Econometrics strikes back: GMM and two-way fixed effects

StataCorp LLC

June 28, 2022

(StataCorp LLC)

GMM and two-way fixed effects

L ▲ ৗ ► ৗ ∽ ৭ ে June 28, 2022 1/53

(日) (四) (日) (日) (日)

Context

- Growing interest in estimation and inference of average treatment effects on the treated
 - Inference: What standard errors should I use
 - Is the tool I am using the correct one to obtain the parameter of interest

< □ > < □ > < □ > < □ > < □ > < □ >

Context

- Growing interest in estimation and inference of average treatment effects on the treated
 - Inference: What standard errors should I use
 - Is the tool I am using the correct one to obtain the parameter of interest
- Treatment effect heterogeneity
- Malign two-way fixed effects

- Two-way fixed effects allows for desired heterogeneity
 - Known tool with desirable properties

(日) (四) (日) (日) (日)

- Two-way fixed effects allows for desired heterogeneity
 - Known tool with desirable properties
- How the proposed estimators and standard errors can be obtained using GMM
- Illustrate how we can use gmm to fit two sets of estimators
 - Show some programming tips/tricks for gmm
 - Show some other programming tools in Stata
- Illustrate how the modeling, not the tool, is the problem

• • = • • = •

Basic Concepts: Econometric Theory

(StataCorp LLC)

GMM and two-way fixed effects

 ▶ ◀ ≣ ▶ ≣
 ∽ Q Q

 June 28, 2022
 4 / 53

(日) (四) (日) (日) (日)

- Notation based on Wooldridge (2021)
- Time: 1 . . . *T*
- Intervention: $d \in \{0, 1\}$
- Intervention: at time q.
 - Pre-intervention $t = 1, \ldots, q 1$
 - Intervention $t = q, \ldots, T$
- Potential outcome $y_t(d)$
 - $y_t(1)$ under the intervention
 - $y_t(0)$ without the intervention
- Treatment effect at time the $te_t = y_t(1) y_t(0)$
- Average treatment effect on the treated at time t is $\tau_t \equiv E[y_t(1) y_t(0)|d = 1]$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• The outcome is $y_t = y_t(0) + d[y_t(1) - y_t(0)]$

(日) (四) (日) (日) (日)

• The outcome is $y_t = y_t(0) + d [y_t(1) - y_t(0)]$

$$E(y_t|d) = E[y_t(0)|d] + dE(te_t|d)$$

= $E[y_t(0)|d] + d[(1-d)E(te_t|d=0) + dE(te_t|d=1)]$
= $E[y_t(0)|d] + d\tau_t$

< □ > < 同 > < 回 > < 回 > < 回 >

Framework: Common intervention period $E[y_t(0)|d]$

The potential outcome of not receiving treatment is

$$y_t(0) = y_1(0) + (y_t(0) - y_1(0)) = y_1(0) + g_t(0)$$

• Common trends assumption: $E[g_t(0)|d] = E[g_t(0)] \equiv \theta_t$

Framework: Common intervention period $E[y_t(0)|d]$

The potential outcome of not receiving treatment is

$$y_t(0) = y_1(0) + (y_t(0) - y_1(0)) = y_1(0) + g_t(0)$$

- Common trends assumption: $E[g_t(0)|d] = E[g_t(0)] \equiv \theta_t$
- Because d is binary $E[y_1(0)|d] = \lambda + \zeta d$

Framework: Common intervention period $E[y_t(0)|d]$

The potential outcome of not receiving treatment is

$$y_t(0) = y_1(0) + (y_t(0) - y_1(0)) = y_1(0) + g_t(0)$$

- Common trends assumption: $E[g_t(0)|d] = E[g_t(0)] \equiv \theta_t$
- Because d is binary $E[y_1(0)|d] = \lambda + \zeta d$
- Therefore $E[y_t(0)|d] = \lambda + \zeta d + \theta_t$

$$E(y_t|d) = E[y_t(0)|d] + d\tau_t$$

= $\lambda + \theta_t + \zeta d + d\tau_t$

•
$$E(y_t|d) = \lambda + \theta_t + \zeta d + d\tau_t$$

イロト イポト イヨト イヨト

- $E(y_t|d) = \lambda + \theta_t + \zeta d + d\tau_t$
- We have an estimating equation within the potential outcomes framework
- We rely on common trends assumption for identification
- The estimating equation allows for time-varying treatment effects
- We can use our regression methods to estimate the parameters

