
pystacked: Stacking generalization and
machine learning in Stata

Mark E Schaffer (Heriot-Watt University, IZA)

Achim Ahrens (ETH Zürich)
Christian B Hansen (University of Chicago)

Package website: https://statalasso.github.io/

Latest version available here

September 7, 2023

https://statalasso.github.io/
https://statalasso.github.io/pdf/pres_pystacked.pdf

Introduction: Stacking
▶ The machine leaning (ML) toolbox includes a rich set of

flexible methods: regularized regression, random forests, SVM,
boosting, neural nets.

▶ When faced with a new prediction or classification task, it is a
priori rarely obvious which machine learner is best suited for a
particular task.

▶ Typical approach:
▶ Validating learner based on hold-out sample
▶ Cross-validation (K -fold, Leave-one-out, One-step ahead)

The underlying idea: Select one learner as the best.

1 / 27

Introduction: Stacking
▶ The machine leaning (ML) toolbox includes a rich set of

flexible methods: regularized regression, random forests, SVM,
boosting, neural nets.

▶ When faced with a new prediction or classification task, it is a
priori rarely obvious which machine learner is best suited for a
particular task.

▶ Typical approach:
▶ Validating learner based on hold-out sample
▶ Cross-validation (K -fold, Leave-one-out, One-step ahead)

The underlying idea: Select one learner as the best.

1 / 27

Introduction: Stacking
This approach seems incomplete: combining several different
learners could improve performance.

The idea of stacking generalization, or simply stacking, is to
combine learners (Wolpert, 1992; Breiman, 1996). Goes under
various names: super learner, model averaging, etc.

General idea:
▶ Combine a set of “base” (or “level-0”, “candidate”) learners

using a “final” (or “level-1”) estimator.
▶ It is advisable to include a relatively large and diverse set of

base learners to capture different types of pattern in the data.
▶ Stacking also provides an effective framework for

hyper-parameter tuning.

2 / 27

Introduction: Stacking
This approach seems incomplete: combining several different
learners could improve performance.

The idea of stacking generalization, or simply stacking, is to
combine learners (Wolpert, 1992; Breiman, 1996). Goes under
various names: super learner, model averaging, etc.

General idea:
▶ Combine a set of “base” (or “level-0”, “candidate”) learners

using a “final” (or “level-1”) estimator.
▶ It is advisable to include a relatively large and diverse set of

base learners to capture different types of pattern in the data.
▶ Stacking also provides an effective framework for

hyper-parameter tuning.

2 / 27

Introduction: Stata’s ML tools
There is a growing number of programs for ML in Stata:
▶ lassopack for regularized regression (Ahrens, Hansen, and

Schaffer, 2020)
▶ rforest for random forests (Schonlau and Zou, 2020)
▶ svmachines for support vector machines (Guenther and

Schonlau, 2018)
▶ Cerulli (2021) and Droste (2020) provide an interface to

scikit-learn (Pedregosa et al., 2011; Buitinck et al., 2013)
▶ mlrtime allows Stata users to make use of R’s parsnip

machine learning library (Huntington-Klein, 2021)
▶ ...and Stata’s own built-in learners

Our contribution: We complement these programs by offering a
package that can be used to fit a wide range of machine learners,
and for stacking.

3 / 27

Introducing pystacked
We introduce pystacked for stacking regression and binary
classification in Stata.
▶ pystacked allows to fit multiple machine learning algorithms

via Python’s scikit-learn (Pedregosa et al., 2011; Buitinck
et al., 2013)1 and combine these into one final prediction as a
weighted average of individual predictions.

▶ pystacked can also be used to fit a single machine learner
and thus provides an easy-to-use and versatile API to
scikit-learn’s machine learning algorithms.

▶ Our main motivation for developing pystacked: Use it in
combination with Double-Debiased Machine Learning
(Chernozhukov et al., 2018)

▶ Forthcoming pystacked paper in The Stata Journal (working
paper version: Ahrens, Hansen, and Schaffer (2022))

1We stress that pystacked relies on scikit-learn and the on-going work of the scikit-learn contributors. We
thus suggest that users cite scikit-learn along with this article when using pystacked.

4 / 27

Stacking regression
Which machine learner should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear; etc.

