x|<1 is an indicator function,

andx/(1+ x2). In essence, one can use any truncation functions,h : Rd → Rd, which are bounded, with compact support,
and satisfyh(x) = x in a neighborhood of zero (Jacod and Shiryaev (1987), page 75).
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When the integral in (9) is no longer finite, the sample path of the process exhibitsinfinite variation.

A typical example is anα-stable motion withα∈ (1,2]; see two monographs, Samorodnitsky and Taqqu

(1994) and Janicki and Weron (1994), on such a process. The Lévy measure under theα-stable process

is given by

π(dx) = c±|x|−α−1dx. (10)

The process exhibits finite variation whenα < 1; but whenα > 1, the integral in (9) is no longer finite

and the process is of infinite variation.6 The parameterα is often referred to as thetail indexwhile the

parametersc± control both the scale and the asymmetry of the process. Within this category, we choose

the finite moment log stable(LS) process of Carr and Wu (2002a) in our empirical investigation. In

this LS model,c+ is set to zero in (10) so that only negative jumps are allowed. This restriction

guarantees the existence of a finite martingale measure (and hence finite option prices) and ensures that

the conditional moments of the asset price of all positive orders are finite. This latter feature allows

the model to explain the slow decay of the implied volatility smirk across different maturities observed

for S&P 500 index options. The reason is that the central limit theorem does not apply in this model

(since the return has anα-stable distribution, and the variance and higher moments of the asset return

are infinite) and, as a result, conditional distribution of the asset returnremainsnon-normal as the

conditioning horizon increases. Note that this LS model also addresses the criticism of Merton (1976)

on usingα-stable distributions to model asset returns.

As mentioned earlier, in order to calculate option prices via equation (5), we need to know the

characteristic exponents of the specified jump process. The three jump processes considered here,

MJ, VG, and LS, all have analytical characteristic exponents, which are tabulated in Table I. We

also include the characteristic exponent for the diffusion component for ease of comparison. Given

the Lévy measureπ for a particular jump process, the corresponding characteristic exponents can be

derived using the well-knownLévy-Khintchine formula(Bertoin (1996), page 12),

ψ j(u)≡−iub+
Z

R0

(
1−eiux + iux1|x|<1

)
π(dx), (11)

6Nevertheless, for the Ĺevy measure to be well-defined, the quadratic variation has to be finite:
Z

R0(1∧x2)π(dx) < ∞,

which requires thatα≤ 2.
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Table I
Characteristic Exponent of the Lévy Components in the Asset Return Process

Component ψd(u) or ψ j(u)

Diffusion 1
2σ2

[
iu− (iu)2

)

Poisson Jump (MJ) λ
[
iu

(
eα+ 1

2σ2
j −1

)
−

(
eiuα− 1

2u2σ2
j −1

)]

Variance Gamma (VG) λ
[
−iu ln

(
1−α− 1

2σ2
j

)
+ ln

(
1− iuα+ 1

2σ2
j u

2
)]

Log Stable (LS) λ
(
iu− (iu)α)

whereb denotes a drift adjustment term.

D. The Sources of Stochastic Volatility

The specification of a time-changed Lévy process given in (1) makes it transparent that stochastic

volatility can come either from the instantaneous variance of the diffusion component or from the

arrival rate of the jump component, or both. We consider four cases that exhaust the potential sources

of stochastic volatility.

SV1: Stochastic volatility from diffusion: If we apply a stochastic time change to the Brownian

motion only, i.e.,Wt →WTd
t
, and leave the jump componentJt unchanged, stochastic volatility will

come solely from the diffusion component. The arrival rate of jumps remains constant. Examples using

this specification include Bakshi, Cao, and Chen (1997), and Bates (1996). Under this specification,

whenever the asset price movement becomes more volatile, it is due to an increase in the diffusive

movements in the asset price. The frequency of large events remains constant. Thus, therelative

weight of the diffusion and jump components in the return process varies over time. In particular, the

relative weight of the jump component declines as the total volatility of the return process increases.

SV2: Stochastic volatility from jump : If, instead, we apply a stochastic time change to the jump

component only, i.e.,Jt → JT j
t
, but leave the Brownian motion unchanged, stochastic volatility will

come solely from the time variation in the arrival rate of jumps. Under this specification, an increase

in the return volatility is attributed solely to an increase in the discontinuous movements (jumps) in the
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asset price. Hence, the relative weight of the jump component increases with the return volatility. The

models proposed in Carr, Geman, Madan, and Yor (2001) can be regarded as degenerate examples of

this SV2 category as they apply stochastic time changes to pure jump Lévy processes.

SV3: Joint contribution from jump and diffusion : To model the situation where stochastic volatility

comes simultaneously from both the diffusion and jump components, we can apply the same stochastic

time changeTt (a scalar process) to bothWt andJt . In this case, the instantaneous variance of the diffu-

sion and the arrival rate of jumps vary synchronously over time. Under SV3, the relative proportions of

the diffusion component and the jump component are constant even though the return volatility varies

over time. The recent affine models in Bates (2000) and Pan (2002) can be regarded as variations of

this category. In these models, both the arrival rate of the Poisson jump and the instantaneous variance

of the diffusion component are driven by one stochastic process.

SV4: Separate contribution from jump and diffusion: The most general specification is to apply

separatetime changes to the diffusion component and the jump component so that the time changeTt

is a bivariate process. Under this specification, the instantaneous variance of the diffusion component

and the arrival rate of the jump component follow separate stochastic processes. Hence, variation in

the return volatility can come from either or both of the two components. Since the two components

vary over time separately, the relative proportion of each component also varies over time. The relative

dominance of one component over the other depends upon the exact dynamics of the two activity rates.

Specification SV4 encompasses all the previous three specifications (SV1-SV3) as special cases.

Under the affine framework of Duffie, Pan, and Singleton (2000), Bates (2000) also specifies a

two-factor stochastic volatility process. Since each of the two volatility factors in Bates (2000) drives

both a compound Poisson jump component and a diffusion component, his model can be regarded as

a two-factor extension of our SV3 model. Alternatively, his model can also be regarded as a mixture

of SV1 and SV3 specifications since in the model the intensity of the Poisson jump includes both a

constant term and a term proportional to the stochastic volatility factor. One can also regard our SV4

specification as a special case of Bates (2000) by setting the diffusion component to zero in one factor

and the jump component to zero in the other factor. Nevertheless, the approach in this paper that treats
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Table II
Generalized Fourier Transforms of Log Returns under Different SV Specifications

xt denotes the time changed component andyt denotes the unchanged component in the log returnst =
ln(St/S0). Jt denotes a compensated pure jump martingale component, andξ its concavity adjustment.

Model xt yt φs(u)

SV1 σWt − 1
2σ2t Jt −ξt eiu(r−q)t−tψ j LMT (ψd)

SV2 Jt −ξt σWt − 1
2σ2t eiu(r−q)t−tψdLMT (ψ j)

SV3 σWt − 1
2σ2t +Jt −ξt 0 eiu(r−q)tLMT (ψd +ψ j)

SV4
[
σWt − 1

2σ2t,Jt −ξt
]>

0 eiu(r−q)tLMT ([ψd,ψ j ]
>)

the jump and the diffusion components separately makes it easier to identify the different roles played

by the two components.

