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Is Volatility Risk Priced?
Properties of Tests Based on Option Hedging Errors

Abstract

This paper provides an in-depth analysis of the properties of popular tests for the
existence and the sign of the market price of volatility risk. These tests are frequently
based on the fact that for some option pricing models under continuous hedging
the sign of the market price of volatility risk coincides with the sign of the mean
hedging error. Empirically, however, these tests suffer from both discretization error
and model risk. We show that these two problems may cause the test to be either
no longer able to detect additional priced risk factors or to be unable to identify
the sign of their market prices of risk correctly. Our analysis is performed for the
model of Black and Scholes (1973) (BS) and the stochastic volatility (SV) model
of Heston (1993). In the model of BS, the expected error for a discrete hedge is
positive, leading to the wrong conclusion that the stock is not the only priced risk
factor. In the model of Heston, the expected hedging error for a hedge in discrete
time is positive when the true market price of volatility risk is zero, leading to the
wrong conclusion that the market price of volatility risk is positive.

If we further introduce ’model risk’ by using the BS delta in a Heston world we
find that the mean hedging error also depends on the slope of the implied volatility
curve and on the equity risk premium. Under parameter scenarios which are similar
to those reported in many empirical studies the test statistics tend to be biased
upwards. This means that sometimes the test does not detect negative volatility
risk premia, or it signals a positive risk premium when it is truly zero. The results
of this test furthermore strongly depend on the location of current volatility relative
to its long-term mean, and the degree of moneyness of the option. As a consequence
the empirical tests may suffer from the problem that in a time-series framework the
researcher cannot draw the hedging errors from the same distribution repeatedly.
This implies that there is no guarantee that the empirically computed ¢-statistic has
the assumed distribution.

JEL: G12, G13

Keywords: Stochastic Volatility, Volatility Risk Premium, Discretization Error,
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1 Introduction and Motivation

Explaining excess asset returns is at the core of a discipline financial economists call
‘asset pricing’. Naturally, researchers have also become interested in the properties of
excess returns on options, see for example the paper by Coval and Shumway (2001). An
important question in this context is whether volatility is stochastic, and if so, if volatility
risk is priced in the options market. Among others this problem has been investigated by
Bakshi and Kapadia (2001) and by Buraschi and Jackwerth (2001). A more general issue
in this context is whether there are any additional risk factors besides stock price risk that
are priced in the options market. The researcher would like to perform the most general
test of this hypothesis possible. No model should be pre-specified, but the test should be

viable for a whole class of models, e.g. for all models with stochastic volatility (SV).

The basis for the empirical analysis of Buraschi and Jackwerth (2001) is the fact
that one should be able to span the pricing kernel using only two assets if there are no
additional risk factors besides the stock. Their empirical result is that there are other
sources of risk which implies that deterministic volatility models are mis-specified. Coval
and Shumway (2001) find that option returns cannot be explained by the risk-free interest
rate and stock returns so that there must be at least one additional risk factor. Finally,
Bakshi and Kapadia (2001) show for their sample that options cannot be hedged by the
stock and the money market account, again leading to the conclusion that there are other
factors besides pure stock price risk. So the general technique is to try to explain the
excess option return by the excess stock return (either directly or via a hedge portfolio)
and (in case this turns out to be impossible) to conclude that there are other risk factors

at least one of which is priced.

It is important to note that it is not a priori clear what sign the market price of
volatility risk should have in equilibrium. Whereas risk-averse investors would certainly
demand a premium for bearing stock price risk, this is not so clear in the case of volatility
risk. As a consequence we do not have a clear null hypothesis for the sign of the market

price of volatility risk, and its determination becomes a purely empirical matter. As shown



in Bakshi and Kapadia (2001) and as will be discussed below in detail the sign of the
volatility risk premium is (under certain scenarios) the same as the sign of the mean
hedging error. Bakshi and Kapadia (2001) build on this result and construct a hedge
portfolio for a European call option by going long the number of stocks given by the BS
delta and by borrowing the necessary remaining funds at the risk-free rate. They then
test the null hypothesis that the hedging error generated by this strategy has zero mean
and conclude in the case of rejection that there is a non-zero volatility risk premium with
a sign identical to that of the mean hedging error. The use of the BS hedging coefficient is
justified by the authors in this context as a choice which is robust against mis-specification

of an SV model.

In general the described test is correct if trading is actually continuous and if the
correct model is used to calculate the ’delta’, i.e. the partial derivative of the option price
with respect to the stock price. In empirical studies both assumptions are usually violated.
The hedging strategy is not implemented in continuous time, but trading is only possible
at discrete points in time. This leads to a discretization error. Furthermore the true data
generating process is unknown, which creates model risk and/or estimation risk, since it
is no longer possible to calculate the correct quantities for the components of the hedge
portfolio. In addition, the expected hedging error (EHE) is usually estimated as a time-
series average in empirical studies. This procedure is based on the implicit assumption that
each hedging error is drawn out of the same distribution, which does not hold in reality
due to the dependence of the hedging error on current volatility and on the moneyness of

the option, as we will show below.

To get a better idea of the properties of option hedging errors under discretization
error and model risk we perform a simulation study. The data generating process is given
by the Heston (1993) model which is the most popular approach to SV option pricing.
If the hedging test is supposed to work for any SV model it should be able to detect
the sign of the volatility risk premium also in the special case of the Heston model. So
our simulation study also represents an (indirect) check of the claim made by Bakshi and

Kapadia (2001) that their test procedure is rather robust to the (mis-)specification of the



SV process.

In the case of the Black-Scholes (BS) model with continuous trading the use of the
option delta creates a perfect hedge, i.e. the realized hedging error is identically equal
to zero. When we are faced with trading restrictions such that the portfolio can only
be rebalanced at discrete points in time the market becomes incomplete and a perfect
hedge is no longer possible since there is a discretization error. The use of the hedge ratio
derived in the continuous case results in a systematic bias. For a convex claim, the EHE
can be shown to be always positive. It can be forced to equal zero, however, when a certain

special hedge ratio different from the standard delta is applied.

For the Heston model we first derive a number of analytical results concerning the
EHE. Here we find that the sign of the EHE is equal to the sign of the volatility risk
premium only in an economy with continuous trading and if the correct delta is used.
This property does not carry over to the situation with discrete trading. Again there is
a discretization error, but in contrast to the BS model the sign of this error is no longer
unique and can only be determined for some special cases. So for a zero market price of
volatility risk and discrete hedging the EHE is positive, if the partial derivative from the
Heston model is used as the hedge ratio. As in the BS model the EHE can be forced to
equal zero if the hedge ratio is adjusted appropriately. This is no longer true if the market
price of volatility risk is non-zero. There is no systematic relationship between the sign of
the EHE and the sign of the market price of volatility risk anymore, and there is also no

closed-form adjustment to the hedge ratio as opposed to the BS case.

