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Realized Volatility and Minimum Capital Requirements 
 

Abstract 

Key to the imposition of appropriate minimum capital requirements on a daily 

basis requires accurate volatility estimation. Here, measures are presented based on 

discrete estimation of aggregated high frequency UK futures realisations 

underpinned by a continuous time framework.  Squared and absolute returns are 

incorporated into the measurement process so as to rely on the quadratic variation 

of a diffusion process and be robust in the presence of fat tails.  The realized 

volatility estimates incorporate the long memory property.  The dynamics of the 

volatility variable are adequately captured.  Resulting rescaled returns are applied 

to minimum capital requirement calculations.  
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Realized Volatility and Minimum Capital Requirements 
I. Introduction: 

This paper offers volatility measures for UK futures traded on the London 

International Financial Futures and Options Exchange (LIFFE) underpinned by the 

continuous time theoretical finance literature (for a discussion of innovations in 

this area see Andersen et al, 2001).  These measures are used to rescale returns for 

minimum capital requirement calculations.  The volatility measures help to bridge 

the gap between the continuous time stochastic differential equations systems that 

play such an important role in asset pricing models such as Black-Scholes, and the 

discrete time stochastic difference equation models such as GARCH related 

processes’ popularly employed in empirical finance.  Of greater importance to this 

study is that this same gap exists between the stochastic differential equations 

systems and the discrete approximation models used in risk management 

estimations such as Value at Risk (VaR) type estimates (Neftci, 2000).  This gap 

results from the conditional variances and covariances being inherently 

unobservable and the requirement of VaR measures to provide accurate estimates 

of these variables.   

 

A secondary related problem-facing regulators results from how they usually try to 

address the unknown conditional variance issue.  Usually, this involves assuming a 

particular distribution, for example normality, for the inputs or returns that are then 

used to give ex-post measures for the unknown volatility in a VaR framework.  

However, financial futures returns generally have fat tails and do not correspond to 

these assumed distributions resulting in estimation problems (Taylor, 1986).  This 

paper addresses this issue by obtaining rescaled returns that are approximately 

gaussian allowing us to deliver conservative and accurate risk measures.  In 
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treating the fat-tailed property of futures returns, it is appropriate to match this 

empirical feature in the estimation of conditional volatility.  Davidian and Carroll 

(1987) find that absolute realizations are more robust to the presence of fat-tailed 

observations than their squared counterparts, and this finding is implemented by 

extending the theoretical framework outlined for squared realizations, to absolute 

ones.1    

 

This paper provides model-free volatility estimates building on the quadratic 

variation of a diffusion process for aggregated squared and absolute realizations.  

The diffusion process allows for accurate realized volatility estimation, as the 

sample interval becomes negligible.  Furthermore, the choice of realizations 

demonstrates the empirical stylized facts of financial time series, with fat-tailed 

distributions and volatility clustering.  An illustration of the methodology is 

applied to risk management estimates for different asset types with varying degrees 

of risk.  Specifically, minimum capital requirements are calculated at various 

probability levels for the futures with short and long trading positions.  

 

Minimum capital requirements are set by regulatory bodies to cover market risk of 

financial firms that protects against losses arising from the volatility of their 

holdings.2  Regulators impose minimum capital requirements to avoid systemic 

costs of default by reducing the probability of failure.  There are a number of 

alternative models in place for calculating minimum capital requirements.  These 

include the Comprehensive approach of the, amongst others, US Securities and 

Exchange Commission, and of particular relevance to the assets analyzed in this 

paper, the Portfolio approach of the UK’s Securities and Futures Authority.  The 
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approaches are similar.  The Block Building approach incorporates two aspects in 

measuring minimum capital requirements.  It primarily focuses on a calculation on 

the net trading position, recognizing the risk reduction caused by offsetting long 

and short investments.  In addition, it adjusts the net measure upwards by an 

arbitrary percentage assuming that diversification does not eliminate the unique 

risk of investments.  The Portfolio approach also incorporates both elements of risk 

reduction, but relies only on portfolio theory where capital requirements reflect the 

risk facing investors through statistical measures of volatility, for example the 

unconditional standard deviation, in a Value at Risk (VaR) type mechanism.3 

 

Imposing minimum capital requirements and at what level, involves a trade-off 

between the costs incurred by financial firms and their effect on competition in the 

market place, and the costs borne by society due to non-fulfillment of contracts by 

the security firms.  Taking the first part of this compromise, large capital 

requirements have to be borne by some economic agent whether it is the security 

firm or investors.  Also, increased costs may affect the competitive nature of the 

securities markets by imposing entry barriers to the industry, ultimately affecting 

investors’ transaction costs.  Turning to the social costs resulting from default risk, 

there are many costs of negative externalities occurring.  Looking at the asset class 

chosen in this paper, the disasters for derivative firms such as Barings, Daiwa, 

Metallgesellschaft, and Orange County provides an incentive to try to avoid these 

losses.4  In reality, regulators have usually agreed on taking a practical course of 

action that sets capital requirements at such a level that default risk is controlled 

for, but not eliminated.5   
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Notwithstanding the approaches in place, minimum capital requirement 

methodologies should focus on two key issues, the volatility inherent in the 

investment position, and the holding period involved.  Accurate volatility 

estimation for derivative positions is essential to imposing optimal capital deposits, 

and this paper concentrates on this topic.  It provides alternative volatility measures 

and discusses their empirical features, and then proceeds to calculate minimum 

capital requirements for three futures contracts traded on LIFFE.  This 

methodology follows the Portfolio approach by incorporating a VaR type model 

and estimating the potential effects of futures realized volatility at different 

probability levels.  Essentially, the paper is trying to establish the probability of 

default with associated minimum capital requirement estimates.   