Stacking is an ensemble method that combines multiple base
learners into one model. As the default, we use non-negative least
squares:

min
w1,...,wJ

n∑
i=1

yi −
J∑

j=1
wj ŷ−k(i)

(j),i

2

s.t. wj ≥ 0,
J∑

j=1
wj = 1

where ŷ−k(i)
(j),i are the cross-validated predictions of base learner j .

Voting regression is a special case with unweighted (or
user-specified) weights.

5 / 27

Stacking regression
1. Cross-validation:

1.1 Split the sample I = {1, . . . , n} randomly into K partitions
(‘folds’) of approximately equal size. Denote the set of
observations in fold k = 1, . . . , K as Ik , and its complement as
Ic
k such that Ic

k = I \ Ik . Ik constitutes the step-k validation set
and Ic

k the step-k training sample.

1.2 For each fold k = 1, . . . , K and each base learner j = 1, . . . , J ,
fit the supervised machine learner j to the training data Ic

k and
obtain out-of-sample predicted values ŷ−k

(j),i for i ∈ Ik .
2. Final learner: Fit the final learner to the full sample. The default

choice is NNLS:

min
w1,...,wJ

n∑
i=1

(
yi −

J∑
j=1

wj ŷ−k(i)
(j),i

)2

s.t. wj ≥ 0,

J∑
j=1

wj = 1

The stacking predicted values are defined as ŷ⋆
i =

∑
j ŵj ŷ(j),i where

ŵj is the estimated stacking weight corresponding to learner j and
ŷ(j),i are the predicted values from re-fitting learner j on the full
sample I.

6 / 27

Stacking regression
1. Cross-validation:

1.1 Split the sample I = {1, . . . , n} randomly into K partitions
(‘folds’) of approximately equal size. Denote the set of
observations in fold k = 1, . . . , K as Ik , and its complement as
Ic
k such that Ic

k = I \ Ik . Ik constitutes the step-k validation set
and Ic

k the step-k training sample.
1.2 For each fold k = 1, . . . , K and each base learner j = 1, . . . , J ,

fit the supervised machine learner j to the training data Ic
k and

obtain out-of-sample predicted values ŷ−k
(j),i for i ∈ Ik .

2. Final learner: Fit the final learner to the full sample. The default
choice is NNLS:

min
w1,...,wJ

n∑
i=1

(
yi −

J∑
j=1

wj ŷ−k(i)
(j),i

)2

s.t. wj ≥ 0,

J∑
j=1

wj = 1

The stacking predicted values are defined as ŷ⋆
i =

∑
j ŵj ŷ(j),i where

ŵj is the estimated stacking weight corresponding to learner j and
ŷ(j),i are the predicted values from re-fitting learner j on the full
sample I.

6 / 27

Stacking regression
1. Cross-validation:

1.1 Split the sample I = {1, . . . , n} randomly into K partitions
(‘folds’) of approximately equal size. Denote the set of
observations in fold k = 1, . . . , K as Ik , and its complement as
Ic
k such that Ic

k = I \ Ik . Ik constitutes the step-k validation set
and Ic

k the step-k training sample.
1.2 For each fold k = 1, . . . , K and each base learner j = 1, . . . , J ,

fit the supervised machine learner j to the training data Ic
k and

obtain out-of-sample predicted values ŷ−k
(j),i for i ∈ Ik .

2. Final learner: Fit the final learner to the full sample. The default
choice is NNLS:

min
w1,...,wJ

n∑
i=1

(
yi −

J∑
j=1

wj ŷ−k(i)
(j),i

)2

s.t. wj ≥ 0,

J∑
j=1

wj = 1

The stacking predicted values are defined as ŷ⋆
i =

∑
j ŵj ŷ(j),i where

ŵj is the estimated stacking weight corresponding to learner j and
ŷ(j),i are the predicted values from re-fitting learner j on the full
sample I.

6 / 27

pystacked overview
pystacked implements stacking regression (Wolpert, 1992) via
scikit learn’s StackingRegressor and StackingClassifier.

Main features:
▶ Two alternatives syntaxes
▶ 10+ different machining learning algorithms supported that

can be used stand-alone or as base learners in combination
with stacking

▶ Regression+classification
▶ Graphing and plotting features
▶ Supports central scikit-learn learn pipelines
▶ Supports sparse matrices and parallelization
▶ Various options for the final learner (ridge, least squares)

7 / 27

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

pystacked overview
pystacked implements stacking regression (Wolpert, 1992) via
scikit learn’s StackingRegressor and StackingClassifier.