When there is also model risk, i.e. when the BS delta is used in an SV economy, the
sign of the EHE does not necessarily equal the sign of the market price of volatility risk
anymore, even if the hedge portfolio is rebalanced continuously. The additional bias due to
model risk depends on the equity risk premium and on the slope of the implied volatility
curve. Given the empirical evidence on stock and option markets around the world the
most important scenario here is certainly given by a downward sloping smile curve and
a positive equity risk premium. In this setting model risk tends to increase the EHE so

that the test too often falsely concludes that the volatility risk premium is positive while



it is actually zero or negative.

The remainder of the paper is organized as follows: In section 2 the main idea of
hedging based tests is described. Section 3 provides an analytical comparison of different
hedge strategies in the BS model together with some numerical results on hedging errors.
In section 4 we perform an analogous investigation for the Heston model and assess the

impact of model risk on option hedging errors. Section 5 concludes.

2 A Hedging-Based Test for Volatility Risk Premia

2.1 The Relationship between Hedging Errors and Risk Premia

As stated in the introduction one of the most important issues in derivative pricing is
whether volatility is stochastic and, if so, whether the market price of volatility risk is

different from zero.

The main idea of the test for the existence of a volatility risk premium is that the
expected return on an option can be decomposed into the risk-free rate of interest plus
the sum of the risk premia for stock price risk, volatility risk, and other types of risk. So
if the expected excess option return can be perfectly explained by the expected excess
stock return, two scenarios are possible. Either there are no other risk factors besides
stock price risk (as it is the case in the BS model), or there are other risk factors, but they
are not priced, i.e. investors do not require an additional compensation for bearing these
types of risk. The converse is that if expected excess option returns cannot be explained
by expected excess stock returns, there are additional risk factors, at least one of which

is priced.

This leads to two testable implications. First one can investigate whether excess option

returns can be explained by excess returns of the underlying. This leads to the equation

Cur _gr = g, (S ) ) + s (1)

Ct S t



with C; and S; representing the price of the option and the stock at time %, respectively.
€1+ 1S the error term, and f; denotes some measure of risk. The test focuses on the
properties of the error term ¢, ,. It is identically equal to zero if the option return can
be perfectly explained by the stock return and if the appropriate ; is chosen. It will be
different from zero if there are additional risk factors like, e.g., stochastic volatility or if
the wrong (; is chosen. It will also be different from zero if in a continuous time model

we consider the realized returns over discrete intervals.

The important issue, however, is whether the mean of ¢, is equal to zero or not.
The mean of the error term is just the part of the expected excess option return that is
not explained by the expected excess stock return. As argued above, if this expectation
is different from zero, there are other risk factors besides stock price risk at least one of
which is priced. The test therefore amounts to using the mean error to make inferences

about the market prices of additional risk factors.

As an alternative to the approach described by equation (1), one can set up a hedge
portfolio for the option containing the stock and the money market account. Using an
argument analogous to the one presented above this leads to the test if the error term

€1 = Cy€44, in the equation
— rT Ct rT ~
Ct—l—T = C’te + 5t§ (St—l—T — € St) + €t+r (2)
t

has zero mean. Again, we conclude that if the expected hedging error is zero only stock
price risk carries a premium, whereas in the opposite case there must be some other priced
risk factor. As one can see, equations (1) and (2) are just multiples of each other. The
researcher can thus choose which specification should be used for the test, and for the

rest of the paper we will focus on hedging errors of the type shown in equation 2.

The test procedures described above ignore at least two problems. First, by applying
hedge ratios or risk measures derived in a continuous-time context in discrete time (as it
is usually the case in empirical applications) a discretization error is introduced. If this
discretization error has a systematic impact on the properties of the mean hedging error,

the test may become invalid since a systematic component is introduced in the hedging



error. This problem raises the additional question whether there is at all a discrete hedge
ratio that can ensure a zero mean hedging error. Second, since the true data generating
process is unknown, the test may also suffer from model risk. The hedge ratio depends on
the option model used, and if the wrong model is used, the hedge ratio will in general be
no longer correct. In particular, the use of the BS delta may induce a bias when volatility

is stochastic.

As will be shown below the distribution of the hedging error even depends on the
moneyness and maturity of the option as well as on the current values of the state variables.
This creates another problem in empirical applications of the above testing principle.
When we calculate the mean hedging error from a time series the individual errors will
usually be drawn from different distributions. It is thus unclear whether the mean hedging
error from a time series can actually tell the researcher something about the market prices
of risk. We will avoid these problems in our simulation study and instead focus on the

discretization error and the impact of model risk.

2.2 Hedging Strategy and Hedging Error

A hedging strategy for a contingent claim consists of investments in the two traded basis
assets, the stock and the money market account. The number of shares of stock held at
time ¢ is denoted by H;, and the investment in the money market account serves to make
the strategy self-financing. The value II; of the hedge portfolio at time ¢ is given by the

following expression:
t
I, = € (Ho +/ e "™H,(dS, — rSudu)>
0

where Ilj is the initial value of the hedge portfolio.

The hedging error is defined as
t t
C,—1II, = e (C’o — Iy + / e "(dC, — rCydu) — / e "™H,(dS, — rSudu)> ,
0 0

so that it is positive when the value of the claim is greater than the value of the hedge

portfolio. In a complete market we can always choose a hedging strategy that has a value



process equal to the value process of some contingent claim C'. The resulting hedging error

would then by identically equal to zero.
The quantity
D(t7 t+ T) = (CtJrT - Ht+T) - erT(Ct - Ht)
t+7 t+7
= 't (/ e "(dC, — rCydu) — / e "H,(dS, — rSudu)> (3)
t t
represents the hedging error over the interval [t, ¢+ 7], computed at time ¢+ 7. In principle

one could compute the total hedging error from time ¢ = 0 to some point in time ¢;, where

0=ty <t <...<t, according to the following equation:
Cti - Hti = (C() - Ho)erti + D(to, tl)er(ti_tl) + D(tl, t2)€1"(t¢—t2) +...+ D(ti_l, tz)

In the analysis below, however, we will exclusively focus on one-period hedging errors
and their statistical properties. In terms of notation, the hedging error over some finite
interval [t,t + 7] is denoted by D¢(t,t+ 7) for continuous trading and by D%(t,t + ) for
discrete trading. When trading is discrete, the hedge ratio has to be held constant over
every subperiod, i.e. the hedge ratio from time ¢; to time ¢;,, is held fixed at some value

H,,. This implies in particular that the discrete hedging error is given by

DUt tip1) = Gy, — Cpe™ 7 — H, (S, — Sy el =) (4)

)

3 Hedging Error in the Model of Black and Scholes

In the BS model the dynamics of the two basis assets S (the stock) and B (the money

market account) are given by

dSt = MStdt + OStth

dBt = TBt dt, BO = ]_,

where dW, represents the increments of a standard Brownian motion. The associated

dynamics under the risk-neutral measure are given by
dSt = T'Stdt + O'Std/W/t
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with th again as a standard Brownian motion. Since the dynamics of B do not contain

a stochastic term they are not affected by the change of measure.

