
Customized Markdown and .docx tables
using listtab and docxtab

Roger B. Newson
roger.newson@kcl.ac.uk

http://www.rogernewsonresources.org.uk

Cancer Prevention Group, School of Cancer & Pharmaceutical Sciences, King’s College
London

Presented at the 2023 UK Stata Conference, London,
7–8 September, 2023

Downloadable from the conference website at
https://econpapers.repec.org/paper/boclsug23/

Customized Markdown and .docx tables using listtab and docxtab Frame 1 of 20

mailto:roger.newson@kcl.ac.uk
http://www.rogernewsonresources.org.uk
https://econpapers.repec.org/paper/boclsug23/

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Stata has always had tables
▶ They are called Stata datasets, can live in files or in frames[1],

and are relational tables in the sense of Date (2003)[2], with
tuples (or rows) called observations.

▶ And they have a primary key defined by the virtual variable _n,
preferably preceded by the sortedby varlist.

▶ And their variables can be listed, using the SSC package
listtab[3], to tables in documents in an endless variety of
formats, specified by the row style option rstyle().

▶ Each row style is defined as a combination of a
begin(string), a delimiter(string), and an
end(string).

▶ However, today we will be using rstyle(markdown),
defined simply as begin(|) delimiter(|) end(|),
which can be used for making HTML tables (via markdown).

▶ And now we can also output variables to tables in Open Office
XML (.docx) documents, using putdocx and the SSC
package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 2 of 20

Recommendations for datasets output using listtab
The listtab package inputs a varlist of variables for output.
The definitive SJ paper on listtab[3] gives some general
recommendations about these input variables:

1. If numeric, they should be converted to string variables,
because numeric variables in tables in documents can have
formats and/or fonts and/or parentheses and/or P–value stars.

2. The first of these input variables should be a row label variable.

3. And all of these input variables should have a list of variable
characteristics, specifying one or more rows of column labels,
and possibly other column attributes (like alignment).

Note that it is also a good idea for the input dataset to have a primary
key of variables not in the varlist input by listtab, and to
calculate the row label variable from these. And it is also a good idea
for the above destructive process to take place between a preserve
and a restore. The recommended sequence is called the DCRIL
path (decode, characterize, reshape, insert, list).

Customized Markdown and .docx tables using listtab and docxtab Frame 3 of 20

We will assume that we have a resultsset. . .

In the extended auto dataset created by the SSC package xauto, we
use our old friend the parmby module of the SSC package parmest
to fit 2 regression models of fuel consumption (in nipperkins per mile)
with respect to car weight (in US tons), one for non–US models and
one for US models. We save the results in a resultsset in memory,
with 1 observation per car model origin per model parameter,
overwriting the original dataset. The code to do this is as follows:

parmby "regress npm tons, vce(robust)",
fast by(us) label
escal(N) rename(es_1 N)
format(estimate min* max* %8.3f p %-8.3e);

Note that the covariate variable label is saved in a string variable
label, and the number of car models for each car origin group is
saved in a variable es_1, renamed to N.

Customized Markdown and .docx tables using listtab and docxtab Frame 4 of 20

. . .and we seem to have a resultsset. . .

When we describe this resultsset, we find these variables:
. describe, full;

Contains data
Observations: 4

Variables: 12
--
Variable Storage Display Value

name type format label Variable label
--
us byte %8.0g us US or non-US model
parmseq byte %12.0g Parameter sequence number
parm str5 %9s Parameter name
label str16 %16s Parameter label
estimate double %8.3f Parameter estimate
stderr double %10.0g SE of parameter estimate
dof byte %10.0g Degrees of freedom
t double %10.0g t-test statistic
p double %-8.3e P-value
min95 double %8.3f Lower 95% confidence limit
max95 double %8.3f Upper 95% confidence limit
N byte %10.0g e(N)
--
Sorted by: us parmseq

Note: Dataset has changed since last saved.

It is keyed by the car origin variable us and the parameter sequence
number variable parmseq.