- $E(y_t|d) = \lambda + \theta_t + \zeta d + d\tau_t$
- We have an estimating equation within the potential outcomes framework
- We rely on common trends assumption for identification
- The estimating equation allows for time-varying treatment effects
- We can use our regression methods to estimate the parameters
- Following a similar argument we can make the effect change with covariates
- We can use margins or gmm to obtain the objects of interest

- Intervention occurs at different times $r \in \{q, q+1, ... T\}$
- Potential outcome $y_t(r)$ with never treated at $y_t(\infty)$

•
$$te_t(r) = y_t(r) - y_t(\infty)$$
 and $\tau_{rt} = E[te_t(r)|d_r = 1]$

• Common trends $E\left[y_t\left(\infty\right) - y_1\left(\infty\right) | d_q, \dots, d_T\right] = E\left[y_t\left(\infty\right) - y_1\left(\infty\right)\right] \equiv \theta_t$

イロト イポト イヨト イヨト

•
$$y_t = y_t(\infty) + d_q[y_t(q) - y_t(\infty)] + \ldots + d_T[y_t(T) - y_t(\infty)]$$

イロト イポト イヨト イヨト

•
$$y_t = y_t(\infty) + d_q[y_t(q) - y_t(\infty)] + \ldots + d_T[y_t(T) - y_t(\infty)]$$

$$E(y_t|\mathbf{d}) = E[y_t(\infty)|\mathbf{d}] + d_q E[te_t(q)|\mathbf{d}] + \ldots + d_T E[te_t(T)|\mathbf{d}]$$

= $E[y_t(\infty)|\mathbf{d}] + d_q E[te_t(q)|d_q = 1] + \ldots + d_T E[te_t(T)|d_T = 1]$

• Using common trends and $y_t\left(\infty\right)=y_1\left(\infty\right)+g_t\left(\infty\right)$ we have that:

$$E[y_t(\infty)] = E[y_1(\infty) | \mathbf{d}] + E[g_t(\infty) | \mathbf{d}]$$

= $\eta + \lambda_q d_q + \ldots + \lambda_T d_T + \theta_t$

イロト 不得 トイヨト イヨト 二日

•
$$y_t = y_t(\infty) + d_q[y_t(q) - y_t(\infty)] + \ldots + d_T[y_t(T) - y_t(\infty)]$$

$$E(y_t|\mathbf{d}) = E[y_t(\infty)|\mathbf{d}] + d_q E[te_t(q)|\mathbf{d}] + \ldots + d_T E[te_t(T)|\mathbf{d}]$$

= $E[y_t(\infty)|\mathbf{d}] + d_q E[te_t(q)|d_q = 1] + \ldots + d_T E[te_t(T)|d_T = 1]$

• Using common trends and $y_t\left(\infty\right)=y_1\left(\infty\right)+g_t\left(\infty\right)$ we have that:

$$E[y_t(\infty)] = E[y_1(\infty) | \mathbf{d}] + E[g_t(\infty) | \mathbf{d}]$$

= $\eta + \lambda_q d_q + \ldots + \lambda_T d_T + \theta_t$

• Our estimating equation can then be written as

$$E(y_t|\mathbf{d}) = \eta + \theta_t + \lambda_q d_q + \ldots + \lambda_T d_t + \tau_{qt} d_q + \ldots + \tau_{Tt} d_T$$

< □ > < 同 > < 回 > < 回 > < 回 >

• Although treatment timing differs we reach analogous conclusions

< □ > < 同 > < 回 > < 回 > < 回 >

- Although treatment timing differs we reach analogous conclusions
- Our potential outcome understanding holds
- Our concept of common trends as an indentifying assumption holds
- We can use regression tools to obtain the parameters of interest

