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Abstract

Evaluation of forecast optimality in economics and Þnance has almost exclusively been con-

ducted under the assumption of mean squared error loss. Under this loss function optimal forecasts

should be unbiased and forecast errors should be serially uncorrelated at the single period horizon

with increasing variance as the forecast horizon grows. Using analytical results, we show in this

paper that all the standard properties of optimal forecasts can be invalid under asymmetric loss

and nonlinear data generating processes and thus may be very misleading as a benchmark for an

optimal forecast. Our theoretical results suggest that many of the conclusions in the empirical liter-

ature concerning suboptimality of forecasts could be premature. We extend the properties that an

optimal forecast should have to a more general setting than previously considered in the literature.

We also present results on forecast error properties that may be tested when the forecaster�s loss

function is unknown, and introduce a change of measure, following which the optimum forecast

errors for general loss functions have the same properties as optimum errors under MSE loss.
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1 Introduction

Knowledge of the properties possessed by an optimal forecast is crucial in many key areas of eco-

nomics and Þnance such as in tests of the efficient market hypothesis in foreign exchange, bond

and stock markets and tests of the rationality of decision makers in a variety of macroeconomic

applications. Almost without any exception empirical work has relied on testing properties that

optimal forecasts have under mean squared error (MSE) loss.1 These properties include unbiased-

ness of the forecast, lack of serial correlation in one-step-ahead forecast errors, serial correlation

of order h − 1 at the h-period horizon and non-decreasing forecast error variance as the forecast
horizon grows. Although such properties seem sensible, they are in fact established under a set of

very restrictive assumptions on the decision maker�s loss function.

Increasingly the assumption of symmetric loss has been questioned in the literature. Christof-

fersen and Diebold (1997), Diebold (2001), Granger and Newbold (1986), Granger and Pesaran

(2000), Pesaran and Skouras (2001), Skouras (2001) and West, Edison and Cho (1993) call for a

more decision theoretic approach to forecasting that considers the losses derived from over- and

underpredictions. There are often no reason why losses should be symmetric around a zero fore-

cast error (the perfect prediction). For instance, Þnancial analysts� forecasts have been found to

be strongly biased2 and it is easy to understand why. Underprediction of corporate earnings is

likely to lead to lower demand for stocks, lower stock prices and a worsened relationship between

the analyst and the Þrm in question. Overpredictions, on the other hand, are likely to be better

tolerated.

In this paper we demonstrate that none of the properties traditionally associated with tests of

optimal forecasts carry over to a more general setting with asymmetric loss and possible nonlinear

dynamics in the data generating process. While bias of the optimal forecast has been established

by Granger (1969, 1999) and characterized analytically for certain classes of loss functions and

forecast error distributions by Christoffersen and Diebold (1997), to our knowledge, failure of the

1See, e.g., Brown and Maital (1981), Cargill and Meyer (1980), De Bondt and Bange (1992), Dokko and Edelstein

(1989), Figlewski and Wachtel (1981), Keane and Runkle (1990, 1998), Lakonishok (1980), Mishkin (1981), Muth

(1961), Pesando (1975) and Schroeter and Smith (1986) and Zarnowitz (1985).
2See De Bondt and Thaler (1990) and Abarbanell and Bernard (1992) for example.
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remaining optimality properties has not previously been shown3,4.

We derive closed-form results in the context of a commonly used asymmetric loss function

(linear-exponential, or �linex�) and a widely used nonlinear data generating process, namely the

regime switching model suggested by Hamilton (1989). We Þnd that not only can the optimal

forecast be biased, but the forecast errors can be serially correlated of arbitrarily high order and

both the unconditional and conditional forecast error variance may be decreasing functions of the

forecast horizon.

We next extend the properties that an optimal forecast should have to a more general setting

than that previously considered in the literature. Our results suggest that many of the conclusions

in the empirical literature concerning suboptimality of forecasts have been premature. We prove

that the expected loss, rather than the forecast error variance, is a non-decreasing function of the

forecast horizon and that a �generalized forecast error� has mean zero and limited serial correlation,

and is a martingale difference sequence at the single-period horizon.

We also introduce a transformation from the usual probability measure to a �MSE-loss prob-

ability measure�, under which the optimal forecasts are unbiased and forecast errors are serially

uncorrelated, in spite of the fact that these properties generally fail to hold under the physical

measure. These results are analogous to the change of measure from the physical measure to the

risk-neutral measure, under which assets may be priced as though investors are risk-neutral.

Finally, we establish some surprising new results that trade off restrictions on the loss function

against restrictions on the data generating process. In situations where the conditional higher order

moments of the forecast variable are constant, we show that although the optimal forecast may well

be biased, the one-step optimal forecast errors are not serially correlated while the h-step forecast

errors are at most MA(h-1). This holds irrespective of the shape of the loss function. This offers

a new way to test optimality of forecast errors that is robust to the loss function, but requires

restrictions on the underlying data generating process. This result will be useful in the common

situation where the shape of the loss function is unknown, whereas the restrictions on the data

3Under asymmetric loss functions such as lin-lin and linex, Christoffersen and Diebold (1997) establish that the

optimal forecast is biased and characterize the optimal bias analytically. Their study does not, however, consider the

other properties of optimal forecast errors such as lack of serial correlation and non-decreasing variance.
4Hoque, et al. (1988), and Magnus and Pesaran (1987 and 1989) discuss violations of the standard properties of

optimal forecasts caused by estimation error, rather than by a choice of loss function different from MSE. In this

paper we consider the case of zero estimation error, to rule this out as a cause of apparent violations.
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generating process can be tested empirically.

The outline of the paper is as follows. Section 2 summarizes the properties of optimal linear

predictions under stationarity and squared error loss. Section 3 demonstrates how each of these

properties can be violated under asymmetric loss in the context of two nonlinear data generating

processes. Section 4 derives testable properties of the forecast errors when restrictions are imposed

on the loss function while Section 5 establishes properties of optimal forecasts under general loss

and veriÞes that these are satisÞed for the models considered in Section 3. Section 5 also contains

the change of measure results. Section 6 concludes. An appendix contains technical details and

proofs.

2 Properties of optimal linear predictions under squared error loss

Suppose that a decision maker is interested in forecasting some univariate time series, Y =

{Yt; t = 1, 2, ...}, h steps ahead given information at time t, Ωt. At a minimum Ωt includes the

Þltration generated by {Yt−k; k ≥ 0}, but it may also be expanded to include other information.
Optimality of the forecast must be established with reference to the loss function that the deci-

sion maker is trying to minimize. Although the loss may depend on both the outcome, Yt+h, and

the prediction, �Yt+h,t, it is very common to assume that the loss function simply depends on the

h-step-ahead forecast error

et+h,t = Yt+h − �Yt+h,t (1)

and to impose the following restrictions on the loss function, see, e.g., Granger (1999), Diebold

(2001):

Assumption 1: L(0) = 0 (minimal loss of zero).

Assumption 2: L(et+h,t) ≥ 0 for all et+h,t
Assumption 3: L(et+h,t) is non-decreasing in |et+h,t| :

L(e∗t+h,t) ≥ L(e∗∗t+h,t) if e
∗
t+h,t > e

∗∗
t+h,t ≥ 0

L(e∗t+h,t) ≥ L(e∗∗t+h,t) if e
∗
t+h,t < e

∗∗
t+h,t ≤ 0

Below we will make use of a smaller set of assumptions.