Customized Markdown and .docx tables using listtab and docxtab Frame 5 of 20

. . .but it seems to be a complicated resultsset!
When we list some of these variables, we find that there are 3
separate variables, parmseq, label, and parm, containing the
parameter sequence number, covariate label, and covariate name,
respectively. And the sample number N is repeated:
. by us: list parmseq label parm N estimate min* max* p, noobs;

--
-> us = Non-US

+--+
parmseq label parm N estimate min95 max95 p
1 Weight (US tons) tons 22 11.059 8.130 13.987 1.5e-07
2 Constant _cons 22 -1.764 -5.382 1.853 3.2e-01
+--+

--
-> us = US

+---+
parmseq label parm N estimate min95 max95 p
1 Weight (US tons) tons 52 7.885 6.484 9.286 2.2e-15
2 Constant _cons 52 0.537 -1.549 2.622 6.1e-01
+---+

So can we simplify our resultsset?

Customized Markdown and .docx tables using listtab and docxtab Frame 6 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

The central role of sdecode (and sencode) in resultsprocessing
▶ The SSC package sdecode is a “super–decoder”, combining

the roles of decode and tostring.
▶ It has a replace option, so the output string variable can

replace the input numeric variable (inheriting its name, variable
label, and position).

▶ It has options prefix(string) and suffix(string),
enabling us to add prefixes or suffixes, containing parentheses
and/or P–value stars and/or font specifications.

▶ It has an option esub(substitution_rule), enabling us
to substitute Markdown, HTML, TEX, or RTF superscripting in
e–formatted variables.

▶ And it has a number of dependent SSC packages, like bmjcip
and insingap.

▶ The SSC package sencode[4] is a “super–encoder”, with
options replace and gsort() (for specifying coding orders
using sort–key variables).

Customized Markdown and .docx tables using listtab and docxtab Frame 7 of 20

Using sencode to create an improved model–parameter variable

In our resultsset, we demonstrate sencode by creating a new
model–parameter variable modparam, by encoding the parameter
label variable label in the order of the parameter sequence variable
parmseq:

sencode label, gsort(parmseq) gene(modparam);
lab var modparam "Model parameter";
drop parmseq parm label;
keyby us modparam;

Note that we can drop the old parameter variables parmseq, parm,
and label, and use the SSC package keyby to sort the dataset by
the car origin group variable us and the model–parameter variable
modparam, checking that the 2 key variables uniquely identify the
observations.

Customized Markdown and .docx tables using listtab and docxtab Frame 8 of 20

Using sdecode and sencode to create an improved car origin variable

In our resultsset, we sdecode the car origin variable us to a string
variable us2, use replace to add to us2 the corresponding value
(in parenthesis) of the sample–number variable N, and sencode us2
back to numeric, in the order of us:

sdecode us, gene(us2);
replace us2 = us2 + " (N=" + string(N) + ")";
sencode us2, gsort(us) replace;
keep us2 modparam estimate min* max* p;
keyby us2 modparam;

Note that we can now keep only a short list of really necessary
variables, and use keyby to key this reduced dataset by us2 and
modparam.

Customized Markdown and .docx tables using listtab and docxtab Frame 9 of 20

And here we have our new slimmer resultsset

Using list, we view our new resultsset, starting with the key
variables us2 and modparam, with 1 observation per car–origin
group per model parameter:
. list us2 modparam estimate min* max* p, noobs;

+---+
us2 modparam estimate min95 max95 p
Non-US (N=22) Weight (US tons) 11.059 8.130 13.987 1.5e-07
Non-US (N=22) Constant -1.764 -5.382 1.853 3.2e-01
US (N=52) Weight (US tons) 7.885 6.484 9.286 2.2e-15
US (N=52) Constant 0.537 -1.549 2.622 6.1e-01
+---+

We can now save our resultsset (to result1.dta), and use it to
generate Markdown, HTML, and docx resultstables.

Customized Markdown and .docx tables using listtab and docxtab Frame 10 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating Markdown tables using the SSC package listtab
▶ A Markdown language is a shorthand language for HTML.
▶ There are many Markdowns, but we will be using Stata

Markdown, which allows us to drop into HTML, and to make
tables.

▶ In Stata, Markdown documents can be written using the file
utility, beginning with file open and ending with file
close, preferably with a capture noisily group[5] in
between, in case there are errors.

▶ And, in these Markdown documents, each table can be made
using listtab, usually between a preserve and a
restore.

▶ And, when the Markdown document has been written, we can
convert it to browser–ready HTML, using the markdown
command.

▶ We will demonstrate this method for creating a HTML
document, containing resultstables from our resultsset.

Customized Markdown and .docx tables using listtab and docxtab Frame 11 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Creating a Markdown document from our resultsset
▶ The do–file mymddoc1.do generates a HTML document

mymddoc1.htm (via a Markdown document mymddoc1.md)
from our resultsset in result1.dta.