We now derive the generalized Fourier transform of the log return for each of the four SV specifi-

cations. Letx denote the time-changed component andy the unchanged component in the log return,

andψx andψy denote their respective characteristic exponents. The generalized Fourier transform of

the log returnst = ln(St/S0) in (5) can be rewritten as

φs(u) = EQ
[
eiu(r−q)t+yt+xTt

]
= eiu(r−q)t−tψy EM

[
e−ψxT(t)

]
= eiu(r−q)t−tψyLMT (ψx). (12)

The complex-valued exponential martingale in (6) that defines the measure change can be rewritten as

dM
dQ t

= exp(iuyt + iuxTt +ψyt +ψxTt) . (13)

Table II summarizes thex andy components, as well as the generalized Fourier transform of the log

return, for each of the four SV specifications.
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E. Specification of the Activity Rate Process

We close the modeling effort by specifying an activity rate processv(t) and deriving the Laplace trans-

form of the stochastic timeTt =
R t

0 v(s)dsunder the new measureM. For this purpose, we rewrite the

Laplace transform as

LMT (ψ) = EM
[
e−ψ>Tt

]
= EM

[
e−

R t
0 ψ>v(s)ds

]
, (14)

which is analogous to the pricing formula for a zero coupon bond if we treatψ>v(t) as an instantaneous

interest rate. We can thus borrow the abundant literature in term structure models for the modeling of

the activity rate. For example, we can model the activity rate of a Brownian motion after the term

structure model of Cox, Ingersoll, and Ross (1985) and, in fact, recover the Heston (1993) stochastic

volatility model.7 Multivariate activity rate processes can be modeled after, among others, affine mod-

els of Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000) and quadratic ones of Leippold and

Wu (2002).

Despite the large pool of candidate processes for the activity rate modeling, we leave the specifica-

tion analysis of different activity rate models for future research. For the empirical work in this paper,

we focus on one activity rate process, i.e., the Heston (1993) model. Under the risk-neutral measureQ,

the activity rate process satisfies the following stochastic differential equation,

dv(t) = κ(1−v(t))dt+σv

√
v(t)dZt , (15)

whereZt denotes a standard Brownian motion underQ, which can be correlated with the standard

Brownian motionWt in the return process by:ρdt = EQ [dWtdZt ]. Note that the long run mean of the

activity rate is normalized to unity in (15) for identification purpose. For the SV4 specification, we

assume that the two activity rates,v(t) =
[
vd(t),v j(t)

]>
, follow a vector square-root process.

7To obtain the Heston (1993) model, we can apply a stochastic time change to the Brownian motion in the stock return
process in the Black-Scholes model, use the square-root process of Cox, Ingersoll, and Ross (1985) to model the activity rate,
and allow the activity rate and the stock return to be correlated.
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Since the Laplace transform of the time change in (14) is defined under measureM, we need to

obtain the activity rate process underM. By Girsanov’s Theorem, under measureM, the diffusion

function ofv(t) remains unchanged while the drift function is adjusted to

µM =





κ(1−v(t))+ iuσσvρv(t), for SV1,SV3, andSV4;

κ(1−v(t))+ iuσσvρ
√

v(t), for SV2.

Note the difference between the drift adjustment for SV2 models and that for all other models. This

difference occurs because the diffusion component in the return process is time changed under all

SV specifications except for the SV2 specification. Therefore, given thatdWTt =
√

v(t)dWt holds in

probability, the drift adjustment term for SV2 models is different from the drift adjustment term for all

other SV specifications by a scaling of
√

v(t).

As the driftµM remains affine for models SV1 and SV3 for anyρ ∈ [−1,1], the arrival rate process

belongs to the affine class. The Laplace transform ofTt is then exponential-affine inv0 (the current

level of the arrival rate), and is given by

LMT (ψ) = exp(−b(t)v0−c(t)) , (16)

where

b(t) =
2ψ(1−e−ηt)

2η− (η−κ∗)(1−e−ηt)
;

c(t) =
κ
σ2

v

[
2ln

(
1− η−κ∗

2η
(
1−e−ηt)

)
+(η−κ∗)t

]
,

with

η =
√

(κ∗)2 +2σ2
vψ, κ∗ = κ− iuρσσv.

The SV4 model also satisfies the affine structure in a vector form. For tractability, we assume that the

two arrival rates are independent and separately correlated with the return process. Then, the above

solutions forb(t) andc(t) can be regarded as solutions to the coefficients for each of the two activity

rates. For the SV2 specification, the affine structure is retained only whenρ = 0. For tractability, we

restrictρ = 0 in our estimation of SV2 models.
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Substituting the Laplace transform in (16) into the generalized Fourier transforms in Table II, we

can derive in analytical forms the generalized Fourier transforms for all 12 models: three jump specifi-

cations (MJ, VG, and LS) multiplied by four stochastic volatility specifications (SV1-SV4). These 12

models are labeled as “JJDSVn,” whereJJ∈{MJ,VG,LS} denotes the jump component, D refers to the

diffusion component, and SVn, withn= 1,2,3,4, denotes a particular stochastic volatility specification.

For example, when the Merton jump diffusion model (MJD) is coupled with the SV1 specification, we

have the model labeled as “MJDSV1.” This is the same specification as the one considered in Bakshi,

Cao, and Chen (1997) and Bates (1996). Taken together, the 12 models are designed to answer two

important questions: (1) what type of jump process performs best in capturing the behavior of S&P

500 index options? (2) where does stochastic volatility come from?

II. Data and Estimation

We have daily closing bid and ask implied volatility quotes on the S&P 500 index options across dif-

ferent strikes and maturities from April 6th, 1999 to May 31st, 2000, obtained from a major investment

bank in New York. The quotes are on standard European options on the S&P 500 spot index, listed

at the Chicago Board Options Exchange (CBOE). The implied volatility quotes are derived from out-

of-the-money (OTM) option prices. The same data set also contains matching forward pricesF , spot

prices (index levels)S, and interest ratesr corresponding to each option quote, compiled by the same

bank. We apply the following filters to the data: (1) the time to maturity is greater than five business

days; (2) the bid option price is strictly positive; (3) the ask price is no less than the bid price. After

applying these filters, we also plot the mid implied volatility quote for each day and maturity against

strike prices to visually check for obvious outliers. After removing these outliers, we have 62,950

option quotes over a period of 290 business days.

The left panel of Figure 1 depicts the histogram of moneyness of the cleaned up option contracts,

where the moneyness is defined ask≡ ln(K/S). The observations are centered around at the money

options (k = 0). On average, we have more OTM put option quotes (k < 0) than OTM call option

quotes (k > 0), reflecting the difference in their respective trading activities. The right panel of Figure

1 plots the histogram of the time-to-maturity for the option contracts. The maturities of the option
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contracts range between five business days and over one and a half years, with the number of option

quotes declining almost monotonically as the time-to-maturity increases. These exchange-traded index

options have fixed expiry dates, all on the Saturday following the third Friday of a month. The terminal

payoff at expiry is computed based on the opening index level on that Friday. The contract hence stops

trading on that expiring Thursday. We delete from our sample contracts that are within one week of

expiry to avoid potential microstructure effects.