While the above properties are quite general, the vast majority of work on optimal forecasts

4



has been derived in the context of linear predictions under mean squared error (MSE) loss:

L(et+h,t) = ae
2
t+h,t, a > 0. (2)

This is clearly a special case but given its dominance in applied work it is useful to outline the

properties that optimal forecasts have under MSE loss. For this purpose, suppose that Yt has zero

mean and is covariance stationary.5 Wold�s representation theorem then establishes that it can be

represented as a linear combination of serially uncorrelated white noise terms:

Yt =
∞X
j=0

θjεt−j (3)

where εt = Yt−P (Yt|yt−1, yt−2, ...) is white noise and P (Yt|yt−1, yt−2, ...) is the linear least squares
projection of Yt on yt−1, yt−2,....6 εt satisÞes the following conditions

E[εt] = 0

E[ε2t ] = σ2 ≥ 0 (4)

E[εtεs] = 0, for all t 6= s.

These conditions imply that εt is serially uncorrelated with constant unconditional variance and zero

mean. The weights θj are such that θ0 = 1 and
P∞
j=0 θ

2
j <∞. Assuming that Ωt = σ (εt, εt−1, ..),

where σ (X) is the sigma algebra generated by X, the linear prediction of Yt+h that minimizes MSE

loss can easily be derived from this inÞnite order moving average process:

P (Yt+h|Ωt) =
∞X
s=0

θh+sεt−s. (5)

The forecast error is

et+h,t =
h−1X
s=0

θsεt+h−s, (6)

so the MSE is

MSE (P (Yt+h|Ωt)) = aσ2
Ã
h−1X
s=0

θ2s

!
(7)

It follows from these expressions that, under MSE loss, the optimal forecast has the following

properties:

5A linearly deterministic component can also be added, but this has no consequence for our analysis.
6The linear projection of Yt on yt−1, yt−2, ... can also be expanded as a Volterra series that includes higher order

powers such as y2t−1, y
3
t−1, c.f. Granger and Terasvirta (1993).
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1. The forecast is unbiased:

E[et+h,t] = 0.

2. The forecast error variance is non-decreasing in the forecast horizon, h. This can readily be

seen from (7)

V ar (et+h,t) = σ
2

Ã
h−1X
i=0

θ2i

!
≥ σ2

Ã
h−2X
i=0

θ2i

!
= V ar (et+h−1,t) .

3. The one-step forecast errors are white noise:

et+1,t = εt+1

which, by construction, is serially uncorrelated with mean zero.

4. The h−step forecast errors are at most MA(h− 1):

et+h,t = εt+h + θ1εt+h−1 + ....+ θh−1εt+1.

Notice also that while the conditional forecast of the mean, P (Yt+h|Ωt), is time-varying and
depends on all shocks {εt−i}∞i=0 up to time t, the variance of the conditional forecast error is
time-invariant and only depends on the time horizon, h.7

Properties such as these have been extensively tested in empirical studies of optimality of

predictions or rationality of forecasts. However, as we show in the next section, they cease to be

valid when the assumption of MSE loss is relaxed.

3 Violation of the Optimality Properties under Asymmetric Loss

In this section we demonstrate how each of the properties established under MSE loss and linear

least squares projections may be rejected under more general assumptions about the loss function

and the data generating process. We set up a speciÞc example, making reasonable assumptions

about the forecaster�s loss function and the DGP, and then show that in this example all of the

7Although the results were derived under linear least squares projections, they can be demonstrated for more

general loss functions when the innovations {εt} are Gaussian. For this case the linear projection of Yt on past
shocks is identical to the (optimal) conditional expectation so that the assumption of linearity of the forecast is not

restrictive.
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standard properties of an optimal forecast are violated. Our example is an idealised case, where in

addition to knowing the form of the DGP, the forecaster is assumed to also know the parameters

of the DGP, removing estimation error from the problem. The forecasts in this example are thus

perfectly optimal. Violations of the standard properties of optimal forecasts caused by estimation

error rather than asymmetric loss have been investigated in Hoque, et al. (1988), and Magnus and

Pesaran (1987, 1989).

3.1 A simple example

We establish our results in the context of the linear-exponential (linex) loss function, which allows

for asymmetries:

L (et+h,t; a) = exp {aet+h,t}− aet+h,t − 1, a 6= 0 (8)

This loss function has been used extensively to demonstrate the effect of asymmetric loss, c.f. Varian

(1974), Zellner (1986) and Christoffersen and Diebold (1997). An optimal forecast is deÞned by

minimising the conditional expected loss:

�Y ∗t+h,t ≡ argmin
�Y

Et

h
L
³
Yt+h, �Y

´i
Under the assumption that we may interchange the expectation and differentiation operators, the

Þrst order condition for the optimal forecast, �Y ∗t+h,t, takes the form

Et

∂L
³
Yt+h − �Y ∗t+h,t; a

´
∂ �Yt+h,t

 = a− aEt hexpna³Yt+h − �Y ∗t+h,t
´oi

= 0

We derive analytical expressions for the optimal forecast and the expected loss using a popular

nonlinear data generating process, namely a regime switching model of the type proposed by

Hamilton (1989)8. Suppose that {Yt} is generated by a simple mixture of normals regime switching
model driven by some underlying state process, St :

Yt+1 = µst+1 + σst+1vt+1

vt+1 ∼ i.i.d. N(0, 1) (9)

st+1 = 1, ..., k.
8In a previous version of this paper we also presented results for the case that the DGP was another popular

nonlinear process; the GARCH(1,1) model proposed by Bollerslev (1986). Little additional intuition was to be had

with this second example and so we do not discuss it in the interests of brevity.
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We assume that the state indicator function, St+1, is independently distributed of all past, current

and future values of vt+1. The state-speciÞc means and variances can be collected in k× 1 vectors,
µ = [µ1, ..., µk]

0, σ2 =
£
σ21, ...,σ

2
k

¤0
. Conditional on a given realization of the state variable, St+1 =

st+1, Yt+1 is Gaussian with mean µst+1 and variance σ
2
st+1 , but the states are assumed to be

unobserved random variables and Yt+1 can be strongly non-Gaussian unconditionally.

At each point in time the state variable, St+1, takes an integer value between 1 and k. Following

Hamilton (1989), we assume that the states are generated by a Þrst-order Markov chain with

transition probability matrix

P(st+1|st) = P =


p11 p12 · · · p1k

p21 p22 · · · ...
...

... ... pk−1k

pk1 · · · pkk−1 pkk

 (10)

where each row of P sums to one. The vector comprising the probability of being in state st+h at

time t+h given Ωt is denoted by �πst+h,t, i.e. �πst+h,t = (Pr(St+h = 1|Ωt), ...,Pr(St+h = k|Ωt))0 , while
π̄ is the vector of unconditional or ergodic state probabilities that solve the equation π̄0P = π̄0.

Note that �πst,t will not be a vector of ones and zeros, as the variable St is not Ωt-measurable.