 

The outline of the paper proceeds as follows.  In the next section a brief description 

of the theoretical framework underpinning the continuous time realized volatility 

measures is outlined.  In addition, the actual process for obtaining the daily 

aggregate measures is given.  Section III describes the assets analyzed and their 

data capture.  Previously, there are studies available on stock index and bond 

contracts using this measurement approach.  However, this is the first study to 

analyze short run interest rate series’.  Section IV presents the empirical features of 

the daily return and volatility measures detailing properties from their 

unconditional and conditional distributions.  This is followed in section V with a 

risk management application describing the minimum capital requirements for both 

long and short positions in the futures at various confidence intervals.  By way of 

contrast, gaussian estimates are also shown.  Finally a summary and conclusions 

for the paper are given in section VI. 
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II. Theoretical Framework: 

A. Continuous Time Volatility Measurement: 

Much of the theoretical framework is described in Anderson et al (2001) and their 

related papers.  This section provides a brief synopsis of the approach plus any 

deviations and extensions applicable to this study.  First take integrated volatility 

as the measure of volatility in a continuous time process.  This variable is 

unobservable, but it is shown that it is equivalent to realized volatility, which is 

observable.  Assuming a continuous time process which generates instantaneous 

returns, rt = dpt where pt is the logarithmic price process, and the diffusion process 

is given as: 

( ) ( , )1 dp p dwt t t t t= +µ σ σ  

for wt is brownian motion, t ≥ 0, and the functions µ(pt, σt) and σt are strictly 

positive.  The drift term, µ(pt, σt), may hereafter be excluded from the continuous 

time process as empirically the conditional means is found to be close to zero, and 

with little dependence for high frequency realizations.  The approach assumes that 

the return process is observable, whereas in contrast the volatility process is not.  

The diffusion process in (1) allows us to obtain greater accuracy in the estimation 

of the conditional variance if the diffusion is observed at finer intervals.  At the 

limit, when interval size goes towards zero, the observed diffusion allows exact 

estimation of the conditional variance.6  Thus regulators now have volatility 

estimates that can be treated as error free. 

 

Discrete approximations of the process in (1) using high frequency data have rm, t = 

pt - pt-1/m as the continuously compounded returns with m evenly spaced 
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observations per day.  The unit interval represents one day with 1/m horizon 

returns.7  Alternative strategies are available for the actual estimation of realized 

volatility including block sampling and rolling regression.  The former relies on 

splicing the realizations into even sized block and treating realized volatility as 

constant within a block (see Merton (1980) using interdaily returns; and Schwert 

(1990a) using intraday realizations).  The latter applies rolling sample estimates to 

the returns series’ (for high frequency observations see Foster and Nelson (1996); 

and Campbell et al (2001) for lower frequency realizations).  Block samples of m 

observations are taken at 5-minute intervals aggregating out to a daily measure 

used later to provide accurate daily risk management estimates.  The choice of 5-

minute intervals is done on the basis of a trade-off between microstructure 

arguments and obtaining outcomes from a diffusion process (see Goodhart and O’ 

Hara, 1997; for a general discussion of microstructure issues).  These imply that by 

obtaining realizations of the highest possible frequency so that if m → ∞, 

continuously measured returns are obtained.8  Assuming σt and wt are independent, 

the variance for an horizon H of the stochastic process of σt with cadlag sample 

paths (continuous from the right with limits from the left) is given by  

( ) ,2 2 2

0
σ σ ττt H

H
d≡ I   

This implies that σt
2 has continuous sample paths.  The quadratic variation of (2) is 

a semi-martingale, although other approaches could also be used, for example, the 

non-gaussian Ornstein-Uhlenbeck processes that also allows for a characterization 

of their quadratic variation (see Barndorff-Nielsen and Shephard (2001)).  Also, 

this integrated volatility process is equated to the quadratic variation of returns 

over a time interval from t to t + H:  
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( ) lim , /
,...,

3 02 2

1

p d rm t H

t

m t j m
j m

→ ∞ − +
=

I ∑−
�

��
�

��
=σ ττ  

Implying for m sampling frequency, the realized volatility is consistent for the 

integrated volatility.  Assuming that the sample returns are white noise and σ2
t has 

continuous sample paths allows the theory of quadratic variation to imply that the 

limiting difference between the unobserved volatility estimate and the observed 

realizations of the returns process be zero (Karatzas and Shreve (1991)).   

 

Moving to another class of integrated volatility estimators uses aggregated absolute 

returns, ∑|rm| and its’  variants.  Switching the attention to the theoretical 

framework, the integrated process, ∫σ2, is now in terms of aggregated absolute 

realizations: 

( ) | |,4 2

0
σ ττt H

H
r d≡ I  

Assuming that they measure the time variation in the diffusion process of (1).  

These absolute return estimates are particularly relevant in the context of the 

commonly cited fat-tailed behavior as they examine the absolute extent of price 

variation (see for example, Davidian and Carroll (1987) and Granger and Ding 

(1995)).  These studies indicate that absolute realizations model fat-tailed 

characteristics relatively better than their squared counterparts.  In contrast in the 

use of thin-tailed distributions, squared realizations may perform substantially 

better than absolute ones as they are more robust to thin-tailed distributions.   
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B.  Aggregated Daily Measures: 

Turning now to the practical implementation of aggregate measures for any day t, 

let an intraday interval be measured by m.  The number of intraday intervals will 

be asset dependent varying according to the associated trading hours.  The assets 

are traded on a ‘working day’  cycle whereas in contrast, currencies are traded on a 

24-hour cycle.  Each day’ s returns, rt, are obtained by aggregating the high 

frequency intraday returns, rm, t: 

(5) , /r rt m t j m
j

m

= +
=

∑
1

 

Similarly, the daily volatility measures are obtained by aggregating variations of 

the intraday realizations.  The chosen measures, the squared returns (similar to an 

asset’ s variance) - [rt
2]; their square root (similar to an asset’ s standard deviation) - 

[√rt
2]; the absolute returns - |rt|; and the absolute returns raised to the power 

coefficient of one half - |rt|0.5; are the realizations of the daily realized volatility 

series’ .  For example the first two realized volatility measures using squared 

realizations are given as: 

( ) [ ] [ ], /6 2 2

1

r rt m t j m
j

m

= +
=

∑  

and  

( ) [ ] [ ], /7 2 2

1

r rt m t j m
j

m

= +
=

∑   

 

Turning now to the extension for fat-tailed characteristics, two further daily 

realized volatility measures using absolute realisations are presented: 

(8) | | | |, /r rt m t j m
j

m

= +
=

∑
1

 



 10 

and  

( ) | | | |.
, /
.9 0 5 0 5

1

r rt m t j m
j

m

= +
=

∑  

A weighting scheme may be implemented for each volatility measure to emphasise 

some impact of intraday realisations, but here it is assumed that the weights are 

equal within a daily trading block. 