The test described in section 2 is based on the EHE. We will now analyze the EHE
in the BS model for different hedging strategies and for both continuous and discrete
trading. We start with the formula for the EHE for a general European claim and a
general hedge ratio H, before we focus on call options and set the hedge ratio equal to
the partial derivative of the claim price with respect to the stock price and additionally —

for discrete trading — to the so-called mean-zero hedge ratio.

The EHE for the BS model is given in the following proposition.

Proposition 1 (BS: EHE for continuous trading) The true model is the model of
Black Scholes. Trading takes place continuously, the hedge ratio at time t s H;. Then, the
EHE over the interval [t,t + T] is given by

t+71 oC'Bs
EV D (t,t+71)|F] = (- r)/ erttT gk [(ﬁ — Hu> Su | ft] du (5)
t U

with EY denoting the expectation under the physical measure and F, representing infor-

mation available at time t.

Proof: The price of the European claim CP%(t,S;) has to satisfy the partial differential

equation

BS BS 1 2, BS
ocps  ocps o 19

2Q2 BS
ot | as, 2 a5 T ErO (6)

Applying Ito’s lemma to the price of a contingent claim yields the dynamics of C?%,

acBS achS 1 aZCBS
BS __ t t L t 2 @2
dCP° = ——dt + 35, s, + 5 557 o?S%dt
aOBS
= rCPYdt + —L—(dS; — rS,dt) (7)
05,

where the second equality follows from (6). Plugging equation (7) for the change in the

price of the derivative into the general formula (3) for the hedging error one obtains

t+1 aOBS
De(t,t+1) = / er(tHm=u) (ﬁ — Hu> (dSy — rSydu).
t [
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After taking expectations the proposition follows. O

Note that the previous proposition refers to an arbitrary hedge ratio. Setting the hedge

ratio now equal to the partial derivative, i.e. choosing

oCES
05,

Ht =

yields a hedging error which is identically equal to zero, as we can see directly from
equation (5) in Proposition 1. Of course, this result is not surprising. In the BS model it
can be easily shown that every claim can be replicated so that a perfect hedge with zero
error is possible, and the optimal hedge ratio is equal to the partial derivative of the price

of the claim with respect to the stock price.

3.1 Discretization Error

If we now introduce the restriction that trading is only possible at discrete points in time

t;, the properties of the expected hedging error change. We obtain

Proposition 2 (BS: EHE for discrete trading) The true model is the model of Black
Scholes. Trading takes place at the discrete dates 0 = tg,t1,to,...,t, =1, the hedge ratio
at time t; is Hy,. Then the EHE over the interval [t;, t;11] is

EY [D(ti, ti1) | F]

oCcPk bivr
t;

i t aZCBS
T

tit1
+(p—1)? / et pP S, | 7 BPTY Sudu | F, | dt

t;

with EP*Y denoting the expectation under the measure P35 defined via the Radon-

Nikodym derivative

dpS® S,

dP Fi - EP[St]

Proof: See the appendix.



As shown above applying a hedge ratio equal to the partial derivative of the claim price
with respect to the stock price generates a zero hedging error in the case of continuous
trading. This is no longer the case with discrete trading, since technically speaking the
market becomes incomplete. Using the partial derivative as the hedge ratio, i.e. setting

Lo o
T 98,

we obtain from Proposition 2 the following corollary.

Corollary 1 (BS: Discretization error) The true model is the model of Black Scholes.
Trading takes place at the discrete dates 0 = ty,tq,ts,...,t, = T, the hedge ratio is the
partial derivative. Then the EHE over the interval [t;, t;11] is given by

E" [D%(ti, tiv1) | Fu]

tit1 t 82 CBS
S U T E e A
t; t; u

Sudu | Fy, | dt.

It is obvious that if the price of the claim is a convex function of the stock price, the
discretization error will be positive for any non-vanishing equity risk premium. As shown
by Bergman, Grundy, and Wiener (1996) the price of a claim is a convex function of the
stock price for any path-independent claim with a convex payoff function. For a European
call option, the EHE is therefore positive (see also Dudenhausen (2002)). Note that our
result differs from Boyle and Emanuel (1980) who use limiting arguments improperly to

arrive at the conclusion that the discretization error vanishes even in discrete time.

The result in Corollary 1 has important consequences for the test described in section
2. This test is based on the idea that the EHE is zero if and only if equity risk is the only
priced risk factor. The (wrong) conclusion derived from such a hedging based test in the
BS model must be that equity risk is not the only priced factor, but that there is some
other source of risk with a positive premium (given that the number of observations is

large enough to make the mean significantly positive in an empirical application).

Of course, the absolute amount of the EHE depends on the length of the time interval

between two consecutive trading dates (see also Bertsimas, Kogan, and Lo (2000)). It

10



becomes smaller the shorter this period, but irrespective of the length of the trading

interval it always remains strictly positive for non-zero equity risk premia.

3.2 Correcting for the Discretization Error

Given the results in the previous subsection the question now is whether there is any
hedge ratio that would generate a zero mean hedging error with discrete trading. The

next proposition shows that we can indeed choose such a hedge ratio.

Proposition 3 (BS: Mean-zero hedge ratio) The true model is the model of Black
Scholes. Trading takes place at the discrete dates 0 = tg,tq,t9,...,t, =T. The mean-zero
hedge ratio is defined as

ocss [ e Er S| R B | [ S Sudu | ] dt

S, [l emrtEP (S, | F, dt

)

Ht]yz(ti_;,_l) = (:U’_ T)'
Proof: Setting the EHE from Proposition 2 equal to zero and rearranging the equation

yields the desired hedge ratio. O

The new hedge ratio differs from the partial derivative by the second term. For a
convex claim, the fraction is positive so that the mean-zero hedge ratio is greater than

the partial derivative for a positive equity risk premium.