Since the FFT algorithm that we use returns option prices at fixed moneyness with equal intervals,

we linearly interpolate across moneyness to obtain option prices at fixed moneyness. We also restrict

our attentions to the more liquid options with moneynessk = ln(K/S) between−0.3988and0.1841,

whereK denotes the strike price andS the spot index level. This restriction excludes approximately

16% very deep out-of-money options (approximately 8% calls and 8% puts) which we deem as too

illiquid to contain useful information. Note that the moneyness range is asymmetric to reflect the fact

that there are deeper out-of-the-money put options quotes than out-of-the-money call options. Within

this range, we sample options with a fixed moneyness interval of∆k = 0.03068(a maximum of 20

strike points at each maturity). For the interpolation to work with sufficient precision, we require that

at each day and maturity, we have at least five option quotes. We also refrain from extrapolating: we

only retain option prices at fixed moneyness intervals that are within the data range. Visual inspection

indicates that at each date and maturity, the quotes are so close to each other along the moneyness line

that interpolation can be done with little error, irrespective of the interpolation method. We delete one

inactive day from the sample when the number of sample points is less than 20. The number of sample

points in the other active 289 days ranges from 92 to 144, with an average of 118 sample points per

day. In total, we have 34,361 sample data points for estimation.

We estimate the vector of model parameters,Θ, by minimizing the weighted sum of squared pricing

errors as follows,

Θ ≡ argmin
Θ

T

∑
t=1

mset , (17)
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whereT denotes the total number of days andmset denotes the mean squared pricing error at datet,

defined as

mset ≡min
v(t)

1
Nt

nt,τ

∑
i=1

nt,k

∑
j=1

wi j e
2
i j , (18)

wherent,τ andnt,k denote respectively the number of maturities and the number of moneyness levels

per each maturity at datet, Nt denotes the total number of observations at datet, wi j denotes an optimal

weight, andei j represents the pricing error at maturityi and moneynessj. Note that there are two

layers of estimation involved. First, given the set of model parameters,Θ, we identify the instantaneous

activity rates levelv(t) at each datet by minimizing the weighted mean squared pricing errors on that

day. Next, we choose model parametersΘ to minimize the sum of the daily mean squared pricing

errors.8 To construct out-of-sample tests, we divide the data into two sub-samples: we use the first

139 days of data to estimate the model parameters and then the remaining 150 days of data to test

the models’ out-of-sample performance. To evaluate out-of-sample performance on the second sub-

sample, we fix the parameter vectorΘ estimated from the first sub-sample and compute the daily mean

squared pricing errors according to (18) by minimizing the squared pricing errors each day with respect

to the activity rate levelsv(t).

The pricing error matrixe= (ei j ) is defined as follows,

e=





Ô(Θ)−Oa, if Ô(Θ) > Oa

0, if Oa ≤ Ô(Θ)≤Ob

Ô(Θ)−Ob, if Ô(Θ) < Ob

(19)

whereÔ(Θ) denotes model implied out-of-the-money (OTM) option prices (put prices whenK≤F and

call prices whenK > F) as a function of the parameter vectorΘ, andOa andOb denote, respectively,

the ask and bid prices observed from the market. The pricing error is assumed to be zero as long as the

model implied price falls within the bid-ask spread of the market quote. All prices are normalized as

percentages of the underlying spot price.

The construction of the pricing error is a delicate but important issue. For example, the pricing

error can be defined on implied volatility, call option price, or put option price. It can be defined as

8We thank an anonymous referee for suggesting this estimation procedure.
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the difference in levels, in log levels, or in percentages. Here, we define the pricing error using call

option prices whenK > F and using put option prices whenK ≤ F . Such a definition has become the

industry standard for several reasons. One reason is that in-the-money options have positive intrinsic

value which is insensitive to model specification and yet can be the dominant component of the total

option value. Another reason is that when there is a discrepancy between the market quotes on out-of-

the-money options and their in-the-money counterparts, the former quotes are in general more reliable

as they are more liquid, probably because in the presence of transactions costs, out-of-money options

represent a cheaper way to speculate on or hedge against changes in future volatility. We refine the

standard definition of the pricing error by incorporating the effects of the bid-ask spreads. This reduces

the potential problem of over-fitting and further accounts for the liquidity differences at different mon-

eyness levels and maturities. Dumas, Fleming, and Whaley (1998) also incorporate this bid-ask spread

effect in their definition of “mean outside error.”

A. The Optimal Weighting Matrix

Similar to the definition of the pricing error, the construction of a “good” weighting matrix is also

important in obtaining robust estimates. Existing empirical studies often use identity weighting matrix.

Under our definition of the pricing error, an identity weighting matrix puts more weight on near-the-

money options than on deep out-of-the-money options. More importantly, it puts significantly more

weight on long term options than on short term options. Thus, performance comparisons may be

biased toward models that better capture the behavior of long term options. In this section, we seek to

estimate a weighting matrix which (a) attaches a more balanced weighting to options at all moneyness

and maturity levels and (b) can be applied to the estimation and comparison of all relevant models.

One way to achieve this is to estimate an optimal weighting matrix based on the variance of the

option prices, normalized as percentages of the underlying spot price. Specifically, we estimate the

variance of the percentage option prices at each moneyness and maturity level via nonparametric re-

gression and use its reciprocal as the weighting for the pricing error at that moneyness and maturity.

This weighting matrix is optimal in the sense of maximum likelihood under the following assumptions:

(a) the pricing errors are independently normally distributed and (b) the variance of the pricing error is

well approximated by the variance of the corresponding option prices as percentages of the index level.
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When the pricing errors are independently normally distributed, the minimization problem in (17)

also generates the maximum likelihood estimates if we set the weighting at each moneyness and matu-

rity level to the reciprocal of the variance estimate of the pricing error at that moneyness and maturity.

In principle, the variance of the pricing errors can be estimated via a two-stage procedure analogous to

a two-stage least square procedure. However, the weighting obtained from such a procedure depends

upon the exact model being estimated. We use the variance of the option price (as a percentage of the

index level) as an approximate measure for the variance of the pricing error. This approximation isex-

act when the return to the underlying stock index follows a Lévy process without stochastic volatility.

This is because the conditional return distribution over a fixed horizon does not vary over time in such

processes. As a result, for a given option maturity and moneyness, the option price normalized by the

underlying index level does not vary with time either. The “true” option price as a percentage of the

index level can then be estimated through a sample average and the daily deviations from such a sample

average can be regarded as the pricing error. Therefore, the variance of the pricing error is equivalent

to the variance of the option prices normalized by the index level.

However, all our model specifications incorporate some type of stochastic volatility. Thus, the

variance of the option prices includes both the variance of the pricing error and the variation induced

by stochastic volatility. The variance estimate of the option price is therefore only an approximate

measure of the variance of the pricing error in our case. Nevertheless, our posterior analysis of the

pricing errors confirms that such a choice of weighting matrix is reasonable. The idea of choosing a

common metric, upon which different and potentially non-nested models can be compared, is also used

in the distance metric proposed by Hansen and Jagannathan (1997) for evaluating different stochastic

discount factor models.

Since the moneyness and maturity of the options vary every day, we estimate the mean option

value and the option price variance as percentages of the index level at fixed moneyness and maturities

through a nonparametric smoothing method. Refer to Appendix A for details. The left panel of Figure 2

portrays the smoothed mean surface of out-of-the-money option prices. As expected, option prices are

the highest for at the money options and they also increase with maturities. The right panel portrays the

variance estimates of the option prices. Overall, the variance increases with the maturity of the option.