 

III. Data Features: 

Daily measures are obtained using the aggregation method described in the 

previous section.  The assets chosen, the FTSE100, the UK Long Gilt and Sterling 

contracts are the most traded representatives of the Stock Index, Bond and Interest 

Rate futures on the LIFFE exchange.  As the three futures represent different asset 

types, their calculations are based on diverse criteria.   The FTSE100 contract is 

based on calculations of the asset in the underlying spot market, the UK Long Gilt 

contract is a future on a notional 10 year UK government bond with a 7% coupon, 

and the Sterling interest rate contract is based on the three month London Inter-

Bank Offer Rate (LIBOR), the wholesale rate on which financial institutions 

borrow and lend from each other.  The theoretical underpinnings have not 

previously been applied to this latter type asset in the literature.  Benchmark 

studies are however available for the former asset types (see for example, 

Andersen et al (2000a), (2000c) and Areal and Taylor (2002) for the stock market; 

and Bollerslev et al, (2000) for the bond market).   

 

The period of analysis is from January 1 1996 through to December 31 1999 

leaving a sample of 1003 full trading days.  A number of issues arise in the data 
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capture process.  First, all holidays are removed.  This entails New Year’ s (two 

days), Easter (two days), May Day, Spring holiday (1 day), Summer holiday (1 

day), and Christmas (two days).9  In addition, trading took place over a half day 

during the days prior to the New Years and Christmas holidays and these full day 

periods are removed from the analysis.  5-minute intervals are chosen for analysis.  

This is based on a trade-off between microstructure arguments and trying to obtain 

continuous realizations as m → ∞.  It is worth noting some of the possible 

microstructure features affecting the empirical implementation of the theoretical 

framework described in the last section.  In addition to bid-ask spreads index 

returns feature positive serial correlation due to non-synchronous trading effects.10  

Moreover, volatility levels vary from trading to non-trading periods, and volatility 

patterns change in an intraday basis.  This paper follows the analysis completed in 

a series of papers and chooses 5-minute intervals  (for example, Andersen et al  

(2001) and Andersen et al (2000c)).  

 

Each contract has different trading hours resulting in a unique number of daily 5-

minute intervals – FTSE100 (113), UK Long Gilt (120), and Sterling (118).  With 

1,003 trading days, the analysis covers 113,339 intervals for the stock index, 

120,360 intervals for the bond, and 118,354 intervals for the interest rate futures’  

assuming a 5-minute returns series, [rm, t], involves t = 1, 2,…., 1003 days, and m, 

the number of respective contract’ s daily intervals.  Also, each contract has four 

expiration periods, March, June, September, and December with data being chosen 

for the period nearest to delivery.  The returns series’ , [rm, t], are calculated using 

the first difference of each interval’ s log closing price, as in [ln(Pm, t) – ln(Pm-1, t)].  

The daily returns series, [rt], are obtained by summing m intraday interval 
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realizations for each asset.  However, intraday periods may be liable to thin 

trading, and if a trade does not occur for any 5-minute interval, the interpolated 

bid/ask spread from that period is used if available, or otherwise the previous 

period’ s value is used.  This results in the possibility of consecutive returns 

remaining equivalent in magnitude. 

 

IV. Empirical Features of Returns and Volatility Measures: 

A. Unconditional Distribution of Daily Aggregate Measures: 

The unconditional daily returns series, [rt], using the aggregation method is 

examined for their properties.  Summary statistics and box plots are given for each 

futures contract in table I and figure 1 respectively.  On average, returns are 

positive for the stock index and bond contracts over the period of analysis with the 

FTSE100 offering the highest return.  The respective sample means for each asset 

are 0.071% (FTSE100), 0.010% (UK Long Gilt) and –1.424*10-4% (Sterling) 

corresponding to annual averages with 251 trading days of 17.821% (FTSE100), 

2.510% (UK Long Gilt) and 0.036% (Sterling).  The percentiles represent possible 

realizations on short and long positions with the lower percentiles giving losses on 

long positions whereas the upper values give losses on short ones.  The importance 

of the percentiles will become apparent when an illustration of the aggregated 

return and volatility measures in a risk management context is given.  Here the 

minimum capital requirement needed to cover the expected losses being expressed 

for a variety of confidence levels using percentiles will be shown.  Moving onto 

the scale measures, generally the statistics emphasize a large degree of deviation 

for the realizations of different asset types.  The two unconditional volatility 

measures, the standard deviation and variance also diverge according to asset type 
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with the interest rate contract being least risky and the stock index contract being 

most risky.  All contracts exhibit excess skewness and kurtosis with the short run 

interest rate contract behaving least well. For example, the leptokurtotic returns is 

clearly shown in figure 1 where there is a bunching of realizations around the 

median, and more importantly for regulators trying to minimize default risk, a 

large number of values outside the lower and upper quartile grid lines.  The paper 

will determine later if the returns series’  can be transformed to have more attractive 

time series properties for the development of accurate risk management estimates, 

namely a symmetric iid variable.    

INSERT TABLE I HERE 

INSERT FIGURE 1 HERE 

 

Many related volatility proxies can be calculated with the method.  Andersen et al 

(2000c) find log realizations of aggregated squared returns almost gaussian.  Thus, 

as well as the four variations of absolute and squared returns, log realizations of 

these measures are also included.  The assumption of zero first moments is 

commonly applied in this type of analysis, although it is easy to scale the realized 

volatility estimates by a mean return measure.  Evidence in support of applying 

this assumption is detailed in table I.  Given an assumption of zero first moments, 

the mean of [rt
2] is closely associated with the commonly used variance estimate.11   

 

By extension, the other commonly cited risk measure, the standard deviation, is 

represented by [√rt
2].  Both absolute realizations indicate dispersion and take 

account of the size of the fluctuations in returns regardless of whether they are 

positive or negative.  Empirically, the magnitude of financial return fluctuations 
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often are very large vis-à-vis a normal distribution giving support for a fat-tailed 

property for these realizations.  In table II, some summary statistics of the volatility 

measures using the aggregated returns method are presented.  As can be seen, the 

magnitude of the realized volatility values is large for the relatively risky stock 

index futures.  For example, the average daily value using |rt| is 7.339% and for the 

more commonly cited measure of dispersion, the standard deviation is 1.071%.  

The interest rate contract indicates the lowest realized volatility levels.  Absolute 

return volatility measures dwarf their squared returns counterparts. 