This result is also intuitively clear. When the hedge ratio is given by the partial
derivative, we know that the EHE is positive. Given our definition of hedging error the
expected terminal value of the hedge portfolio is therefore too small. To get an EHE
equal to zero, we have to correct the number of stocks in such a way that the expected
terminal value of the hedge portfolio increases. For a positive (negative) risk premium,
this amounts to increasing (decreasing) the number of stocks. If the claim to be hedged is
a European call or put, we can also give a closed form solution for the EHE and for the
mean-zero hedge ratio which is based on a formula for the expected price of a call option

(see Rubinstein (1984)).
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The most important property of the hedge ratio given in Proposition 3 is that based
on HM?(t;y1) the standard test works properly. We would draw the correct conclusion
that there is no other priced factor besides the stock. However, this comes at the price of
the need to specify the dynamics of the underlying asset both under the risk-neutral and
the physical measure, as opposed to the partial derivative which does not depend on pu.

In particular, the hedge ratio depends on the market price of equity risk.

4 Stochastic Volatility Model

The stochastic volatility setup is given by the Heston (1993) model, i.e. under the physical

measure the stock price and the local variance are governed by the stochastic differential

equations
dS, = pSydt + /V,SdW/? (8)
AV, = k(0 =V)dt + oy \/Vi(pdWS + /1= p2dW) (9)

where dW and dW,” are the uncorrelated increments of two Brownian motions, and p
represents the correlation coefficient between stock returns and volatility changes. The
market price of volatility risk is assumed to equal \y+/V; so that we obtain the following

processes under the risk-neutral measure:

dSt = TStdt+ \/Vtstdwts (10)

AV, = (k(0— V) — oy A Vi) dt + ov/Vi(pdWS + /1 — p2dWY). (11)

In what follows we will consider different hedging strategies for a European call option,
but for any strategy only the stock and the money market account can be used to form
the hedge portfolio. The strategies differ with respect to whether they are adjusted con-
tinuously or only at discrete points in time, and they also differ with respect to the hedge
ratio which is given by the partial derivative of the call price either from the Heston model
or from the (incorrectly assumed) BS model. The characteristics of the EHE will generally

depend on both these factors, i.e. both on the discretization error and on model risk.

12



The test described in section 2 is based on the hypothesis that the EHE equals zero if
the only priced risk factor is the stock, and that it will be different from zero otherwise.
Furthermore, if there is only one additional risk factor like it is the case in the Heston
model, then the sign of the EHE for a call option is assumed to coincide with the sign
of the market price of risk. This is exactly the idea employed by Bakshi and Kapadia
(2001) who test whether volatility risk is priced and whether the volatility risk premium

is positive or negative.

Both discretization error and model risk make the design of this test for volatility
risk premia seem questionable. If for some hedging strategy the relationship between the
sign of the EHE and the sign of the market prices of risk is not as assumed the test will
lead to wrong conclusions. It may either not detect a positive or negative market price of

volatility risk, or it may wrongly conclude that volatility risk is priced although it is not.

4.1 Expected Hedging Error for Continuous Trading
4.1.1 Correct model

We start our analysis for the ideal case of continuous trading. There will be a non-zero
hedging error even in this scenario, since the market is incomplete so that a perfect hedge
for contracts with sensitivity to volatility is impossible. We first derive a formula for the
EHE for a general claim and for a general hedge ratio which is then studied in detail
for the special case where the hedge ratio is equal to the partial derivative from the
correct Heston model. The following proposition gives an expression for the EHE when

an arbitrary hedge ratio is employed.

Proposition 4 (Heston: EHE for continuous trading) The true model is the Hes-
ton model represented by equations (8) to (11). The hedge portfolio is rebalanced continu-
ously, the hedge ratio at time t is denoted by Hy. Then the EHE over the interval [t,t 4 7|

13
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t+1 acSV
E"[D(tt+7) | F] = (- r)/ ertHT—u gl [(—(‘3;
t u

t+7 : P acSV
4 )‘V/t or(tHT—u) [ [ a‘;u ovVu ‘ ft} du.

— Hu> Su | ]—"t] du

Proof: See the appendix.

Setting now the hedge ratio equal to the partial derivative of the call price with respect

to the stock price, i.e. choosing

aCsv
05,

Ht =
and applying Proposition 4 we obtain

Corollary 2 (Heston: EHE under ideal conditions) The true model is the Heston
model represented by equations (8) to (11). The hedge portfolio is rebalanced continuously,
the hedge ratio is the partial derivative. Then the EHE over the interval [t,t + T] is

t+7 805\/
EP [D(t,t+7) | F] = A\ / et g { T avVu‘}}} du.
t u

acsVv
aVy

For a European call > 0, and the sign of the EHE is equal to the sign of the market
price of volatility risk under this ideal scenario. Therefore the test described in section 2

is valid under the ideal conditions of continuous trading and the absence of model risk.

The identification of the sign of Ay based on the sign of the EHE of a continuous
hedge and the correct model is in general possible if the vega of the claim, i.e. the partial
derivative with respect to the current level of the state variable (variance or volatility),
has a unique sign, and if the state variable itself remains non-negative with probability
one. This second condition can become critical for example in the SV model of Schébel
and Zhu (1999) where the state variable is local volatility (as opposed to the local variance

in the Heston model), governed by an Ohrnstein-Uhlenbeck process.

Note further that our result in Corollary 2 is more general than the corresponding

result derived by Bakshi and Kapadia (2001) in their Proposition 2. Whereas they assume

14



that the vega of the claim under consideration is proportional to the stock price and
independent of local volatility, no such restriction has to be imposed for the derivation of
the EHE above. This is a significant advantage, since we are only interested in whether
the sign of the volatility premium is the same as the sign of the EHE and not in the exact
numerical value of this premium. The properties of the signs of these two quantities,

however, can be perfectly derived from the corollary.

4.1.2 Model Risk

The term model risk means that an incorrect hedge model is used due to the fact that
the true data generating process is unknown. In this paper all hedges under model risk
are based on the BS model. This seems a natural choice, since the model represents the
simplest approach to option pricing and it has proved to be rather robust in empirical
applications (see, e.g. Bakshi, Cao, and Chen (1997)). So the hedge ratio applied in the

test for volatility risk premia is given by

DO BS

H = .
¢ 08,

To compute this partial derivative a volatility input is needed. We use the implied BS
volatility of the option for this purpose, although other studies use historical measures.
Nevertheless, the implied volatility of an option seems preferable to us as the more natural

choice given the way practitioners usually handle liquid options.

An expression for the EHE in the Heston model is given in the following proposition.