Staggered intervention: Callaway and Sant'Anna

- Treatment effects are estimated for each treatment cohort at different points in time
- Reduce the problem to multiple two period problems
- Fits into potential outcome framework
- Similar identifying assumptions
- They propose three estimators: IPW, RA, and IPWRA

- Remember: $E[te_t(r)|d_r = 1] \equiv \tau_{rt}$
- The IPW estimator in Callaway and Sant'Anna is given by:

< □ > < 同 > < 回 > < 回 > < 回 >

- Remember: $E[te_t(r)|d_r = 1] \equiv \tau_{rt}$
- The IPW estimator in Callaway and Sant'Anna is given by:

$$\tau_{rt} = E\left[\left(\frac{d_r}{E\left[d_r\right]} - \frac{\frac{p_r(X)d_\infty}{1-p_r(X)}}{E\left[\frac{p_r(X)d_\infty}{1-p_r(X)}\right]}\right)(Y_t - Y_{r-1})\right]$$

• $p_r(X)$ is an estimate of the probability of belonging to cohort r

< □ > < 同 > < 回 > < 回 > < 回 >

$$\tau_{rt} = E\left[\frac{d_r}{E[d_r]}\left(Y_t - Y_{r-1} - m_{rt}\left(X\right)\right)\right]$$
$$m_{rt}\left(X\right) = E\left[Y_t - Y_{r-1}|X, d_{\infty} = 1\right]$$

• $m_{rt}(X)$ is a regression using the never treated observations

イロト イボト イヨト イヨト

IPWRA

$$\tau_{rt} = E\left[\left(\frac{d_r}{E\left[d_r\right]} - \frac{\frac{p_r(X)d_{\infty}}{1 - p_r(X)}}{E\left[\frac{p_r(X)d_{\infty}}{1 - p_r(X)}\right]}\right)\left(Y_t - Y_{r-1} - m_{rt}\left(X\right)\right)\right]$$

 Callaway and Sant'Anna in their implementation have that p_r(.) and m_{rt}(X) use the same covariates

< □ > < 同 > < 回 > < 回 > < 回 >

What can we say

- Two-way fixed effects is an adequate tool, if we incorporate the heterogeneity we want to model
- Wooldridge (2021) and Callaway and Sant'Anna (2020) provide estimators that can be framed within GMM and fit using gmm
- Wooldridge (2021) and Callaway and Sant'Anna (2020) use methods different than GMM.

• • = • • = •

What can we say

- Two-way fixed effects is an adequate tool, if we incorporate the heterogeneity we want to model
- Wooldridge (2021) and Callaway and Sant'Anna (2020) provide estimators that can be framed within GMM and fit using gmm
- Wooldridge (2021) and Callaway and Sant'Anna (2020) use methods different than GMM.
- gmm gives equivalent point estimates but allows a wider array of standard errors
- gmm illustrates the costs of allowing for more heterogeneity (hidden in the Callaway and Sant'Anna framework)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Basic Concepts: gmm and margins

(StataCorp LLC)

GMM and two-way fixed effects

■ ▶ ▲ ■ ▶ ■ ∽ � ペ June 28, 2022 17 / 53

< □ > < 同 > < 回 > < 回 > < 回 >

- gmm solves moment conditions of the form: $E[Z'e(X,\theta)] = 0$
- e (X, θ) are residuals for regression and scores of probit or logit likelihoods.
- You specify moments using parenthesis before options and Z using the instruments() option
- You could specify gmm as a command or create a program (.ado)

・ 何 ト ・ ヨ ト ・ ヨ ト

- margins uses and expression to obtain effects after estimation command
- Usually the expression is a command's default prediction
- Any function of the fitted model parameters is valid (nlcom, lincom)
- Effects could be population averaged effects or effects at a point

. sysuse auto, clear (1978 automobile data)