INSERT TABLE II HERE 

 

Two dispersion measures of the newly formed realized volatility series, the 

variance and standard deviation, suggest that the actual divergence in the 

respective futures second moment properties is generally small, giving greater 

statistical inference to risk findings.  For example, the |rt| measure is relatively 

noise free (0.049% as given by the variance) for the UK Long Gilt contract given 

its average risk levels (2.994%).  In terms of distributional shape, the unconditional 

3rd moment estimates clearly suggest extremely right skewed variables in all cases.  

The conclusions regarding the 4th unconditional moment is not as clear-cut.  In 

general, while financial returns exhibit a fat tail property with excess kurtosis, this 

does not occur for the UK Long Gilt contract.  However, all exhibit a non-gaussian 

clustering of realisations.  Andersen et al (2000b) find that the lack of support for a 

non-gaussian dependency structure in the daily volatility measures is a result of the 

strong dependence in the intraday values.  Here, all series are leptokurtotic with the 

exception of the |rt|0.5 series for the UK Long Gilt which is platykurtotic.  Log 

realisations of the four realized volatility measures are also included in table II to 
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determine their shape.  Generally, the excess kurtosis is reduced for these series.  

Figure 2 shows the box plots for the series with optimal shape properties of all 

realisations for each series.12  These are respectively the Ln|rt| series for the 

FTSE100 and UK Long Gilt contracts and the Ln|rt|0.5 series for Sterling.  In the 

two former series, the fat-tail characteristic is removed, although excess skewness 

is still exhibited. Nonetheless, gausssian iid behaviour for these volatility measures 

is almost achieved.13 

INSERT FIGURE 2 HERE  

 

B.  Conditional Distribution of Aggregate Measures: 

Turning to the conditional patterns of the returns series’ , there are some commonly 

cited features.  First, the component is indicative of volatility clustering as can be 

seen by figure 3 which plots the returns realisations during the period of analysis, 

1996 –1999.  Here periods of consecutively high and low returns follow each 

other.  For example, return fluctuations are greater during the more recent period of 

analysis than in 1996 for the FTSE100 future. Second, the daily returns series 

resemble closely a white noise series with little dependence for 50 daily lags of 

each asset as can be seen in figure 4.  These features are common for financial time 

series and have been noted for the series’  analysed using observations gathered at a 

daily interval.  Any dependence of the first moments may be explained as a result 

of thin trading. 

INSERT FIGURE 3 HERE 

INSERT FIGURE 4 HERE 
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Whilst similar claims can be made for each asset’ s conditional returns series there 

are some variations in terms of conditional findings for the assets when examining 

their volatility patterns.  Also, there are distinctions according to the different 

realized volatility measures.  Beginning with the common features, volatility 

clustering is shown in the time series plots of figure 5 where the series’  |rt| are used 

for illustration.  The plots indicate clearly that volatility varies over time and that 

the magnitudes of the realisations tend to bunch together with periods of relatively 

low and high values. 

INSERT FIGURE 5 HERE 

 

Turning next to the memory characteristics, empirical analysis of financial time 

series suggests that the long memory feature dominate for absolute over squared 

realisations (see Ding and Granger (1996)).  Thus, long memory is investigated for 

the daily realized volatility series, |rt|, by calculating the degree of fractional 

integration, d, for 0 ≤ d ≤ 0.5.  The characteristic implies that the rate of decay for 

any lag, τ, is given by τ2d –1.  The long memory estimate is measured using the 

Geweke and Porter-Hudak (1983) log-periodogram regression approach, dGPH, 

updated for non-gaussian volatility estimates by Deo and Hurvich (2000).  This 

adjustment is required given the fat-tailed and right skewed behaviour of the 

volatility series.  Assuming, I(ωj) stands for the sample periodogram at the jth 

fourier frequency, ωj = 2πj/T, j = 1, 2, …, [T/2), the log-periodogram estimator of 

dGPH is based on regressing the logarithm of the periodogram estimate of the 

spectral density against the logarithm of ω over a range of frequencies ω: 

( ) log[ ( )] log( )10 0 1I Uj j jω β β ω= + +  
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where j = 1, 2,…, m, and d = -1/2β1.  Deo and Hurvich (2000) note a trade-off 

between the variance and bias of the least squares regression estimator, where with 

increasing m, the bias increases and the variance decreases.  Also, estimates of d  

are dependent on the choice of m.  Taking these two issues into account, estimates 

of dGPH are obtained by using m = T4/5 as suggested by Andersen et al (2001).  This 

implies that for m = Tδ, a sample of 252 periodogram estimates is employed.  In 

addition, standard errors are reported but may be problematic as an asymptotic 

normal limiting distribution exists for the long memory estimator if and only if  

δ < (1 + 4d)-14d which can change depending on the value of d (Deo and Hurvich 

(2000)).14  The asymptotic standard errors are given by π(24m)-1/2, that is 0.040.   

 

INSERT FIGURE 6 HERE  

First, long memory is demonstrated in figure 6 where the strong persistence that 

follows a hyperbolic decay structure is shown.  Also, all the corresponding Ljung-

Box statistics are significant given in table III.  It is important to note that this long 

memory feature occurs for a relatively small data set and for a small number of 

lags (in contrast for example, Granger and Ding (1995) use Schwert’ s (1990b) data 

set of 17055 observations) and shows an advantage of the aggregation of intraday 

observations.  There is a cyclical pattern with the overall decay structure of 

realized volatility in figure 6.  This is due to day of the week and intraday effects.  

These effects are demonstrated by taking a 5-day representation of the lag structure 

in figure 7.  Interdaily, a reduction in dependence moving through a week with a 

slight increase at the end of the cycle is exhibited.  Also, overall the intraday 

pattern is u-shaped with a self-similar pattern during the course of the day.  These 

correspond in general to the findings for equity and fixed income markets (see 
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Andersen et al (2000a) and Bollerslev et al (2000)).  Causes for these interday and 

intraday stylized facts include effects from macroeconomic news announcements 

on varying volatility and autocorrelation patterns for intraday realisations, and the 

impact on volatility magnitude in terms of non-trading days on the subsequent 

day’ s estimate.  

