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Abstract

We contribute to the recent debate on the instability of the slope of the Phillips
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proach robust to weak instruments. Our robust approach focuses directly on

the Phillips curve and allows general forms of instability, in contrast to current

approaches based either on structural models with time-varying parameters or

instrumental variable estimates in ad-hoc sub-samples. We find evidence of a

weakening of the slope of the Phillips curve starting around 1980. We also offer

novel insights on the Phillips curve during the recent pandemic: The flattening has

reverted and the Phillips curve is back.
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1 Introduction

Inflation and unemployment seem to have become disconnected in the last decades.
The correlation between inflation and real activity at business cycle frequencies has
decreased in the 1990s (e.g. Atkeson and Ohanian, 2001, Stock and Watson, 2007, 2008,
2020), especially during the years of the expansion that followed the recent financial
crisis of 2007-2009 - the so-called missing deflation (see, among others, Hall, 2011,
and Ball and Mazumder, 2011, 2021). The decrease in the cyclical correlation between
inflation and unemployment has been attributed by some to a flattening of the slope of
the Phillips curve. The instability of the parameters in macroeconomic models such as
the Phillips curve has been emphasized by many researchers, including Boldea and Hall
(2013). More recently, the dramatic increase in both inflation and inflation expectations
has raised important policy questions: if the Phillips curve indeed flattened, it would
imply that more extreme policy measures would be necessary to maintain inflation at
its target value. Thus, the question of whether the Phillips curve flattened is of high
empirical relevance.

One of the main challenges in the estimation of the Phillips curve is the presence
of endogeneity, as inflation and unemployment are jointly determined in equilibrium.
There are two main approaches to handling endogeneity: estimating the Phillips
curve as part of structural macroeconomic models (either Structural VARs or DSGEs)
or focusing on the Phillips curve relationship by relying on instrumental variables
methods. Both have advantages and disadvantages. On the one hand, it is well-known
how to estimate DSGEs and Structural VARs in the presence of instabilities; however,
DSGEs and Structural VARs are full-information estimation procedures, and potential
misspecification in any other part of the model might contaminate the estimates of
the Phillips curve parameters. This could be a serious problem during the recent
financial crisis, when structural models have to confront serious misspecification
challenges (Canova, Ferroni and Matthes, 2020; Kuo, Inoue and Rossi, 2020; Den
Haan and Drechsel, 2021). On the other hand, limited-information approaches, such
as instrumental variables (e.g. Galı́ and Gertler, 1999, or Galı́ et al., 2005), are less
affected by potential misspecification but methodologies to address time-variation in
instrumental variable models were lacking in the literature.

This paper makes two main contributions. The first contribution of this paper is
to directly estimate the time-varying structural Phillips curve via limited-information
methods in an environment robust to instabilities. To our knowledge, this is the
first paper that estimates a general time-varying Phillips curve using instrumental
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variables. Our approach relies on the novel methodology proposed by Inoue et al.
(2022) to estimate local projections and instrumental variables models with time-
varying parameters (TVP-IV). Importantly, their approach allows time-variation in
the parameters of the first stage regression as well as in the main regression, thus
permitting a time-varying relationship between the instruments and the endogenous
variables. The presence of weak instruments, however, might invalidate instrumental
variable estimation. Given the empirical importance of the weak instrument issue in
the estimation of the Phillips curve, our second contribution is to propose a novel
methodological TVP-IV estimator robust to weak instruments.

Using the framework above, we shed light on whether and how the Phillips curve
changed over time in a way consistent with the seminal, reduced-form approach by
Galı́ and Gertler (1999). We find that the slope of the Phillips curve weakened since the
early 1980s: the slope decreased, in absolute value, by 68 percent in the last two decades.
However, we also find that it started reverting back in the most recent pandemic period.
We also find that the decrease in the correlation between unemployment and inflation
cannot be attributed to monetary policy; rather, to the decrease in the slope of the
Phillips curve. Our results are complemented by a comparison with the commonly
used benchmark IV model with constant parameters and the importance of instabilities
is also demonstrated via structural break tests. We establish our main results in a
specification that relies on a valid and strong set of instruments. However, we show
that our results are robust to using the same set of instruments and specifications in
the literature, carefully accounting for the presence of weak instruments. In addition,
our findings do not rely on the rational expectations assumption, as our specification
uses SPF survey measures of inflation expectations.

It is crucial to note that even small changes (in magnitude) in the slope of the
Phillips curve could have important economic consequences. When shocks are big or
their effect compounds, even a small flattening (in magnitude) could have important
effects on the economy and on the conduct of monetary policy. For example, changes
in the inflation target represent significant policy changes, and firms will likely respond
by adjusting prices more frequently with higher trend inflation; thus, the slope of the
Phillips curve would become steeper - see Ball et al. (1988). In order to stimulate the
economy in this environment, central banks would decrease interest rates more than
under constant price flexibility, as pointed out by L’Huillier and Schoenle (2022).1

1The flattening of the Phillips curve is not the only potential explanation for the disconnect between
inflation and real variables during the Great Recession; other explanations which we entertain in our
analysis include the possibility that inflation or economic slack are mis-measured and that monetary
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Relative to the existing literature, our more general approach allows us to confirm
the change in the slope of the Phillips curve in the 1990s as a robust result that emerges
directly in the classical and appealing instrumental variable approach - a result that
was infeasible prior to our work due to lacking methodologies. The decrease in the
slope of the Phillips curve, and its recent rise during the pandemic, come to the fore as
the reason behind the decrease in the correlation between inflation and unemployment,
without requiring auxiliary and restrictive assumptions on other parts of the model
describing the economy, nor prior knowledge of the time and pattern of the instability.
As we show, our results are very robust to using different measures of slack, different
approaches to measure inflation expectations (including using survey’s forecasts) and
different model specifications.

In contrast to our work, most of the existing literature relies either on reduced-
form time-varying parameter approaches (Ball and Mazumder, 2019; Ashley and
Verbrugge, 2019) or semi-structural time-varying parameter approaches (Galı́ and
Gambetti, 2019); structural models’ estimation in given sub-samples (Del Negro et
al., 2020) or via full-information, time-varying parameter VARs (Cogley and Sargent,
2005; Primiceri, 2006; Cogley and Sbordone, 2008); or instrumental variable estimation
in either given sub-samples (Barnichon and Mesters, 2020, 2021) or with discrete,
estimated breakpoints (Hall, Han and Boldea, 2012), Markov-switching models (Groen
and Mumtaz, 2008) and non-linearities (Forbes, Gagnon and Collins, 2021). More in
detail, a first strand of the literature uses time-varying parameter methods in reduced-
form or semi-structural models. Reduced-form approaches study the correlation
between inflation and unemployment without resolving the endogeneity problem.
For example, Stock and Watson (2009) survey the literature on the evaluation of
inflation forecasts in the United States and suggest that Phillips curve forecasts are
better than competing multivariate forecasts, although their performance is episodic
relative to a univariate benchmark, pointing to the presence of instabilities. Ball and
Mazumder (2019) argue that expected inflation was backward-looking until the late
1990s, but then became strongly anchored at the central bank’s target value, which
would explain why inflation did not decrease in the high unemployment period around
the Great Recession. Differently from Stock and Watson (2009) and Ball and Mazumder
(2019), we study not only the correlation but also the structural Phillips curve. Ashley
and Verbrugge (2019) show that the slope of the correlation varies across business
cycle phases. Using a model where unemployment is decomposed in persistent and

policy is better at stabilizing inflation, thus flattening aggregate demand.
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transitory components, they find that inflation responds differently depending on
whether fluctuations in the unemployment gap are persistent or transitory. More
broadly, a large literature has pointed to the existence of time-variation in inflation
(see e.g. Mertens and Nason, 2020). Our findings of time-variation in the slope of the
Phillips correlation are in line with theirs; the difference between their approach and
ours is that we take a model-free approach to time-variation.

A second strand of the literature focuses on instabilities in semi-structural models.
Galı́ and Gambetti (2019) adopt a semi-structural approach by estimating a time-
varying parameter Vector Autoregression (VAR) model to identify economic shocks via
sign and long-run restriction, then use such shocks to purge the Phillips curve variables
and achieve identification of the Phillips curve parameters. In a similar spirit, Bergholt
et al. (2022) estimate structural shocks using sign restrictions in constant-parameter
VARs; then, they investigate changes in the Phillips curve over time using inflation and
unemployment data purged by the relevant shocks in either sub-samples or rolling
windows. Differently from Galı́ and Gambetti (2019) and Bergholt et al. (2022), we
directly estimate the Phillips curve using instrumental variable methods that do not
require identifying all the structural shocks in the economy.