. regress mpg price i.foreign##c.length, vce(robust) noheader

mpg	Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
price	0002262	.0001654	-1.37	0.176	0005561	.0001037
foreign Foreign length	15.60087 1846372	14.27441 .0257499	1.09 -7.17	0.278 0.000	-12.87581 2360068	44.07754 1332677
foreign# c.length Foreign	0930218	.0804212	-1.16	0.251	2534577	.067414
_cons	57.41443	4.776039	12.02	0.000	47.8865	66.94237

. estimates store regress

- 20

イロト イボト イヨト イヨト

. margins, dydx(foreign) post vce(unconditional)					
Average marginal effects	Number	of	obs	=	74
Expression: Linear prediction, predict() dy/dx wrt: 1.foreign					

	dy/dx	Unconditional std. err.	t	P> t	[95% conf.	interval]
foreign Foreign	-1.880953	1.629301	-1.15	0.252	-5.131319	1.369413

Note: dy/dx for factor levels is the discrete change from the base level.

. estimates store dydx

イロト イボト イヨト イヨト

. estimates restore regress (results regress are active now) . margins r.foreign, post vce(unconditional) contrast(nowald) Contrasts of predictive margins Number of obs = 74 Expression: Linear prediction, predict()

	Contrast	Unconditional std. err.	[95% conf.	interval]
foreign (Foreign vs Domestic)	-1.880953	1.629301	-5.131319	1.369413

. estimates store contrast

イロト 不得下 イヨト イヨト 二日

```
. estimates restore regress
(results regress are active now)
. margins, vce(unconditional) at(foreign=0) at(foreign=1) ///
> contrast(at(r) nowald) post
Contrasts of predictive margins Number of obs = 74
Expression: Linear prediction, predict()
1._at: foreign = 0
2._at: foreign = 1
```

	Contrast	Unconditional std. err.	[95% conf.	interval]
_at (2 vs 1)	-1.880953	1.629301	-5.131319	1.369413

. estimates store atcontrast

イロト 不得 トイヨト イヨト 二日

. etable, estimates(dydx contrast atcontrast) column(estimates)

	dydx	contrast	atcontrast
Car origin Foreign	-1.881 (1.629)		
Car origin (Foreign vs Domestic)		-1.881 (1.629)	
_at (2 vs 1)			-1.881
Number of observations	74		(1.020)

・ 何 ト ・ ヨ ト ・ ヨ ト

```
. collect remap colname[1.foreign] = colname[r1vs0.foreign]
(13 items remapped in collection ETable)
. collect remap colname[r2vs1._at] = colname[r1vs0.foreign]
(8 items remapped in collection ETable)
. collect layout
Collection: ETable
    Rows: coleq#colname[]#result[_r_b _r_se] result[N]
    Columns: etable_estimates#stars[value]
    Table 1: 4 x 3
```

	dydx	contrast	atcontrast
Car origin (Foreign vs Domestic) Number of observations	-1.881 (1.629) 74	-1.881 (1.629)	-1.881 (1.629)

< □ > < □ > < □ > < □ > < □ > < □ >

Effects using gmm

```
. local xb {b1}*price + {b2}*length + {b3}*1.foreign + {b4}*c.length#1.foreign
. local xb0 {b1}*price + {b2}*length + {b0}
. local xb1 `xb0' + {b3} + {b4}*length
```

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Effects using gmm

. gmm (mpg: mpg - (`xb' + {b0})) 111 (at0: `xb0' - {at0}) 111 > (dydx: `xb1' - {at0} - {dydx}), 111 > instruments(mpg: price i.foreign##c.length) 111 > winitial(unadjusted, independent) onestep iterlogonly > Iteration 0: GMM criterion Q(b) = 475.49917 Iteration 1: GMM criterion Q(b) = 2.076e-20 Iteration 2: GMM criterion Q(b) = 3.729e-28

イロト 不得下 イヨト イヨト 二日

Effects using gmm

.gmm GMM estimation Number of parameters = 7 Number of moments = 7 Initial weight matrix: Unadjusted