Main features:
▶ Two alternatives syntaxes
▶ 10+ different machining learning algorithms supported that

can be used stand-alone or as base learners in combination
with stacking

▶ Regression+classification
▶ Graphing and plotting features
▶ Supports central scikit-learn learn pipelines
▶ Supports sparse matrices and parallelization
▶ Various options for the final learner (ridge, least squares)

7 / 27

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

(Base) Machine learners
method() type() Machine learner description
ols regress Linear regression
logit class Logistic regression
lassoic regress Lasso with AIC/BIC penalty
lassocv regress Lasso with CV penalty

class Logistic lasso with CV penalt
ridgecv regress Ridge with CV penalty

class Logistic ridge with CV penalty
elasticcv regress Elastic net with CV penalty

class Logistic elastic net with CV
svm regress Support vector regression

class Support vector classification
gradboost regress Gradient boosting regressor

class Gradient boosting classifier
rf regress Random forest regressor

class Random forest classifier
linsvm class Linear SVC
nnet regress Neural net

class Neural net

Note: The first two columns list all allowed combinations of method(string) and type(string), which are used to
select base learners. Column 3 provides a description of each machine learner. ‘CV penalty’ indicates that the penalty
level is chosen to minimize the cross-validated MSPE. ‘AIC/BIC penalty’ indicates that the penalty level minimizes
either either the Akaike or Bayesian information criterion. SVC refers to support vector classification.

8 / 27

Main syntax
Syntax 1:

pystacked depvar predictors
[

if
] [

in
] [

, methods(string)

cmdopt1(string) cmdopt2(string) ... cmdopt10(string)

pipe1(string) pipe2(string) ... xvars1(predictors)
xvars2(predictors) ... general_options

]
Notes:
▶ methods(string) is used to select base learners, where string is a

list of base learners.
▶ Options are passed on to base learners via cmdopt1(string),

cmdopt2(string), . . .
▶ pipe*(string) are for pipelines; xvars*(predictors) allows to

specify a learner-specific variable lists of predictors.

9 / 27

Main syntax
Syntax 2:

pystacked depvar
[

indepvars
]

|| method(string) opt(string)
pipe(string) xvars(predictors)

[
|| method(string) opt(string)

pipe(string) xvars(predictors) ... ||
] [

if
] [

in
] [

,

general_options
]

Notes:
Base learners are added before the comma using method(string)
along with further learner-specific settings and separated by ‘||’.

10 / 27

Pipelines and learner-specific predictors
Pipelines

scikit-learn uses pipelines to pre-preprocess input data on the fly.
In pystacked, pipelines can be used to impute missing values,
create polynomials and interactions, and to standardize predictors.

Learner-specific predictors

▶ By default, pystacked uses the same set of predictors for
each base learner.

▶ This is often not desirable: For example, when using linear
machine learners such as the lasso adding polynomials,
interactions and other transformations of the base set of
predictors might greatly improve out-of-sample prediction
performance.

▶ Solution: Use pipelines or xvars*(predictors)

11 / 27

Pipelines and learner-specific predictors
Pipelines

scikit-learn uses pipelines to pre-preprocess input data on the fly.
In pystacked, pipelines can be used to impute missing values,
create polynomials and interactions, and to standardize predictors.

Learner-specific predictors

▶ By default, pystacked uses the same set of predictors for
each base learner.

▶ This is often not desirable: For example, when using linear
machine learners such as the lasso adding polynomials,
interactions and other transformations of the base set of
predictors might greatly improve out-of-sample prediction
performance.

▶ Solution: Use pipelines or xvars*(predictors)

11 / 27

General options I
A full list of general options is provided in the pystacked help file.
We list only the most important general options here:

type(string) allows reg(ress) for regression problems or class(ify) for
classification problems. The default is regression.

finalest(string) selects the final estimator used to combine base learners.
The default is non-negative least squares without an intercept and
the additional constraint that weights sum to 1 (nnls1). Alternatives
are nnls0 (non-negative least squares without an intercept and
without the sum-to-one constraint), singlebest (use the base learner
with the minimum MSE), ls1 (least squares without an intercept
and with the sum-to-one constraint), ols (ordinary least squares) or
ridge for (logistic) ridge, which is the scikit-learn default.

folds(integer) specifies the number of folds used for cross-validation. The
default is 5.

foldvar(varname) is the integer fold variable for cross-validation.
bfolds(integer) sets the number of folds used for base learners that use

cross-validation (e.g. cross-validated lasso); the default is 5.