A third strand of the literature relies on structural models. For example, Cogley and
Sargent (2005) and Primiceri (2006) estimate time-varying parameter structural VAR
models for the US economy. Cogley and Sbordone (2008) include a time-varying trend
component in inflation, modeled as a random walk; they estimate the time-varying
parameter VAR under cross-equation restrictions following the approach in Sbordone
(2002, 2006). In related work, Ascari, Bonomolo and Haque (2022) use a piece-wise long-
run trend in a time-varying VAR to describe a long-run Phillips curve. Del Negro et al.
(2020) investigate whether the flattening of the Phillips curve explains the disconnect
between inflation and unemployment by focusing on time-varying parameter structural
VARs and DSGE models, accounting for the potential time-variation in the relationship
between inflation and real activity by separately estimating their models in two sub-
samples, before and after 1989. The break date is determined by an a-priori choice, as
a compromise between choosing a date where the economy became more stable (i.e.
the Great Moderation, that started in 1984) and the stability of inflation itself, which
seems to date back to the mid-1990s. Differently from their work, we rely directly on
estimating the structural Phillips curve via limited-information methods, which are
more robust to misspecification, and let the instability in inflation dynamics freely
emerge within our time-varying instrumental variable estimator.
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A fourth strand of the literature focuses on instrumental variables or external
information. McLeay and Tenreyro (2019) argue that the fact that inflation follows a
seemingly exogenous statistical process, unrelated to the output gap, does not mean
that the Phillips curve has disappeared. They show that, in a theoretical model, mone-
tary policy can generate a negative correlation between inflation and the output gap by
increasing inflation when output is below potential, thus blurring the identification of
the Phillips curve. They find evidence against the disappearance of the Phillips curve
using regional data. The identification problem pointed out by McLeay and Tenreyro
(2019), however, can be addressed by using instrumental variables, like we do. Barni-
chon and Mesters (2020, 2021) estimate the Phillips curve and the Phillips multiplier
using narrative monetary policy shocks as instruments to address the endogeneity
problem. To take into account time-variation, they split the sample at a known break
date. The more general framework by Hall, Han and Boldea (2012) allows for multiple
discrete shifts at unknown breakpoints in the conditional mean parameters, while the
variance is assumed to be constant. Overall, while these papers perform sub-sample
analysis (for example, Del Negro et al. (2020) use 1990 as the break point estimate),
none of these papers allow for general patterns of time variation, which is instead the
main contribution of our paper.

The remainder of the paper is organized as follows. The next section presents the
methodology. Section 3 discusses the empirical evidence on the evolution of both the
Phillips relation as well as the slope of the structural Phillips curve over time. Section
4 investigates whether the decrease in the correlation between unemployment and
inflation is due to monetary policy or to a decrease in the slope of the Phillips curve,
and Section 5 discusses the most recent evidence on the Phillips curve, including the
recent pandemic. Section 6 concludes.

2 The Phillips Curve Model and the Methodology

Our benchmark Phillips curve is the classic version by Galı́ and Gertler (1999):

πt = c + γ f Et (πt+1) + γbπt−1 + λxt + ut,

where πt denotes inflation, xt denotes the measure of real marginal cost, Et (.) denotes
conditional expectations at time t and ut is an unobserved shock. This specification is
the same as Galı́ and Gertler (1999) and Galı́ et al. (2005): a hybrid New Keynesian
Phillips Curve (NKPC) with lagged inflation and the unemployment gap as the forcing
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variable. We will estimate the NKPC using instrumental variables under the rational
expectations assumption.

Our main focus is estimating the slope of the Phillips curve, namely λ, which is the
object of a lively debate. On the one hand, several researchers found that the slope of
the Phillips curve has flattened or even that the Phillips curve “died,” that is, its slope
approached zero – see Coibion and Gorodnichenko (2015), Blanchard (2016), Ball and
Mazumder (2019), and Stock and Watson (2020), among others. On the other hand,
Barnichon and Mesters (2021) and Bergholt et al. (2022), among others, argue that it did
not. For example, using a Phillips-multiplier approach, Barnichon and Mesters (2021)
argue that the inflation-unemployment trade-off went from being very large before
1990 to being small, but still significant, after 1990, and that the decline in the trade-off
is mostly due to the anchoring of inflation expectations. Tenreyro and Twaites (2016)
argue that the disconnect between inflation and real activity may not only be due to a
flat Phillips curve but also to a flat aggregate demand, such as one where monetary
policy strongly responds to inflation. For example, if the central bank achieves perfect
inflation stability, the researcher would observe inflation to be uncorrelated with real
activity even if the Phillips curve slope were not zero. Del Negro et al. (2020) find
that the slope of the Phillips curve substantially weakened over time, and that is the
main reason for the disconnect between inflation and unemployment. Bergholt et al.
(2022) find that the Phillips curve is “dead” only unconditionally: once it is purged for
supply shocks, the Phillips curve is alive and well, and may even have steepened since
the financial crisis.2

As is well-known in the literature, there are several econometric challenges in
estimating the structural Phillips curve. A first challenge is that the forcing variable xt

may be correlated with the structural error term ut, thus resulting in an endogeneity
problem. An additional challenge is that the expected inflation term Et(πt+1) is not
only endogenous but also unobservable. To address these issues, we consider an
Instrumental Variable (IV) approach to identification, as in Galı́ and Gertler (1999),
Galı́ et al. (2005) and Barnichon and Mesters (2020), among others. Suppose Zt is a
vector of valid instruments such that

E[Zt(πt − γbπt−1 − γ f πt+1 − λxt)] = 0.

Under the rational expectations assumption, we can include as instruments in Zt any

2Bergholt et al. (2022) estimate the Phillips curve using OLS after purging the variables by supply
shocks.
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predetermined variables, such as lags of the endogenous variables.

2.1 The Time-Varying Instrumental Variable (TVP-IV) Estimator

Our contribution is to estimate the Phillips curve slope allowing the parameters to
be time-varying using the time-varying parameter instrumental variable (TVP-IV)
approach by Inoue et al. (2022). We consider the following time-varying parameter
Phillips curve:

πt = ct + γ f ,tπt+1 + γb,tπt−1 + λtxt + ut,

where the variance of the error term is also allowed to be time-varying. The
parameters of primary interest are thus ct, γ f ,t, γb,t, λt and the shock volatility – in
particular, the slope of the Phillips curve, λt.

We estimate the parameters of interest using an IV approach. The TVP-IV regression
as follows:3 xt

πt+1

πt

 =


β′

x,z,t cx,t βx,πb,t

β′
π f ,z,t cπ f ,t βπ f ,πb,t

λtβ
′
x,z,t + γ f ,tβ

′
π f ,z,t λtcx,t + γ f ,tcπ f ,t + ct βπ,πb,t


 zt

1
πt−1

+

 vx,t

vπ f ,t

vπ,t

 ,

(1)
where (xt, πt+1)

′ are endogenous variables, and Zt = (z′t, πt−1)
′, where zt are the

(excluded) instruments, and βπ,πb,t = λtβx,πb,t + γ f ,tβπ f ,πb,t + γb,t. Note that the
estimation directly constrains the parameter βπ,πb,t to be a function of the actual
parameters of interest. The parameter path is estimated according to a minimum
weighted average risk criterion, as in Müller and Petalas (2010) and, in particular,
Inoue et al. (2022).

Let θt = [β′
x,z,t, cx,t, βx,πb,t, β′

π f ,z,t, cπ f ,t, βπ f ,πb,t, λt, ct, γ f ,t, γb,t, vech(Σv,t)′]′, where Σv,t

is the covariance matrix of [vx,t, vπ f ,t, vπ,t]′. Let θt evolve slowly over time according
to a deterministic function of time, where θt = θ + δt and δt describes small amounts
of time variation (of magnitude T−1/2). The risk of estimating the wrong parameter
path depends on the true parameter path θt and no estimator achieves uniformly low
risk over all such paths. As explained below, we estimate the parameter path based
on Müller and Petalas (2010) and, in particular, Inoue et al. (2022), by minimizing the

3The first two equations below are the first-stage equations, and the third equation is obtained by
substituting the first-stage equations into the Phillips curve.
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weighted average risk, where the weighting is over alternative true parameter paths.
The optimal parameter path estimator will assume a weighting function for δt such
that θt is a multivariate Gaussian random walk with a small variance:

θt = θt−1 + ϵt,

where ϵt is an i.i.d. disturbance with variance (1/T)σ2
ϵ,t, and T is the total sample size.

Modeling the time variation in the parameters as a random walk has a long tradition
in the literature – see e.g. Canova (1983), Cogley and Sargent (2005) and Primiceri
(2006), among others.

Let us highlight that we not only allow the coefficients of the Phillips curve to be
time-varying in the main regression but also in the first stage regression, thus allowing
a time-varying relationship between the instruments and the endogenous variables.

2.2 The TVP-IV Estimator Robust to Weak Instruments

We estimate the reduced-form parameters in eq. (1) by rewriting it as eq. (2):

 xt

πt+1

πt

 =


β′

x,z,t cx,t βx,πb,t

β′
π f ,z,t cπ f ,t βπ f ,πb,t

β′
π,z,t cπ,t βπ,πb,t


 zt

1
πt−1

+

 vx,t

vπ f ,t

vπ,t

 , (2)

where β′
π,z,t = λtβ

′
x,z,t + γ f ,tβ

′
π f ,z,t, cπ,t = λtcx,t + γ f ,tcπ f ,t + ct, and βπ,πb,t = λtβx,πb,t +

γ f ,tβπ f ,πb,t + γb,t. In particular, the reduced-form parameters are β′
π,z,t, cπ,t and βπ,πb,t,

rather than λt, γ f , and γb. We let θ
r f
t = [β′

x,z,t, cx,t, βx,πb,t, β′
π f ,z,t, cπ f ,t, βπ f ,πb,t, βπ,z,t, cπ,t,

βπ,πb,t, vech(Σv,t)′]′, where Σv,t is the covariance matrix of [vx,t, vπ f ,t, vπ,t]′. Note that,
unlike the previous section, in this section we estimate directly the vector of reduced-
form parameters, rather than the structural parameters underlying them. The pa-
rameters of primary interest (λ̂t, γ̂ f , γ̂b) can then be recovered from the reduced-from
parameter estimate θ̂

r f
t .