Number of obs = 74

	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
/b1	0002262	.0001597	-1.42	0.157	0005392	.0000867
/b2	1846372	.0248647	-7.43	0.000	2333711	1359034
/b3	15.60087	13.78374	1.13	0.258	-11.41477	42.6165
/b4	0930218	.0776567	-1.20	0.231	2452262	.0591826
/ъ0	57.41443	4.611861	12.45	0.000	48.37535	66.45351
/at0	21.32035	.7128755	29.91	0.000	19.92314	22.71756
/dydx	-1.880953	1.573294	-1.20	0.232	-4.964552	1.202647

Instruments for equation mpg: price Ob.foreign 1.foreign length Ob.foreign#co.length 1.foreign#c.length _cons Instruments for equation at0: _cons Instruments for equation dydx: _cons

イロト 不得下 イヨト イヨト 二日

gmm with a program evaluator

- You can also write an evaluator for gmm
- Flexibility vs. complexity
- What you would do if you were writing a routine

・ 何 ト ・ ヨ ト ・ ヨ ト

Evaluator

/// /// ///

(StataCorp LLC)

Evaluator: specifying equations and linear combinations

```
. *! version 1.0.0 25jun2022
. program _twfe_gmm_fr
  1.
        version 17
  2.
        syntax varlist if. at(name)
                                                                        111
>
                                                                        111
>
                         y(string)
                                                                        111
>
                                                                        111
>
  з.
         tokenize `varlist'
•
  4.
         tempvar breg bpom bdydx
  5.
         tempname beta
  6.
         local reg `1´
         local pom0 `2'
  7.
  8.
         local dydx `3'
  9.
         quietly matrix score double `breg' = `at' `if', eq(#1)
         quietly matrix score double `bpom' = `at' `if', eq(#2)
 10.
         quietly matrix score double `bdydx' = `at' `if', eq(#3)
 11.
 12.
         quietly replace `reg' = `y' - `breg' `if'
         quietly replace `pom0' = `breg' - `bpom' `if'
 13.
 14.
         quietly replace 'dvdx' = 'breg' - 'bpom' - 'bdvdx' 'if'
 15. end
```

イロト 不得下 イヨト イヨト 二日

Tricking gmm to do at()

```
. quietly regress mpg price i.foreign##c.length, vce(robust) noheader
```

```
. matrix beta = e(b)
```

. _fv_term_info Ob.foreign 1.foreign, individuals fvrestripe matrix(beta)

. ret list

scalars:

```
r(tsops) = 0
r(k_terms) = 2
```

macros:

```
r(individuals) : "price __000002 __000003 length"
    r(varlist) : "Ob.foreign 1.foreign"
    r(type2) : "variable"
    r(type1) : "variable"
```

matrices:

```
r(mean2) : 1 x 1
r(mean1) : 1 x 1
```

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

Tricking gmm to do at()

. ma beta	at list beta a[1.7]				
y1	price 00022623	000002 0	000003 15.600867	length 18463724	co.length# co000002 0
y1	c.length# c000003 09302183	_cons 57.414433			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tricking gmm to do at()

```
. program _twfe_gmm_fr, sortpreserve
  1.
             version 17
  2.
             syntax varlist if, at(name)
                                                                        111
                                                                        111
>
                          v(string)
                                                                        111
>
                          atlist(string)
                                                                        111
>
>
                                                                        111
>
  з.
             * OMMITING OUTPUT
             quietly replace `reg' = `y' - `breg'
                                                       `if´
             // Forming at() objects
  4.
             local k: colsof `at'
  5.
             matrix `beta' = `at'[1, 1..`k'-2]
  6.
             _fv_term_info `atlist', individuals fvrestripe matrix(`beta')
  7.
             local f0: word 2 of `r(individuals)'
  8.
             local f1: word 3 of `r(individuals)'
  9.
             replace f0^{-} = 1
 10.
             replace f1' = 0
 11.
             matrix score double `xb0' = `beta' `if'
 12.
             quietly replace `pom0' = `xb0' - `bpom' `if'
 13.
             quietly replace f0' = 0
 14.
             quietly replace `f1' = 1
 15.
             matrix score double `xb1' = `beta' `if'
 16.
             quietly replace `dydx' = `xb1' - `bpom' - `bdydx' `if'
 17. end
```