Proposition 5 (Heston: EHE under model risk) The true model is the Heston model
represented by equations (8) to (11). The hedge portfolio is rebalanced continuously, the

hedge ratio is the Black Scholes delta based on the implied volatility. Then the EHE over

the interval [t,t + 7] is

+7 oCcsv
EY [D(tt+71) | F] = Av / erttr=u g { S ovVa | ]—"t] du
t 7

t+7 8035 aOBS
i . r(t+T—u)EP u u Mu AN 12
(/‘L T) [ € [8055 aMu ‘ t:| U ( )
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where M, = 5£

u

Proof: See the appendix.

The first term in equation (12) is the EHE if the correct hedge ratio is used in con-
tinuous time (see Corollary 2). The second term originates from the use of the BS delta
instead of the correct partial derivative from the Heston model. It therefore represents the
impact of model risk. As can be seen from Proposition 4, the sign of this term depends on
the expected difference between the partial derivative in the Heston model and the par-
tial derivative in the model of Black Scholes as well as on the risk premium of the stock.
Equation (21) in the appendix shows that the difference between the partial derivatives

is related to the slope of the implied volatility function via

oC5V (t,5,...) 9CP5(t,5,...) 0CBS (t,5,...) . 0oB5 (1,1, My, . ..) M,

0S 0S 9o oM, Si
where M, = sﬁt is the moneyness of the option under consideration, and o2 is its implied
volatility from the BS model. Empirically, the risk premium on stocks is in most cases
positive, and the smile is in general a decreasing function of the strike price. These stylized
facts imply that the partial derivative in the Heston model is greater than the partial
derivative in the model of Black Scholes. Both Proposition 4, which is based on the
expected differences between the partial derivatives, and equation (12), which is based
on the slope of the smile, show that under these conditions the expected hedging error

increases compared to the expected hedging error when the correct Heston delta is used.

If the market price of volatility risk is zero the EHE in the above proposition reduces
to the second term which can be attributed entirely to model risk. If the market price of
stock risk is positive, and if the implied volatility is a decreasing function of the strike
price, the EHE due to model risk will be positive. A test for the sign of the volatility risk
premium based on the EHE will therefore tend to reject the null hypothesis of a zero risk

premium against the alternative of a positive Ay.

In scenarios with a non-zero volatility premium the sign of the EHE will no longer
generally coincide with the sign of the market price of volatility risk. The test from section

2 is therefore not able to identify the sign of the market price of volatility risk properly.
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4.2 Expected Hedging Error for Discrete Trading
4.2.1 Pure Discretization Error

We now analyze the EHE when the hedge is rebalanced only at discrete points in time.
First, we derive a general formula for the EHE before we take a closer look at the hedging

error for particular choices of the hedge ratio.

Proposition 6 (Heston: EHE for discrete trading) The true model is the Heston
model represented by equations (8) to (11). Trading takes place at the discrete dates 0 =
to,t1,te,...,tn, = T, the hedge ratio at time t; is Hy,. Then the EHE over the interval

[ti; ti—l—l] ’iS

E" [Dd(ti; tit1) |ft¢]

tit1 acSV
= Av/ €T(ti+1_t)EP |: L O'V‘/t ‘ ftl:| dt
t;

aV;
o tons
tn) (g te) [ B s
t; t;
tit1 t 92, 1SV
+ (p—r)? / et =Ogr (s, | F, ) EP™ { 0 0“2 Sudu | ]—'tz} dt
t; t; 8Su
tit1 _ t 9208V
+ (V“ - T))\V/ti er(tz+1*t)EP [St | ftl] EPS(t) |: : aguauvu oy Vydu ‘ ft1:| dt.

Proof: See the appendix.

Setting the hedge ratio equal to the partial derivative of the claim price with respect
to the stock price computed in the Heston framework, i.e. setting

9CSY
Ht' = ‘

i T (13)

we obtain

Corollary 3 (Heston: Discretization error) The true model is the Heston model rep-
resented by equations (8) to (11). Trading takes place at the discrete dates 0 = to,t1,to, ..., t, =

T, the hedge ratio is the correct partial derivative of the claim price with respect to the
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stock price. Then the EHE over the interval [t;, ;1] is given by

E" [Dd(ti; tit1) |ft¢]

tit1 acSV
= A / er(t”l_t)EP{ L oV, ]—"} dt
1% ) av, % t‘ ti

tit1 () t aZCSV
+ (u—r)? / A Ol F R D { L Sudu | ]—'tl} dt
t; t; as’u
tit1 . t 82CSV
+ Av(p— T)L eV EP S, | Fi ] EPS® [ ) 8Su5Vu oy Vadu | ftz} dt.

Proof: Follows directly from Proposition 6.

The first term in the expression for the EHE under discrete hedging coincides with
the EHE in case of continuous trading (compare Corollary 2). If the price of the claim is
increasing in volatility, like it is the case for a European call option, the sign of this term

equals the sign of the market price of volatility risk.

The second and third term arise because the hedge portfolio is not rebalanced contin-
uously so that they represent the discretization error. The second term which is analogous
to the discretization error in the model of Black Scholes is positive if the claim price is
a convex function of the stock price. The sign of the third term not only depends on the
market price of volatility risk and on the market price of risk for the stock, but also on the
expected value of the mixed partial derivative of the claim price with respect to volatility
and the stock price. This partial derivative is positive for high strikes and negative for
low strikes. If the expected return of the stock is greater than the risk-free rate, the sign
of the third term and the sign of the market price of volatility risk are therefore equal for

high exercise prices and opposite for lower ones.

If the market price of volatility risk equals zero, the EHE is

E" [Dd(ti; tiv1) | fti]

_ R Y it r(tiv1—t) ;P PS(®) ! a2Cu
= (u—r) e ET[S,| F. | E 5o Sudu| Fy | b (14)
t; t; u

For a convex claim like the call, the EHE is strictly positive. Again, this causes a problem

for the test described in section 2, since it will signal a positive risk premium even in the
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case when it is truly equal to zero. Furthermore, Corollary 3 shows that the sign of the
EHE does not necessarily coincide with the sign of the market price of volatility risk. It
is therefore not possible to base inferences about the sign of the market price of volatility

risk on the EHE.

As one may expect the absolute value of the difference between the EHEs for con-
tinuous and discrete trading depends on the length of the time interval between two
consecutive trading dates. The discretization error gets the smaller the smaller this time

length, i.e. the more often the portfolio is rebalanced.