Here below we provide the detailed algorithm we used to estimate the time varying
parameters, adapted from Müller and Petalas (2010), as discussed in Inoue et al. (2022).
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2.3 Description of the Estimation Algorithm

Let θt include all the slope and (co)variance parameters in eq.(2), which can be written
as {θt}T

t=1 = {θ + δt}T
t=1, with ∑T

t=1 δt = 0. The sample information about θ and
{δt}T

t=1 is approximately independent and described by the pseudo model (see Müller
and Petalas (2010)):

θ̂ = θ + T−1/2Ŝν0,

ĤV̂−1st(θ̂) = Ŝ−1δt + νt, t = 1, · · · , T,
(3)

with νt
i.i.d.∼ N (0, Ĥ). Here, Ĥ, V̂, and Ŝ are consistent estimators of the counterparts

defined below.
Consider the corresponding stable system of eq.(2), where all the parameters

are time-invariant, denoted as θ. Let yt = (xt, πt+1, πt)′, vt = (vx,t, vπ f ,t, vπ,t)′, and
f (yt|zt, πt−1, θ) denote a family of conditional density functions for yt under the
assumption that {vt} has zero mean and covariance matrix Σv.

In particular, let ∑T
t=1 ℓt(θ), ℓt(θ) = ln f (yt|zt, πt−1, θ) denote the (potentially mis-

specified) likelihood of eq.(2), let st(θ) = ∂ℓt(θ)/∂θ, t = 1, . . . , T, denote the sequence
of (q × 1) score vectors, let ht(θ) = −∂st(θ)/∂θ′, t = 1, . . . , T, denote the sequence
of (q × q) Hessians. Then,

√
T(θ̂ − θ0) ⇒ N (0, S), where the sandwich matrix S is

typically estimated as Ŝ = Ĥ−1V̂Ĥ−1 and Ĥ = 1
T ∑T

t=1 ht(θ̂). If the score vectors are
i.i.d., then V̂ = 1

T ∑T
t=1 st(θ̂)st(θ̂)′; however, in this context, the residuals in eq.(2) might

be serially correlated, thus HAC estimators, such as Newey and West (1987), may be
used to account for the serial correlation.

Assuming an approximately stationary model and a weighting function for {δt}T
t=1

that is a demeaned multivariate Gaussian random walk, as in Müller and Petalas
(2010), the asymptotically WAR minimizing path estimators {θ̂t}T

t=1 can be obtained as
follows:

1. For t = 1, . . . , T, let x̃t and ỹt be all the elements of Ĥ−1st(θ̂) and ĤV̂−1st(θ̂),
respectively.

2. For ci ∈ C = {0, c1, c2, . . . , cnG},4 i = 0, 1, . . . , nG, compute

(a) ri = 1 − ci
T , ξi,1 = x̃1, and ξi,t = riξi,t−1 + x̃t − x̃t−1, t = 2, . . . , T;

4For the factor of proportionality c2

T2 , Müller and Petalas (2010) suggest a default choice of minimizing
WAR relative to an equal-probability mixture of c ∈ {0, 5, 10, . . . , 50}, which represents the standard
deviation of the endpoint of the random walk weighting function and covers a wide range of magnitudes
for the time variation.
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(b) the residuals {ξ̃i,t}T
t=1 of a linear regression of {ξi,t}T

t=1 on {rt−1
i Iq}T

t=1;

(c) ξ i,T = ξ̃i,T, and ξ i,t = riξ i,t+1 + ξ̃i,t − ξ̃i,t+1, t = 1, . . . , T − 1;

(d) {θ̂i,t}T
t=1 = {θ̂ + x̃t − riξ i,t}T

t=1;

(e) qLL(ci) = ∑T
t=1(riξ i,t − x̃t)′ỹt where w̃0 = 1 and

w̃i =
√

T(1 − r2
i )r

T−1
i /((1 − r2T

i ))exp[−1
2 qLL(ci)].

3. Compute wi = w̃i/ ∑nG
j=0 w̃j.

4. The parameter path estimator is given by {θ̂t}T
t=1 = {∑nG

i=0 wi θ̂i,t}T
t=1.

5. With the weighting functions for {δt}T
t=1 and θ interpreted as priors from a

Bayesian perspective, the approximate posterior for θt is a mixture of multivariate
normals N

(
θ̂i,t, T−1Ŝκt(ci)

)
, i = 0, . . . , nG with mixing probabilities wi where

Ŝ = Ĥ−1V̂Ĥ−1, κt(c) =
c(1+e2c+e2ct/T+e2c(1−t/T))

2e2c−2 , and κt(0) = 1.

In the weak instrument case, we need an extra step to recover the structural
parameter estimates (λ̂t, γ̂ f ,t, γ̂b,t) from the reduced-form parameters θ

r f
t . Therefore, in

the weak instrument case, we implement the procedure described above in points 1-5,
with θ

r f
t instead of θt, followed by the additional step below:

6. In steps 4-5, we obtain the point estimates of the reduced form parameters
θ̂

r f
t as well as their joint distribution, denoted by F

θ̂
r f
t
(·), for t = 1, 2, .... The

estimates λ̂t, γ̂ f ,t, γ̂b,t can be recovered from the reduced-from parameter estimate
θ̂

r f
t . Then, we randomly draw M times from the joint distribution F

θ̂
r f
t
(·) and

repeatedly recover λ̂i
t, γ̂i

f ,t, γ̂i
b,t, i = 1, 2, ...,M. The confidence bands and the

median estimate can be obtained by the corresponding quantiles.

This estimation procedure differs from that in Inoue et al. (2022) in step 6; in fact,
this estimation procedure is robust to weak instruments since that won’t affect the
estimation of the reduced form parameters θt. The detailed formulas used for the
calculations are provided in the Appendix.
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2.4 Theoretical Justification of the Methodology

The theoretical justification for the robustness of the proposed methodology to weak
instruments is discussed in the next propositions, while the theoretical assumptions
are presented in Section D of the Appendix. While Inoue et al. (2022) focus on a local
projections approach when the data generating process follows a time-varying parame-
ter vector moving process, this paper considers instrumental variables estimation of
time series models, such as the Phillips curve, allowing parameters to vary over time.

The first proposition shows that the time-varying estimates are optimal, in the sense
that the expected loss of estimating the parameter path in the misspecified TVP-IV
model and the best inference in a corresponding correctly specified model is identical
(asymptotically). The second proposition instead states that inference is robust even in
the presence of weak instruments.

Proposition 1. Let the assumptions in the Appendix hold and let θ∗T be the time-
varying parameter path that minimizes the expected risk in the correctly specified
model in the sense of Müller and Petalas (2010, Condition 1), with parameter path
equal to θt = θ0 + T− 1

2 δ0
( t

T
)

relative to the distribution of ∆ being a mixture of
N(eθ̂ + Σi ŝ, Σi) with mixing probabilities w̃i defined in equation (21) in Müller and
Petalas (2010), where e is a stacked vector of T identity matrices of the same dimension
as θ, ŝ = [s1(θ̂)

′, s2(θ̂)
′, ..., sT(θ̂)

′]′, Σi is defined in Theorem 4 in Müller and Petalas
(2010). Let Θ̂r∗

T be the reduced-form parameter path that minimizes expected risk of the
TVP-IV model in equation (2) relative to the distribution of ∆r ∼ N(eθ̂r + Σr ŝr, Σr),
where ŝr is the vector of stacked scores ŝr

t , where ŝr
t = Ξ̂−1V̂−1st(θ0), and Σr = K +

(ITk − KDh̃r)e(e′Dh̃r e − e′Dh̃r KDh̃r e)−1e′(ITk − Dh̃r K), where K = Σδ(Dh̃r Σδ + ITk)
−1,

Σδ = Eδ(δδ′), e = [Ik · Ik]
′, Dh̃r = I ⊗ h̃r, h̃r = Ŝ−1 = ĤV̂−1Ĥ. In addition, let

Θ∗
T(∆T) be the reduced-form parameter path that minimizes the expected risk relative

to the distribution ∆T. Assume that the researcher minimizes a loss function LT(·)
defined over θ, δ and the action a∗ which is the parameter path estimate) such that
LT

(
θ0,
[
δ0

(
1
T

)
, ..., δ0

(T
T
)]

, a∗(∆1,T)
)
− LT

(
θ0,
[
δ0

(
1
T

)
, ..., δ0

(T
T
)]

, a∗(∆2,T)
)

→ 0
whenever the total variation between the two mixtures ∆1,T and ∆2,T converges to
zero, where ∆1T and ∆2T are two mixtures of nG normal distributions. Then the
difference between LT

(
θ0,
[
δ0

(
1
T

)
, ..., δ0

(T
T
)]

, Θ∗
T

)
in the correctly specified model

and LT

(
θ0,
[
δ0

(
1
T

)
, ..., δ0

(T
T
)]

, Θr∗
T

)
in the misspecified TVP-LP model converges to
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zero in the Prohorov metric.

Proposition 2. Let Cθ,1−α denote the (1 − α) credible set for the reduced-form parameter
from the quasi posterior distribution defined in step 5 of the Algorithm presented in sec-
tion 2.3. Let θr f denote the reduced-form parameter such that θr f = g(θ) for some func-
tion g(·), and define Cθr f ,1−α as Cθr f ,1−α =

{
θr f ∈ Θr f : There is θ ∈ Θ such that θr f = g(θ)

}
.

Then
P(θr f ∈ Cθr f ,1−α) ≥ 1 − α

where P is the probability measure implied by the quasi posterior distribution of θ in
step 5 of the aforementioned algorithm, and the equality holds if g is one-to-one. 5

Throughout the paper, we will compare our results to the benchmark model with
constant parameters. In particular, we report results based on instability tests and
comment on the differences between our time-varying approach and the constant
parameter instrumental variable model typically considered in the literature.

3 Has the Phillips Curve Flattened Over Time?

In this section we discuss our main empirical evidence on the three main concepts
surrounding the estimation of the Phillips curve in the literature: the Phillips relation,
the slope of the Phillips curve and the Phillips multiplier.