INSERT FIGURE 7 HERE 

INSERT TABLE III HERE 

 

The long memory estimates, dGPH, are given in table III supporting a fractionally 

integrated process.  The values for the stock index and bond contracts are similar in 

magnitude to previous evidence for comparable assets where short memory 

processes are also rejected.  For example, Bollerslev et al (2000) find log 

periodogram estimates of between 0.35 and 0.45 for US treasury bond and equity 

assets.  Andersen et al (2001) give an implication of this result and note that short 

memory modeling, for example, assuming that volatility follows an Ornstein-

Uhlenbeck process, which is commonly applied in the theoretical finance 

literature, is incorrect.  In contrast, long memory modeling should be applied.  

However, the Ornstein-Uhlenbeck process can be adapted to generate a long 

memory feature if there is superposition of an infinite number of these processes 

creating a long memory diffusion.   

 

As the series’  are fractionally integrated, the implied volatility from the one-day 

estimates at different aggregate levels using the variance of partial sums property 

can be estimated.  Specifically using |rt| as an example, this states that a fractionally 

integrated variable follows a scaling law of the form Var(|rt|) = cT2d +1.  This 
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allows us to infer the implied variance at different aggregations levels, T, assuming 

knowledge of the unconditional variance at one level.  To investigate whether this 

is correct, the logarithm of the variance of the partial sum of the daily absolute 

return realisations, ln(Var(|rt|T), are regressed against the logarithm of T at different 

aggregation levels, T = 1, 2, …, 40.  The slope of the regression, dA, are given in 

table III with the corresponding standard errors.  Findings for dA and dGPH are 

similar.  Also, in figure 8, the linear fit for the regression between the logarithm of 

the variance of the partial sum of the daily absolute return realisations against the 

logarithm of T is presented.  The goodness of fit is clear with the R-squared for 

each asset’ s relationship being in excess of 0.990.  This association between one-

day volatility estimates and their implied T aggregation estimates in the context of 

the risk management estimates is discussed in the next section.       

INSERT FIGURE 8 HERE 

 

V. Aggregate Measures Applied to Minimum Capital Requirements: 

Having first introduced daily volatility and returns measures they are now used in a 

risk management application.  To illustrate, rescaled returns, [zt], are obtained by 

dividing the daily returns by the daily standard deviations, [rt]/[√rt
2].  The series 

captures the pattern of dependence in the futures contracts.  As indicated in table I, 

each of the futures contracts returns exhibit fat tails which would lead to an 

underestimation of risk quantiles under gaussian assumptions.  This is because too 

many realisations lie outside different quantile grids, for example 95%, relative to 

the bell-shaped normal distribution.  Moving to the distributional properties of the 

rescaled returns, table IV presents summary statistics and some common 

percentiles.  Now excess skewness is removed for all contracts.  More importantly, 
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the fat tail feature has been fully removed from the original returns as the negative 

coefficient indicates a thin tailed distribution as can be clearly seen in figure 9.  

Particularly for the bond contract, there are now gaussian features with 

insignificant skewness and kurtosis.  Also for the other contracts, assuming 

normality will result in conservative risk management estimates suitable for risk 

averse investors as the percentiles of the rescaled returns belong to a relatively thin 

tailed distribution vis-à-vis normality.  Now, excess observations lie inside 

different quantile grids in comparison to the normal distribution.   

INSERT TABLE IV HERE 

INSERT FIGURE 9 HERE 

 

Turning to the risk management application, the paper finds that the minimum 

capital requirement for investment purposes varies according to different 

classifications of assets.  As futures are highly leveraged assets, investors should 

face prudential controls from regulators on the losses that can incur.  Protection 

against losses would also be affected by the degree of investor’  risk averseness.  As 

the minimum capital requirements are part of a statutory regulating measure they 

should be seen separately from the margin requirements imposed by the exchange 

on which the contracts are traded (see Cotter (2001) for an illustration).  The actual 

minimum capital deposit is made up of short-term liquid assets holdings and 

prearranged credit available to the investor.  The use of any capital deposit depends 

on the conditional trading environment as opposed to the unconditional one as 

futures are marked to market daily, and individual daily losses rather than average 

losses over the lifetime of the investment will determine whether the capital 
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deposit is adequate or not.  Actual minimum capital requirements are measured 

according to the fluctuations in the price series’ .  Large fluctuations require greater 

adjustments for the deposits given by investors.     

 

Turning specifically to the risk management application, and specifically 

investigating the probability of the minimum capital deposit being sufficient to 

cover a large proportion of all possible price movements that the asset may 

experience.  These price movements may occur for (net) long and (net) short 

positions.  This variable is denoted as the loss-covered probability.  It is a VaR 

type exposition examining potential losses resulting from a realized volatility 

estimate at a certain probability.  First looking at the short position, suppose an 

investor has available a capital deposit of Srmincapital expressed as a percentage of 

their total investment, and they want to determine if this will cover a large 

proportion, for example 99%, of all losses Srloss again expressed as a percentage:15 

( ) [ ] .min11 0 99P Sr Srloss capital< =  

This implies that the investor would have a capital deposit that covers 99% of all 

price movements on their short position.  Using (11), devise a one-day forecast of 

the capital required as a percentage of the total investment for the short position by 

using the realized volatility measures and the rescaled returns series.  Let λt equal 

the minimum capital percentage requirement on a short position, and this is related 

to the realized volatility measure as follows: 16   

( ) exp( )12 11
2λ t t qr z= −+  

with a one period forecast of the realized volatility and the quantile (99%) of the 

rescaled returns series.  Any quantile zq for a short position would be on the upside 

of the distribution of realisations and would have a positive value that is in contrast 
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to negative ones for a long position on the downside of the distribution. [√rt + 1
2] 

accounts for more recent volatility levels using an average of the window of 20 

lags upto t.   