For the same maturity, out-of-the-money puts (k < 0) have a smaller variation than out-the-money calls
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(k > 0). This might be a reflection of different liquidities: OTM puts are more liquid and more heavily

traded than OTM calls for S&P 500 index options. Given the estimated variance of the option prices,

the optimal weight at each moneyness and maturity level is defined as its reciprocal.

B. Performance Measures

Different models are compared based on the sample properties of the daily mean squared pricing errors

(mset) defined in equation (18), under the estimated model parameters. A small sample average of

the daily mean squared errors for a model would indicate that the model fits the option prices well

on average. A small standard deviation for a model would further indicate that the model is capable

of capturing different cross-sectional properties of the option prices at different dates. Our analysis

is based on both the in-sample mean squared errors of the first 139 days and the out-of-sample mean

squared errors of the last 150 days. In addition, we gauge the statistical significance of the performance

difference between any two modelsi and j based on the followingt-statistic of the sample differences

in daily mean squared errors,

t-statistic =
msei−msej

stdev (msei
t −msej

t )/
√

T
, (20)

where the overline onmse denotes the sample average andstdev (·) denotes the standard deviation.

III. Model Performance Analysis

We now analyze the parameter estimates and the sample properties of the mean squared pricing errors

for each of the 12 models introduced in Section I. As mentioned earlier, our objective is to investigate

which jump type and which stochastic volatility specification deliver the best performance in pricing

S&P 500 index options. Our analysis below is focused on answering these two questions.

Tables III and IV report the parameter estimates and their standard errors for one-factor (SV1-

SV3) and two-factor stochastic volatility (SV4) models, respectively. We also report in the tables the

sample average and standard deviation of the daily mean squared pricing errors, both in sample (mseI )

and out of sample (mseO). These parameter estimates for each model are then used to calculate the
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t-statistics for pair-wise model comparisons using (20). The results for the comparison are reported in

Table V. With 12 models, we could have reported a12×12matrix of pair-wiset-tests; but to focus on

addressing the two questions raised above, we report thet-tests in two panels. Panel A compares the

performance of different jump structures under each stochastic volatility specification (SV1 to SV4);

Panel B compares the performance of different SV specifications for a given jump structure (MJ, VG,

or LS). Both in-sample and out-of-sample comparisons are reported.

A. What Jump Structure Best Captures the Behavior of S&P 500 Index Options?

Since our 12 models are combinations of three jump structures and four SV specifications, we compare

the performance of the three jump structures, MJ, VG, and LS, under each SV specification to answer

the question on jump types. If the performance ranking of the three jump structures depends crucially

on the specific SV specification, the choice of a jump structure in model design should be contingent on

the SV specification to be used. On the other hand, if the performance rankings are the same under each

of the four SV specifications, we would conclude that the superiority of one jump structure over the

others in capturing the behavior of S&P 500 index options is unconditional and robust to perturbations

in SV specifications. The empirical evidence favors the latter: the infinite activity jump structures (VG

and LS) outperform the classic finite activity compound Poisson (MJ) jump structure under all four SV

specifications.

Panel A of Table V addresses the question based on thet-statistics defined in equation (20). Each

column in Panel A compares the performance of two jump structures under each SV specification. For

example, the column under “MJ−VG” compares the performance of the Merton jump model (MJ)

against the performance of the variance-gamma model (VG), under each of the four SV specifications.

In particular, at-statistics of 1.96 or higher implies that the pricing error from the MJ model is signifi-

cantly larger than the pricing error from the VG model under a 95% confidence interval, and hence, the

VG model outperforms the MJ model. A t-value of−1.96or less implies the opposite.

The t-values under columnMJ−VG are strongly positive under all SV specifications, both in

sample and out of sample. The same is also observed for allt-tests under theMJ−LScolumn. Thus, our

test results indicate that out of the three jump structures, the most commonly used compound Poisson

24



jump structure of Merton (1976), performs significantly worse than both the VG and the LS jump

structures. This results holds under all of the four SV specifications and for both in-sample and out-of-

sample tests. The performance difference between VG and LS, on the other hand, is much smaller and

can have different signs depending upon the SV specification assumed. Thet-values under theVG−LS

column are much smaller, positive under SV1, SV2, and SV4, but negative under SV3. Carr and

Wu (2002a) obtain similar performance rankings for the three jump structures without incorporating

any stochastic volatilities. Our results show that this ranking remains unchanged in the presence of

stochastic volatility.

The key structural difference between the Merton jump model and the other two types of jump

structures lies in the jump frequency specification. Within any finite time interval, the number of jumps

under MJ is finite and is captured by the jump intensity measureλ. The estimates forλ under the

MJ structure fall between0.086under the SV4 specification (see Table IV) and0.405under the SV1

specification (see Table III). Specifically, an estimate of0.405or smaller implies that on average, one

observes one jump every two and half years or so, a rare event. In contrast, under the VG and LS jump

structures, the number of jumps under any finite time interval is infinite. One thus expects to observe

much more frequent jumps of different magnitudes than in the Merton jump case. Our estimation

results indicate that, to capture the behavior of S&P 500 index options, one needs to incorporate a

much more frequent jump structure in the underlying return process than the classic Merton model

allows.

B. Where Does Stochastic Volatility Come From?

By applying stochastic time changes to different Lévy components, one can generate stochastic volatil-

ity from either the diffusion component, or the jump component, or both. It thus becomes a purely

empirical issue as to where exactly the stochastic volatility comes from. We address this issue by com-

paring the empirical performances of four different stochastic volatility specifications in pricing the

S&P 500 index options.

Panel B of Table V compares the performance of the four stochastic volatility specifications under

each of the three jump structures. We first look at the three one-factor SV specifications: SV1, SV2, and
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SV3. We find that the in-samplet-test values under the “SV1−SV2” column are all strongly negative

and that the in-samplet-test values under the “SV2−SV3” column are all strongly positive, suggesting

that the SV2 specification is significantly outperformed by the other two one-factor SV specifications.

In contrast, the in-samplet-test estimates under the “SV1−SV3” column are much smaller and have

different signs under different jump specifications: positive under MJ and VG, negative under LS.

The out-of-sample performance comparison delivers similar conclusions, except under the LS jump

structure, where thet-statistics are much smaller.

Recall that under the SV2 specification, the instantaneous variance of the diffusion component is

constant and all stochastic volatilities are attributed to the time variation in the arrival rate of jumps.

Inferior performance of SV2, as compared to SV1 and SV3, indicates that the instantaneous variance

of the diffusion component should be stochastic. The parameter estimates of the three one-factor SV

specifications in Table III also tell a similar story. The volatility of volatility estimates (σv) are always

strongly positive under SV1 specifications, slightly smaller under SV3 specifications, but are close

to zero under SV2 specifications, when only the arrival rate of the jump component is allowed to be

stochastic. For example, the estimate ofσv is 2.136 under VGDSV1,1.745 under VGDSV3, but a

mere0.001under VGDSV2. Similar results hold for MJ and LS models. These estimates indicate that,

overall, the arrival rate of the jump component is not as volatile as the instantaneous variance of the

diffusion component. This evidence supports traditional stochastic volatility specifications but casts

doubt on the performance of the stochastic volatility models of Carr, Geman, Madan, and Yor (2001),

which generate stochastic volatility from pure jump models.