The Phillips Relation

We start by empirically investigating the reduced-form relationship between infla-
tion and the labor share over time, following Stock and Watson (2020). We focus on
the estimated slope (β1,t) in the following Phillips relation:

Et∆4π4
t = β0,t + β1,tx4

t , (4)

where x4
t is the change in the average value of variable “x” between times t and t-3

and ∆4 = (1 − L4), L denotes the lag operator such that Lxt = xt−1. There are several
candidate choices for both inflation and real marginal cost measures – see e.g. the
literature review in Mavroeidis et al. (2014). In our analysis, inflation (πt) is measured

5The fact that the time variation in the parameters is related to the score is reminiscent of score-driven
models, such as Creal et al. (2013) and Harvey (2013). However, the latter consider a predictive frame-
work, and do not consider optimality properties of their estimator, instrumental variables approaches,
or weak instruments.
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by personal consumption expenditure price index (PCE excluding food and energy,
PCExFE) and xt is a measure of slack.

Figure 1 reports the time-varying estimate of β1,t for various measures of slack
for the US. The estimate based on our TVP-LP estimator is reported by the dashed
line (in red). Each panel in the figure corresponds to a different measure of slack,
inspired by Stock and Watson (2020, Table 1). We consider: the unemployment gap,
as measured by the Congressional Budget Office (CBO) in panel (a); the GDP gap,
also from the CBO, in panel (b); the unemployment gap filtered using a two-sided
filter6 in panel (c); a measure of the short-term unemployment gap7 in panel (d);
the employment-population ratio (again obtained via a two-sided filter) in panel (e);
the employment-population ratio focusing on population of age between 25 and 54
year-old (again obtained via a two-sided filter) in panel (f); the capacity utilization rate
in panel (g); the unemployment rate measured as a real-time slack in panel (h); and
the short-term unemployment rate in panel (i).8

The instability in the correlation between inflation and the real marginal cost
measure is confirmed by standard parameter instability tests, no matter which measure
we use. For example, Elliot and Müller’s (2006) qLL test on β1,t ranges from −12.50
to −6.55 across the various specifications that we consider. The null hypothesis of no
time variation is rejected at the 5% or 10% significance level for all slack measures
except the CBO output gap and the short-term unemployment rate measured in real
time.

We compare our results with Stock and Watson’s (2020), who estimate the Phillips
relation in three sub-samples. Their estimate is depicted by the solid (black) line,
together with 90 percent confidence bands (black dotted lines).

INSERT FIGURE 1 HERE

As Figure 1 shows, the slope of the Phillips relation substantially flattened over
time, and this emerges clearly in the data no matter whether we estimate the relation

6The two-sided filter used in this section to obtain the gap measure is the same as Stock and Watson
(2020) and it is a band-pass Butterworth filter of degree 6, with lower and upper cutoffs corresponding
to periods of 32 and 6 quarters, respectively.

7The short-term unemployment gap is obtained from the short-term unemployment rate (those
unemployed 26 weeks or less as a fraction of the labor force), i.e. the measure of slack in Ball and
Mazumder (2019), using the two-sided filter described in the previous footnote.

8All slack measures are standardized, and they have the same mean and standard deviation as the
unemployment gap from the CBO. They have also been transformed in order to be positively correlated
with the CBO output gap. Appendix A provides more details on the data.
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in sub-samples or using our time-varying estimator. Relative to Stock and Watson’s
(2020) estimates, we find a more gradual decline in the slope magnitude in the 1970s,
as well as a flatter curve in the most recent period. Thus, the Phillips relation (i.e.
correlation) has disappeared in the data in the most recent period.

But does it mean that the structural Phillips curve has disappeared? Not necessarily,
as the Phillips relation measures the (reduced-form) correlation between inflation
and unemployment, while the Phillips curve measures the trade-off between inflation
and unemployment due to supply shocks. The latter will be considered in the next
sub-section.

The Slope of the Phillips Curve

In what follows, we will directly estimate the structural Phillips curve using the
TVP-IV-based approach that flexibly allows the parameters to change over time while,
at the same time, avoiding the endogeneity problem. In fact, the estimator has the
advantage of letting the parameters change over time in a flexible way, including the
variance of the error term, as well as the advantage of being robust to endogeneity, as
it relies on instrumental variables.9

Understanding whether the structural Phillips curve flattened is important, as it
implies that more extreme policy measures become necessary to maintain inflation
at its target value. It is also an important issue for the design of optimal monetary
policy and the desired inflation target. Even small changes (in magnitude) in the slope
of the Phillips curve could have important consequences. For example, changes in
the inflation target represent significant policy changes, and firms will likely respond
by adjusting prices more frequently with higher trend inflation; thus, the slope of the
Phillips curve would become steeper - see Ball et al. (1988). In order to stimulate the
economy in this environment, central banks should decrease interest rates more than
under constant price flexibility, as pointed out by L’Huillier and Schoenle (2022). As a
consequence, when shocks are big or their effects compound, as per the mechanisms
described in the aforementioned papers, even a small flattening in the slope of the
Phillips curve may have important effects on the macroeconomy and on the conduct of
monetary policy.

Figure 2 plots the estimates of λt using the TVP-IV framework and compares them
with the estimates of a benchmark constant parameter model as in Galı́ and Gertler

9Instabilities are empirically relevant. In fact, Elliott and Müller’s (2006) qLL test statistics on the
reduced form regression, which is included as eq. (2) below, is -904.7377. Thus, the null hypothesis of
no time variation is rejected at a 1% significance level, reflecting instabilities in the system.
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(1999) and Galı́ et al. (2005). The main sample ranges from 1970Q1 to 2008Q1. We focus
on a model specification where xt is the unemployment gap estimated by the CBO
and expected inflation is the three-quarter-ahead forecast of the mean GDP deflator
inflation from the Survey of Professional Forecasters. The set of instruments includes
two lags of the unemployment gap (from the CBO) and two lags of the output gap
(estimated in real-time using a one-sided quadratically detrending procedure).10

INSERT FIGURE 2 HERE

Our results reveal a flattening of the slope of the Phillips curve (λt) in the last
two decades. The slope decreased, in absolute value, by approximately 68%: it was
around −0.12 in the early 1970s and became −0.04 in the most recent sample. In
particular, notice how the slope trended downward in the 1990s, becoming effectively
indistinguishable from zero.

An important issue in the estimation of the structural Phillips curve via instrumental
variables is the presence of a weak instrument problem (Kleibergen and Mavroeidis,
2009; Mavroeidis et al., 2014). In our analysis, the instruments are both valid and strong.
In fact, Hansen’s J-statistic equals 1.955, with a p-value of 0.3763, indicating that the
instruments are valid. Lewis and Mertens’s (2022) weak IV test statistic equals 16.0254,
and it is greater than the 90% critical value (14.0533), indicating that the instruments
are strong. The Ganics et al. (2021) weak-instrument robust confidence interval for the
strength of identification also points to strong instruments (the minimum eigenvalue
is 1.66, with a confidence interval equal to (1.15, 5.79), which excludes zero). We also
report estimates and confidence intervals for the strength of identification over time in
Figure A1 in Appendix B. They are based on Ganics et al.’s (2021) weak-instrument
robust estimates and confidence intervals for the TVP-IV estimates. The confidence
interval excludes zero at all times, thus implying that this set of instruments is strong
in this specification even when considering unstable environments.

Previous papers, notably Galı́ and Gambetti (2019), have estimated the Phillips
curve allowing the parameters to be time-varying. In order to address the endogeneity
problem in the estimation of the Phillips curve, their approach relies on purging the
OLS estimates using shocks identified via time-varying parameter Structural VARs -

10The set of instruments is inspired by Galı́ and Gertler (1999) and Galı́ et al. (2005); however, we have
excluded lagged inflation from the set of instruments because our analysis suggests that it is affected by
a weak instrument problem. Figure A2 in Appendix B shows that our main results are robust to using
the same set of instrumental variables as Galı́ and Gertler (1999) and Galı́ et al. (2005).
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hence, it is a semi-structural approach. In particular, their Structural VAR identifies
several macroeconomic shocks, using both sign and long-run restrictions. Bergholt et
al. (2022) also rely on a semi-structural approach. While the semi-structural approach
addresses the endogeneity problem, it requires researchers to separately identify several
shocks underlying the economy. Our approach instead does not require researchers
to address the challenging task of separately identifying the shocks, as it relies on
instrumental variables, in a way that directly parallels the pioneering work of Galı́ and
Gertler (1999).

The Phillips Multiplier

In a recent paper, Barnichon and Mesters (2021) propose the “Phillips multiplier”
as a measure of the inflation-unemployment trade-off faced by policymakers, different
from the slope of the Phillips curve. Relative to Barnichon and Mesters (2021), our
approach in the previous sub-section can directly and flexibly estimate the time-
varying trade-off between inflation and unemployment in the classical specification of
the Phillips curve.11 Furthermore, we can use the same instruments and specification
as in the seminal contribution by Galı́ and Gertler (1999), which makes our approach
more directly comparable to theirs.