The expressions for the EHE in the preceding propositions and corollaries are only
‘semi-closed’; i.e. we cannot simply plug in the parameters of the problem and obtain a
numerical output. We therefore calculate the EHE for this and the following scenarios
using a Monte Carlo simulation with 10,000 runs. The stochastic differential equations for
the dynamics of the stock price and the local variance are discretized using a standard
Euler scheme. To avoid problems with possibly negative values for the variance and to
come closer to a continuous representation of the stochastic differential equations of the
state variables we divide the day into 100 steps of length At = 1/36525 each. As described
in section 2 the hedge portfolio is composed at time ¢; (which may be taken to be ¢ = 0
without any loss of generality) by selling the option short, buying the number of stocks
indicated by the delta (BS or Heston) and by borrowing the additional necessary funds
at the risk-free rate. The hedging error at time ¢;,; is then given by the expression in
equation (4).

To increase the accuracy of our estimates we use the expected value of V' at the end
of the hedging interval as a control variate. We apply a two-sided ¢-test with significance
level o = 0.05 to test the null hypothesis that the mean hedging error is zero, whereas in

the cases when the null states a positive or a negative premium we apply a one-sided test.

The results for the simulation analysis of the discretization error in the Heston model
are shown in table 1 which presents the average hedging error for different maturity classes,
strike prices, current values of V' and risk premia of the stock. The market price of volatility

risk is set to zero, and the hedging interval is chosen to be one week which coincides
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with the hedging interval used by Coval and Shumway (2001) in their empirical study of
option returns. Here, this period length is chosen to allow an analysis of discretization
errors under a 'magnifying glass’, since we expect the hedging error to be increasing with
the duration of the hedge whereas the qualitative properties of the EHE should remain

unchanged compared to shorter hedging intervals.

As one can see from the table the EHE is either not significantly different from zero or
significantly positive. This phenomenon is similar to the case of discrete hedging in a BS
economy where we can conclude from the closed form representation for the discretization
error that the EHE is positive for convex claims. In a Heston economy, there is one
additional term in the discretization error compared to BS, so that we cannot draw a
similar conclusion. As the simulation results for the Heston model show we would also
deduce from a simple discrete hedging test that the volatility risk premium is positive
when it is truly zero. This mis-interpretation of the test result occurs mostly for a low

current volatility of /15 = 0.1 and a high equity risk premium of p —r = 0.2.

For a hedging interval of one day and the scenarios considered above the mean hedging
error is not statistically different from zero any more for the case of a zero volatility
risk premium. For a positive or a negative market price of volatility risk there are some
scenarios when a test based on the mean hedging error produces a misleading result,
but compared to a hedging interval of one week the number of wrong results reduces
significantly. However, this should not lead to the general conclusion that the test is valid
for daily hedging intervals, since theoretically the signs of the mean hedging error and
the volatility premium could still be different, but the variance of the hedging error is so

large that the ¢-statistic becomes insignificant.

4.2.2 Discretization Error and Model Risk

Like in the case of continuous trading, we now consider the hedging error when the hedge

ratio is set equal to the Black-Scholes delta, so that

Lo 0
TS,
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The volatility used to compute the partial derivative is the implied volatility for which

the BS option price is equal to the price under the correct model. We obtain

Proposition 7 (Heston: EHE with model risk and discretization error) The true
model is the Heston model represented by equations (8) to (11). Trading takes place at the
discrete dates 0 = tg,t1,to,...,t, = 1. The hedge ratio Hy, at time t; is the BS delta based

on the implied volatility of the claim. Then the EHE over the interval [t;,t; 1] is given by

E" [Dd(ti, tit1) |ftJ

tit1 aCSV
= A / er(t”l_t)EP{ L5,V ]—"} dt
Vv : av, Vt‘ ti

)

) Lit1 r(tip1—t) P pS®
+ (p—r) eV ET (S| Fu] B

t;

bit t: t P PS(t) t 8205‘/
+(M_T))\V/t; er( i+1— )E [St|ftz]E |:/t; aSuauVu O'VvudU|ftl:| dt

9CPS 9oBS M, [t
2 7 7

BS
aO'ti aMtl Sti t;

[ t aZCSV

o5 Sudu| fh} dt

—(u—r) e O EP (S, | F ] dt (15)

where M;, = g

i

Proof: Follows directly from the proof of Proposition 6 and from equation (21) in the

appendix for the relation between the BS delta and the Heston delta.

The first three terms in equation (15) represent the EHE for discrete trading if the
hedge ratio is the correct partial derivative from the Heston model (see Corollary 3).
The fourth term is an additional component due to the use of an incorrect hedge model.
Following the arguments for the case of continuous hedging this term is positive if the
market price of risk for the stock is positive and if implied volatility is a decreasing function

of the strike price.

The most important result that we can derive from this proposition is that the sign
of the EHE is again in general not equal to the sign of the market price of volatility risk

so that we cannot rely on the standard test based on expected option hedging errors.

Tables 2, 3, and 4 present the average hedging errors for different maturity classes,

strike prices, current values of V' and risk premia for the stock generated by the simulation
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procedure described above. The market price of volatility risk Ay is chosen to be —2, 0,
and 2, and the hedging interval is one day. As discussed above for this period length the
discretization error can be neglected more or less so that basically all the error of the test

procedure is due to the choice of the wrong hedge coefficient.

If the market price of volatility is zero, the mean hedging error is biased upwards as
we can see from the entries in table 2. In almost all of the cases when the hedging error is
statistically different from zero, it is significantly positive. This is perfectly in line with our
theoretical arguments which say that for a positive market equity risk premium and for
a downward sloping smile curve the choice of the BS delta instead of the Heston partial
derivative tends to increase the EHE. Therefore the test from section 2 is not valid in
general and the user often tends to wrongly conclude that the market price of volatility
risk is positive. This bias is the more pronounced the lower the current value of the local
variance. Note, however, that not all the wrong conclusions drawn from the test go in the
same direction. We observe a few cases when the test actually signals a negative Ay . This
occurs for 3-month options with a strike price of 110, positive equity risk premia, and a

low volatility.

The most critical scenario in terms of the validity of the standard test procedure is
of course the situation when the true volatility risk premium is negative. Since average
hedging errors under the assumed scenario of a downward sloping smile and a positive
equity risk premium tend to be positive the test is likely to indicate a positive or a
zero volatility premium whereas it is indeed negative. As becomes clear from table 3 the
problem is again especially pronounced for low current volatility and medium or high
equity risk premia. Here it might happen frequently that the sign of the market price of
volatility risk is not indicated properly by the hedging test.

The dependence on the equity risk premium and on the current level of volatility can
be explained intuitively. Equation (15) shows that the EHE is the sum of the ideal EHE
(no discretization error, no model risk), of the discretization error and the error due to
model risk. The smaller the ideal EHE and the greater the other error terms, the more

often the total EHE may have a sign different from the sign of the ideal EHE and therefore
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different from the sign of the market price of volatility risk. Now the absolute ideal EHE
tends to increase in the current volatility, while the error terms increase in the equity
risk premium. Putting arguments together we can see that for a negative market price of
volatility risk, the lower the current volatility and the greater the equity risk premium,

the more often the test would produce the wrong signal.