 

Investors holding a short position hold negative quantities of the asset, and any 

price increase represents a loss.  Price fluctuations in excess of the loss-covered 

probability are denoted as the loss-exceeded probability, and these should occur 

with a 1% frequency: 

( ) [ ] .min13 0 01P Sr Srloss capital> =  

Turning to a long position and express the minimum capital requirement Lrmincapital 

as a percentage of their total investment.  Now, a long position implies the investor 

holding a positive quantity of the asset.  Assuming the investor wants to know 

whether the capital deposit will cover all possible losses Lrloss at a certain 

probability:   

( ) [ ] .min14 0 99P L Lrloss capital< =  

Again, express the minimum capital requirement as a percentage of the total 

investment for the long position by using the realized volatility measures and 

rescaled returns series.  Let νt equal the minimum capital percentage requirement 

on a long position and this is related to the realized volatility measure as follows: 

( ) exp( )15 1 1
2ν t t qr z= − +  

Also, price fluctuations in excess of the loss-covered probability are denoted as the 

loss-exceeded probability, and these should occur with a 1% frequency: 

( ) [ ] .min16 0 01P Lr Lrloss capital> =  
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The actual amount for the minimum capital requirement will depend on the value 

of the futures contracts invested in (number of contracts * price of contracts) and 

the actual price change in the futures.  A priori it is expected that the capital 

deposit is greater for a short position than a long one as the limiting distribution of 

futures prices are bounded on the downside of the distribution by zero, whereas 

there is no upper bound on the upside distribution.     

 

Dealing specifically with the rescaled returns in table V the other parameter 

required √rt + 1
2 is measured as 1.009% (FTSE100), 0.468% (UK Long Gilt), and 

0.022% (Sterling).  The minimum capital requirement Srmincapital expressed as a 

percentage of the total investment can be given at any confidence level.  For 

example, to cover 90% of all price fluctuations on a short position, the investor 

would require a deposit of 1.397%, 0.529% and 0.024% for the stock index, bond 

and interest rate contracts respectively.  As it is assumed that the sampling interval 

is near continuous, the measurement error is negligible.  This loss-covered 

probability is dependent on the inherent volatility levels of each asset with riskier 

assets resulting in higher values and consequently higher deposits.  Also, moving 

to a higher safety level would result in higher capital requirements.  Turning to a 

long position, slightly smaller capital requirements occur for the loss-covered 

probability of 90% with values of 1.193%, 0.486% and 0.022% for the FTSE100, 

UK Long Gilt, and Sterling futures respectively.  It is also beneficial to use the 

loss-exceeded probability, which suggests for example in the case of the FTSE100, 

that a minimum capital requirement of 1.193% as a percentage of total outlay 

would be insufficient for 10% of all outcomes.  As can be seen in table V, the 

minimum capital requirements increase at higher confidence levels.  Note also that 
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the long and short position requirements are similar in magnitude reflecting the 

insignificant skewness in the rescaled returns series.  Gaussian estimates are also 

presented in table V for comparison purposes and again the magnitude of values 

are similar to the long and short position values reflecting the removal of the fat-

tailed property from the assets’  returns series’  and their almost gaussian behaviour.       

INSERT TABLE V HERE 

 

To date the discussion has concentrated on an individual day context.  Often risk 

management decisions and their related estimates are necessary for longer 

horizons, T, and a framework is now provided that will complete this task 

accurately.17 Alternative methods are available for obtaining long horizon 

estimates from shorter ones including scaling in the case of normality and temporal 

aggregation rules in the case of GARCH processes (see Drost and Nijman, 1993).  

Due to the long memory feature in the returns series, the fractionally integrated 

scaling law rule is used to estimate the implied volatility at different horizons, T.  

As seen in figure 8, the assets analysed follow the variance of partial sums property 

by offering very good fits between the logarithm of aggregation levels and the 

logarithm of the variance of the partial sum of the absolute realisations.  Hence 

scaling up by cT2d+1 using the unconditional variance for one-day aggregate 

measures gives accurate volatility measures for 40 days in this study.  To 

generalize, by following the rescaling procedure outlined earlier offers correctly 

calculated associated minimum capital requirements.   

       



 25 

VI. Summary and Conclusion: 

This paper examines model-free volatility estimates for three different asset types 

using UK futures.  These estimates are then incorporated into minimum capital 

requirements for both long and short positions.  Regulators face a dilemma in 

setting requirements between minimising the losses due to security firms not 

fulfilling their contracts, and maximising the opportunities for a competitive 

environment, encouraging investor participation.  Whilst alternative approaches are 

used in practice to set capital deposit levels, this paper adopts the principals of 

portfolio theory in a VaR type model that measures the risk exposure facing 

investors with statistical measures of volatility.  Various minimum capital 

requirement estimates are provided that measure the potential of default at various 

probability levels. 

 

The key to imposing appropriate minimum capital requirements on a daily basis 

requires accurate estimates of realized volatility for different assets.  Using these 

estimates as inputs, the regulator can balance the trade-off between offsetting 

security firm default and encouraging financial trade in an optimal manner.  Using 

high frequency realisations, this paper provides alternative, but accurate, estimates 

of volatility related to statistical implementation of standard portfolio theory.  The 

measures are based on discrete estimation of aggregated high frequency 

realisations underpinned by a continuous time framework that varies the 

measurement error according to the interval size used.  In contrast, the standard 

application is to assume variables belong to a known probability distribution 

function or to estimate volatility using discrete time series models with the 

associated statistical bias.  The choice of very high frequency realisations using 5-
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minute intervals minimises the bias and can be treated as error free.  Squared 

returns provide model-free estimates of volatility relying on the quadratic variation 

of a diffusion process that equates this latent variable with the squared realisations.  

In addition, absolute returns are incorporated into the methodology due to their 

robustness in the presence of fat tails, and given the motivation to calculate risk 

management estimates based on the probability distribution of outcomes.   

 

The FTSE100, the UK Long Gilt and the Sterling futures’  are the most actively 

traded and thus are chosen as the UK representatives of stock index, bond and 

interest rate asset types.  Daily realized volatility estimates are obtained using 

cumulative intraday realisations and a number of interesting findings are reported.  

First unconditionally, daily realized volatility estimates like returns indicate non-

gaussian features with excess skewness and kurtosis.  Second conditionally, the 

realized volatility estimates follow previous evidence by varying over time with 

clustered period of high and low values. 

 

Third and more importantly, the realized volatility estimates incorporate the long 

memory property showing a dependency structure that has a specific decay pattern 

in line with a fractionally integrated series.  Within this dependency structure, a 

cyclical pattern occurs corresponding to a self-similar shape across individual days.  

Using these alternative risk estimates, the dynamics of the volatility variable are 

adequately captured and the paper obtains rescaled returns that are near gaussian.  