However, the Phillips multiplier is an alternative measure of the trade-off between
inflation and unemployment that we can estimate using our time-varying method.
By being estimated using instrumental variable methods, the Phillips multiplier also
avoids the typical endogeneity problems afflicting the estimation of the Phillips curve.
We focus on the same model specification as in Barnichon and Mesters (2021) with
time-varying parameters:

h

∑
j=0

πt+j = Ph,t

h

∑
j=0

xt+j + γ′
h,tWt + et+h, (5)

where xt is unemployment, Wt denote control variables including four lags of inflation
and unemployment following Barnichon and Mesters (2021) and monetary policy
shocks (ηt) are used as instruments for ∑h

j=0 xt+j, as monetary policy shocks are
uncorrelated with supply shocks. The parameter Ph,t denotes the Phillips multiplier
in unstable environments and can be estimated based on the TVP-LP-IV estimator

11Under some assumptions, in particular a constant forward-looking behavior of inflation, Barnichon
and Mesters (2021) relate the Phillips multiplier to the slope of the Phillips curve. In our approach, we
instead let the forward-looking inflation coefficient be freely time-varying.
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in Inoue et al. (2022). Therefore, the Phillips multiplier will estimate the effect of
an increase in unemployment on inflation conditional on the presence of monetary
policy shocks. Additionally, time-varying parameter impulse responses of inflation and
unemployment to monetary policy shocks can be obtained by estimating the following
TVP-LP:

πt+h = βπ,h,t+hηt + γ′
π,h,tWt + eπ,t+h

xt+h = βx,h,t+hηt + γ′
u,h,tWt + ex,t+h,

(6)

where βπ,h,t+h and βu,h,t+h denote the impulse responses of inflation and unemploy-
ment to monetary policy shocks in unstable environments and can be estimated based
on the TVP-LP estimator in Inoue et al. (2022).

The top two panels in Figure 3 report the impulse responses of inflation and
unemployment to a monetary policy shock, whereas the bottom panel depicts the
Phillips multiplier. The dashed (red) lines depict our time-varying estimates (each
line corresponds to an impulse response estimated at a given point in time), while the
continuous (black) line reports the full-sample estimate. The top two panels in the
picture show that, conditionally on a contractionary monetary policy shock, inflation
decreases and unemployment increases. The time-varying estimates show that the
quantitative extent to which inflation and unemployment respond to a monetary policy
shock changes significantly over time. As a result, the estimated Phillips multiplier
also varies over time, as shown in the bottom panel of Figure 3.

INSERT FIGURE 3 HERE

In order to shed more light on the nature of the time-variation in the Phillips
multiplier, Figure 4 depicts the Phillips multiplier over time for a selected horizon
(h = 12). Figure 4 (a) depicts the Phillips multiplier over time before 1990, using Romer
and Romer-s (2004) monetary policy shocks as instruments. Figure 4 (b) depicts the
Phillips multiplier over time after 1990, using high-frequency-identified (HFI) monetary
surprises as instruments. For each sub-figure, the TVP-IV estimates are reported by
dash-dot red lines, while the continuous black lines report the sub-sample estimates
of the Phillips multiplier in Barnichon and Mesters (2021). The figure shows that the
Phillips multiplier also decreased substantially over time, and the decrease dates back
to the 1970s. After 1990, the TVP-IV multiplier estimates are close to 0.

INSERT FIGURE 4 HERE
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Comparing our results in Figure 2 to Figures 3 and 4, the flattening of the Phillips
curve is a robust result in our data, no matter whether we consider the Phillips
(cor)relation, the Phillips multiplier or the slope of the structural Phillips curve.

4 Why Has the Cyclical Correlation Between Inflation

and Unemployment Decreased?

Several researchers have made compelling arguments that the reason for the decrease
in the cyclical correlation between inflation and unemployment is related to monetary
policy actions. According to this explanation, a more responsive monetary policy
to inflation and economic conditions would tighten monetary policy more when it
perceives inflation to be increasing, in order to keep the latter under control: this
causes unemployment to rise, resulting in a positive correlation between inflation and
unemployment that biases the slope coefficient of the Phillips curve toward zero. See
Haldane and Quah (1999); Roberts (2006); Williams (2006); Mishkin (2007); Carlstrom,
Fuerst, and Paustian (2009); and, more recently, McLeay and Tenreyro (2018).

As is well-known, the correlation between inflation and unemployment is the same
as the slope of the Phillips curve only in the presence of no endogeneity bias and
no measurement error. Thus, the endogeneity problem can be solved using valid
and relevant instruments.12 In the presence of an endogeneity bias due to monetary
policy actions, instrumental variable (IV) estimates will still be consistent provided the
instruments satisfy the required statistical conditions – that is, the chosen instruments
should be both valid and relevant.

The IV approach we discussed in the previous section, that uses lagged macroeco-
nomic variables as instruments, suggests that the slope of the Phillips curve decreased
over time in a manner similar to the decrease in the correlation between inflation
and unemployment. Our results therefore suggest that the decrease in the correlation
between inflation and unemployment is due to a decrease in the slope of the Phillips
curve and not to other factors, among which monetary policy.

As mentioned, our analysis in the previous section is based on an instrumental vari-
able method where instruments are both valid and relevant. However, the theoretical

12Some researchers have attempted to solve the endogeneity problem by using regional data; however,
there are several issues in using cross-sectional data for this purpose, see Canova, 2023). Here we will
instead maintain the same framework as in the classical literature on the Phillips curve debate, which
focuses on macroeconomic data; however, we shed light on the issue by using both valid and strong
instruments, as well as weak identification robust confidence intervals.
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validity of the instruments also requires that the residuals of the Phillips curve are not
serially correlated, otherwise the IV procedure may not correctly estimate the slope
of the Phillips curve. Lurking inside the residual of the Phillips curve there are both
cost push shocks as well as measurement error, and both might be correlated with the
lagged instruments via a correlation with their own lags. In our analysis, the residuals
of the Phillips curve show some evidence of serial correlation.

To be robust to this potential problem, we consider aggregate demand shocks as
instruments, as in Barnichon and Mesters (2020). In particular, we consider monetary
policy shocks, which are potentially valid instruments, as both the measurement error
and unobserved supply shocks (such as labor supply, price or technology shock) would
be uncorrelated with such shocks. Although we use the same model specification and
the same identification strategy as Barnichon and Mesters (2020), we will use it in
our framework to analyze whether the culprit behind the decrease in the correlation
between inflation and output is monetary policy, while their approach does not allow
for time-varying parameters.

We estimate the following Phillips curve specification:13

πt = ct + λtxt + γ f ,tπt+1 + γb,tπt−1 + ut,

where the set of instruments is the Almond parameterization of twenty lags of the
Romer and Romer (2004) monetary policy shocks and the forcing variable xt is the
unemployment gap. We estimate the equation in the sample starting in 1974:Q1 and
ending in 2007:Q4, due to data limitations in the availability of the monetary policy
shock data.14

Hansen’s J-statistic for over-identification is 0.022, with a p-value of 0.8813, in-
dicating that the instruments are valid in our sample. Ganics et al. (2021) weak
instrument-robust procedure implies weak instruments, as the minimum eigenvalue
is 0.0000, with a confidence interval equal to (0, 0.0001). Lewis and Mertens’s (2022)
weak IV test statistic equals 4.1991, also indicating that the instruments are weak.15

Therefore, we develop a novel TVP-IV methodology to obtain estimates and confidence
bands that are robust to weak instruments, described in what follows.16

13This is the same model specification and sample as in Barnichon and Mesters (2020).
14The monetary policy shock series that we use ends in 2007. During the zero lower bound period

there are fewer monetary policy shocks anyway, which might invalidate the strength of the instrument.
15Newey and West’s (1994) HAC-robust variance estimates are implemented following Barnichon and

Mesters’s (2020) choice, which is 5 lags.
16Antoine and Renault (2023) and Kleibergen (2023) propose alternative methods to deal with potential

misspecification as well as weak identification.
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Figure 5 shows the time-varying estimate of the slope of the Phillips curve; dotted
lines report the 90 percent confidence bands robust to weak instruments. The figure
confirms our result that the slope of the Phillips curve substantially flattened in the
1980s and 1990s.17 The slope has decreased, in absolute value, by 62% approximately.18

INSERT FIGURE 5 HERE

In conclusion, using a variety of different specifications and, in particular, a spec-
ification robust to the presence of measurement error and serial correlation in the
residuals of the Phillips curve, coupled with weak instrument robust techniques, we
find convincing and robust evidence of a decrease in the correlation between inflation
and unemployment in the structural Phillips curve. Our result, which is robust to
endogeneity, measurement error and correlation, highlights that the decrease in the
correlation is due to a flattening of the Phillips curve, rather than to monetary policy.

5 What’s Up with the Phillips Curve in the Recent Pan-

demics?

Finally, we turn to the Phillips curve during the recent financial crisis and, especially,
the recent pandemics. Both have contributed to a substantially unstable macroeconomic
environment.19

Figure 6 plots the time-varying estimates of the Phillips curve parameters using
data up to the end of 2021 focusing on the same specification as Galı́ et al. (2005). The
top panel in the picture shows the slope of the Phillips curve (λt) together with 90
percent confidence bands robust to weak instruments. It is clear from the figure that,
after hovering close to zero (in absolute value) since 1985 and until the end of 1990s,
the slope has started to increase again since the beginning of the 2000s. Thus, relative
to the literature that attributes the missing disinflation during the recent financial crisis

17Barnichon and Mesters (2020) also study the specification considering the output gap as the forcing
variable. We report our result of this specification in Figure A3 in Appendix B, which also confirms that
the slope of the Phillips curve substantially flattened in the 1980s and 1990s.

18Elliot and Müller’s (2006) qLL test statistics of the reduced form regression in eq. (2) is -807.83 for
this specification. Thus, the null hypothesis of no time variation is rejected at the 1% significance level,
thus pointing to time variation in the system.

19Elliot and Müller’s (2006) qLL test statistics of the reduced form regression in eq. (2) is -4072.1 for
this specification, strongly confirming the presence of instabilities in our extended sample.
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to the weakening of the Phillips curve, we find evidence that the Phillips curve is again
alive and well.