Consider the h-step-ahead forecasting problem. Using the conditional normality of vt+h, the

expected loss is

Et [L (et+h,t; a)] = Et

h
exp

n
a
³
Yt+h − �Yt+h,t

´oi
− aEt [Yt+h] + a�Yt+h,t − 1

=
kX

st+h=1

�πst+h,tEt

h
exp

n
a
³
Yt+h − �Yt+h,t

´o
|St+h = st+h

i

−a
kX

st+h=1

�πst+h,tEt [Yt+h|St+h = st+h] + a�Yt+h,t − 1

= �π0st,tP
h exp

½
aµ− a�Yt+h,t + a

2

2
σ2
¾
− a�π0st,tPhµ+ a�Yt+h,t − 1 (11)

where we used Et[.] as shorthand notation for E[.|Ωt], the conditional expectation given Ωt. Note
that in this paper all exp {·} and log (·) operators are applied element-by-element to vector and
matrix arguments. Differentiating with respect to �Yt+h,t and setting the resulting expression equal

to zero gives the Þrst order condition

1 = �π0st,tP
h exp

½
aµ− a�Y ∗t+h,t +

a2

2
σ2
¾
.
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If µ
1
= µ

2
= ... = µ

k
= µ, we can solve for �Y ∗t+h,t to get an expression that is easier to interpret:

�Y ∗t+h,t = µ+
1

a
log
³
�π0st,tP

hϕ
´
, (12)

where ϕ ≡ exp
n
a2

2 σ
2
o
. The associated h-step forecast error is

e∗t+h,t = σst+hvt+h −
1

a
log
³
�π0st,tP

hϕ
´
.

This expression makes it easy for us to establish the violation of property 1 in our setup:

Proposition 1 The unconditional and conditional bias in the optimal forecast error for the Markov

switching process (9) is given by:

Et
£
e∗t+h,t

¤
= −1

a
log
³
�π0st,tP

hϕ
´

(13)

E
£
e∗t+h,t

¤
= −1

a
π̄0λh (14)

→ −1
a
log
¡
π̄0ϕ

¢
as h→∞

where λh ≡ log
¡
Phϕ

¢
. Thus the optimal forecast is conditionally and unconditionally biased at all

forecast horizons, h, and the bias persists even as h goes to inÞnity.

The proof of the proposition is given in the appendix. For purposes of exposition, we present

some results for a speciÞc form of the loss function (a = 1) and regime switching process:

µ = [0, 0]0

σ = [0.5, 2]0

P =

 0.95 0.05

0.1 0.9

 so

π̄ =

·
2

3
,
1

3

¸0
The unconditional mean of Yt is zero, and the unconditional variance is π̄

0σ2 = 1.5. This

parameterisation is not dissimilar to the empirical results obtained when this model is estimated

on macroeconomic or Þnancial data. For this particular parameterization the optimal bias in e∗t+1,t
is −1.17, indicating that it is optimal to over-predict. Figure 1 shows the density of et+h,t and also
plots the linex loss function. The density function has been re-scaled so as to match the range of

the loss function.
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[ INSERT FIGURE 1 HERE ]

This Þgure makes it clear why the optimal bias is negative: the linex loss function with a = 1

penalizes positive errors (under-predictions) more heavily than negative errors (over-predictions).

The optimal forecast is in the tail of the unconditional distribution of Yt: the probability mass to the

right of the optimal forecast is only 10.0%. Under symmetric loss the optimal forecast is the mean,

and so under symmetric distributions the amount of probability mass either side of the forecast

would be 50%. In Figure 2 we plot the optimal forecast bias as a function of the forecast horizon

(using the steady-state weights as initial probabilities). The bias for this case is an increasing (in

absolute value) function of h and asymptotes to −1.17.

[ INSERT FIGURE 2 HERE ]

We next demonstrate the violation of property 2. This is best done using some new notation.

We let ¯ be the Hadamard (element-by-element) product, and ι be a k × 1 vector of ones. The
result is as follows:

Proposition 2 The variance of the forecast error from the Markov switching process (9) associated

with the optimum forecast is given by

V ar
¡
e∗t+h,t

¢
= π̄0σ2 +

1

a2
λ0h
¡¡
π̄ι0
¢¯ I− π̄π̄0¢λh (15)

This variance need not be a decreasing function of the forecast horizon, h. In the limit as h goes

to inÞnity, the forecast error variance converges to the steady-state variance, π̄0σ2.

Corollary 3 The mean-square forecast error (MSFE) from the Markov switching process (9) as-

sociated with the optimum forecast is given by

MSFE
¡
e∗t+h,t

¢
= π̄0σ2 +

1

a2
λ0h
¡¡
π̄ι0
¢¯ I¢λh

The MSFE need not be a decreasing function of the forecast horizon, h. In the limit as h goes to

inÞnity, the MSFE converges to π̄0σ2 +
¡
1
a log (π̄

0ϕ)
¢2
.

A surprising implication of Proposition 2 is that it is not always true that V ar
³
e∗t+h,t

´
will

converge to π̄0σ2 from below, that is, V ar
³
e∗t+h,t

´
need not be increasing in h. Depending on the
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form of P and σ2, it is possible that V ar
³
e∗t+h,t

´
actually decreases towards the unconditional

variance of Yt. Corollary 3 shows that a similar result is true for the mean-square forecast error.

Using the numerical example described above the unconditional variance of the optimal forecast

error as a function of the forecast horizon is shown in Figure 3.

[ INSERT FIGURE 3 HERE ]

Thus it is possible that the forecast error at the distant future has a higher variance than at the

near future9. The reason for this surprising result lies in the mis-match of the forecast objective

function, L and the variance of the forecast error, V ar(et+h,t), and thus does not occur when using

quadratic loss (see next section). Such a mismatch of the objective function and the performance

metric is common in economics, c.f. Christoffersen and Jacobs (2002) and Corradi and Swanson

(2002).

Using the expression for V ar
³
e∗t+h,t

´
in Proposition 2, we can consider two interesting special

cases. First, suppose that σ1 = σ2 = σ so the variable of interest is i.i.d. normally distributed with

constant mean and variance. In this case we have:

V ar
¡
e∗t+h,t

¢
= π̄0ισ2 +

1

a2
log
¡
π̄0ϕ

¢
ι0
¡¡
π̄ι0
¢¯ I− π̄π̄0¢ ι log ¡π̄0ϕ¢

= σ2.

And so the optimal forecast error variance is constant for all forecast horizons as we would expect.

The second special case arises when the transition matrix takes the form:

P = ιπ̄0.

That is, the probability of being in a particular state is independent of past information, so the

density of the variable of interest is a constant mixture of two normal densities and thus is i.i.d

but may exhibit arbitrarily high kurtosis. In this case we have λh = ι log (π̄
0ϕ) for all h, so:

V ar
¡
e∗t+h,t

¢
= π̄0σ2 +

1

a2
log
¡
π̄0ϕ

¢
ι0
¡¡
π̄ι0
¢¯ I − π̄π̄0¢ ι log ¡π̄0ϕ¢

= π̄0σ2.
9Using the same numerical example it can be shown that the MSFE decreases when moving from h = 1 to h = 2

but increases with h for h ≥ 2. We do not report this Þgure in the interests of parsimony.
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Thus the optimal forecast error variance is constant for all forecast horizons. This special case

shows that it is not the fat tails of the mixture density that drives the curious result regarding

decreasing forecast error variance in our example. Rather, it is the combination of asymmetric loss

and persistence in the conditional variance.

