A Stata package for Cluster Weighted Modeling

Daniele Spinelli ^{1*} Salvatore Ingrassia ² Giorgio Vittadini ¹

¹University of Milan-Bicocca

²University of Catania *presenting author (daniele.spinelli@unimib.it)

XVII Italian Stata Conference Florence - 19 May 2022

Introducing **cwmglm**, a new package that allows users to estimate Cluster Weighted Models (CWM).

This package extends Stata capabilities in estimating finite mixture of regressions.

Definitions EM estimation

Cluster Weighted Models (CWM)

Given

- K latent classes
- a response variable Y
- set of covariates X

A CWM (aka Mixture of Regressions with Random Covariates) assumes that the distribution of (Y, X):

$$p(x, y, \theta) = \sum_{j=1}^{K} \pi_j p(y|x; \beta_j, \phi_j) p(x; \alpha_j)$$
(1)

heta: model parameters to be estimated π_j : the mixing proportion of class j ($\sum_{j=1}^{K} \pi_j = 1, \pi_j > 0$).

Definitions EM estimation

Conditional Distribution

- $p(y|x;\beta_j,\phi_j)$: class j-specific conditional part of the model
- the parametric distribution of Y|X = x is modeled as a GLM with regression coefficients β_i and ancillary parameters ϕ_i

伺 ト イ ヨ ト イ ヨ ト

Definitions EM estimation

Marginal distribution

- p(x; α_j) is the parametric distribution of X in class j given model parameters α_j.
- if p(x; α_j) = N(x, μ_j, Σ_j) fourteen models are originated (Celeux and Govaert, 1995)
 - μ_i is the means vector
 - Σ_j is the variance-covariance matrix

A 3 3 4

Definitions EM estimation

Marginal distribution of normal covariates

If $p(x; \alpha_j) = \mathcal{N}(x, \mu_j, \Sigma_j)$. The eigenvalue decomposition of variance covariance matrix:

$$\Sigma_j = \lambda_j \boldsymbol{D}_j \boldsymbol{A}_j \boldsymbol{D}_j' \tag{2}$$

Geometrically:

- $\lambda_j = |\Sigma^{rac{1}{d}}|$ is the cluster volume,
- **D**_j is the orientation (orthogonal matrix),
- \boldsymbol{A}_j is the shape $(|\boldsymbol{A}_j = 1|)$.

Different assumptions can be made on λ , \boldsymbol{D} and \boldsymbol{A}

Definitions EM estimation

Marginal distribution of normal covariates

Volume	Shape	Orientation	Mode	Σ_j	N. parameters
Equal	Spherical		Ell	λΪ	1
Variable	Spherical		VII	$\lambda_j I$	K
Equal	Equal	Axis-Aligned	EEI	λΑ	d
Variable	Equal	Axis-Aligned	VEI	$\lambda_j A$	K+d-1
Equal	Variable	Axis-Aligned	EVI	$\lambda \mathbf{A}_{j}$	1+K(d-1)
Variable	Variable	Axis-Aligned	VVI	$\lambda_j \check{A_j}$	Kd
Equal	Equal	Equal	EEE	λ DAD'	d(d+1)/2
Variable	Equal	Equal	VEE	λ; DAD'	K+d-1+d(d-1)/2
Equal	Variable	Equal	EVE	λ DA _i D'	1+K(d-1)+d(d-1)/2
Variable	Variable	Equal	VVE	λ; DĂ ; D'	Kd+d(d-1)/2
Equal	Equal	Variable	EEV	λ ΄D _i Å D ' _i	d+Kd(d-1)/2
Variable	Equal	Variable	VEV	$\lambda_i D_i A D'_i$	K+d-1+kD(D-1)/2
Equal	Variable	Variable	EVV	$\lambda D_j A_j D'_i$	1+K(d-1)+Kd(d-1)/2
Variable	Variable	Variable	VVV	$\lambda_j D_j A_j D_j'$	Kd(d+1)/2

K: number of latent classes, d: number of parameters in x

ज्यत

Definitions EM estimation

E-Step

The complete data log-likelihood of the CWM:

$$I(\theta) = \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln(\pi_j) + \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln[p(y_i | x_i; \beta_j, \phi_j)] + \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln[p(x_i, ; \alpha_j)]$$
(3)

 au_{ij} is the estimated posterior probability for observation i to belong to component j.

During iteration t, and given the current expectation of θ^t :

$$\tau_{ij}^{t} = \frac{\pi_{j}^{t} p(y_{i}|x_{i}; \beta_{j}^{t}, \phi_{j}^{t}) p(x_{i};; \alpha_{j}^{t})}{p(x, y, \theta^{t})}$$
(4)

.