▶ We use the SSC package tfinsert to write the text, and then
create 2 alternative tables from our resultsset using listtab,
each between a preserve and a restore.

▶ For each table, we start by using the SSC packages sdecode to
decode the model–parameter variable modparam to a row–label
variable rowlab, and bmjcip to decode the estimates,
confidence limits, and P–values.

▶ We then use the SSC package chardef to set column
characteristics, specifying the column labels and alignments.

▶ In the first table, we then use the SSC package insingap to
insert a gap row at the start of each car–origin by–group.

▶ And, in the second table, we then use the SSC package
xrewide (an extension of reshape wide) to reshape the
table to give the 2 car–origin groups side by side.

Customized Markdown and .docx tables using listtab and docxtab Frame 12 of 20

Decoding the row label and cell variables using sdecode and bmjcip

To make the first table, we use sdecode to decode the
model–parameter variable modparam to a row–label string variable
rowlab, and then use the sdecode–dependent package bmjcip to
decode the estimates, confidence limits, and P–values (to HTML). We
then list the car–model origin group variable us2 and the variables
to be tabulated:
. sdecode modparam, gene(rowlab);
. bmjcip estimate min* max* p, esub(htmlsuper);
. list us2 rowlab estimate min* max* p, noobs abbr(32);

+---+
us2 rowlab estimate min95 max95 p
Non-US (N=22) Weight (US tons) 11.059 (8.130, 13.987) 1.5x10⁻⁷
Non-US (N=22) Constant -1.764 (-5.382, 1.853) .32
US (N=52) Weight (US tons) 7.885 (6.484, 9.286) 2.2x10⁻¹⁵
US (N=52) Constant 0.537 (-1.549, 2.622) .61
+---+

Note that the confidence limits now have commas and parentheses,
and the P–values are already in HTML.

Customized Markdown and .docx tables using listtab and docxtab Frame 13 of 20

Setting the column–variable characteristics using chardef

The SSC package chardef is a mass–production extension of char
define. We use it to set the values of the variable characteristics
varname (containing the italicized column headings in Markdown)
and halign (containing column horizontal alignments in
Markdown) for the variables rowlab, estimate, min95, max95,
and p, which will eventually appear in the table:
. chardef rowlab estimate min* max* p, char(varname)
> val("Parameter" "Estimate" "(95%" "CI)" P) prefix(*) suffix(*);
. chardef rowlab estimate min* max* p, char(halign)
> val(":---" "---:" "---:" "---:" ":---");

If you understand Markdown, then you might note that the options
prefix(*) and suffix(*) of chardef are used to make the
column headings italic. And that the preferred horizontal alignments
for the variables rowlab, estimate, min95, max95, and p are
left, right, right, right, and left, respectively.

Customized Markdown and .docx tables using listtab and docxtab Frame 14 of 20

Inserting a single gap row in each by–group using insingap
The SSC package insingap depends on the SSC package ingap,
which in turn depends on the SSC package sdecode. We use it to
insert a gap row at the beginning of each by–group defined by the
car–origin group variable us2. We then list the variables which
will eventually be output to the table in the Markdown document:
. insingap us2, rowlabel(rowlab) grdecode(us2) prefix(**) suffix(:**)
> neword(rowseq);
. list rowlab estimate min* max* p, noobs abbr(32) sepby(us2);

+---+
rowlab estimate min95 max95 p
Non-US (N=22):
Weight (US tons) 11.059 (8.130, 13.987) 1.5x10⁻⁷
Constant -1.764 (-5.382, 1.853) .32

US (N=52):
Weight (US tons) 7.885 (6.484, 9.286) 2.2x10⁻¹⁵
Constant 0.537 (-1.549, 2.622) .61
+---+

If you understand Markdown, then you might note that the
prefix(**) and suffix(:**) options of insingap are used
to make the gap row labels bold (with colons).