Violation of properties 3 and 4: Now consider the autocorrelation function of the optimal

forecast errors. In the standard linear, quadratic loss framework an optimal h-step forecast is a

MA process of order no greater than (h− 1). This implies that all autocovariances beyond the
(h− 1)th lag are zero. In our setting this need not hold:

Proposition 4 The h-step-ahead forecast error from the Markov switching process (9) is generally

serially correlated with autocovariance given by

Cov
£
e∗t+h,t, e

∗
t+h−j,t−j

¤
= π̄0σ21{j=0} +

1

a2
λ0h
¡¡
π̄ι0
¢¯ P j − π̄π̄0¢λh. (16)

Although this converges to zero as h goes to inÞnity, it can be non-zero at lags larger than h.

Using the same parameterization as in the earlier example, the autocorrelation function for

various forecast horizons is presented in Figure 4.

[ INSERT FIGURE 4 HERE ]

Notice that for all forecast horizons there exist positive autocorrelations beyond h−1. Thus the
optimal forecast error in our set-up need not follow an MA (h− 1) process and the one-step-ahead
forecast error need not be serially uncorrelated (property 3).10

Christoffersen and Diebold (1997) characterize analytically the optimal bias under linex loss and

a conditionally Gaussian process with ARCH disturbances. They derive analytically the optimal

time-varying bias as a function of the conditional variance. For our purposes, however, this process

is less well-suited to show violation of all four properties forecast errors have in the standard setting

since this requires characterizing the forecast error distribution at many different horizons, h. The

problem is that while the one-step-ahead forecast error distribution is Gaussian for a GARCH(1,1)

process, this typically does not hold at longer horizons, c.f. Drost and Nijmann (1993).

10We can again consider the two special cases: iid Normal (σ1 = σ2 = σ), and iid mixture of normals (P = ιπ̄
0).

Following the same logic as for the analysis of forecast error variance, it can be shown that in both of these cases the

autocorrelation function equals zero for all lags greater than zero. We discuss this result more generally in Section 4.

12



3.2 What drives the Results?

So far we have established that all four of the properties traditionally associated with an optimal

forecast may be violated under linex loss for nonlinear data generating processes. However, it is not

entirely clear what drives the results, since the interaction between nonlinearity and asymmetric

loss can be difficult to disentangle. In this section we therefore investigate the effects of relaxing

the assumptions of MSE loss and linear projections one at a time by considering the properties

of optimal forecasts under MSE loss and nonlinear data generating process versus under linex loss

and a restricted DGP with dynamics only in the conditional mean.

3.2.1 Mean squared error loss and arbitrary data generating process

First suppose that the loss function is of the MSE type whereas we do not impose any restrictions

on the DGP. We collect the results in the following proposition.

Proposition 5 Let the loss function be:

L
³
Yt+h − �Yt+h,t

´
=
³
Yt+h − �Yt+h,t

´2
and let the (possibly nonlinear) process Yt be stationary. Then the following are true:

1. The optimal forecast of Yt+h is Et [Yt+h] for all forecast horizons h,

2. The optimal forecast error is conditionally (and unconditionally) unbiased,

3. The unconditional variance of the optimal forecast error is non-decreasing as a function of

the forecast horizon, and

4. The optimal h-step forecast error exhibits zero serial correlation beyond the (h− 1) th lag.

The above proposition shows that the standard properties of optimal forecasts are generated by

the assumption of mean squared error loss alone; assumptions on the DGP (beyond stationarity)

are not required.
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For completeness, we verify the above general results for the regime switching process previously

considered. The veriÞcation of the Þrst two properties is simple. The third property is veriÞed by:

V ar
¡
e∗t+h,t

¢
= E

h
σ2st+hν

2
t+h

i
=

kX
st+h=1

π̄(st+h)σ
2
st+h

E
£
ν2t+h|St+h = st+h

¤
= π̄0σ2,

which is constant for all horizons.

The autocovariance properties of the optimal forecast errors under the regime switching process

are given by:

Cov
¡
e∗t+h,t, e

∗
t+h−j,t−j

¢
= E

£
σst+h−jσst+hνt+h−jνt+h

¤
=

kX
st+h−j=1

kX
st+h=1

π̄(st+h−j)πsh+t|t+h−jσst+h−jσst+h ·

E [νt+h−jνt+h|St+h−j = st+h−j , St+h = st+h]
= 0 for j 6= 0.

Thus the optimal forecast errors are conditionally and unconditionally unbiased, have constant

unconditional variance as a function of the forecast horizon, and are serially uncorrelated at all

lags.

4 Asymmetric loss and DGPs with dynamics only in the condi-

tional mean

In this section we consider the combination of asymmetric loss functions with a restricted class of

DGPs; namely those with dynamics in the conditional mean but no dynamics in the remainder of

the conditional distribution. This class of DGPs is still quite broad, and includes ARMA processes

and non-linear regressions. Such a random variable may be written as:

Yt+h = E [Yt+h|Ωt] + εt+h, where εt+h|Ωt ∼ Dh and
E [Yt+h|Ωt] = g (Zt)

where g is some function of Zt ∈ Ωt. The restriction of dynamics only in the conditional mean
implies that the innovation term, εt+h, is drawn from some distribution, Dh, which will generally

14



depend on the forecast horizon, but is independent of Ωt and so is not denoted with a subscript t.

Note that this restriction implies that

E [φ (εt+h) · Zt] = E [φ (εt+h)]E [Zt]

for all functions φ and any vector of elements Zt ∈ Ωt, and that Et [εt+h] = 0.
The types of loss functions we consider here are those that depend only upon the forecast

error, i.e., L
³
Yt+h, �Yt+h,t

´
= L

³
Yt+h − �Yt+h,t

´
= L (et+h,t). Many common loss functions are of

this form, for example lin-lin, quad-quad and linex. However this restriction does rule out certain

loss functions, for example those that focus on proportional errors, such as L
³
Yt+h, �Yt+h,t

´
=³

Yt+h · �Y −1t+h,t − 1
´2
.

As an example, consider the MA data generating process in equation (3), with Gaussian resid-

uals, and a linex loss function. The Þrst order condition for the optimal forecast is

Et

h
exp

n
a
³
Yt+h − �Y ∗t+h,t

´oi
= 1,

so that (from (6))

exp

(
a2σ2

2

Ã
h−1X
i=0

θ2i

!
+ a

Ã ∞X
i=0

θh+iεt−i

!
− a�Y ∗t+h,t

)
= 1

and the optimal forecast is given by

�Y ∗t+h,t =
∞X
i=0

θh+iεt−i +
aσ2

2

h−1X
i=0

θ2i

This is consistent with the result of Granger (1969) and Christoffersen and Diebold (1997), who

show that for this combination of loss function and DGP the optimal forecast is of the form:

�Y ∗t+h,t = Et [Yt+h] + αh,

where αh is a bias term that depends only on the loss function and the forecast horizon. If the con-

ditional distribution of Yt+h|Ωt has dynamics beyond those in the conditional mean, Christoffersen
and Diebold (1997) show that the bias term will depend not only on the forecast horizon and the

loss function, but also on the higher-order dynamics. This would correspond to a violation of our

assumption that Dh is independent of Ωt.

In the case without higher-order dynamics we obtain the following serial correlation properties

of the optimal forecast error.
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Proposition 6 Let Y be any stationary process such that

Yt+h = Et [Yt+h] + εt+h, εt+h|Ωt ∼ Dh

Then Cov
³
e∗t+h,t, e

∗
t+h−j,t−j

´
= 0 for all j ≥ h and any h, for all loss functions that are dependent

only upon the forecast error.