Definitions EM estimation

M- Step

The complete data log-likelihood of the CWM:

$$I(\theta) = \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln(\pi_j) + \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln[p(y_i | x_i; \beta_j, \phi_j)] + \sum_{j=1}^{K} \sum_{i=1}^{N} \tau_{ij} \ln[p(x_i; \alpha_j)]$$
(5)

In the **M-Step** the three components of the log likelihood are maximized independently.

- the conditional part reduces to a GLM with weighted log-likelihood
- the marginal part reduces to the calculation of weighted means
- for normal covariates the procedures may be more complex (Celeux and Govaert, 1995; Sarkar et al., 2020)

A (B) < (B) < (B) < (B) </p>

Definitions EM estimation

Convergence criterion

To establish convergence the Aitken acceleration is applied, at iteration t + 1:

$$a^{t+1} = \frac{l^{t+2} - l^{t+1}}{l^{t+1} - l^t} \tag{6}$$

Stopping criterion:

$$I_{\infty}^{r+2} - I^{r+1} < \varepsilon \tag{7}$$

where:

$$I_{\infty}^{t+2} = I^{r+1} + \frac{I^{t+2} - I^{t+1}}{1 - a^{t+1}}$$
(8)

3 A

flexcwm

Mazza et al. (2018) introduced R package **flexcwm**. Main features:

- Binomial, Poisson, Gaussian, t, Gamma, Inv. Gaussian GLMs
- Normal, binomial, Poisson, multinomial covariates
- all the fourteen parsimonious models
- Information criteria based model selection
- OIM standard errors for the GLMs

cwmglm

cwmglm implements in Stata the features of flexcwm plus:

- non-parametric bootstrap for inference
- GLM measures of fit: generalized coefficient of determination (Di Mari et al., 2019)

4 3 5 4 3 5

The syntax of **cwmglm** is:

cwmglm depvar indepvars [if] [in], posterior(stub) [options]

- posterior(*stub*) Required option. Generates a set posterior group probabilities named *stub1*, *stub2* ...
- k(#) Number of latent classes, the default is 2

.

Syntax Examples

Marginalization Options

- xnormal(varlist) variables having normal distributions
- xpoisson(varlist) variables having poisson distributions
- xbinomial(varlist) variables having binomial distributions
- xmultinomial(varlist) variables having multinomial distributions. Factor variable syntax is not allowed. Categories are detected automatically.

If xnormal is specified the user can model the variance-covariance matrix of normal covariates using one of the fourteen parsimonious models of Celeux and Govaert, 1995.

Syntax Examples

GLM options

family(familyname) specifies the distribution of depvar for the GLM (see glm). Allowed families:

- family(gaussian) (link identity)
- family(binomial) (link logit)
- family(poisson) (link log).

Syntax Examples

Initialization

The initialization procedure is controlled by **start(svmethod)**. Possibile options:

- start(kmeans) starting latent class membership is determined by running a kmeans cluster analysis on depvar indepvars. The default.
- start(custom) user-specified starting values. Starting values must be contained in initial(varlist) (k variables)

Syntax Examples

Initialization

The initialization procedure is controlled by **start(svmethod)**. Possibile options:

- start(randomid) specifies that starting values are computed by randomly assigning observations to initial classes.
- start(randompr) specifies that starting values are computed by randomly assigning initial class probabilities.
- ndraws(#) specifies the number of random draws for selecting the starting values. Applies only to start(randompr) and start(randomid). Default is 10.

(4 同) (4 日) (4 日)

Syntax Examples

Postestimation - prediction

cwmglm allows **predict**. This command creates a new variable *varname* that assigns "hard" group membership according to the *maximum a posteriori probability*. The syntax is: predict *varname*

4 3 5 4 3 5

Syntax Examples

Postestimation - prediction

default standard errors for **cwmgIm** are based on the OIM of the weighted maximum likelihood problem of the GLM part. These standard errors are an underestimation as the weights are estimated as well. Model parameters can be estimated using **cwmbootstrap**. The syntax is: cwmbootstrap, nreps(#)

Syntax Examples

The students dataset

- 270 students attending the University of Catania. Variables: (height), father's height (heightf), weight (weight) and gender (gender).
- Replicating the model of Mazza et al. 2018 → treat gender as an unobservable and evaluate whether the CWM is able to discriminate females and males.
- conditional part, gaussian GLM: the dependent variable is weight while the covariates are height and heightf.
- marginal part, multivariate normal with equal size, equal shape and equal orientation (EEE).