Another important structural difference between the SV2 specification and the other SV specifica-

tions is that SV2 is the only specification where instantaneous correlation isnot incorporated between

the return innovation and the innovation in the arrival rate. Hence, the SV2 specification cannot cap-

ture the widely documented negative correlation between stock returns and return volatilities, i.e., the

“leverage effect.”9 Yet, under all other SV specifications, the estimates for this instantaneous correla-

tion parameter,ρ, are all strongly negative (see Table III), suggesting the importance of incorporating

such a leverage effect in capturing the behavior of S&P 500 index option prices. In particular, this

9Black (1976) first documented this phenomenon and attributed it to the “leverage effect;” however, various other expla-
nations have also been proposed in the literature, e.g., Haugen, Talmor, and Torous (1991), Campbell and Hentschel (1992),
Campbell and Kyle (1993), and Bekaert and Wu (2000).
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negative correlation helps in generating negative skewness in the conditional index return distribution

implied by the option prices.

Consistent with this observation, Carr, Geman, Madan, and Yor (2001) also note that, without the

leverage effect, the performance of the SV3 specification declines to approximately the same level as

the SV2 specification. Therefore, this lack of negative correlation under SV2 constitutes another key

reason for its significantly worse performance compared to other one-factor SV specifications.

In contrast to the three one-factor SV specifications, the SV4 specification allows the instantaneous

variance of the diffusion component and the arrival rate of the jump component to vary separately. The

t-statistics in Table V indicate that this extra flexibility significantly improves the model performance.

The t-tests for performance comparisons between SV4 and all the one-factor SV specifications are

strongly negative, both in sample and out of sample, indicating that the two-factor SV4 models perform

much better than all the one-factor SV models. This superior performance of the SV4 models indicates

that stochastic volatility actually comes from twoseparatesources: the instantaneous variance of the

diffusion component and the arrival rate of the jump component.

The superior performance of the SV4 models has important implications in practice. First, it implies

that a high volatility day on the market can be due to either intensified arrival of large events or increased

arrival of small, diffusive events, or both. The exact source of high volatility is hence subject to further

research and shall be case dependent. This result is in contrast to the implication of earlier option

pricing models, e.g. Bates (1996) and Bakshi, Cao, and Chen (1997), both of which assume that

variations in volatility can only come from variations in the diffusive volatility.

Furthermore, the superior performance of SV4 models also indicate that, of the four SV specifica-

tions, SV4 models suffer the least from model misspecification. Hence, comparisons of different jump

structures should be the least biased when the comparison is based upon the SV4 framework. The

ranking of the three jump structures under SV4 specifications is, from worst to best,MJ < VG< LS,

with the difference between any pair being statistically significant based on thet-statistics. Recall that

the jump frequency increases from MJ to VG and to LS. The performance ranking is in line with this

ranking of jump frequency for different jump structures. Therefore, we conclude that the market prices
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the S&P 500 index options as if the discontinuous index level movements are frequent occurrences and

not rare events.

C. How Do the Risk-Neutral Dynamics of the Two Activity Rates Differ?

Since the SV4 specification provides an encompassing framework for all the one-factor SV specifi-

cations, we can learn more about the risk-neutral dynamics of the activity rates by investigating the

relevant parameter estimates of the SV4 models, which are reported in Table IV.

Based on the square-root specification for the risk-neutral activity rate dynamics, the two elements

of σv =
[
σd

v ,σ
j
v

]>
capture the instantaneous volatility of the two activity rate processes, withσd

v cap-

turing the instantaneous volatility of the diffusion variance andσ j
v the instantaneous volatility of the

jump arrival rate. The estimates indicate that the variance of the diffusion component exhibits larger

instantaneous volatility than the arrival rate of the jump component. For example, the estimates forσd
v

are 2.417, 2.600, and 4.697 when the jump components are MJ, VG, and LS, respectively. In contrast,

the corresponding estimates forσ j
v are 1.644, 1.433, and 2.582, about half the magnitude forσd

v.

On the other hand, the relative persistence of the activity rate dynamics is captured by the two

elements ofκ =
[
κd,κ j

]>
. A smaller value forκ implies a more persistent process. The estimates

reported in Table IV indicate that the arrival rate of the jump component exhibits a much more per-

sistent risk-neutral dynamics than the instantaneous variance of the diffusion component. Specifically,

the estimates forκ j are 0.002, 0.001, and 0.096, when the jump components are MJ, VG, and LS,

respectively, much smaller than the corresponding estimates forκd, which are 2.949, 3.045, and 3.466,

respectively.

The parameter estimates for the SV4 specifications indicate that, to match the market price behav-

ior of S&P 500 index options, one needs to derive stochastic volatilities from two separate sources:

the instantaneous variance of the diffusion component and the arrival rate of the jump component.

Furthermore, the risk-neutral dynamics of the diffusion variance needs to exhibit higher instantaneous

volatility and much less persistence than the risk-neutral dynamics of the jump arrival rate. Such dif-

ferent risk-neutral dynamics for the two activity rate processes dictate that the jump component and the

diffusion component play different roles in governing the behavior of S&P 500 options. In particular,
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the more volatile but also more transient feature of the activity rate from the diffusion component im-

plies that it is more likely to dominate the price behavior of the short term options. On the other hand,

although the activity rate from the jump component is not as volatile, its highly persistent nature dic-

tates that its impact is more likely to last longer and hence dominate the behavior of long term options.

These different impacts generate potentially testable implications on the time series behavior of S&P

500 index options. This is left for future research.

D. Shall We Take the Diffusion Component for Granted?

One consensus in the option pricing literature is that to account for the pricing biases in the Black

and Scholes (1973) model, one needs toadd both a jump component and stochastic volatility. This

consensus implicitly takes the Brownian motion component in the Black-Scholes model for granted.

This is not surprising given that most of the jump models in the literature are variations of thefinite

activity compound Poisson jump model of Merton (1976). In these models, the number of jumps

within a finite interval is finite. For example, under the MJDSV1 model, which is also estimated in

Bates (1996) and Bakshi, Cao, and Chen (1997), our estimate for the Poisson intensity is0.405, which

implies approximately an average of one jump every two and half years. Obviously, one needs to add a

diffusion component to fill the “gaps” between the very infrequent jumps.

However, if one considers jump processes with infinite activity, or even infinite variation, the in-

finitely many small jumps generated from such models can be imagined to fill these gaps. In particular,

Carr, Geman, Madan, and Yor (2002) conclude from their empirical study that a diffusion compo-

nent is no longer necessary as long as one adopts an infinite activity pure jump process. Carr and Wu

(2002a) arrive at similar conclusions in their infinite variation log stable (LS) model. Most recently,

Carr and Wu (2002c) propose a method to identify the presence of jump and diffusion components

in the underlying asset price process by investigating the short maturity behavior of at-the-money and

out-of-the-money options underlying such an asset. In particular, they prove that a jump component, if

present, dominates the short maturity behavior of out-of-the-money options and hence can be readily

identified. A diffusion component, if present, usually dominates the short maturity behavior of at-the-

money options. Nevertheless, they find that, in theory, an infinite variation jump component can also

generate the same short maturity behavior for at-the-money options as does a diffusion process. The
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same infinite variation feature for both a Brownian motion and an infinite variation pure jump process

dictates that they generate similar short maturity behaviors for at-the-money options.