The above proposition shows that under a somewhat restrictive assumption on the DGP, and

only one weak assumption on the loss function, the optimal forecast errors are serially uncorrelated

at lags greater than or equal to the forecast horizon, for any loss function. This implies that given

a sequence of realizations and forecasts,
n³
Yt+h, �Yt+h,t

´oT
t=1
, we may test for forecast optimality

without knowledge of the forecaster�s loss function by testing the serial correlation properties of

the forecast errors. For Þnancial applications the assumption of constant higher-order conditional

moments may be too strong, but in macroeconomic applications the assumption that all dynamics

are driven by the conditional mean may be palatable. In this case, tests of forecast optimality need

not rely on the assumption of MSE loss, as in the papers listed in footnote 1, or on the assumption

that the loss function is known up to an unknown parameter vector and that the forecast model is

linear, as in Elliott, et al. (2002). Instead forecast optimality can be tested with a large degree of

robustness to the loss function of the forecaster.

In the linex-ARMA example discussed above, the optimal forecast error is

e∗t+h,t =
h−1X
i=0

θiεt+h−i − aσ
2

2

h−1X
i=0

θ2i .

In this case the h-period forecast error is an MA(h − 1) process and the variance of the forecast
error is

V ar(e∗t+h,t) = σ
2

Ã
h−1X
i=0

θ2i

!
,

which is non-decreasing in h. The conditions assumed in this section are also sufficient to yield

results on the behaviour of the variance of the optimal forecast error as a function of h, as shown

below.

Proposition 7 Let Y be any stationary process such that

Yt+h = Et [Yt+h] + εt+h, εt+h|Ωt ∼ Dh
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Then V
h
e∗t+h,t

i
is a weakly increasing function of h for all loss functions that are dependent only

upon the forecast error.

Like Proposition 6, the above proposition may be used to test forecast optimality in the absence

of information on the forecaster�s loss function, under the assumption of mean-only dynamics in the

variable of interest. Given a time series of forecasts with a range of horizons, Proposition 7 suggests

testing that the variance of the forecast error is weakly increasing with the forecast horizon.

Overall, the results presented in Sections 3.2.1 and 4 demonstrate that it is the combination

of asymmetric loss and dynamics in the conditional distribution beyond those in the conditional

mean that generate the violations reported in Section 3. Under MSE loss and an arbitrary DGP we

showed that the standard properties hold. Under a weak assumption on the loss function and the

restriction that the conditional density has no dynamics beyond the conditional mean we showed

that while the optimal forecast is biased, the optimal forecast errors are serially uncorrelated for

lags greater than (h− 1) and the unconditional forecast error variance is weakly increasing in h.

5 Properties of Optimal Forecasts under General Conditions

While quadratic loss is commonly used in empirical work, in a more general setting the optimal

forecast, �Y ∗t+h,t, is chosen to minimize the expected loss, where the loss function need not be a

function solely of the forecast error:

L = L
³
Yt+h, �Yt+h,t

´
We will make the following assumptions about the loss function and the data generating process

for Yt+h :

Assumption 4: The function L is analytic except at a Þnite number of points.

Assumption 5: The expected loss, Et

h
L
³
Yt+h, �Yt+h,t

´i
, is Þnite for all values of �Yt+h,t and

for all h.

Assumption 6: The expected marginal loss, Et

h
∂L
³
Yt+h, �Yt+h,t

´
/∂ �Yt+h,t

i
, is Þnite for all

but a Þnite number of values of �Yt+h,t and for all h.

As we are interested only in characterising the behaviour of the optimal forecast, without

actually Þnding the optimal forecast, we do not need to assume that the expected loss has a unique

minimum, or a unique minimum in a region around some value.
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The optimal forecast in general cases is deÞned as:

�Y ∗t+h,t ≡ argmin
�Yt+h,t

Et

h
L
³
Yt+h, �Yt+h,t

´i
(17)

= argmin
�Yt+h,t

Z
L
³
y, �Yt+h,t

´
ft+h,t (y) dy (18)

where Yt+h|Ωt has density ft+h,t.
Under assumption 6 the Þrst order condition becomes11

0 =
∂Et

h
L
³
Yt+h, �Y

∗
t+h,t

´i
∂ �Yt+h,t

= Et

∂L
³
Yt+h, �Y

∗
t+h,t

´
∂ �Yt+h,t


=

Z ∂L
³
y, �Y ∗t+h,t

´
∂ �Yt+h,t

ft+h,t (y) dy. (19)

This condition can be rewritten using what Granger (1999) refers to as the (optimal) generalized

forecast error12, ψ∗t+h,t,13

ψ∗t+h,t ≡
∂L
³
Yt+h, �Y

∗
t+h,t

´
∂ �Yt+h,t

(20)

so that (19) simpliÞes to

Et[ψ
∗
t+h,t] =

Z
ψ∗t+h,tft+h,t (y) dy = 0 (21)

Under a broad set of conditions ψ∗t+h,t is therefore a martingale difference sequence with respect to

the information set used to compute the forecast, Ωt.
14

Often ψ∗t+h,t can be derived explicitly. For the regime switching process/linex loss example the

generalized forecast error is:

11As the bounds on the integral are deÞned by the conditional density of Yt+h given Ωt, they are unaffected by the

choice of �Yt+h,t and so two of the terms in Leibnitz�s rule (see Casella and Berger, 1990, for example) drop out.
12Granger (1999) only considers loss functions that have the forecast error as an argument, and so deÞnes the

generalised forecast error as ψ∗t+h,t ≡ ∂L (et+h,t) /∂et+h,t. Our deÞnition is slightly more general, and in our case the
generalised forecast error is the negative of the generalised forecast error in Granger�s (1999) case.
13While this term is appropriate under prediction-error loss, more generally ψ∗t+h,t can be viewed as the marginal

loss associated with a particular prediction, �Yt+h,t.
14Notice that we are not simply considering linear projections on information in Ωt. Only if Yt+h and the variables

relevant for forecasting it, Xt, are jointly Gaussian will the two be identical.
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ψ∗t+h,t = a− a exp
n
aσst+hνt+h − log

³
�π0st,tP

hϕ
´o
. (22)

Under MSE loss, the h-step generalized forecast error is:

ψ∗t+h,t = −2
³
Yt+h − �Y ∗t+h,t

´
= −2e∗t+h,t, (23)

and so the generalized forecast error is simply the negative of twice the standard forecast error. It

turns out that the close relation of the standard forecast error and the generalized forecast error

in the case of mean squared error loss is the reason for the standard forecast error having such

nice properties in that case. As we showed in the previous section, the properties of the standard

forecast error do not hold for asymmetric loss and nonlinear processes; they do, however, hold for

the generalized forecast error. We now turn our attention to proving properties of the generalized

forecast error analogous to those for the standard case.

5.1 Unbiasedness of the generalized forecast error

It is easy to establish that, although the forecast error, e∗t+h,t, need not be unbiased, the generalized

forecast error, ψ∗t+h,t, is unbiased:

Proposition 8 The generalized forecast error has conditional (and unconditional) mean zero.

For the regime switching process the conditional mean of the generalized forecast error is

Et
£
ψ∗t+h,t

¤
= a− a

³
�π0st,tP

hϕ
´−1

Et
£
exp

©
aσst+hνt+h

ª¤
= a− a

³
�π0st,tP

hϕ
´−1

�π0st,tP
h exp

©
aσ2

ª
= 0

and E
£
ψ∗t+h,t

¤
= 0 by the law of iterated expectations. Thus the generalized forecast error has

conditional and unconditional mean zero for all forecast horizons.