12 / 27

General options II
pyseed(integer) sets the Python seed. Note that since pystacked uses

Python, we also need to set the Python seed to ensure replicability.
There are three options:

1. pyseed(-1) draws a number between 0 and 108 in Stata
which is then used as a Python seed; this is pystacked’s
default behavior. This way, one only needs to deal with the
Stata seed. For example, set seed 42 is sufficient, as the
Python seed is generated automatically.

2. Setting pyseed(x) with any positive integer x allows to
control the Python seed directly.

3. pyseed(0) sets the seed to None in Python.
njobs(integer) sets the number of jobs for parallel computing. The default is

0 (no parallelization), –1 uses all available CPUs, –2 uses all CPUs
minus 1.

backend(string) backend used for parallelization. The default is ‘threading’.
voting selects voting regression or classification which uses pre-specified

weights. By default, voting regression uses equal weights; voting
classification uses a majority rule.

13 / 27

General options III
voteweights(numlist) defines positive weights used for voting regression or

classification. The length of numlist should be the number of base
learners – 1. The last weight is calculated to ensure that the sum of
weights equals 1.

sparse converts predictor matrix to a sparse matrix. This conversion will
only lead to speed improvements if the predictor matrix is
sufficiently sparse. Not all learners support sparse matrices and not
all learners will benefit from sparse matrices in the same way. One
can also use the sparse pipeline to use sparse matrices for some
learners but not for others.

printopt prints the default options for specified learners. Only one learner
can be specified. This is for information only; no estimation is done.

showopt prints the options passed on to Python.
showpy prints Python messages.

showcoefs (new) shows, for each base learner, the coefficient estimates (in
the case of ols, logit, regularized regression) or variable importance
measures (random forests and gradient boosting).

14 / 27

Demonstration 1: Single base learner
We import the California house price data from Pace and Barry
(1997), and split the sample randomly into training and validation
partition using a 75/25 split. The aim of the prediction task is to
predict median house prices (medhousevalue) using a set of house
price characteristics

. clear all

. use https://statalasso.github.io/dta/cal_housing.dta, clear

. set seed 42

. gen train=runiform()

. replace train=train<.75
(20,640 real changes made)
. replace medh = medh/10e3
variable medhousevalue was long now double
(20,640 real changes made)

15 / 27

Demonstration 1: Single base learner
The option method(gradboost) selects gradient boosting. We
will later see that we can specify more than one learner in
methods(), and that we can also fit gradient boosted classification
trees.

. pystacked medh longi-medi if train, type(reg) methods(gradboost)
Single base learner: no stacking done.
Stacking weights:

Method Weight

gradboost 1.0000000
. predict double yhat_gb1 if !train

The output shows the stacking weights associated with each base
learner. Since we only consider one method, the output is not
particularly informative and simply shows a weight of one for
gradient boosting. Yet, pystacked has fitted 100 boosted trees
(the default) in the background!

16 / 27

Demonstration 1: Single base learner
The option method(gradboost) selects gradient boosting. We
will later see that we can specify more than one learner in
methods(), and that we can also fit gradient boosted classification
trees.

. pystacked medh longi-medi if train, type(reg) methods(gradboost)
Single base learner: no stacking done.
Stacking weights:

Method Weight

gradboost 1.0000000
. predict double yhat_gb1 if !train

The output shows the stacking weights associated with each base
learner. Since we only consider one method, the output is not
particularly informative and simply shows a weight of one for
gradient boosting. Yet, pystacked has fitted 100 boosted trees
(the default) in the background!