Fourth, these rescaled returns are applied to calculate minimum capital 

requirements for the futures analysed.  Portfolios containing stock index assets 

would incur more risk, and thus require a larger capital deposit, than the other two 
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assets analysed.  Moreover, the previously overlooked interest rate asset type is the 

least volatile.  Given the time series properties of the daily volatility series’  a 

simple extension to calculate accurate volatility forecasts over longer investment 

horizons that follow a scaling law for fractionally integrated series is suggested. 
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Table I: Summary Statistics for Daily Returns, [rt], of UK Futures Series 
 FTSE UK Long Gilt Sterling 

Min -5.484 --2.686 -0.484 
1st Qtr -0.593 -0.166 -0.032 
Median 0.103 0.009 0.000E+00 
3rd Qtr 0.721 0.202 0.032 
Max 9.981 1.784 1.235 
Mean 0.071 0.010 -1.424E-04 
Variance 0.015 0.002 5.459E-05 
Std. Deviation 1.233 0.484 0.007 
Skewness 0.319* 0.225* 0.775* 
Kurtosis 5.668* 1.460* 8.825* 
    
    
Percentiles    
0.5 -3.657 -1.126 -0.301 
1.0 -2.918 -1.034 -0.247 
5.0 -1.947 -0.832 -0.108 
10.0 -1.337 -0.713 -0.065 
90.0 1.413 0.716 0.066 
95.0 1.970 0.814 0.096 
99.0 3.214 0.977 0.192 
99.5 3.833 1.280 0.226 
Notes: The daily return measure, [rt], is outlined in the main text.  With the 
exception of skewness and kurtosis coefficients, all values are expressed in 
percentage form.  Normal iid skewness and kurtosis values should have means 
equal to 0, and variances equal to 6/T and 24/T respectively.  Thus, standard errors 
for the skewness and kurtosis parameters are 0.077 and 0.154 respectively.  
Significant kurtosis indicates excess kurtosis vis-à-vis normality.  The symbol * 
represents significant skewness and kurtosis using two standard errors.   
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Table II: Summary Statistics for Daily Realized Volatility Measures, using 
Aggregated Returns of UK Futures Series 

 FTSE UK Long Gilt Sterling FTSE UK Long Gilt Sterling 
[rt

2]    Ln[rt
2]   

Mean 0.014 0.009 0.000 -9.268 -10.857 -14.809 
Variance 0.000 0.000 0.000 0.765 3.905 0.871 
Std. Deviation 0.018 0.014 0.000 0.874 1.976 0.933 
Skewness 6.553* 2.416* 8.436* 0.253* 0.090 0.279* 
Kurtosis 73.218* 6.364* 88.240* -0.121 -0.991* 2.648* 
       
[√rt

2]    Ln[√rt
2]   

Mean 1.071 0.683 0.066 -4.634 -5.429 -7.405 
Variance 0.003 0.004 0.000 0.191 0.976 0.218 
Std. Deviations 0.522 0.628 0.044 0.437 0.988 0.467 
Skewness 2.014* 1.292* 3.520* 0.253* 0.090 0.279* 
Kurtosis 8.506* 0.865* 20.610* -0.121 -0.991* 2.648* 
       
|rt|    Ln|rt|   
Mean 7.339 2.994 0.265 -2.704 -3.780 -6.109 
Variance 0.115 0.049 0.000 0.184 0.605 0.651 
Std. Deviation 3.389 2.211 0.181 0.428 0.778 0.807 
Skewness 1.776* 1.652* 1.498* 0.097 0.382* 2.883* 
Kurtosis 7.254* 4.167* 4.955* -0.061 -0.046 52.588* 

       
|rt

0.5|    Ln|rt
0.5|   

Mean 234.912 123.930 22.995 0.820 0.130 -1.662 
Variance 37.543 22.659 2.297 0.074 0.191 0.528 
Std. Deviation 61.272 47.602 15.155 0.272 0.437 0.727 
Skewness 0.426* 0.221* 0.959* 0.788* 1.191* 0.837* 
Kurtosis 0.862* -0.861* 1.869* 3.679* 6.475* 0.935* 
Notes: The daily realized volatility measures are outlined in the main text.  All 
values for [rt

2], [√rt
2], |rt|, and |rt

0.5|, are expressed in percentage form with the 
exception of the skewness and kurtosis coefficients.  Normal iid skewness and 
kurtosis values should have means equal to 0, and variances equal to 6/T and 24/T 
respectively.  Thus, standard errors for the skewness and kurtosis parameters are 
0.077 and 0.154 respectively.  Significant kurtosis indicates excess kurtosis vis-à-
vis normality.  The symbol * represents significant skewness and kurtosis using 
two standard errors.   
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Table III: Memory in the Daily Realized Volatility Measure, |rt|, using Aggregated 
Returns of UK Futures Series 

 FTSE UK Long Gilt Sterling 
Ljung-Box (40) 15525 13304 7769 
dGPH 0.443 0.406 0.381 
dA 0.471 

(0.002) 
0.439 

(0.006) 
0.416 

(0.005) 
Notes: All Ljung-Box statistics are significant.  The standard errors for the dGPH are 
0.040 as outlined in the text.  The standard errors for dA are presented in 
parentheses.  All dGPH estimates are significantly different from zero thereby 
rejecting a short memory characteristic. 
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Table IV: Summary Statistics for UK Futures Daily Rescaled Returns Series, [zt] = 
[rt]/[√rt

2] 
 FTSE UK Long Gilt Sterling 

Min -2.430 -2.621 -2.306 
1st Qtr -0.596 -0.492 -0.562 
Median 0.123 0.014 0.000 
3rd Qtr 0.828 0.562 0.633 
Max 2.924 2.664 2.857 
Mean 0.111 0.035 0.048 
Variance 0.977 0.662 0.678 
Std. Deviation 0.989 0.814 0.824 
Skewness 0.039 0.020 0.045 
Kurtosis -0.411* -0.029 -0.428* 
    
Percentiles    
0.5 -2.182 -1.995 -1.971 
1.0 -2.015 -1.897 -1.805 
5.0 -1.489 -1.304 -1.276 
10.0 -1.183 -1.038 -1.014 
90.0 1.385 1.131 1.109 
95.0 1.703 1.348 1.360 
99.0 2.467 1.775 1.775 
99.5 2.659 2.069 1.860 
Notes: The daily rescaled returns measure zt is outlined in the main text.  Normal 
iid skewness and kurtosis values should have means equal to 0, and variances 
equal to 6/T and 24/T respectively.  Thus, standard errors for the skewness and 
kurtosis parameters are 0.077 and 0.154 respectively.  Significant kurtosis indicates 
excess kurtosis vis-à-vis normality.  The symbol * represents significant skewness 
and kurtosis using two standard errors.   
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Table V: Daily Minimum Capital Estimates for Short and Long Positions in UK 
Futures  