As one may expect for a positive volatility premium the EHE is also almost always
significantly positive (see table 4). Of course, this is not due to an improved quality of
the test per se, but it is an immediate consequence of the fact that average hedging errors
tend to be biased upwards so that the test more often detects a positive volatility risk
premium. In two cases, for short-term options away from the money and a zero equity
risk premium the average hedging errors are not significantly different from zero so that

we would conclude that volatility risk is not priced.

4.2.3 Is There a Proper Hedging Test for the Market Price of Volatility Risk?

We now try to find a hedge ratio H,, for the Heston model for which the sign of the EHE
equals the sign of the market price of volatility risk even under discrete trading. For this
hedge ratio it must at least be true that the EHE is zero if the market price of volatility

risk is zero. This condition can be used to define the mean-zero hedge ratio.

Proposition 8 (Heston: Mean-zero hedge ratio) The true model is the Heston model

represented by equations (8) to (11). Trading takes place at the discrete dates 0 = ty, 1,

ty,...,t, =T. The mean-zero hedge ratio is
» oosv i e ER (S| R BRSNS du | F ] dt
Hti (tH‘l) aSl tit1 (,U/ - 7").
12 ftz e~ TtEP [St | ftl] dt

The EHE over the interval [t;,t;11] generated by this hedge ratio is given by
ET [D(ti, tis1) | F)

= A /tm A {actsva Vi| F } dt
Vv . a% Vvt t;

(3

tiy1 . ; P pS®) t 82CSV
+(M_T)AV/t er( i+1— )E [St|ftz]E |:/tl (,}S,u(,;‘/vuO'V‘/vudu|.¢.tZ dt.

i
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Proof: If the market price of volatility risk is zero, Proposition 6 gives

E" [D(ti, ti1) | F]

oCsv b
i t;

tit1 () t aZCSV
+ (M — r)z/ ertivi—t) pP [St | fti] EP [ t 85}; S, du | Fi, | dt.

Setting this expression equal to zero and solving for the hedge ratio gives the mean-zero

hedge ratio. The EHE then follows from Proposition 6. O

As one can see from the expression for the EHE it is indeed equal to zero for a zero
market price of volatility risk. Analogous to the case of the BS model the mean-zero hedge
ratio is greater than the partial derivative if the equity risk premium is positive and the

claim is convex in the value of the underlying.

However, if the market price of volatility risk is not zero, then the EHE generated by
the mean-zero hedge ratio will in general be different from zero, and its sign will not in
general coincide with the sign of the market price of volatility risk. Again the test fails.
Taken together the results show that it is impossible to construct a test based on the
EHE of a SV option pricing model which is able to identify the sign of the market price

of volatility risk consistently.

5 Conclusion

In this paper we have investigated whether tests based on expected option hedging errors
are able to tell the researcher the sign of the volatility risk premium in an economy with
stochastic volatility. Recent papers use simple BS hedges and the associated hedging errors

to draw conclusions about the sign of this risk premium.

In general, the characteristics of the EHE in some option pricing model depend on the
non-hedgeable risks. In case of continuous trading the market prices of non-traded risk
factors will affect the EHE, whereas for discrete trading also the market price of equity

risk becomes relevant.
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The main results of our paper can be summarized as follows. The error introduced by
discretization may destroy the properties of tests based on the EHE in that its sign and
the sign of market price of volatility risk do not necessarily coincide both in the BS model
and under stochastic volatility. An important difference from a theoretical point of view
is that for the BS model there is a remedy to this problem if we base the test on what
we call the mean-zero hedge ratio instead of the classical delta. However, for the Heston
model there is in general no such adjustment so that any test based on discrete hedging
will suffer from the problem described above, except in the case of a zero volatility risk
premium. Using an incorrect model (like BS in the case of stochastic volatility) to set up
the hedge also leads to a test with unreliable properties, even in the case of continuous
trading. Especially when the true data generating process exhibits low volatility relative
to the long-term mean the test quite frequently gives a wrong indication for the sign of

the volatility risk premium.

The analyses performed in this paper constitute a first step towards a more detailed
investigation of the characteristics of option hedging errors. For example, a researcher
might also be confronted with a model identification problem, representing another variant
of model risk. Are hedge results actually generated by volatility risk premia? Is it possible
that other risk factors are present, like jump risk and the risk associated with uncertain
jump sizes? Especially the inclusion of these types of risk is a natural next step towards

a better understanding of the relationship between hedging errors and risk premia.
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A Appendix

A.1 Proof of Proposition 2

In case of discrete trading, the hedging error over the interval [t;, ;1] is

tit1 aOBS
Di(ti i) = / e“tiﬂt)( aé —Hti> (dS; — rS,dt)
t t

i

where we have used expression (7) for the change in the price of the claim.

Taking expectations yields

E” [DY(ti, i) | Fi,]

Lit1 BS
_ EP |:/ 6r(ti+1*t) <ac—t — Hti) (V“ — T)Stdt ‘ ft1:|

t; aSt
tiy1 BS
_ (M . 7")/ er(tijtl*t)EP |:St (aacié — th> |ft1:| dt
ti t
tit1 . acBS
= (N _ T)/ e (tit1—t) pP [St | fti] EPS() { aé’t — Hy, ftl} dt. (16)
t;

The measure P° is defined by the Radon-Nikodym derivative

dP? St

dP  EP[S;]

The expected hedging error depends on the difference between the partial derivatives in
the interval from ¢; to ¢;;; and the hedge ratio H;,. We further decompose these terms
into the difference between the partial derivative at time ¢; and the hedge ratio used, and
into the change of the partial derivative in the interval from ¢; to ¢;11. Applying Ito to
the hedge ratio gives

ocPs  _ 0CES t(oeys 90 1 crs ,

Differentiating the fundamental partial differential equation once with respect to the stock

price gives

82035 aZCBS achS 1 aSCBS 5 o2 82035 . achS
98,00 a5 v e Ty Tags O T ggr T SuT g = 0
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so that the difference between the hedge ratios at time ¢ and at time ¢; is

oCE5(S;, K, T,r,0) 8055(51;”}(, T,r,o)

a5, 05y,
t 92 1BS
= / 88051; (dS, — (1 + 0%)Sudu) . (17)
ti u

The expected hedging error (16) is therefore

E” [D(ti, ti1) ‘ Fi
Lit1
— (u—7) / el OBP (S, |
‘4 . TOOBS t 92(CBS
EPS® { t +/ 4 (dSy — (r + 0%)Sudu) — Hy, | fti] dt
t

a5, 052
oCPs tit1
= (u—r)< ag —Hti>/ et EP (S, | F dt
t ti

Lit1 s t 82035
+(p—r) /1t =P (S, | F ] EY [ /t 552 (dS, — (r +0?)S,du) \fti] dt.