< ロ > < 同 > < 回 > < 回 > < 回 > <

What have we learned

- Two-way fixed effects is not broken
- Heterogeneous treatment effects fall into our potential outcome framework
- We can think of the problem as a set of estimating equations
- Getting effects can be done via margins or gmm

Stata Examples

(StataCorp LLC)

GMM and two-way fixed effects

■ ▶ ◀ ■ ▶ ■ つへで June 28, 2022 36 / 53

< □ > < □ > < □ > < □ > < □ >

Wooldridge (2021): Using margins

- Staggered treatment and heterogeneity in the covariates
- Key variables:
 - Define a cohort variable
 - Define an observation level indicator of treatment w_{it} (w)

• • = • • = •

Data

. describe Contains da Observatio Variabl	ta from stag ns: es:	ggered_6.dt 3,270 7	a	24 Jun 2022 08:37		
Variable name	Storage type	Display format	Value label	Variable label		
id year y w x1 x2 logy	int float byte byte byte float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		cross-sectional identifier 2011 to 2016 outcome, levels =1 if treated time constant control time constant control outcome variable, natural log		

Sorted by: id

Note: Dataset has changed since last saved.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cohort

```
. generate double cohort = 0
. bysort id: generate ttimes = year[_n] if w==1
(2,787 missing values generated)
. bysort id: egen cohort0 = min(ttimes)
(2,172 missing values generated)
. replace cohort = cohort0 if cohort0!=.
(1,098 real changes made)
```

. tab cohort

cohort	Freq.	Percent	Cum.
0	2,172	66.42	66.42
2014	804	24.59	91.01
2015	192	5.87	96.88
2016	102	3.12	100.00
Total	3,270	100.00	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Treatment indicator interacted with cohort and year
 - i.w#2014bn.cohort#2014bn.year
 - i.w#2014bn.cohort#2015bn.year ...
 - i.w#2016bn.cohort#2016bn.year
- Treatment indicator interacted with cohort and year and covariate x1
 - i.w#2014bn.cohort#2015bn.year#c.x1 ...
- Interaction and levels of covariates, cohort, and time
 - (c.x1)##(2014bn.year 2015bn.year 2016bn.year i.cohort)

regress

	qui reg logy i.w#2014bn.cohort#2014bn.year i.w#2014bn.cohort#2015bn.year	111
>	i.w#2014bn.cohort#2016bn.year i.w#2015bn.cohort#2015bn.year	111
>	i.w#2015bn.cohort#2016bn.year i.w#2016bn.cohort#2016bn.year	///
>	i.w#2014bn.cohort#2014bn.year#c.x1	111
>	i.w#2014bn.cohort#2015bn.year#c.x1	111
>	i.w#2014bn.cohort#2016bn.year#c.x1	111
>	i.w#2015bn.cohort#2015bn.year#c.x1	///
>	i.w#2015bn.cohort#2016bn.year#c.x1	111
>	i.w#2016bn.cohort#2016bn.year#c.x1	111
>	(c.x1)##(2012bn.year 2013bn.year 2014bn.year	111
>	2015bn.year 2016bn.year i.cohort),	111
>	vce(cluster id)	

margins to compute heterogeneous effects

```
. quietly generate over = cohort if cohort!=0
. quietly margins 2014.year 2015.year 2016.year, ///
dydx(w) over(over) vce(unconditional) ///
> noestimcheck post
```

. _coef_table

(Std. err. adjusted for 545 clusters in id)

	U Coefficient	Jnconditional std. err.	t	P> t	[95% conf.	interval]		
0.w	(base outcome)							
1.w								
over#year								
2014 2014	.1800395	.0224137	8.03	0.000	.1360115	.2240676		
2014 2015	.1758216	.0229169	7.67	0.000	.1308052	.2208379		
2014 2016	.1849706	.0251249	7.36	0.000	.135617	.2343243		
2015 2014	0	(omitted)						
2015 2015	.0978163	.0414103	2.36	0.019	.0164725	.17916		
2015 2016	.1327046	.0447888	2.96	0.003	.0447245	.2206847		
2016 2014	0	(omitted)						
2016 2015	0	(omitted)						
2016 2016	.092621	.0654263	1.42	0.157	0358982	.2211401		

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

gmm to compute heterogeneous effects

.gum Iteration 0: EE criterion = 1.498e-24 Iteration 1: EE criterion = 6.227e-32 Heterogeneous-treatment-effects regression Data type: Repeated cross-sectional Estimator: Two-way fixed-effects ...