5.2 Non-decreasing expected loss as a function of the forecast horizon

In the standard framework the optimal forecast is unbiased and the loss function is quadratic. This

leads to the equality of the optimal forecast error variance and the expected loss from the optimal
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forecast:

E
h
L
³
Yt+h, �Y

∗
t+h,t

´i
= E

£
e∗2t+h,t

¤
= V ar

¡
e∗t+h,t

¢
. (24)

In general this equality will not hold, and indeed the optimal forecast error variance is not nec-

essarily of interest; rather, the quantity of interest is the expected loss from the forecast. For

the regime switching process we showed that the variance of the optimal forecast error need not

be non-decreasing with the forecast horizon, contrary to results in the standard framework. The

reason for this is a mis-match of the forecaster�s loss/objective function and variance. Sentana

(1998), inter alia, also discusses the problem of mis-matched objective functions. Under general

loss functions, if we instead look at the unconditional expected loss as a function of the forecast

horizon we obtain the following result:

Proposition 9 Under strict stationarity of Yt, the unconditional expected loss of an optimal fore-

cast error is a non-decreasing function of the forecast horizon. The conditional expected loss,

however, need not be a non-decreasing function of the forecast horizon.

The unconditional expected loss as a function of the forecast horizon behaves as follows in the

regime switching example.

Corollary 10 The unconditional expected loss in the regime switching example is

E
h
L
³
Yt+h, �Y

∗
t+h,t; a

´i
= π̄0 log

³
Phϕ

´
and

E
h
L
³
Yt+h, �Y

∗
t+h,t; a

´i
→ log

¡
π̄0ϕ

¢
as h→∞

In the numerical example used above, the expected loss as a function of the forecast horizon is:

[ INSERT FIGURE 5 HERE ]

5.3 Serial correlation in the generalized forecast error

A property of optimal h-step ahead forecast errors under MSE loss is that they are MA processes

or order no greater than h − 1. In a non-linear, non-Gaussian framework an MA process need

not completely describe the dependence properties of the generalized forecast error, however the

autocorrelation function of the generalized forecast error will match some MA (h− 1) process.

20



Proposition 11 The generalized forecast error from an optimal h-step ahead forecast made at time

t exhibits zero correlation with any function of any element of the time t information set, Ωt. In

particular, the generalized forecast error will exhibit zero serial correlation for lags greater than

(h− 1).

For completeness, we derive the autocorrelation function for the optimal generalized forecast

error for our regime switching example.

Corollary 12 The generalized forecast error from an optimal h-step ahead forecast made at time

t in the regime switching example has the following autocovariance function:

Cov
£
ψ∗t+h,t,ψ

∗
t+h−j,t−j

¤
=



V
£
ψ∗t+h,t

¤
= −a2 + a2Pk

st=1
π̄(st)

¡
π0st,tP

hϕ
¢−2 ¡

π0st,tP
hϕ4

¢
j = 0

−a2 + a2Pk
st−j=1 π̄(st−j)

³
π0st−j ,t−jP

hϕ
´−1 ·Pk

st=1
πst,t−j

¡
π0st,tP

hϕ
¢−1 · ¡ϕ0 ¯ ¡π0st,tPh−j¢¢P jϕ 0 < j < h

0 j ≥ h

where ϕ4 ≡ exp
n
2a2σ2st+h

o
.

Using the numerical example above, we present the autocorrelation function for the generalized

optimal forecast error in Figure 6.

[ INSERT FIGURE 6 HERE ]

5.4 Properties of the optimal forecast error under a change of measure

In previous sections we showed that by changing our object of analysis from the usual forecast

error to the �generalised� forecast error we were able to obtain the usual properties of unbiasedness

and zero serial correlation. In this section we instead consider changing the probability measure

used to compute the properties of the forecast error. This analysis is akin to the use of risk-neutral

densities in asset pricing, see Cochrane (2001) for example. In asset pricing one may scale the

objective, or physical, probabilities by the stochastic discount factor, or the discounted ratio of

marginal utilities, to obtain a risk-neutral probability measure, and then apply risk-neutral pricing

methods. Here we will scale the objective probability measure by the ratio of the marginal loss,

∂L/∂�y, to the forecast error, and then show that under the new probability measure, which we

call the �MSE-loss probability measure�, the standard properties hold. The following results thus

suggest an alternative means of evaluating forecasts made using asymmetric loss functions.

21



5.4.1 Unbiasedness under a change of measure

Suppose that
∂L(Yt+h, �Yt+h,t)

∂ �Y
> 0 if Yt+h > �Yt+h,t and

∂L(Yt+h, �Yt+h,t)
∂ �Y

< 0 if Yt+h < �Yt+h,t, and

notice that the conditional distribution of the forecast error, fet+h,t , given Ωt and a forecast
�Yt+h,t,

satisÞes:

fet+h.t

³
e; �Yt+h,t

´
= ft+h,t

³
�Yt+h,t + e

´
for all

³
e, �Yt+h,t

´
∈ R2 (25)

where ft+h,t is the conditional distribution of Yt+h given Ωt.

DeÞnition 13 Assume that¯̄̄̄
¯̄Et

 1

et+h,t

∂L
³
Yt+h, �Yt+h,t

´
∂ �Y

¯̄̄̄¯̄ <∞ for all t, h and �Yt+h,t.

Then let the univariate �MSE-loss probability measure�, f∗et+h,t, be deÞned by

f∗et+h,t
³
e; �Yt+h,t

´
=

1
e ·

∂L(Yt+h,�Yt+h,t)
∂ �Y

¯̄̄̄
Yt+h=�Yt+h,t+e

· fet+h,t
³
e; �Yt+h,t

´
Et

·
1

Yt+h−�Yt+h,t
∂L(Yt+h,�Yt+h,t)

∂ �Y

¸ (26)

≡
(ψt+h,t

³
�Yt+h,t

´
/e) · fet+h,t

³
e; �Yt+h,t

´
Et

·
1

Yt+h−�Yt+h,t
∂L(Yt+h, �Yt+h,t)

∂ �Y

¸ (27)

Proposition 14 The univariate �MSE-loss probability measure�, f∗et+h,t, deÞned above is a proper

probability density function.

Note that by construction the MSE-loss probability measure f∗ is absolutely continuous with

respect to the usual probability measure, f , (that is, f∗∗ << f). See White (1994) for a deÞnition

of absolute continuity.

Proposition 15 The optimal forecast error, e∗t+h,t = Yt+h − �Y ∗t+h,t has conditional (and uncondi-

tional) mean zero under the MSE-loss probability measure.

5.4.2 Zero serial correlation under a change of measure

We can further show that under the MSE-loss probability measure the optimal h-step ahead forecast

errors exhibit zero serial correlation for all lags greater than h − 1. In the proof of the following
proposition we make reference to the bivariate MSE-loss probability measure, but do not need to

explicitly deÞne it in order to obtain the result.
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Proposition 16 The optimal forecast error, e∗t+h,t = Yt+h − �Y ∗t+h,t has zero serial unconditional

correlation under the MSE-loss probability measure for all lags greater than h− 1.

5.5 Forecast error variance and expected loss for elliptically distributed random

variables

Under construction...