The above empirical and theoretical findings lead us to ask questions beyond the traditional frame-

work of thinking: Do we really need a diffusion component if we include an infinite activity jump

component in the option pricing model? Can we separately identify a diffusion component from an

infinite activity jump component, especially one also with infinite variation? These questions are es-

pecially relevant here as our estimation results strongly favor the infinite activity jump components,

and the infinite variation LS jump component in particular, over the more traditional finite activity

compound Poisson MJ jump specification.

As can be seen from Tables III and IV, under all the tested models with infinite activity jump

components (VG or LS), the estimates for the diffusion component,σ, are all significantly different

from zero, indicating that the diffusion component is both identifiable and needed. The key differ-

ence between our models and those estimated in Carr, Geman, Madan, and Yor (2002) and Carr and

Wu (2002a) is that we have incorporated stochastic volatility while they consider pure Lévy processes

without stochastic volatility. Thus, our identification of the diffusion component comes from its role in

generating stochastic volatility. In particular, the separate specification of the two activity rate processes

under SV4 implies that the relative proportion of small (diffusive) movements and large (jump) move-

ment can vary over time. Their different risk-neutral dynamics further implies that the two components

can separately dominate the price behaviors of options at different maturities.

Furthermore, our empirical work focuses on a purely diffusive specification for the activity rate

process, i.e., the Heston (1993) model. Under such a specification, any instantaneous negative correla-

tion between the activity rate process and the return innovation has to be incorporated via a diffusion

component in the return process because, after all, a pure jump component is by definition orthogonal

to any diffusion components. Thus, under our specification, the diffusion component in the return pro-

cess is not only important in providing a separate source of stochastic volatility, but also indispensable

in providing a vehicle to accommodate the “leverage effect.” Conceivably, one can incorporate a jump

component in the activity rate process as in Chernov, Gallant, Ghysels, and Tauchen (1999) and Eraker,

Johannes, and Polson (2003), and thus accommodate the leverage effect via a correlation between the

jump component in the return process and the jump component in the activity rate processes. When
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these two jump components exhibit infinite variation, the need for a separate diffusion component could

potentially be reduced. We leave this issue for future research.

Indeed, even under our diffusive activity rate specification, the model parameter estimates indicate

that the relative proportion of the diffusion component declines as the jump specification goes from

finite activity (MJ) to infinite activity but finite variation (VG) and to infinite variation (LS). Given that

all models are calibrated to the same data set, the estimate of the diffusion parameterσ represents the

relative weight of the diffusion component compared to the jump component. The decline in the relative

weight of the diffusion component holds for all SV specifications. For instance, among the SV4 models,

as shown in Table IV, the estimate ofσ (the diffusion component) is0.279 for MJDSV4, 0.276 for

VGDSV4, but0.262for LSDSV4. Similar declines are also observed under SV1 specifications (from

0.352, to 0.318, and then to 0.309) and SV3 specifications (from 0.301, to 0.272, and then to 0.175).

The most dramatic decline, however, comes under the SV2 specification: The estimate forσ is 0.173

under MJDSV2, 0.157 under VGDSV2, but a meager 0.044 under LSDSV2. Recall that SV2 differs

from all other SV specifications in (a) generating stochastic volatility from the jump component only,

and (b) not accommodating a leverage effect. Thus, consistent with our above discussion, without a role

in either generating stochastic volatility or accommodating a leverage effect, the diffusion component

is hardly needed when the jump component also exhibits infinite variation as in the case of LSDSV2.

Putting all the evidence together, we conclude that as the frequency of jump arrival increases from

MJ, to VG, and then to LS, the need for a diffusive component declines. The many small jumps in

infinite variation jump components can partially replace the role played by a diffusion component.

Nevertheless, under our specifications, the diffusion component plays important roles in (i) providing

a separate source of stochastic volatility and (ii) accommodating the leverage effect between the return

innovation and the activity rate process. Therefore, under our specifications, the diffusion component

cannot be totally replaced by the jump component, even if the jump component exhibits infinite varia-

tion.
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IV. Pricing Error Analysis

Another way to investigate the robustness and performance of different model specifications is to check

for remaining structures in the pricing errors of these models. If a model is specified reasonably well,

one should find minimal structure in the pricing errors on the S&P 500 index options. We check for

remaining structures in the mean pricing error at each moneyness and maturity. The mean pricing error

of a good model should be close to zero and exhibit no obvious structures along both the moneyness

and the maturity dimensions.

Since an option’s time-to-maturity and moneyness change everyday, we estimate the pricing error at

fixed moneyness and maturity via nonparametric smoothing (Appendix A). The pricing error is defined

as the difference between the model implied price and the observed market price, as a percentage of the

underlying spot level. Thus, a positive pricing error implies that the model overprices and a negative

pricing errors implies underpricing. Figure 3 reports the smoothed in-sample pricing errors at different

moneyness and maturities under each of the 12 model specifications. The mean out-of-sample pricing

errors exhibit similar structures and are not reported for the sake of brevity. Twelve panels are shown

as a four-by-three matrix in Figure 3, each of them corresponding to a particular model specification.

The four rows runs, from top to bottom, correspond to the four SV specifications: SV1, SV2, SV3, and

SV4. The three columns, from left to right, correspond to the three jump structures: MJ, VG, and LS.

Thus, the panel at the top left corner denotes mean pricing errors from model MJDSV1, the panel at the

bottom right corner denotes mean pricing errors from model LSDSV4, and so on. Within each panel,

the four lines represent pricing errors for four maturities: 0.1 (solid), 0.5 (dashed), 1.0 (dot-dashed),

and 1.5 years (dotted).

For comparison, we use the same scale for all panels except for the second row, where a larger

scale is used to accommodate the larger pricing errors from the SV2 models. As can be seen from

the figure, the three SV2 models exhibit large mean pricing errors along both the maturity and the

moneyness dimensions. In particular, at short maturities, SV2 models overprice out-of-the-money put

options (k < 0) relative to out-of-the-money call options (k > 0). At long maturities, the pattern is

reversed. Out-of-the-money put options are underpriced relative to out-of-the-money call options. One

can also see from the figure that SV1 and SV3 models perform well along the moneyness dimension but
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not as well along the maturity dimension. In contrast, the three two-factor SV4 specifications exhibit

much better performance. As shown in the bottom row in Figure 3, the in-sample pricing errors for

SV4 models are much smaller than other SV specifications. In particular, very little structure is left in

the pricing errors of the LSDSV4 model (the bottom right panel in Figure 3).