Number of obs = 3,270

(Std. err. adjusted for 545 clusters in id)

	ATET	Robust std. err.	z	P> z	[95% conf.	interval]	
ATET cohort#							
year 2014 2014 2014 2015 2014 2016 2015 2015 2015 2016 2016 2016	.1800395 .1758216 .1849706 .0978163 .1327046 .092621	.0222936 .022794 .0249902 .0411884 .0445487 .0650757	8.08 7.71 7.40 2.37 2.98 1.42	0.000 0.000 0.000 0.018 0.003 0.155	.1363449 .1311461 .1359907 .0170885 .0453907 034925	.2237342 .2204971 .2339505 .1785441 .2200185 .220167	
OME1 cohort# year 2014 2014	2.401441	.0765251	31.38	0.000	2.251454	2.551427	
OMEO cohort# year							
2014 2014	2.221401	.0753911	29.47	0.000	2.073637	2.369165	
OME1 cohort# year 2014 2015	2.303018	.0743222	30.99	0.000	2.157349	2.448687	
OMEO cohort# year							
2014 2015	2.127196	.0753975	28.21	0.000	1.97942	2.274973	
OME1 cohort# _year						4	
(StataCorp	LLC)		GMM	and two	-way fixed ef	fects	

June 28, 2022 43 / 53

Nonlinear models for heterogeneous effects (maybe)

```
. use did_staggered_6_corner, clear
. generate double cohort = 0
. bysort id: generate ttimes = year[_n] if w==1
(4,786 missing values generated)
. bysort id: egen cohort0 = min(ttimes)
(3,018 missing values generated)
. replace cohort = cohort0 if cohort0!=.
(2,982 real changes made)
```

イロト イポト イヨト イヨト

Nonlinear models for heterogeneous effects (maybe)

	qui	poisson y i.w#2004bn.cohort#2004bn.year i.w#2004bn.cohort#2005bn.year	111
>		i.w#2004bn.cohort#2006bn.year i.w#2005bn.cohort#2005bn.year	111
>		i.w#2005bn.cohort#2006bn.year i.w#2006bn.cohort#2006bn.year	///
>		i.w#2004bn.cohort#2004bn.year#c.x	///
>		i.w#2004bn.cohort#2005bn.year#c.x	///
>		i.w#2004bn.cohort#2006bn.year#c.x	///
>		i.w#2005bn.cohort#2005bn.year#c.x	///
>		i.w#2005bn.cohort#2006bn.year#c.x	///
>		i.w#2006bn.cohort#2006bn.year#c.x	///
>		(c.x)##(2002bn.year 2003bn.year 2004bn.year 2005bn.year	///
>		2006bn.year i.cohort),	///
>		vce(cluster id)	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonlinear models for heterogeneous effects (maybe)

Expression: Predicted number of events, predict() dy/dx wrt: 1.w Over: over

(Std. err. adjusted for 1,000 clusters in id)

	dy/dx	Unconditional std. err.	z	P> z	[95% conf.	interval]	
0.w	(base outcome)						
1.w over#year 2004 2004 2004 2005 2004 2006 2005 2004	1.017501 6.00713 4.569667 0	1.033521 2.162626 1.369919 (omitted)	0.98 2.78 3.34	0.325 0.005 0.001	-1.008164 1.76846 1.884675	3.043166 10.2458 7.254658	
2005 2005 2005 2006 2006 2004 2006 2005 2006 2005	7.170127 7.185492 0 13.73294	3.355386 2.781751 (omitted) (omitted) 10.32555	2.14 2.58 1.33	0.033 0.010 0.184	.5936913 1.73336 -6.504777	13.74656 12.63762 33.97065	

Note: dy/dx for factor levels is the discrete change from the base level.