6 Conclusion

This paper demonstrated that the properties of optimal forecasts that are almost always tested in

the empirical literature hold only under very restrictive assumptions. We demonstrated analytically

how they are violated under more general assumptions about the loss function, extending the work

of Granger (1969) and Christoffersen and Diebold (1997). The properties that optimal forecasts

must possess were generalized to consider situations where the loss function may be asymmetric

and the data generating process may be nonlinear but strictly stationary.

We introduced a change of measure, analogous to the change of measure from objective to risk-

neutral commonly employed in asset pricing. Under the new probability measure, which we call

the �MSE-loss probability measure�, the optimal h-step forecast error for any general loss function

has zero conditional mean and zero serial correlation for all lags greater than h − 1, ie, the same
properties as an optimal forecast under MSE loss. This is a novel line of analysis, and one that

may lead to new ways of testing forecast optimality.

We have deliberately constrained our analysis in this paper to ignore parameter estimation

uncertainty. Our results are all the stronger since we have shown that simply changing the loss

function and allowing for nonlinear dynamics can imply that all the standard properties an optimal

forecast is usually thought to possess no longer remain valid. Parameter estimation uncertainty is

another source that could lead to rejections of tests of forecast optimality in practice, see Hoque,

et al. (1988) and Magnus and Pesaran (1987, 1989).

Our analysis does not imply that �anything goes� and that forecast rationality is not testable.

Rather, it suggests that researchers have to use economic arguments to establish the underlying

loss function as suggested in a recent paper by Elliott, Komunjer and Timmermann (2002) or,
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alternatively, try to conduct tests that are robust to the shape of the loss function by exploiting

(testable) restrictions on the dynamics of the data generating process. Two such results were

presented in section 4 of this paper; the Þrst on the autocorrelation structure of optimal forecast

errors, and the second on the variance of optimal forecast errors as a function of the forecast

horizon. Deriving testable implications of forecast optimality with limited knowledge of the DGP

and the forecaster�s loss function is an interesting area for future research.
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Appendix

Proof of Proposition 1. The h-step-ahead forecast error has a conditional expectation of

Et
£
e∗t+h,t

¤
= −1

a
log
³
�π0st,tP

hϕ
´

which, since P is a probability matrix with an eigenvalue of unity, is different from zero even when

h→∞. The unconditional expectation of the forecast error is

E
£
e∗t+h,t

¤
= E

£
Et
£
e∗t+h,t

¤¤
=

kX
st=1

π̄(st)E

·
−1
a
log
³
�π0st,tP

hϕ
´
|St = st

¸

= −1
a

kX
st=1

π̄(st) log
³
ι0st,tP

hϕ
´

= −1
a
π̄0λh,

where λh = log
¡
Phϕ

¢
and ιst = Pr [St|St = st] is a k× 1 zero-one selection vector that is unity in

the stth element and is zero otherwise.

Clearly the unconditional bias remains, in general, non-zero for all h. In the limit as h → ∞
we have

E
£
e∗t+h,t

¤→ −1
a
π̄0 log

¡
ιπ̄0ϕ

¢
= −1

a
π̄0ι log

¡
π̄0ϕ

¢
= −1

a
log
¡
π̄0ϕ

¢
which is also, in general, non-zero.
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Proof of Proposition 2. From Proposition 1 we have

V ar
¡
e∗t+h,t

¢
= E

£
e∗2t+h,t

¤− 1

a2
λ0hπ̄π̄

0λh

= E

"µ
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1

a
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− 1

a2
λ0hπ̄π̄
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σ2st+hν

2
t+h

i
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E
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1
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·
log
³
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´2¸− 1
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σ2st+hν

2
t+h|St+h = st+h

i
− 1
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+
1
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− 1
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λ0hπ̄π̄

0λh

+
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kX
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π̄(st) log
³
ϕ0Ph0
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ιstι

0
st log

³
Phϕ
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= π̄0σ2 +
1

a2
λ0h

Ã
kX

st=1

π̄(st)ιstι
0
st

!
λh − 1

a2
λ0hπ̄π̄

0λh

= π̄0σ2 +
1

a2
λ0h
¡¡
π̄ι0
¢¯ I − π̄π̄0¢λh.

Here π̄(i) is the i
th element of the vector π̄, the outer product ιstι

0
st is a k × k matrix of all zeros,

except for the (st, st)
th element, which equals one. To examine the variance of the optimal h-step

ahead forecast as h→∞, notice that

λ∞ ≡ lim
h→∞

λh = ι log
¡
π̄0ϕ

¢
.

Furthermore, for any vector π̄ such that π̄0ι = 1,

ι0
¡¡
π̄ι0
¢¯ I − π̄π̄0¢ ι = ι0 ¡¡π̄ι0¢¯ I¢ ι− ι0π̄π̄0ι = π̄0ι− ¡π̄0ι¢0 ¡π̄0ι¢ = 0.

As h→∞, the variance of the optimal h-step ahead forecast therefore converges to

V ar
£
e∗t+h,t

¤ → π̄0σ2 +
1

a2
log
¡
π̄0ϕ

¢
ι0
¡¡
π̄ι0
¢¯ I − π̄π̄0¢ ι log ¡π̄0ϕ¢

= π̄0σ2.
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Proof of Corollary 3. Follows directly from the proof of Proposition 2.

Proof of Proposition 4. The autocovariance function for an h-step forecast is:
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For Þxed h, as j →∞, Cov
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e∗t+h,t, e

∗
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→ 1

a2
λ0h ((π̄ι0 ¯ ιπ̄0)− π̄π̄0)λh = 0.
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Proof of Proposition 5. The Þrst order condition implies that

L
³
Yt+h, �Yt+h

´
≡

³
Yt+h − �Yt+h

´2
∂Et

h
L
³
Yt+h, �Y

∗
t+h,t

´i
∂ �Yt+h,t

= −2
³
Et [Yt+h]− �Y ∗t+h,t

´
= 0, so

�Y ∗t+h,t = Et [Yt+h] , and

e∗t+h,t = Yt+h −Et [Yt+h]

Thus the optimal forecast under MSE is conditionally and unconditionally unbiased for all forecast

horizons, for all DGPs.

The remainder of the proof follows directly from the proofs of Propositions 9 and 11, presented

below, when one observes the relation between the forecast error and the generalized forecast error

(deÞned in Section 5), ψ∗t+h,t, for the mean squared loss case: e∗t+h,t = −1
2ψ

∗
t+h,t .

Proof of Proposition 6. Under the conditions given Christoffersen and Diebold (1997) show

that the optimal forecast may be written as

�Y ∗t+h,t = Et [Yt+h] + αh

and so the optimal forecast error is e∗t+h,t = Yt+h − �Y ∗t+h,t = εt+h − αh. Since αh is constant for
Þxed h,

Cov
£
e∗t+h,t, e

∗
t+h−j,t−j

¤
= Cov [εt+h, εt+h−j ]

= E [εt+h · εt+h−j ]
= E [Et [εt+h] · εt+h−j ] for ∀j ≥ h
= 0

Proof of Proposition 7. Consider h > 0 and j > 0. Let

Yt+h+j = Et [Yt+h+j ] + ηt+h+j , ηt+h+j |Ωt ∼ Dh+j
Yt+h+j = Et+j [Yt+h+j ] + εt+h+j , εt+h+j |Ωt+j ∼ Dh
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From Christoffersen and Diebold (1997) we know that under the above assumptions �Y ∗t+h,t =

Et [Yt+h] + αh, so

e∗t+h+j,t = ηt+h+j − αh+j
e∗t+h+j,t+j = εt+h+j − αh

where αh and αh+j are constants. Thus Vt

h
e∗t+h+j,t

i
= Vt

£
ηt+h+j

¤ ≡ σ2h+j , and Vt he∗t+h+j,t+ji ≡
σ2h. Note also that V

h
e∗t+h+j,t

i
= E

h
Et

h
η2t+h+j

ii
= σ2h+j , and similarly V

h
e∗t+h+j,t+j

i
= σ2h. Now

we seek to show that σ2h+j ≥ σ2h.