Syntax Examples

The students dataset

. cwmglm w height heightf, k(2) posterior(z) xnormal(height heightf) eee initializing EM... EM iteration 1:log-likelihood= -2721.68580 EM iteration 17:log-likelihood= -2648.16080 Prior Probabilities

g1	g2
.5630098	.4369902

Clustering Table

g1	g2
153	117

Information criteria

AIC	BIC
5328.322	5385.896

Syntax Examples

The students dataset

Deviance measures and coefficient of determination

	gl	g2	Overall			
Total	317.4497	285.3551	602.8048	-		
Residual	151.0126	116.9874	268			
Explained	77.92581	52.1048	130.0306			
Between	88.51127	116.2629	204.7742			
R_sq	.2454745	.1825964	.2157093	_		
weight	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
g1						
height	.8983653	.0912865	9.84	0.000	.719447	1.077284
heightf	1442846	.0838213	-1.72	0.085	3085712	.0200021
_cons	-54.08234	12.12518	-4.46	0.000	-77.84725	-30.31742
g2						
height	.7612449	.1082026	7.04	0.000	.5491717	.9733182
heightf	0088664	.0939404	-0.09	0.925	1929862	.1752534
_cons	-57.28365	12.3717	-4.63	0.000	-81.53174	-33.03556

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Syntax Examples

The students dataset

matlist e(mu)

•	~ /			
	height	heightf		
g1 g2	161.7553 177.5373	175.6054 174.1353		
. matlist e(si	lgma)			
	g1 height	heightf	g2 height	heightf
height heightf	27.8441 22.04352	22.04352 34.69652	27.8441 22.04352	22.04352 34.69652

(日)

э

Syntax Examples

The students dataset

- . predict group
- . tab group gender

	Gender		
group	F	М	Total
1 2	149 2	4 115	153 117
Total	151	119	270

э

Aim cwmglm

Examples

The students dataset

A Stata package for Cluster Weighted Modeling

Syntax Examples

The students dataset

For females (g1) the estimated mean vector and variance-covariance matrix:

$$\mu_F = (161.75, 177.53)$$
 , $\Sigma = \begin{pmatrix} 27.84 & 22.04 \\ 22.04 & 34.69 \end{pmatrix}$

. sum height heightf if gender=="F"

Variable	Ob	s M	1ean Std	. dev.	Min	Мах
height heightf	15: 15:	1 161.6 1 175.6	5887 5.2 5093 5.8	86695 16039	146 160	175 190
. corr height (obs=151)	heightf if	gender=="	'F", cov			
	height	heightf				
height heightf	27.9491 20.5709	33.8263				

< ∃ >

Syntax Examples

The students dataset

For males (g2) the estimated mean vector and variance-covariance matrix:

$$\mu_M = (177.53, 174.13)$$
 , $\Sigma = \left(\begin{smallmatrix} 27.84 & 22.04 \\ 22.04 & 34.69 \end{smallmatrix}
ight)$

Variable Std. dev. Min Obs Mean Max height 119 177,4874 5.255934 164 190 heightf 119 174.1429 6.0328 160 190 . corr height heightf if gender=="M", cov (obs=119) height heightf height 27.6248 heightf 24.2942 36.3947

. sum height heightf if gender=="M"

3

Syntax Examples

The students dataset

	C	wml	000	ot	st	raj	р,	n	re	ps (10)0)
St	tai	rt:	ing	J	r	ep.	lio	cat	ti	ons	
										10	
										20	
										30	
										40	
										50	
										60	
										70	

- . matlist r(b)

	g1 height	heightf	_cons	g2 height	heightf	_cons
mean	.7773018	0016771	-61.43893	.8877987	1458781	-52.04102
sd	.2118676	.1742196	16.35427	.1328318	.0984212	14.06947
95% CI lcl	.3620414	3431475	-93.49329	.6274485	3387838	-79.61719
95% CI ucl	1.192562	.3397934	-29.38457	1.148149	.0470275	-24.46485
z	3.66881	0096262	-3.756752	6.683633	-1.482181	-3.69886

. matlist r(mu)

	height	heightf
mean	169.5946	174.8445
sd	7.936044	.869638
95% CI lcl	154.0399	173.14
95% CI ucl	185.1492	176.549
z	21.37017	201.0543

3

.≡ →

Syntax Examples

The multinorm dataset

Simulated data from the multivariate normal distribution

- $\mu_1 = (59,68)$, $\Sigma_1 = \left(\begin{smallmatrix} 1351 & -358 \\ -358 & 136 \end{smallmatrix}
 ight)$, $N_1 = 1000 (p_1 = 0.5208)$
- $\mu_2 = (8,61)$, $\Sigma_2 = \left(\begin{smallmatrix} 47 & -12 \\ -12 & 378 \end{smallmatrix}
 ight)$, $N_2 = 200 (p_2 = .1041)$
- $\mu_3 = (124, 40)$, $\Sigma_3 = \left(\begin{smallmatrix} 7407 & 1033 \\ 1033 & 728 \end{smallmatrix}
 ight)$, $N_3 = 720 (p_3 = .375)$

cwmgIm is used for estimate Gaussian mixture models with different numbers of components and different formulation of the variance covariance matrix (Celeux and Govaert, 1995). Model selection is based on BIC and AIC.