Noting that under P3® the drift of the stock is equal to p+o? we obtain the proposition.
(Il

A.2 Proof of Proposition 4

Under the usual mild technical conditions, the dynamics of any derivative contract in our

SV model are given by

acSV acSV acvsv
dC®V = dt ds dV
o T s T v
1 aZCSV . 1 aZCSV ) 1 aZCSV
5 952 V.Sedt + 5 912 O'Vth + 5 W VSO'Vpdt

SV
= rO%Vdt + oc (dS — rSdt) (18)

oS
acSV
o (dV = K(0 = V)dt + Moy Vt)

+

+

where the second equality follows from the well-known fundamental partial differential

equation that the pricing function for every path-independent claim has to satisfy.
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Plugging equation (18) for the change in the price of the derivative into the general

formula (3) for the hedging error gives

t+7 acsv
Dc(tat + 7_) = / er(t—l—T_U) (ﬁ - Hu> (dSu - Tsudu)
t u

t+7 acSV
. / T (Y, — 5(0 — V)du+ AvoyVidu). (19)
t u

Taking expectations gives the proposition. O

A.3 Proof of Proposition 5
From Proposition 4 we get

BF (D 1+7) | )

t+7 acSV
= A / er(t””)EP{ “ oy Vi fi} du
|4 . 8Vu |4 ‘ t

t+7 acsv acBS
+(p—r / et gP [( ‘o >Su .7-—1} du. 20
( ) . dS, dS, | i (20)

The first term is the EHE when the hedge ratio is the partial derivative. It is given in

Corollary 2, and its sign equals the sign of the market price of volatility risk.

The second term arises because a wrong hedge ratio is used. For a positive market
risk premium, it is positive if the hedge ratio is always too small, and it is negative if the
hedge ratio is always too large. If the difference between the hedge ratio and the partial

derivative does not have a unique sign we cannot determine the sign of this term.

To analyze the difference between the partial derivatives from the BS and the Heston

model we start from the definition of the implied volatility 2% (¢, Sy, K, 7, T, V, K, 0, oy, p):

CBS (ta St) K; T, TJ UBS(tJ Sta K) T, Ta ‘/t) K, 0) ov, P))

- CSV (ta St) K; r, TJ ‘/;57 K, 97 Oy, P) .

Differentiating once with respect to the stock price gives

OC"S (1,Sy,...) | 9C™S (1,S..) 00" (1,S,...) _ 0CV (1,5,...)
S do aS BE]
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so that the difference between the two hedge ratios is

OCSV (1,8,,..)  9CPS(1,8,..) _ OCPS(t,5,...) 90”5 (t,S,,...)
S S B do BE] '

The first factor of the product on the right-hand side is always positive, the sign of the
second factor depends on the slope of the volatility smile. It can be simplified by noting
that in the model of Black Scholes the call price is a positive homogenous function of the

stock price and of the strike so that
BS(t,St,K,...) = O'Bs(t,]_,Mt,...)

where the moneyness M; is defined as M; = Sﬁt This implies

8035 (t,St,K,...) . _8035 (t,l,Mt,...) %
oS B oM, Sy
This gives
oC*V (t,S;,...) B oCP5 (1,8, ...)
S S
O 90BS(t,S,,..) 00BS (11, My, ) My (21)
N do oM, Sy
which together with (20) yields the proposition. O

A.4 Proof of Proposition 6

In case of discrete trading, the hedging error (4) over the interval [t;, ¢;41] is given by

tir1 tit1
Dt tip) = (/ et =0 (dC, — rCydu) —/ e " H; (dS, — rSudu)>
ti t

)

tit1 , acSV
_ /t g ( o —Hm) (dS; — rSydt)

tit1 acsv
+ / gt (dV; — (5(0 — V;) — Aoy Vi)dt)
¢ OV,

i
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where we have used expression (18) for the change in the price of the claim to obtain the

second equality. The expected hedging error is now equal to

E" [Dd(tw tiv1) | fti]

tit1 1%
= Ef [/ er(ti+i=t) (85; - Hti> (w—1)S5| fm}
ti t

tit1 acsv
+ EP |:/ eT(ti-H —t) o )\VO-VV;tdt ‘ ft:|
t; t

tit1 acsv
= \NEF U e (tit1=t) oy V,dt ]—'}
1% . v, v Vi ‘ t;

tit1 1%
+ (N . 7") / ertiv1—t) pP [St | fti] EPS(t) {act — H, ti:| dt. (22)
t

05}

)

We now take a closer look at the partial derivative at time ¢. Applying Ito gives

aCsv  acs [t o, | 9C 2C, 18°C,
_ & du d d d
25, 8Sti+/<858u ut gz Wt g g et 5 gg VuSud
1o, 9*C,,
t3a5.0v2 " Vet Ggagy oS Vidu).

Differentiating the fundamental partial differential equation once with respect to the stock

price gives

0*C,  0°C, 8Cu 0?C, 1 3C, .,
95,00 " ag2 "t a8, T agov, 0~ V) — o)+ 5 Herts,

0*C 1 0°C 03C, 0*C, ocC,

2 VuSy + = ot SuVu Vi, — © =0
M R I T T A TS 7 A AP T T A TS

so that the difference between the hedge ratio at time ¢ and time ¢; is
ocsv  acyy L orC,
- - - d u u ud
a5, 35, . 05 (dSy — (r + V,)Syudu)
t aZCSV
+ , 950V, (dV, — k(0 — V,)du + Avoy V,du — oy pV,du) .
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Plugging this expression into the equation for the expected hedging error (22) gives

E" [Dd(ti; tiv1) | fti]

tit1 acSV
— )\VEP |:/ eT(ti+1—t) t Uv‘/;gdt ‘ ftl:|
ti

oV,
aCsY tiss
4+ (u—r) ( 5 st —th.> / etV pP S, | F.] dt
t; t;
tit s() bo?C,
=) [ etenopr s 7180 | [ FC s, (o Vsidn) | 7
t; t; u
tit1 t 82CSV
o T(ti+17t)EP , EPS(t) U
tumn [ 5171 [ S

(dVy — k(0 — V)du + Aoy Vydu — oy pVydu) | ftl} dt.

Under P9® | the drift of the stock price is equal to p + V and the drift of V is equal to
k(0 — V) 4+ oypV. This yields the proposition. O
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