In the option pricing literature, it has become a standard practice to document the option price

behavior in terms of the Black-Scholes implied volatility. For S&P 500 index options, at a given

maturity level, the Black and Scholes (1973) implied volatilities for out-of-the-money puts are much

higher than those for out-of-the-money calls. (See empirical documentations in, for example, Aït-

Sahalia and Lo (1998), Jackwerth and Rubinstein (1996), and Rubinstein (1994).) This phenomenon

is commonly referred to as the “volatility smirk.” It is widely accepted that the implied volatility

smirk is a direct result of conditional non-normality in asset returns. In particular, the downward

slope of the smirk reflects asymmetry (negative skewness) in the risk-neutral distribution, while the

positive curvature of the smirk reflects the fat-tails (leptokurtosis) of this distribution. Yet, the central

limit theorem implies that under fairly general conditions, the conditional return distribution should

converge to normality as the maturity increases. As a result, the volatility smirk should flatten out

accordingly. However, Carr and Wu (2002a) find that when implied volatilities are graphed against a

standard measure of moneyness, the resulting implied volatility smirk does not flatten out as maturity

increases up to the maximum observable horizon of two years. Such a maturity pattern seems to

run against the implications of the central limit theorem and presents challenges for option pricing

modeling. The literature has used two approaches to account for this maturity pattern of the volatility

smirk: (1) incorporating a persistent stochastic volatility process to slow down the convergence to

normality, and (2) adopting anα-stable process as in Carr and Wu (2002a) so that the traditional central

limit theorem does not hold and return non-normality does not disappear with aggregation.

The bias of SV2 models as shown in Figure 3 implies that the SV2 models generate steeper implied

volatility smirks than observed in the data at short maturities and flatter ones than observed in the data

at long maturities. Taken together, the SV2 model implies that volatility smirk flattens out faster than

observed in the data as maturity increases. Thus, the remaining structure in the mean pricing error

for SV2 models indicates that the SV2 specification fails to meet the challenge of accounting for the

maturity pattern of the volatility smirk for S&P 500 index options. This observed failure implies
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that not just any persistent stochastic volatility model will work. The better performance of other SV

specifications further suggests that, for successful model design, it is imperative to also address the

issue of how the stochastic volatility is incorporated into the return process.

Both Figure 3 and Tables IV and V show that SV4 type models are promising in generating a per-

sistent volatility smirk across the maturity horizon. In particular, the best performance of the LSDSV4

model can be attributed to a combination of two attributes: the LS jump structure and the SV4 specifi-

cation. The LS jump structure is specifically designed by Carr and Wu (2002a) to capture the maturity

pattern of the implied volatility smirk for S&P 500 index options. Under this LS model, the central

limit theorem does not apply and conditional non-normality remains as maturity increases so that the

model can generate a relatively stable maturity pattern for the implied volatility smirk. The SV4 spec-

ification further improves the performance by generating variations in the relative proportion of the

jump component and the diffusion component along the option maturity dimension. In particular, since

the estimated stochastic jump volatility is more persistent than the estimated diffusive volatility under

the risk-neutral measure (κ j = 0.096 versusκd = 3.466 under LSDSV4, see Table IV), the impact

of the more persistent jump component dominates the behavior of long term options while the more

transient diffusion component contributes more to short term options. Since non-normality is mainly

generated from the jump component, the progressively increasing proportion of the jump component

with increasing maturities counteracts with the central limit theorem and helps further in maintaining a

relatively stable, and slightly steepening, maturity pattern for the implied volatility smirk.

V. Concluding Remarks

We classify option pricing models based on time-changed Lévy processes. Specifically, we consider

candidate (underlying asset) return processes that are generated by applying stochastic time changes

to Lévy processes - which can have both diffusion and jump components. We then classify option

pricing models by the following features: (i) the specification of the jump component in the return

process; (ii) the source for stochastic volatility, namely, if it is generated from stochastic diffusive

volatility or jump volatility, or both; and (iii) the dynamics of the volatility process itself. Based on

this classification scheme, we propose and test a variety of new option pricing models and address a
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few model design issues which have not been answered in the literature. In particular, we focus on

answering two questions: (i) what type of jump structure best captures the behavior of the S&P 500

index options? (ii) where does stochastic volatility come from?

We find that a high frequency jump structure always outperforms the traditional low frequency jump

specification - the compound Poisson model. The implication of this finding is that the market prices

the S&P 500 index options as if discrete movements in the index level are frequent events instead of

rare events. We also find that stochastic volatility comes from two separate sources: the instantaneous

variance of a diffusion component and the arrival rate of a jump component. While the risk-neutral

dynamics of the diffusion variance is more volatile, the risk-neutral dynamics of the arrival rate of

the jump component exhibits much more persistence. As a result, stochastic volatility from diffusion

dominates the behavior of short term option prices while stochastic volatility from jumps dominates

that of long term option prices.

In summary, our empirical results with the S&P 500 index option data indicate that a model of the

underlying index returns should include a high frequency jump component in the return process and

allow the stochastic return volatility to be driven independently by diffusion and jumps.

To maintain the scope of the paper to a manageable level, we consider only one activity rate spec-

ification in our empirical study, which is the square-root model of Heston (1993). Yet, the framework

proposed here provides fertile ground for extensions and future research. One potential line of future

research is to investigate the relative performance of different activity rate specifications. In particular,

a series of recent studies, e.g., Chernov, Gallant, Ghysels, and Tauchen (1999) and Eraker, Johannes,

and Polson (2003), incorporate jumps into the activity rate process, in addition to jumps in the asset re-

turn processes. Nevertheless, all these studies consider only compound Poisson jumps with potentially

time varying arrival rates. In light of the findings in this article on the better performance of models

which include a high frequency jump component in the return process, it is intriguing to see whether

incorporating such jumps in the stochastic volatility process will also deliver superior performance over

specifications of Poisson jumps in volatility used in the existing literature.

Finally, since the objective of this paper is to analyze the relative performance of different models

in pricing options on a daily basis, we focus on the model specifications under the risk-neutral measure
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and calibrate the models solely to the options data. One can potentially analyze the properties of the

risk premia on the jump component, the diffusion component, and the stochastic activity rates through

an integrated analysis of the time series of both the option prices and the underlying spot prices along

the lines of Eraker (2001) and Pan (2002).
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Appendix A. Nonparametric Estimation of Weighting Matrix

Since the moneyness and maturity of option contracts vary over time, we estimate the variance of the pricing

error at fixed moneyness and maturity via nonparametric kernel regression.

Let τ denote time to maturity andk = ln(K/S) denote moneyness. Define the information setZ ≡ (τ,k).

Suppose that there are totalN observations. Given a kernel functionK (·) and thebandwidthmatrix H, the

kernel estimate of the varianceV(Z) is given by

V̂(Z) =
∑N

i=1 K
( |Z−Z i |

H

)
(ei)

2

∑N
i=1 K

( |Z−Z i |
H

) − [µ̂(Z)]2 ; µ̂(Z) =
∑N

i=1 K
( |Z−Z i |

H

)
ei

∑N
i=1 K

( |Z−Z i |
H

) . (A1)

There are a variety of choices of kernels and bandwidth in the literature. We refer to the monograph by Simonoff