What else happened during the financial and pandemic crises? Panel (b) in Figure
6 shows a steady increase in the degree of forward-looking behavior in inflation. The
upward trend, that started during the great moderation, is hovering around 0.6. On
the other hand, the degree of backward-looking behavior in inflation has weakened
substantially. The downward trend, which started since the 1970s, has brought the
parameter close to 0.1, a value that is statistically insignificantly different from zero.

INSERT FIGURE 6 HERE

Overall, our findings suggest that, in setting prices, agents pay more attention
to the future and less to the past. The fact that past inflation has lost importance
in the agents’ price-setting behavior may explain the decrease in the overall serial
correlation in inflation and its lack of predictability over time (Stock and Watson,
2007). Our results on the degree of forward- and backward-looking indexation are
also consistent with those in Cogley and Sbordone (2008), who, using a very different
time-varying parameter VAR-based methodology, similarly find that estimates of the
backward-looking indexation parameter are close to zero and that the forward-looking
component is instead prominent.

6 Conclusion

We contribute to the debate surrounding the instability of the relation between un-
employment and inflation over time by offering insights from a flexible time-varying
instrumental variable approach.

We find that the weakening of the cyclical correlation between inflation and un-
employment is due to a flattening in the slope of the Phillips curve, rather than to
monetary policy. The slope of the structural Phillips curve has decreased over time
since the 1980s. In the most recent period since the Great Recession and during the
recent pandemic, the slope of the Phillips curve has increased again.

Our results are based on an approach that has the advantage of avoiding endo-
geneity while, at the same time, being robust to changes in the economic environment.
In addition, by virtue of the approach taken in this paper, our conclusions do not
require making auxiliary assumptions on the rest of the economy nor estimating a
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fully specified model, and hence are more robust to misspecification than existing,
full-information approaches. We demonstrate the robustness of our results to various
specifications that feature both strong instruments as well as weak-identification robust
ones.
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Figure 1: The time-varying Phillips relation. The figure shows the estimated slope (β1) in the
Phillips relation: Et∆4π4

t = β0 + β1x4
t , where x4

t is the change in the average value of variable
“x” between times t and t-3 and ∆4 = (1 − L4). Inflation is measured by PCE-xFE and xt are
the various measures of slack for the US (See Stock and Watson’s (2020) Table 1). The period is
1961-2019.
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Figure 2: The time-varying Phillips curve. The figure shows the coefficient λt of the structural
Phillips curve estimated using the TVP-IV method (dashed lines) versus the full-sample
constant estimate, together with 90% confidence bands. The sample is 1970Q1-2008Q1. HAC-
robust variance estimates are implemented with 4 lags, following Mavroeidis et al. (2014).
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(a) impulse responses of inflation (TVP-LP esti-
mation)
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(b) impulse responses of unemployment (TVP-
LP estimation)
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(c) Phillips multiplier (one-step TVP-LP-IV esti-
mation)

Figure 3: The time-varying Phillips multiplier. The figure shows the US Phillips multiplier in
the sample 1969q1-2007q4. The black continuous line is Barnichon and Mesters’ (2021, Fig. 1)
full-sample multiplier and the red dashed lines are the TVP-LP-IV multipliers.
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Figure 4: The time-varying Phillips multiplier. The figure shows the TVP-LP estimated US
Phillips multiplier over time for selected horizons (dashed red line), using Romer and Romer’s
shocks as instruments for pre-1990 sub-samples and HFI shocks as instruments for post-1990
sub-samples as to compare with Barnichon and Mesters’s (2021) constant multiplier estimates,
reported by the black solid line.
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Figure 5: The time-varying Phillips curve using monetary policy shocks as instruments. The
figure reports the estimated TVP-IV coefficients as well as their full-sample counterparts, together with
90% weak-instrument robust confidence bands. The sample is 1974Q1:2007Q4. The specification is as
follows: we use the Almond parameterization of the 20 lags of Romer and Romer monetary policy
shocks, and the unemployment gap obtained via the Hodrick-Prescott filter. The choice of the number
of lags considered in the Newey and West’s (1987) estimator, set equal to five, closely follows Barnichon
and Mesters (2020). The bands are smoothed using a seven quarter centered moving average.
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Figure 6: The time-varying Phillips curve during the pandemic. The figure shows the estimated
TVP-IV coefficients together with 90% weak-instrument robust confidence bands, 1970Q1:2021Q4. The
specification is the same as Galı́ et al. (2005). We estimate the hybrid NKPC with one lag of inflation
and the unemployment gap (CBO) as forcing variable using the instrument set: four lags of inflation
and two lags of the unemployment gap (CBO), wage inflation, and output gap (CBO). HAC-robust
variance estimates are implemented with Lazarus et al.’s (2018) recommendation, which implies to 19
lags. The bands are smoothed using a seven quarter centered moving average.
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Appendix
This Appendix is composed of five sections. Section A contains a detailed description of

the data. Section B reports additional empirical results. Section C outlines formulas for the

scores and Hessians in the multivariate system. Section D presents high-level assumptions,

and Section E contains proofs for the theoretical results.

A Data Description

This Appendix describes the data used in this paper. The data are quarterly and the span of
the data is determined by data availability.

Inflation is measured as the “Implicit GDP deflator” (mnemonics “GDPDEF”). The data is
transformed as follows: 100 times the log difference of the GDP deflator. For labor share, we
use the “Business Sector: Labor Share for All Employed Persons” (mnemonics “PRS84006173”).
The data is transformed as: 100*ln(PRS84006173/100). The instruments used follow Galı́ et
al. (2001), including four lags of inflation and two lags of the labor share, wage inflation, and
output gap. For wage inflation, we use the “Business Sector: Hourly Compensation for All
Employed Persons” (mnemonics “HCOMPBS”). The data is transformed as: 100 times the log
difference of the HCOMPBS. The output gap is an economic measure of the difference between
the actual output of an economy and its potential output. For the output, we use “Real Gross
Domestic Product” (mnemonics “GDPC96”) and “Population Level” (mnemonics “CNP16OV”).
The data is transformed as: 100*ln(GDPC96/CNP16OV). For the potential output, we use
“Real Potential Gross Domestic Product” (mnemonics “GDPPOT”). The data is transformed as:
100*ln(GDPPOT/CNP16OV). All are available from the Federal Reserve Bank of St. Louis’s
FRED database. “GDPDEF” is available from 1947Q1 - 2022Q1. “PRS84006173” is available
from 1947Q1 - 2022Q1. “HCOMPBS” is available from 1947Q1 - 2022Q1. “GDPC96” is available
from 1947Q1 - 2017Q2. (This series has been discontinued. It was a duplicate of “GDPC1”,
which will continue to be updated.) “CNP16OV” is available from 1948Q1 - 2022Q1. “GDPPOT”
is available from 1949Q1 - 2031Q4.

The government spending shocks is Ramey’s (2011) military news variable. The update
series (up to 2015) that we use is from Ramey and Zubairy (2018).

The monetary policy shock is from Romer and Romer (2004) from 1969Q1 to 2007Q4 and
the updated data we use is available from Wieland and Yang (2020) at:
https://www.openicpsr.org/openicpsr/project/135741/version/V1/view.1

1The Romer and Romer (2004) monetary policy shock series is available from 1969Q1 to 2007Q4.
The government spending shock series is available from 1989Q1 to 2015Q4. The monetary policy shock
series is originally available at the monthly frequency, and we aggregated it at the quarterly frequency
by summing the monthly values.
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B Additional Empirical Results
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Figure A1: The time-varying Ganics et al.’s (2021) weak-instrument robust confidence interval
for the strength of identification. The figure shows the Ganics et al.’s (2021) weak-instrument
robust estimate for the strength of identification, considering constant parameter model (the
black solid line) and considering TVP-IV model (the red dashed line). The dotted lines are the
corresponding 90% confidence intervals.
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Figure A2: The time-varying Phillips curve using labor share as the forcing variable. The
figure shows the estimated TVP-IV coefficients as well as the full-sample estimates together with 90%
confidence bands. The sample is 1970Q1:2008Q1. The specification is the same as Galı́ et al. (2005).
We estimate the hybrid NKPC with one lag of inflation and the labor share as forcing variable. The
Galı́ et al.’s (2005) instrument set includes four lags of inflation and two lags of the labor share, wage
inflation, and quadratically-detrended output. HAC-robust variance estimates are implemented with 4
lags, following Mavroeidis et al. (2014).
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Figure A3: The time-varying Phillips curve using monetary policy shocks as instruments
and output gap as the forcing variable. The figure shows the TVP-IV estimated coefficients and
the full-sample estimates, together with the 90% confidence bands robust to weak instruments. The
sample is 1974Q1:2007Q4. The specification uses as instruments the Almond parameterization of 20 lags
of the Romer and Romer monetary policy shocks, and the output gap obtained via the Hodrick-Prescott
filter as the forcing variable. HAC-robust variance estimates are implemented with 5 lags, following
Barnichon and Mesters (2020). The bands are smoothed using a 7-quarter moving average.
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C Likelihood, Scores, and Hessians in the Multivariate
System

For notational simplicity, we omit the subscript t in all the parameters in what follows.

General framework

Suppose we are interested in the following hybrid Phillips curve:

πt = c + λxt + γ f πt+1 + γbπt−1 + ut, (7)

where instruments are needed for xt and πt+1. Let zt denote the instrumental variables
excluding πt−1, thus the reduced-form equations for xt and πt+1 are:

xt = cx + β′
x,zzt + βx,πb πt−1 + ux,t,

πt+1 = cπ f + β′
π f ,zzt + βπ f ,πb πt−1 + uπ f ,t.