V
£
e∗t+h+j,t

¤
= Vt [Yt+h+j −Et [Yt+h+j ]]
= Vt [εt+h+j + (Et+j [Yt+h+j ]−Et [Yt+h+j ])]
= σ2h + Vt [Et+j [Yt+h+j ]] + 2Covt [εt+h+j , Et+j [Yt+h+j ]−Et [Yt+h+j ]]
≥ σ2h

= V
£
e∗t+h,t

¤
where the Þrst equality follows from the equality of the conditional and unconditional variance

of the forecast error in this scenario; the third equality follows from the fact that Et [Yt+h+j ] is

constant given Ωt; the weak inequality follows from the non-negativity of Vt [Et+1 [Yt+2]] and that

Et+j
£
εt+h+j · φ

¡
Zt+j

¢¤
= 0; the Þnal equality follows from the fact that Dh does not change with

t. The cases where h = 0 and/or j = 0 are trivial. Thus V
h
e∗t+h+j,t

i
≥ V

h
e∗t+h,t

i
∀h, j ≥ 0.

Proof of Proposition 8.

Et
£
ψ∗t+h,t

¤
= Et

∂L
³
yt+h, �y

∗
t+h,t

´
∂�yt+h,t

 = 0,
by the Þrst-order condition for the optimality of �Y ∗t+h,t, and E

£
ψ∗t+h,t

¤
= 0 by the law of iterated

expectations.

Proof of Proposition 9. By strict stationarity of
³
Yt+h, �Y

∗
t+h,t

´
for all h and j we have

E
h
Et

h
L
³
Yt+h, �Y

∗
t+h,t

´ii
= E

h
Et−j

h
L
³
Yt+h−j , �Y ∗t+h−j,t−j

´ii
and so the unconditional expected loss only depends on the forecast horizon, and not on the period

when the forecast was made.
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By the optimality of the forecast �Y ∗t+h,t we also have, for ∀j ≥ 0,

Et

h
L
³
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∗
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´i
≥ Et

h
L
³
Yt+h, �Y

∗
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³
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∗
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´i
where the second line follows using the law of iterated expectations and the third line follows

from strict stationarity. Hence the unconditional expected loss is a non-decreasing function of the

forecast horizon.

To show that the conditional expected loss may be an increasing or a decreasing function of the

forecast horizon we need only construct an example. We will use the 2-state regime switching/linex

loss example from Section 3. Assume that �πst,t = [0.95, 0.05]
0. Then from equations (11) and (12)

we know that optimum forecasts and resulting conditional expected losses are: �Y ∗t+1,t = 0.5376,

�Y ∗t+2,t = 0.6616, Et
h
L
³
Yt+1, �Y

∗
t+1,t

´i
= 3.1685 and Et

h
L
³
Yt+2, �Y

∗
t+2,t

´i
= 3.7390. If, on the other

hand, �πst,t = [0.05, 0.95]
0 then the optimal forecasts and resulting conditional expected losses are:

�Y ∗t+1,t = 1.8714, �Y ∗t+2,t = 1.7927, Et
h
L
³
Yt+1, �Y

∗
t+1,t

´i
= 8.1050 and Et

h
L
³
Yt+2, �Y

∗
t+2,t

´i
= 7.9995.

So if we start from a point where there is a high probability of being in the low volatility state, then

the conditional expected loss is increasing with h. But if we start from a point where there is a high

probability of being in the high volatility state, then the conditional expected loss is decreasing

with h.

Proof of Corollary 10. Follows using similar steps as in the proofs of Propositions 2 and 4.

Available from authors upon request.

Proof of Proposition 11. Since σ (Yt, Yt−1, ...) ⊆ Ωt by assumption we know that ψ∗t+h−j,t−j =
∂L
³
Yt+h−j , �Y ∗t+h−j,t−j

´
/∂�y is an element of Ωt for all j ≥ h. From the Þrst-order condition for the

optimality of �Y ∗t+h,t we have:

E
£
ψ∗t+h,t|Ωt

¤
= E

 ∂L
³
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∗
t+h,t

´
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¯̄̄̄
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 = 0,
which implies E

£
ψ∗t+h,t · γ (Xt)

¤
= 0 for all Xt ∈ Ωt and all functions γ. Thus ψ∗t+h,t is uncorrelated

with any function of any element of Ωt. This implies that

E
£
ψ∗t+h,t · ψ∗t+h−j,t−j

¤
= 0 for all j ≥ h
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and so ψ∗t+h,t is uncorrelated with ψ
∗
t+h−j,t−j .

Proof of Corollary 12. Follows using similar steps as in the proofs of Propositions 2 and 4.

Available from authors upon request.

Proof of Proposition 14. We need to show that f∗et+h ≥ 0 for all possible values of e, and thatR
f∗et+h,t

³
u; �Yt+h,t

´
du = 1. By the assumption that

∂L(Yt+h,�Yt+h,t)
∂ �Y

> 0 if Yt+h > �Yt+h,t and

∂L(Yt+h,�Yt+h,t)
∂ �Y

< 0 if Yt+h < �Yt+h,t we have that

1

e
·
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³
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´
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¯̄̄̄
¯̄
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> 0 for all e 6= 0

Thus both the numerator and denominator in the deÞnition of f∗et+h,t are non-negative, so

f∗et+h,t
³
e; �Yt+h,t

´
≥ 0, if fet+h,t

³
e; �Yt+h,t

´
≥ 0. By the construction of f∗et+h,t it is clear that it

integrates to 1.

Proof of Proposition 15.
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³
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´
de

= 0

as the second part of the second line equals zero by the Þrst-order condition for an optimal forecast.

The unconditional mean is also zero by the law of iterated expectations.

Proof of Proposition 16. Since E∗
h
e∗t+h,t

i
= 0 we need only show thatE∗

h
e∗t+h,t · e∗t+h+j,t+j

i
=

0 for j ≥ h.
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£
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¤
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for j ≥ h by the LIE

= 0

by Proposition 15.
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Figure 1: Linear-exponential loss function and unconditional optimal forecast error density, two-

state regime switching example.
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Figure 2: Bias in the optimal forecast for various forecast horizons, two-state regime switching

example.
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Figure 3: Variance of the optimal h-step forecast error for various forecast horizons, two-state

regime switching example.
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Figure 4: Autocorrelation in the optimal h-step forecast error for various forecast horizons, two-state

regime switching example.

37



1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Horizon

Ex
pe

ct
ed

 lo
ss

Expected loss from optimal forecast as a function of forecast horizon

Figure 5: Expected loss from the optimal forecast for various forecast horizons, two-state regime

switching example.
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Figure 6: Autocorrelation in the generalised optimal forecast error for various forecast horizons,

two-state regime switching example.
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