Customized Markdown and .docx tables using listtab and docxtab Frame 15 of 20

Outputting the table to the Markdown document using listtab

We can now output the table defined by the varlist
rowlab estimate min* max* p
to the Markdown document under construction. The table is also
typed (thanks to the type option) to the Stata log, where it can be
seen as an alien–looking Markdown table, ready for conversion to an
even more alien–looking HTML table:
. listtab rowlab estimate min* max* p, handle(‘mdb1’) rstyle(markdown)
> headchar(varname halign) type;
|*Parameter*|*Estimate*|*(95%*|*CI)*|*P*|
|:---|---:|---:|---:|:---|
|**Non-US (N=22):**|||||
|Weight (US tons)|11.059|(8.130,|13.987)|1.5x10⁻⁷|
|Constant|-1.764|(-5.382,|1.853)|.32|
|**US (N=52):**|||||
|Weight (US tons)|7.885|(6.484,|9.286)|2.2x10⁻¹⁵|
|Constant|0.537|(-1.549,|2.622)|.61|

If you understand Markdown, then you might note that the table starts
with an italic column–label row, continues to a column–alignment
row, and then continues with the results rows, including bold gap rows
with colons. And, if you don’t understand Markdown. . .

Customized Markdown and .docx tables using listtab and docxtab Frame 16 of 20

We can now view the browser–ready HTML document mymddoc1.htm

▶ The second table (the wide version) is created using xrewide
instead of insingap, but is otherwise similar.

▶ We can now look at the browser–ready document
mymddoc1.htm, containing both tables.

Customized Markdown and .docx tables using listtab and docxtab Frame 17 of 20

We can now view the browser–ready HTML document mymddoc1.htm

▶ The second table (the wide version) is created using xrewide
instead of insingap, but is otherwise similar.

▶ We can now look at the browser–ready document
mymddoc1.htm, containing both tables.

Customized Markdown and .docx tables using listtab and docxtab Frame 17 of 20

We can now view the browser–ready HTML document mymddoc1.htm

▶ The second table (the wide version) is created using xrewide
instead of insingap, but is otherwise similar.

▶ We can now look at the browser–ready document
mymddoc1.htm, containing both tables.

Customized Markdown and .docx tables using listtab and docxtab Frame 17 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Browser–ready HTML documents versus printer–ready .docx documents

▶ Our superiors frequently prefer printer–ready documents to
browser–ready documents.

▶ A printer–ready document must have a page size (such as A4),
and usually a page header and/or a page footer.

▶ The header may contain corporate logos for organizations
participating in the project.

▶ And the header and/or the footer may contain a page number and
a page count. (These are useful if our superiors print the
document and scatter the pages over the floor.)

▶ In Stata, we can create printer–ready .docx documents, using
putdocx.

▶ And to create .docx tables in such documents from resultssets,
we use the SSC package docxtab.

Customized Markdown and .docx tables using listtab and docxtab Frame 18 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

Creating a .docx document from our resultsset

▶ The do–file mydocxdoc1.do generates a .docx document
mydocxdoc1.docx from our resultsset in result1.dta.

▶ This time, we use putdocx to write the text, and create the 2
alternative tables from our resultsset using docxtab, each
between a preserve and a restore.

▶ Otherwise, we use similar methods to the Markdown example,
using sdecode, bmjcip, chardef, insingap, and
xrewide.

▶ These methods form a variant of the DCRIL path, where
docxtab does the listing.

▶ We can now view the .docx document created.

Customized Markdown and .docx tables using listtab and docxtab Frame 19 of 20

References

[1] Newson, R. B. Resultssets in resultsframes in Stata 16–plus. Presented at the 2022
London Stata Conference, 8–9 September, 2022. Downloadable from the conference
website at https://econpapers.repec.org/paper/boclsug22/01.htm

[2] Date, C. J. An Introduction to Database Systems. 8th Edition. Pearson Education, Inc.;
2003.

[3] Newson, R. B. 2012. From resultssets to resultstables in Stata. The Stata Journal 12(2):
191—213. Downloadable from
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200203

[4] Newson, R. B. Creating factor variables in resultssets and other datasets. Presented at the
19th UK Stata User Meeting, 12–13 September, 2013. . Downloadable from the
conference website at http://ideas.repec.org/p/boc/usug13/01.html

[5] Newson, R. B. 2017. Stata Tip 127: Use capture noisily groups. The Stata Journal
17(2): 511–514. Downloadable from
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1701700215

The presentation, and the example do–files, can be downloaded from
the conference website. The packages can be downloaded from SSC.

Customized Markdown and .docx tables using listtab and docxtab Frame 20 of 20

https://econpapers.repec.org/paper/boclsug22/01.htm
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200203
http://ideas.repec.org/p/boc/usug13/01.html
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1701700215

	Title
	Introduction
	Our resultsset
	The central role of sdecode (and sencode)
	Creating Markdown tables using listtab
	Creating .docx tables using docxtab
	References