イロト 不得 トイヨト イヨト 二日

Callaway and Santana gmm

- Obtain group and time cohorts
- Compute effects of interest for each group and time cohort
- Form the moment conditions
- Example for IPW. Remeber:

$$\tau_{rt} = E\left[\left(\frac{d_r}{E\left[d_r\right]} - \frac{\frac{p_r(X)d_{\infty}}{1 - p_r(X)}}{E\left[\frac{p_r(X)d_{\infty}}{1 - p_r(X)}\right]}\right)(Y_t - Y_{r-1})\right]$$

Group and time cohorts

```
. // Group and time computation
. generate keep = inlist(year, 2013, 2014) & inlist(cohort, 0, 2014)
. keep if keep
(2,278 observations deleted)
. // Depvar
. bysort id (year): generate double dy = logy[2] - logy[1]
. // Treatment variable
. generate double gt = cohort>0 if dy!=.
```

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

Getting estimates

```
. // Propensity score
. quietly logit gt x1
. predict double px if e(sample)
(option pr assumed; Pr(gt))
.
. // Normalizing means
. summarize gt if dy!=., meanonly
. local mgt = r(mean)
.
. // Propensity score weight
. generate double pxr = px*(1-gt)/(1-px)
. summarize pxr, meanonly
. local mpxr = r(mean)
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Getting estimates

. // atet

- . generate double atet = (gt/`mgt` pxr/`mpxr`)*dy
- . sum atet

Variable	Obs	Mean	Std. dev.	Min	Max
atet	992	.1982376	.7244637	-2.467532	3.133791

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

Getting estimates

. csdid logy x1, ivar(id) time(year) gvar(cohort) method(stdipw)

Difference-in-difference with Multiple Time Periods

Number of obs = 992

イロト イボト イヨト イヨト

Outcome model : weighted mean Treatment model: stabilized inverse probability

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
g2014 t_2013_2014	.1982376	.0271813	7.29	0.000	.1449632	.251512

Control: Never Treated See Callaway and Sant Anna (2021) for details

Full gmm

Iterat Iterat note: GMM es Number	ion 0: ion 1: model i timatio of par	EE criterion EE criterion s exactly iden ameters = 90	n = 2.308e- n = 9.533e- ntified.	17 32				
Initia	l weigh	t matrix: Unad	ljusted		Numbe	er of obs =	3,270	
			(St	d. err.	adjusted	for 545 clust	ers in id)	
		Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]	
atet1	_cons	0068411	.0263192	-0.26	0.795	0584258	.0447435	
treat1	x1 _cons	0229986 7230127	.0472623	-0.49 -1.28	0.627	115631 -1.832976	.0696338 .3869508	
gmean1	_cons	.2701613	.0199381	13.55	0.000	.2310833	.3092393	
psmean	1 _cons	.2702069	.0199471	13.55	0.000	.2311112	.3093025	
atet2	_cons	0106981	.0280311	-0.38	0.703	0656381	.0442419	
treat2	x1 _cons	0229986 7230127	.0472623 .5663183	-0.49 -1.28	0.627	115631 -1.832976	.0696338 .3869508	
gmean2	_cons	.2701613	.0199381	13.55	0.000	.2310833	. 3092393	
psmean	2 _cons	.2702069	.0199471	13.55	0.000	.2311112	.3093025	
atet3	_cons	.1982376	.0271813	7.29	0.000	.1449632	.251512	
(out	nut omit	ted)					4	

(output omitted) (StataCorp LLC)

GMM and two-way fixed effect

Conclusion

- Our usual tools gmm and margins help us understand heterogeneous treatment effects
- gmm works in all cases but ...
- Our usual estimators work fine (two-way fixed effects is not a broken toy)
- We looked at some Stata tools (etable, collect, ...)