(8)

Combining eqs. (7) and (8), we have

πt = c + λ
(
cx + β′

x,zzt + βx,πb πt−1 + ux,t
)
+ γ f

(
cπ f + β′

π f ,zzt + βπ f ,πb πt−1 + uπ f ,t

)
+ γbπt−1 + ut

=
(

c + λcx + γ f cπ f

)
+
(

λβ′
x,z + γ f β′

π f ,z

)
zt +

(
λβx,πb + γ f βπ f ,πb + γb

)
πt−1 +

(
λux,t + γ f uπ f ,t + ut

)
,

(9)
and, equivalently, we have the following reduced-form equations:

 xt

πt+1

πt

 =


β′

x,z cx βx,πb

β′
π f ,z cπ f βπ f ,πb

λβ′
x,z + γ f β′

π f ,z λcx + γ f cπ f + c λβx,πb + γ f βπ f ,πb + γb


 zt

1
πt−1

+

 vx,t

vπ f ,t

vπ,t

 ,

(10)
where (xt, πt+1)

′ are (2 × 1) endogenous variables.
Let the vector of endogenous variables (xt, πt+1)

′ be denoted by y1,t and the LHS variable
of interest in eq.7 (πt) be denoted by y2,t. Let z1,t = (z′t, 1)′; z2,t = πt−1; α1 = (β′

x,z, β′
π f ,z); and

α2 =

(
cx βx,πb

cπ f βπ f ,πb

)
. Also, let m = (λ, γ f ), µ = (c, γb), v1,t = (v′x, vπ f )

′ and v2,t = vπ. Then

the reduced-form equation above can be rewritten as:(
y1,t

y2,t

)
=

(
α1 α2

mα1 mα2 + µ

)(
z1,t

z2,t

)
+

(
v1,t

v2,t

)
. (11)

More generally, our structural model can be written as:

y2,t = my1,t + controls + ϵt, (12)
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where y1,t is (n1 × 1) and y2,t is (n2 × 1), and our target is to estimate the (n1 × n2) parameter
matrix m.

Let Zt be the (k × 1) vector of instruments [z′1,t, z′2,t]
′, where z1,t is (k1 × 1), z2,t is (k2 × 1),

such that k = k1 + k2. Note that z1,t includes constant and exogenous control variables, and z2,t

includes excluded exogenous variables. Also, let α = [α1 α2] is (n1 × k) , m is (n2 × n1), µ is
(n2 × k2). Then eq.(11) can be rewritten as:(

y1,t

y2,t

)
=

(
α

mα + [0 µ]

)(
z1,t

z2,t

)
+

(
v1,t

v2,t

)
. (13)

The parameters of interest are m, the (n1 × k) + 1 : (n1 × k) + 2-th elements in B̄, and πb,
the (n1 × k) + n1n2 + n2k1-th element in B̄, where B̄ is the q̄ × 1 vector, such that

B̄ = (α1,: · · · αn1,:, m1,: · · ·mn2,:, µ1,: · · · µn2,:)
′ , (14)

and q̄ = n1k + n2(n1 + k1).

Log-likelihood

Write (13) as

yt =

[
α

α̃

] [
z2,t

z1,t

]
+

[
v1,t

v2,t

]
= X′

tB + vt, (15)

where X′
t = (In ⊗

[
z′2,t z′1,t

]
) is (n × nk), vt has zero mean and covariance matrix Σ, B is

(q × 1), where q = nk, stacking all the parameter elements with the following order:

B = (α1,: · · · αn1,:, α̃1,: · · · α̃n2,:)
′ , (16)

α̃ = mα +
[
0 µ

]
, and the subscriptions refer to the elements, e.g., α1,: refers to the first row

elements in α.
Once we knowingly incorrectly assume that vt is an i.i.d. normal random variable, we can

write the quasi-log-likelihood based on eq. (15):

log L = ∑
t
ℓt = −T(n1 + n2)

2
log 2π − T

2 ∑
t

log |Σ| − 1
2 ∑

t

(
yt − X′

tB
)′ Σ−1 (yt − X′

tB
)

. (17)

Scores and Hessians in the strongly identified case

If we need the derivatives w.r.t. θ = (B̄′, vech(Σ)′)′, we now only need to know the derivative
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of B w.r.t. B̄ so that we can apply the chain rule: ∂B
∂B̄

∂lt
∂B = ∂lt

∂B̄ , ∂lt
∂B′

(
∂B
∂B̄

)′
= ∂lt

∂B̄′ , and


∂B1
∂B̄1

· · · ∂B1
∂B̄q̄

...
. . .

...
∂Bq

∂B̄1
· · · ∂Bq

∂B̄q̄


︸ ︷︷ ︸

( ∂B
∂B̄ )

′

=

 I(n1k×n1k) O(n1k×n1n2) O(n1k×n2k1)

m ⊗ Ik(n2k×n1k) In2 ⊗ α′
(n2k×n1n2)

[
O(n2k2×(n2k1))

In2k1

]
(q×q̄)

.
(18)

We also need the second order derivatives ∂2lt
∂B̄t∂B̄′

t
, which is (q̄ × q̄):

∂2lt

∂B̄∂B̄′ =
∂ ∂lt

∂B̄
∂B̄′ =

∂ ∂B
∂B̄

∂lt
∂Bt

∂B̄′
t

=

[
∂ ∂B

∂B̄
∂lt
∂B

∂B̄1
· · · ∂ ∂B

∂B̄
∂lt
∂B

∂B̄q̄

]
=

[
∂B
∂B̄ · ∂

∂lt
∂B

∂B̄1
+

∂ ∂B
∂B̄

∂B̄1
· ∂lt

∂B · · · ∂B
∂B̄ · ∂

∂lt
∂B

∂B̄q̄
+

∂ ∂B
∂B̄

∂B̄q̄
· ∂lt

∂B

]
=

∂B
∂B̄

·
∂ ∂lt

∂B
∂B̄′ +

[
∂ ∂B

∂B̄
∂B̄1

· ∂lt
∂B · · · ∂ ∂B

∂B̄
∂B̄q̄

· ∂lt
∂B

]
=

∂B
∂B̄

· ∂2lt

∂B∂B′

(
∂B
∂B̄

)′
+
[

∂ ∂B
∂B̄

∂B̄1
· · · ∂ ∂B

∂B̄
∂B̄q̄

]
︸ ︷︷ ︸

∆(q̄×qq̄)

(
Iq̄ ⊗

∂lt

∂B

)
.

We derive each submatrix in ∆ in turn. For the first n1k elements in ∆, we have(
∂ ∂B

∂B̄
∂B̄j

)′

=

[
O(n1k×n1k) O(n1k×n1n2) O(n1k×n2k1)

O(n2k×n1k) In2 ⊗ (e′α,j)(n2k×n1n2)
O(n2k×n2k1)

]
(q×q̄)

,

where e′α,j is a (k × n1) matrix with a certain entry being 1 and the remaining entries being

0. For example, e′α,1 =


1 0 · · · 0
...

. . .
...

0 · · · 0

, e′α,2 =


0 0 · · · 0

1
. . .

...
0 · · · 0

, in line with the corresponding

element in α′.
For the next n1n2 elements, i.e., the n1k + 1 : n1k + n1n2 elements in ∆, we have(

∂ ∂B
∂B̄

∂B̄n1k2+j

)′

=

[
O(n1k×n1k) O(n1k×n1n2) O(n1k×n2k1)

em,j ⊗ Ik(n2k×n1k) O(n2k×n1n2) O(n2k×n2k1)

]
(q×q̄)

,

where em,j is a (n2 × n1) matrix whose (1, j) entry is one and all other entries are zeros.
For the remaining elements, the derivatives are 0.
Below we summarize the expressions for scores and Hessians.
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The score is st =
∂lt(θ)

∂θ =

[
∂lt
∂B̄
∂lt

∂vech(Σ)

]
=

[
∂B
∂B̄

∂lt
∂B

∂lt
∂vech(Σ)

]
, where

∂lt

∂B
= XtΣ−1(yt − X′

tB), (19)

∂lt

∂Σ
= −1

2
Σ−1 +

1
2

Σ−1(yt − X′
tB)(yt − X′

tB)
′Σ−1, (20)

∂lt

∂vech(Σ)
= D′vec

(
∂lt

∂Σ

)
,

∂lt

∂vec(Σ)
= DD′vec

(
∂lt

∂Σ

)
, (21)

where D denote the duplication matrix such that D · vech(V) = vec(V). Besides, denote
D+ = (D′D)−1D′ such that D+ · vec(V) = vech(V).