(1996) on this issue. In our analysis, we follow Aït-Sahalia and Lo (1998) in choosing independent Gaussian

kernels and setting the bandwidths according to:

h j = c jσ jN −1/6, j = τ,k, (A2)

whereσ j is the standard deviation of the regressorZ j andc j is a constant which is typically of order of magnitude

one. The larger the coefficientc j is, the smoother the estimates are across moneyness and maturities. In our

application, we setcτ = ck = 4.
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Figure 1. Histograms of OTM Option Prices
The left panel depicts the histogram of the moneynessk = ln(K/S) and the right panel depicts the
histogram of the maturities for all available S&P 500 index options in our cleaned sample. The sample
is daily from April 6th, 1999 to May 31st, 2000, with 290 business days and 62,950 option contracts.
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Figure 2. Mean and Variance Surface of Option Prices
The mean (left panel) and variance (right panel) of S&P 500 index option prices as percentages of the
index level at each moneynessk = ln(K/S) and maturity (in years) are estimated nonparametrically
using independent Gaussian kernels. The sample of S&P 500 index options is daily from April 6th,
1999 to May 31st, 2000 with 290 business days and 62,950 option quotes.
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Figure 3. In-Sample Mean Pricing Errors
Pricing errors are defined as the difference between the model implied option price and the market
observed price, in percentages of the underlying spot level. Mean pricing errors at fixed moneyness
(k = ln(K/S)) and maturity are estimated nonparametrically using independent Gaussian kernels. Each
panel denotes one model. The jump component of the model is, from left to right, MJ, VG, and LS.
The stochastic volatility specification is, from top to bottom, SV1, SV2, SV3, and SV4. The four lines
in each panel denote for maturities: 0.1 (solid line), 0.5 (dashed line), 1.0 (dash-dotted line), and 1.5
years (dotted line). For ease of comparison, we use the same scale for all panels except for the second
row, where a much larger scale is used to accommodate the much larger pricing errors of SV2 models.
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Table III
Parameter Estimates of One-Factor SV Models

Model parameters are estimated by minimizing the sum of daily mean squared errors. Given model
parameters, the daily mean squared errors are obtained by choosing the activity rate level at that day
to minimize the sum of the weighted squared pricing errors on that day. Entries report the parameter
estimates and standard errors (in parentheses), based on the first 139 days of data. Also reported are the
sample average and standard deviation of the daily mean squared error for both the in-sample period
(mseI , the first 139 days) and the out-of-sample period (mseO, the last 150 days). The pricing error is
defined in percentages of the spot price.

Model specifications

Θ MJDSV1 MJDSV2 MJDSV3 VGDSV1 VGDSV2 VGDSV3 LSDSV1 LSDSV2 LSDSV3

σ 0.352 0.173 0.301 0.318 0.157 0.272 0.309 0.044 0.175
(0.288) (0.010) (0.031) (0.037) (0.006) (0.030) (0.037) (0.001) (0.029)

λ 0.405 0.364 0.223 0.253 0.593 0.985 0.028 0.077 0.053
(0.459) (0.135) (0.190) (0.194) (0.068) (1.115) (0.003) (0.007) (0.007)

α −0.091 −0.393 −0.408 −0.247 −0.391 −0.244 1.673 1.578 1.738
(0.052) (0.100) (0.149) (0.119) (0.029) (0.122) (0.044) (0.028) (0.066)

σ j 0.175 0.235 0.000 0.264 0.013 0.003 −−− −−− −−−
(0.113) (0.035) (0.000) (0.108) (0.001) (0.001) −−− −−− −−−

κ 1.039 2.070 1.110 0.813 2.054 0.974 0.795 0.867 1.304
(0.320) (0.000) (0.346) (0.322) (0.237) (0.327) (0.293) (0.000) (0.324)

σv 2.574 0.000 1.983 2.136 0.001 1.745 2.253 0.000 1.839
(0.620) (0.000) (0.361) (0.431) (0.000) (0.321) (0.358) (0.000) (0.344)

ρ −0.704 −−− −0.648 −0.692 −−− −0.662 −1.000 −−− −1.000
(0.073) −−− (0.092) (0.075) −−− (0.101) (0.000) −−− (0.000)

mseI 0.334 1.159 0.307 0.302 0.927 0.279 0.256 0.859 0.279
(0.254) (0.314) (0.247) (0.244) (0.272) (0.236) (0.218) (0.262) (0.237)

mseO 2.105 2.599 1.752 1.868 2.339 1.531 1.813 1.610 1.739
(1.123) (1.127) (0.968) (0.982) (1.046) (0.874) (1.030) (0.734) (0.968)
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Table IV
Parameter Estimates of SV4 Models

Model parameters are estimated by minimizing the sum of daily mean squared errors. Given model
parameters, the daily mean squared errors are obtained by choosing the activity rate level at that day
to minimize the sum of the weighted squared pricing errors on that day. Entries report the parameter
estimates and standard errors (in parentheses), based on the first 139 days of data. The superscriptsd
and j on a parameter denote respectively the diffusion and jump components of that parameter vector.
Also reported are the sample average and standard deviation of the daily mean squared error for both
the in-sample period (mseI , the first 139 days) and the out-of-sample period (mseO, the last 150 days).
The pricing error is defined in percentages of the spot price.

Θ MJDSV4 VGDSV4 LSDSV4

σ 0.279 (0.009) 0.276 (0.008) 0.262 (0.006)
λ 0.086 (0.617) 0.003 (0.022) 0.032 (0.009)
α −0.119 (0.041) −0.184 (0.057) 1.833 (0.034)
σ j 0.276 (0.056) 0.298 (0.076) −−− (0.000)
κd 2.949 (0.354) 3.045 (0.337) 3.466 (0.480)
κ j 0.002 (0.088) 0.001 (0.008) 0.096 (0.045)
σd

v 2.417 (0.326) 2.600 (0.341) 4.697 (0.750)
σ j

v 1.644 (4.346) 1.433 (0.237) 2.582 (0.701)
ρd −0.788 (0.085) −0.707 (0.080) −0.522 (0.081)
ρ j −0.931 (2.464) −0.999 (0.018) −0.645 (0.140)

mseI 0.096 (0.144) 0.089 (0.144) 0.074 (0.133)
mseO 0.666 (0.562) 0.625 (0.528) 0.216 (0.202)
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Table V
Pair-Wise t -statistics for Model Comparisons

Entries report thet-statistics defined in equation (20). Tests in Panel A compare the performance of
different jump structures under each stochastic volatility specification (SV1 to SV4). Tests in Panel
B compare the performance of different SV specifications given a fixed jump structure. For each test
(Model i -Model j), at-value greater than 1.96 implies that the mean squared pricing error from modeli
is significantly larger than the mean squared error from modelj and hence modelj outperforms model
i, at 95% confidence interval. At-value less than−1.96 implies the opposite. In-sample tests are based
on the first 139 days of option price data while the out-of-sample tests are based on the last 150 days
of data, given parameter estimates from the first sub-sample.

Panel A. Testing Which Jump Structure Performs the Best

Cases/Tests MJ−VG MJ−LS VG−LS MJ−VG MJ−LS VG−LS

In sample comparison Out of sample comparison

SV1 6.70 12.45 7.31 15.98 13.74 2.69
SV2 31.73 15.75 4.75 14.95 16.47 15.89
SV3 11.95 13.27 −0.01 19.12 5.05 −19.18
SV4 9.88 5.78 3.69 10.12 12.04 11.89

Panel B. Testing Where Stochastic Volatility Comes From

Cases/Tests SV1−SV2 SV1−SV3 SV2−SV3 SV4−SV1 SV4−SV2 SV4−SV3

In sample comparison

MJ −29.53 6.74 31.16 −15.43 −44.55 −14.34
VG −27.67 6.49 30.93 −14.09 −43.01 −13.44
LS −35.67 −6.00 33.02 −14.94 −43.63 −14.91

Out of sample comparison

MJ −10.12 18.10 17.74 −21.41 −33.46 −17.98
VG −11.67 19.09 21.30 −20.07 −29.75 −15.54
LS 3.88 3.43 −3.09 −21.17 −27.66 −21.43
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