16 / 27

Demonstration 1: Single base learner
We use lasso with cross-validated penalty and display the
coefficients using showcoef:

. pystacked medh longi-medi if train, type(reg) methods(lassocv) showcoef
Single base learner: no stacking done.
Stacking weights:

Method Weight

lassocv 1.0000000
Coefficients lassocv:

Predictor Value

longitude -8.4494974
latitude -8.9253902
houseage 1.4741459
rooms -1.7358155
bedrooms 4.8881583
population -3.9955915
households 1.3265723
medinc 7.6752298
_cons 20.7432595

17 / 27

Demonstration 1: Single base learner
showcoef displays variable importance for non-parametric learners
(if available).

. pystacked medh longi-medi if train, type(reg) methods(gradboost) showcoef
Single base learner: no stacking done.
Stacking weights:

Method Weight

gradboost 1.0000000
Variable importance gradboost:

Predictor Value

longitude 0.1429768
latitude 0.1454391
houseage 0.0496290
rooms 0.0034422
bedrooms 0.0217799
population 0.0232365
households 0.0092332
medinc 0.6042632

18 / 27

Demonstration 1: Single base learner
Here, we compare lasso with and without the poly2 pipeline, which
creates 2nd-order polynomials and interaction effects:

. pystacked medh longi-medi if train, type(reg) methods(lassocv)
Single base learner: no stacking done.
Stacking weights:

Method Weight

lassocv 1.0000000
. predict double yhat_lasso1 if !train
.
. pystacked medh longi-medi if train, type(reg) methods(lassocv) ///
> pipe1(poly2)
Single base learner: no stacking done.
Stacking weights:

Method Weight

lassocv 1.0000000
. predict double yhat_lasso2 if !train

19 / 27

Demonstration 2: Stacking regression
We now consider a stacking regression application with five base
learners:

1. linear regression,
2. lasso with penalty chosen by cross-validation,
3. lasso with second order polynomials and interactions,
4. random forest with default settings,
5. gradient boosting with a learning rate of 0.01 and 1000 trees.

20 / 27

Demonstration 2: Stacking regression
Syntax 1:

. set seed 42

. pystacked medh longi-medi if train, ///
> type(regress) ///
> methods(ols lassocv lassocv rf gradboost) ///
> pipe3(poly2) cmdopt5(learning_rate(0.01) ///
> n_estimators(1000))
Stacking weights:

Method Weight

ols 0.0000000
lassocv 0.0000000
lassocv 0.0000000
rf 0.8382714
gradboost 0.1617286

21 / 27

Demonstration 2: Stacking regression
Syntax 2:

. set seed 42

. pystacked medh longi-medi || ///
> m(ols) || ///
> m(lassocv) || ///
> m(lassocv) pipe(poly2) || ///
> m(rf) || ///
> m(gradboost) opt(learning_rate(0.01) n_estimators(1000)) ///
> if train, type(regress)
Stacking weights:

Method Weight

ols 0.0000000
lassocv 0.0000000
lassocv 0.0000000
rf 0.8382714
gradboost 0.1617286

22 / 27

Demonstration 2: Stacking regression
pystacked supports alternative final estimators. Here, we select
the best-performing individual candidate learner.

. set seed 42

. pystacked medh longi-medi if train, ///
> type(regress) ///
> methods(ols lassocv lassocv rf gradboost) ///
> pipe3(poly2) cmdopt5(learning_rate(0.01) ///
> n_estimators(1000)) finalest(singlebest)
Stacking weights:

Method Weight

ols 0.0000000
lassocv 0.0000000
lassocv 0.0000000
rf 1.0000000
gradboost 0.0000000

23 / 27

Demonstration 2: Stacking regression
Predicted values. In addition to the stacking predicted values, we
can also get the predicted values of each base learner using the
basexb option:

24 / 27

Demonstration 2: Stacking regression
Plotting. The graph option creates a scatter plot of predicted
versus observed values for stacking and each base learner:

0
10

20
30

40
50

0 10 20 30 40 50
medhousevalue

STACKING

0
20

40
60

80

0 10 20 30 40 50
medhousevalue

weight = 0.000
Learner: ols

0
20

40
60

80

0 10 20 30 40 50
medhousevalue

weight = 0.000
Learner: lassocv

-2
0

0
20

40
60

0 10 20 30 40 50
medhousevalue

weight = 0.000
Learner: lassocv

0
10

20
30

40
50

0 10 20 30 40 50
medhousevalue

weight = 0.838
Learner: rf

0
20

40
60

0 10 20 30 40 50
medhousevalue

weight = 0.162
Learner: gradboost

Out-of-sample Predictions

Figure: Out-of-sample predicted values and observed values created using
the graph option after stacking regression.