The Hessian is

ht = − ∂st

∂θ′
= −

[
∂2lt

∂B̄∂B̄′
∂2lt

∂B̄∂vech(Σ)′
∂2lt

∂vech(Σ)∂B̄′
∂2lt

∂vech(Σ)∂vech(Σ)′

]

= −

 ∂B
∂B̄

∂2lt
∂B∂B′

(
∂B
∂B̄

)′
+ ∆

(
Im̄ ⊗ ∂lt

∂B

)
∂B
∂B̄

∂2lt
∂B∂vech(Σ)′

∂2lt
∂vech(Σ)∂B′

(
∂B
∂B̄

)′
∂2lt

∂vech(Σ)∂vech(Σ)′

 , (22)

where

∂2lt

∂B∂B′ = −XtΣ−1X′
t,

∂2lt

∂B∂vech(Σ)′
=
[
−D′

(
Σ−1(yt − X′

tB)⊗ Σ−1
)

X′
t

]′
,

∂2lt

∂B∂vec(Σ)′
=
[
−DD′

(
Σ−1(yt − X′

tB)⊗ Σ−1
)

X′
t

]′
(23)

∂2lt

∂vech(Σ)∂vech(Σ)′
= D′

(
Σ−1 ⊗

(
1
2

Σ−1 − Σ−1(yt − X′
tB)(yt − X′

tB)
′Σ−1

))
D,

∂2lt

∂vec(Σ)∂vec(Σ)′
= DD′

(
Σ−1 ⊗

(
1
2

Σ−1 − Σ−1(yt − X′
tB)(yt − X′

tB)
′Σ−1

))
DD′. (24)

Scores and Hessians in the weakly identified case

When instruments are potentially weak, we estimate eq. (15) with θ replaced by θ =

(B′, vech(Σ)′)′. The corresponding scores and Hessians are st =
∂lt

∂θr f =

[
∂lt
∂B
∂lt

∂vech(Σ)

]
, and

ht = − ∂st

∂θr f ′
= −

[
∂2lt

∂B∂B′
∂2lt

∂B∂vech(Σ)′
∂2lt

∂vech(Σ)∂B′
∂2lt

∂vech(Σ)∂vech(Σ)′

]
, (25)

where each component is defined earlier.
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D Assumptions

To use Theorem 5 of Müller and Petalas (2010), we impose the following high-level assumptions:
Assumption 1.

(a) yt and Zt = [z′1t z′2t]
′ satisfy the reduced-form equation (15) and have finite fourth

moments uniformly in t.

(b) E(Ztvt) = 0.

(c) Let θt = [B̄′
t vech(Σt)′]′ and θ0 = [B̄′

0 vech(Σ0)′]′ in the strongly identified case, and
let θt = [B′

t vech(Σt)′]′, θ0 = [B′
0 vech(Σ0)′]′ in the weakly identified case. They satisfy

θt = θ0 + T− 1
2 δ
( t

T

)
where δ(·) is piecewise continuous with at most a finite number of

discontinuities and left and right limits everywhere.

(d) T− 1
2 ∑[·T]

t=1 st(θt) ⇒ V
1
2 W(·), where long-run variance matrix V is positive definite, and

W(·) denotes the standard Brownian motion vector.

(e) There is a negative definite matrix, Ξ, such that sups∈[0,1]

∣∣∣ 1
T ∑[sT]

t=1 ht(θ0)− sΞ
∣∣∣ = op(1),

and E(ZtZ′
t) is nonsingular.

Assumption 1(a) specifies the reduced-form relationship between endogenous variables
yt and exogenous variables Zt. Assumption 1(b) imposes that Zt is exogenous. Accord-
ing to Assumption 1(c), we estimate the structural parameters when they are known to be
strongly identified. Otherwise, we estimate the reduced-form parameters. As in Müller and
Petalas (2010), we focus on time variations of order O(T− 1

2 ). Assumption 1(d) is satisfied
if vec(XtΣ−1(yt − X′

tBt)) and vech
(
Σ−1(yt − X′

tB)(yt − X′
tBt)′Σ−1 − Σ−1) satisfy assumptions

for the invariance principle. Assumption 1(e) is a high-level assumption that imposes that the
sample Hessian converges to a negative definite matrix.

In the strongly identified case, we assume that the instruments are relevant:

Assumption 2.

α is of full rank.

E Proofs

First, we show that Condition 3 in Müller and Petalas (2010) is satisfied for the weak instruments
case. To be self-contained, we present the results as a lemma:

Lemma. Suppose that Assumption 1 in holds. Then

(i)T− 1
2 ∑[·T]

t=1 ŝr
t ⇒ Jr(·) − ι(·)Jr(1), where ŝr

t = Ξ̂V̂−1ŝt − 1
T ∑T

j=1 Ξ̂V̂−1ŝj, Jr(·) = Γ
1
2 W(·) +

9



Γ
∫ ι(·)

0 δ(r)dr, Γ = ΞV−1Ξ, Ξ = plimT→∞(1/T)∑T
t=1 ht(θ0), and V is the long-run variance-

covariance matrix of st(θ0);

(ii) T
1
2 (θ̂r − θ0) ⇒ Γ− 1

2 W(1) +
∫ 1

0 δ0(r)dr, where θ̂r = θ̂ + (∑T
t=1 Ξ̂V̂−1ĥt)−1 ∑T

t=1 Ξ̂V̂−1ŝt;

(iii) there exist matrices h̃r
t such that sups∈[0,1]

∣∣∣ 1
T ∑[sT]

t=1 h̃r
t − sΓ

∣∣∣ = op(1).

where Ξ = limT→∞
1
T ∑T

t=1 E[ht(θ0)], Ξ̂ = 1
T ∑T

t=1 ht(θ0), and V̂ is a consistent estimator of V. 2

Proof of (ii): Consider a compact set, Θ0, that contains θ0. It follows from the Chebyshev
inequality that

1
T

T

∑
t=1

ht(θ)
p→ lim

T→∞

1
T

T

∑
t=1

E(ht(θ)), (26)

for all θ ∈ Θ0. Because 1
T ∑T

t=1 ht(θ) satisfies a Lipschitz condition,

sup
θ∈Θ0

∣∣∣∣∣ 1
T

T

∑
t=1

ht(θ)− lim
T→∞

1
T

T

∑
t=1

E(ht(θ))

∣∣∣∣∣ = op(1), (27)

(Andrews, 1992). Thus, for any sequence θt → θ0,∣∣∣∣∣ 1
T

T

∑
t=1

ht(θt)−
1
T

T

∑
t=1

E(ht(θt))

∣∣∣∣∣ =

∣∣∣∣∣ 1
T

T

∑
t=1

ht(θt)− Ξ

∣∣∣∣∣ = op(1). (28)

Applying the mean value theorem to the first order condition for the MLE of θ based on
(17),

T
1
2 (θ̂ − θ0) = −

[
1
T

T

∑
t=1

ht(θ)

]−1

T− 1
2

T

∑
t=1

st(θ0)

= −
[

1
T

T

∑
t=1

ht(θ)

]−1

T− 1
2

T

∑
t=1

[
st(θt)− ht(θt)T− 1

2 δ

(
t
T

)]

= −
[

1
T

T

∑
t=1

ht(θ)

]−1

T− 1
2

T

∑
t=1

st(θt) +

[
1
T

T

∑
t=1

ht(θ)

]−1
1
T

T

∑
t=1

ht(θt)δ

(
t
T

)
,

(29)

where θ and θt are points between θ̂ and θ0 and between θt and θ0, respectively. Using
Assumption 1(c) and the Chebyshev inequality,

1
T

T

∑
t=1

ht(θt)δ

(
t
T

)
p→ Ξ

∫ 1

0
δ0(r)dr. (30)

2In our setup, Ξ̂t and V̂t in Condition 3 of Müller and Petalas (2010) are Ξ̂ and V̂, respectively.
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It follows from (29), (30) and Assumption 1(c) that

T
1
2 (θ̂ − θ0)

d→ Ξ−1V
1
2 W(1) +

∫ 1

0
δ0(r)dr. (31)

Since

θ̂r ≡ θ̂ + Ξ̂−1 1
T

T

∑
t=1

st(θ̂) = θ̂, (32)

it follows that

T
1
2 (θ̂r − θ0) = T

1
2 (θ̂ − θ0) + op(1)

d→ Γ− 1
2 W(1) +

∫ 1

0
δ0(r)dr. (33)

Because the RHS is Γ−1 Jr(1) in our setup, condition (ii) is satisfied.

Proof of (i): Next, we show that condition (i) in the lemma is satisfied. It follows that

T− 1
2

[·T]

∑
t=1

ŝr
t ≡ Ξ̂V̂−1T− 1

2

[·T]

∑
t=1

st(θ̂)− Ξ̂V̂−1 1
T

T

∑
t=1

st(θ̂)

= ΞV−1

[
T− 1

2

[·T]

∑
t=1

st(θ0)− T−1
[·T]

∑
t=1

ht(θ)T
1
2 (θ̂ − θ0)

]
− ΞV−1 1

T

T

∑
t=1

st(θ0) + op(1)

⇒ ΞV−1
(

V
1
2 W(·) + Ξ

∫ ι(·)

0
δ0(r)dr

)
− ι(·)ΞV−1

(
V

1
2 W(1) + Ξ

∫ 1

0
δ0(r)dr

)
=

(
Γ

1
2 W(·) + Γ

∫ ι(·)

0
δ0(r)dλ

)
− ι(·)

(
Γ

1
2 W(1) + Γ

∫ 1

0
δ0(r)dr

)
, (34)

which is Jr(·)− ι(·)Jr(1), where ι(x) = x. Thus, condition (i) is satisfied.3

Proof of (iii): Finally, it follows from Assumption 1(e) that

sup
λ∈[0,1]

∣∣∣∣∣ 1
T

[λT]

∑
t=1

h̃r
t − λΞV−1Ξ

∣∣∣∣∣ = op(1), (35)

where h̃r
t = Ξ̂V̂−1Ξ̂, satisfying the third condition.

Because Condition 3 is satisfied, credible sets, Cθ , for the reduced-form parameters, B and
Σ, satisfy the conclusion of Theorem 5 of Müller and Petalas (2010). Based on Cθ , a conservative
confidence set for m can be constructed as

{m : ∃θ such that θ ∈ Cθ}, (36)

3Note that the corresponding Condition 3 in Müller and Petalas’ (2010) is stated for Ξ̂t and V̂−1
t

instead of Ξ̂ and V̂−1; we let Ξ̂t = Ξ̂ and V̂−1
t = V̂−1 to ensure that the estimate is positive definite in

any given sample.
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for example.

In the strongly identified case, one can show that Condition 3 is satisfied using analogous
arguments as above and Assumption 2.
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