伺 ト イヨ ト イヨト

Syntax Examples

The multinorm dataset

Syntax Examples

The multinorm dataset

- . local models vev evv vvv eei vei evi vvi eii vii eee vee eve vve eev
- . local bestbic=10e20
- . local bestaic=10e20
- . cap matrix drop res

```
foreach model of local models {
             forval i=2/5 {
  з.
                     cap drop _tau*
  4
                     qui cwmglm, xnorm(x1 x2) k(`i') posterior(_tau) `model'
  5
                                      if (e(converged) == 1)
  6.
                                          matrix ic=(e(ic),`i', e(ll))
                                              matrix rownames ic= "`model'"
  8.
                                              matrix res = nullmat(res) \ ic
  9.
                     local current_BIC=e(ic)[1,2]
                     if (`current BIC'<`bestbic') {
                              local bestbic=`current_BIC'
 12.
                              local bestk BIC=`i'
 13.
                              local bestmodel BIC `model'
 14.
 15.
                     local current_AIC=e(ic)[1,1]
 16.
                     if (`current AIC'<`bestaic') {
                              local bestaic=`current AIC'
 18.
                              local bestk AIC=`i'
 19
                              local bestmodel AIC `model'
 20
                     else di in red ///
                  "model `model' with `i' mixture component did not converge"
 23.
 24.
model evv with 5 mixture component did not converge
model vvv with 4 mixture component did not converge
model eve with 4 mixture component did not converge
model eev with 5 mixture component did not converge
. di as result "best model according to BIC: k=`bestk BIC' type `bestmodel BIC'
best model according to BIC: k=3 type vvv
. di as result "best model according to AIC: k=`bestk AIC' type `bestmodel AIC'
best model according to ATC: k=3 type
```

Syntax Examples

The multinorm dataset

The AIC- and BIC- minimizing model have k = 3 and VVV correlation matrix.

gl	g2		g3		
.3781614	.5182283	.10	36103		
Clustering 1	Table				
g1	g2		g3		
779	966		175		
Information	criteria	_			
AIC	BIC				
34505.37	34599.89	_			
. matlist e	(mu)	×1		x2	
g1 g2 g3 . matlist e	1 124.2 60.2 8 8.044 (sigma)	2815 7864 1332	39.82 67.52 60.91	697 907 576	
	gl	xl		x2	9

	g1 g2 g3	124.2815 60.27864 8.044332	39.82697 67.52907 60.91576			
t	e (si	(sigma)				
		g1		g2		g3
		×1	x2	×1	x2	-
	x1 x2	49.85068 -23.94966	-23.94966 379.8781	1299.013 -341.5892	-341.5892 131.7972	50.51 -8.000

D Spinelli A Stata package for Cluster Weighted Modeling

x2

3.⊁ 3

839 -8.000548

399.371

x1

Syntax Examples

The multinorm dataset

Estimated parameters

- Estimated as g1: $\mu_1=(124.28,39.82)$, $\Sigma_1=\left(\begin{smallmatrix}49.85&-23.94\\-23.94&379.878\end{smallmatrix}\right)$, $N_1=779(p_3=.378)$
- Estimated as g2: $\mu_2 = (60.28, 67.53), \Sigma_2 = \begin{pmatrix} 1299.013 & -341.59 \\ -341.59 & 131.79 \end{pmatrix}$, $N_2 = 966(p_1 = 0.518)$
- Estimated as g3: $\mu_3=(8.04,60.91)$, $\Sigma_3=\left(\frac{50.52}{-8.00},\frac{-8.00}{399.37}\right)$, $N_3=175(\rho_2=.1036)$

Data generating

- $\mu_1 = (59,68)$, $\Sigma_1 = \begin{pmatrix} 1351 & -358 \\ -358 & 136 \end{pmatrix}$, $N_1 = 1000(p_1 = 0.5208)$; g2 is very similar
- $\mu_2=(8,61)$, $\Sigma_2=\left(\begin{smallmatrix} 47 & -12 \\ -12 & 378 \end{smallmatrix}
 ight)$, $N_2=200(p_2=.1041)$; g3 is very similar
- $\mu_3 = (124, 40)$, $\Sigma_3 = \begin{pmatrix} 7407 & 1033 \\ 1033 & 728 \end{pmatrix}$, $N_3 = 720(p_3 = .375)$; **g1** is very similar

Syntax Examples

The multinorm dataset

- . predict map
- . tab map group

map	1	2	3	Total
1 2 3	78 907 15	0 40 160	701 19 0	779 966 175
Total	1,000	200	720	1,920

э

Syntax Examples

The multinorm dataset

Syntax Examples

The multinorm dataset