25 / 27

Demonstration 2: Stacking regression
MSPE table. The table option allows to compare stacking
weights with in-sample and out-of-sample MSPE. As with the
graph option, we can use table as a post-estimation command:

. pystacked, table holdout
Number of holdout observations: 5192
RMSPE: In-Sample, CV, Holdout

Method Weight In-Sample CV Holdout

STACKING . 2.313 4.980 4.939
ols 0.000 6.986 7.008 6.853
lassocv 0.000 6.987 7.008 6.857
lassocv 0.000 6.696 6.699 6.606
rf 0.838 1.847 5.001 4.963
gradboost 0.162 5.312 5.523 5.511

26 / 27

Summary
▶ pystacked implements stacked generalization (Wolpert,

1992) for regression and binary classification via Python’s
scikit-learn.

▶ Stacking combines multiple supervised machine learners—the
“base” or “level-0” learners—into a single learner.

▶ The currently supported (base) machine learners include
regularized and unregularized regression, random forest,
gradient boosting, support vector machines and feed-forward
neural nets (multi-layer perceptron).

▶ pystacked can also be used with as a ‘regular’ machine
learning program to fit a single base learner and, thus,
provides an easy-to-use API for scikit-learn’s machine learning
algorithms.

27 / 27

References I
Ahrens, Achim, Christian B. Hansen, and Mark E. Schaffer (2020).
“lassopack: Model selection and prediction with regularized regression
in Stata”. In: The Stata Journal 20.1, pp. 176–235. url:
https://doi.org/10.1177/1536867X20909697.
— (2022). pystacked: Stacking generalization and machine learning
in Stata. url: https://arxiv.org/abs/2208.10896.
Breiman, Leo (July 1996). “Stacked regressions”. en. In: Machine
Learning 24.1, pp. 49–64. url:
http://link.springer.com/10.1007/BF00117832 (visited on
12/04/2021).
Buitinck, Lars et al. (2013). “API design for machine learning
software: experiences from the scikit-learn project”. In: ECML PKDD
Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122.
Cerulli, Giovanni (2021). Machine Learning using Stata/Python.

https://doi.org/10.1177/1536867X20909697
https://arxiv.org/abs/2208.10896
http://link.springer.com/10.1007/BF00117832

References II
Chernozhukov, Victor et al. (2018). “Double/debiased machine
learning for treatment and structural parameters”. In: The
Econometrics Journal 21.1. tex.ids= Chernozhukov2018a publisher:
John Wiley & Sons, Ltd (10.1111), pp. C1–C68. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.
Droste, Michael (2020). pylearn.
https://github.com/mdroste/stata-pylearn/. [Online;
accessed 02-December-2021].
Guenther, Nick and Matthias Schonlau (Nov. 2018). SVMACHINES:
Stata module providing Support Vector Machines for both
Classification and Regression. Statistical Software Components,
Boston College Department of Economics. url:
https://ideas.repec.org/c/boc/bocode/s458564.html.
Huntington-Klein, Nick C. (2021). mlrtime.
https://github.com/NickCH-K/MLRtime/. [Online; accessed
02-December-2021].

https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://github.com/mdroste/stata-pylearn/
https://ideas.repec.org/c/boc/bocode/s458564.html
https://github.com/NickCH-K/MLRtime/

References III
Pace, R. Kelley and Ronald Barry (1997). “Sparse spatial
autoregressions”. In: Statistics & Probability Letters 33.3,
pp. 291–297. url: https://www.sciencedirect.com/science/
article/pii/S016771529600140X.
Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research 12,
pp. 2825–2830.
Schonlau, Matthias and Rosie Yuyan Zou (2020). “The random
forest algorithm for statistical learning”. In: The Stata Journal 20.1,
pp. 3–29. url: https://doi.org/10.1177/1536867X20909688.
Wolpert, David H. (1992). “Stacked generalization”. In: Neural
Networks 5.2, pp. 241–259. url: https://www.sciencedirect.
com/science/article/pii/S0893608005800231.

https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://doi.org/10.1177/1536867X20909688
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231

	Appendix
	References