Probability FTSE UK Long Gilt Sterling 
Long Position    
90% 1.194 0.486 0.022 
95% 1.502 0.610 0.028 
99% 2.033 0.888 0.040 
99.5% 2.202 0.934 0.043 
    
Short Position    
90% 1.397 0.529 0.024 
95% 1.718 0.631 0.030 
99% 2.489 0.831 0.039 
99.5% 2.683 0.968 0.041 
    
Normal    
90% 1.293 0.600 0.028 
95% 1.660 0.770 0.036 
99% 2.347 1.089 0.051 
99.5% 2.599 1.205 0.057 
Notes: The minimum capital requirements are expressed as a percentage of the 
total investment.  Results are presented individually for the long and short 
positions using the daily realized volatility estimates as discussed in the text.  
Estimates are presented assuming normality for comparison purposes where long 
and short position values are equivalent.  
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Figure 1: Box Plots for UK Futures Daily Returns, [rt] 
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Notes: The upper and lower quartile grids are given by the line segments with the 
spikes at either end. 
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Figure 2: Box Plots for UK Futures Realized Volatility Series.    
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Notes: The realized volatility series chosen for presentation are based on those 
with the optimal skewness and kurtosis coefficients vis-à-vis normality in table V.  
Specifically, the Ln|rt| series for the FTSE100 and UK Long Gilt contracts and the 
Ln|rt|0.5 series for Sterling are chosen. The upper and lower quartile grids are given 
by the line segments with the spikes at either end. 



 38 

Figure 3: Time Series Plots of UK Daily Futures Returns, [rt] 
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Figure 4: Plots of Autocorrelation Values for UK Futures Daily Returns Series, [rt], 
for 50 Daily Lags.  
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Notes: Each asset contains a different number of daily intervals -FTSE100 (113), 
UK Long Gilt (120), and Sterling (118).  The critical value for each contract is 
0.062 as estimated by ±1.96/√T.  
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Figure 5: Time Series Plots of UK Daily Futures Realized Volatility Series, |rt| 
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Figure 6: Plots of Autocorrelation Values for UK Futures Daily Realized Volatility 
Series, |rt|, for 50 Daily Lags. 
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Notes: Each asset contains a different number of daily intervals -FTSE100 (113), 
UK Long Gilt (120), and Sterling (118).  The critical value for each contract is 
0.062 as estimated by ±1.96/√T.  
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Figure 7: Plots of Autocorrelation Values for UK Futures Daily Realized Volatility 
Series, |rt| across 5 Days. 
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Notes: Each asset contains a different number of daily intervals -FTSE100 (113), 
UK Long Gilt (120), and Sterling (118).  The critical value for each contract is 
0.062 as estimated by ±1.96/√T.  
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Figure 8: Linear Fit Plots of implied aggregated realized volatility using UK 
Futures Daily Volatility Series, |rt|, against different aggregation levels. 
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Notes: Aggregated volatility represents the logarithm of the variance of the partial 
sum of the daily absolute return realisations, ln(Var(|rt|T), and aggregation levels 
the logarithm of T at different aggregation levels, T = 1, 2, …, 40. 
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Figure 9: Box Plots for UK Futures Daily Rescaled Returns Series, [zt] = [rt]/[r√t
2] 
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Notes: the line segments give the upper and lower quartile grids with the spikes at 
either end. 
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1. Previously Areal and Taylor (2002) present a single realized volatility measure 

for squared realizations.   

2 Dimson and Marsh () provide a comprehensive discussion of the procedures in 

place for measuring minimum capital requirements. 

3 For a comprehensive discussion of comparative methodologies for measuring 

minimum capital requirements see Hsieh (1993). 

4 This study is currently being extended to examine minimum capital requirements 

for financial firms. 

5 For example, the UK’ s Securities and Investment Board (1987) suggests, “The 

primary objective … is to ensure that the risks which a firm undertakes are not 

disproportionate to its resources.  It is not that there would be complete confidence 

that a market participant will never default, but that the size and frequency of any 

failures should not have material systemic consequences and the risk of loss to 

retail investors… should be small”. 

6 In practice, measurement error will occur as high frequency discrete realizations 

are substituted into the continuous time process, but the error size is controlled 

through varying the frequency of realizations used.  In the risk management 

estimates reported, the findings of simulations by Andersen and Bollerslev (1998) 

are incorporated by assuming that using a 5-minute interval results in a miniscule 

measurement error.   

7 Hence r1, t = pt - pt-1/1, which can easily be scaled for different holding periods. 

8 Merton (1980) suggests that for m → ∞, precise volatility estimates can be 

obtained. 

9 The actual holidays fell on slightly different calendar dates each year depending 

on whether the respective holiday fell on a weekday or not. 
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10 In contrast, individual asset returns experience negative correlations. 

11 Sample variances are calculated using 
[ ]r r

T

t
t

T

−

−
=
∑ 2

1

1
which simplifies to 

[ ]r

T

t
t

T
2

1

1
=
∑

−
 

assuming zero mean, whereas the mean value of the volatility estimate in table 2 

has a denominator of T. 

12 Throughout the paper a selection of findings are presented only.  All results are 

available on request. 

13 For the null hypothesis of gaussian iid variables to hold, the sample skewness 

and kurtosis values should have means equal to 0, and variances equal to 6/T and 

24/T respectively.   

14 For example, based on the presented estimates in table 3 of the |Rt| series’  for 

dGPH of 0.443 (FTSE100) results in δ < 0.639, and 0.381 (UK Long Gilt) results in 

δ < 0.604. 

15 Any quantile could have been chosen with a more (less) risk averse investor 

choosing a higher (lower) probability of safety, and 99% is for illustrative purposes 

only. 

16 The volatility measure [√rt + 1
2] is used as an example.  

17 Whilst it is not the motivation of this paper to determine of the optimal holding 

period for risk management decision making, examples of long horizons used 

include the minimum 10-day holding period suggested by the Basle’ s Committee 

1996 ‘ammendment to the capital accord to incorporate market risks’  and the one 

year Bankers Trust RAROC system (see Diebold et al (1988)). 


