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Abstract

We reconsider the issue of capital income taxation in a perpetual youth
framework. We show that the zero tax result does not generally hold, even
in the long-run and in the presence of homothetic in consumption and sep-
arable preferences. In fact, at the steady state, there are at least three
forces pushing toward the taxation of capital income: the probability of
death combined with the overlapping generation mechanism, the difference
between the weight attached to each generation by the government and its
demographic weight and the relationship between the government and the
individual intertemporal discount rates. Finally, we show that unfair life
insurance contracts do not qualitatively affect the results. Journal of Eco-
nomic Literature Classification Numbers: E62, H21.
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1 Introduction

Since the seminal works by Judd [13] and Chamley [6], there has been a
growing number of contributions dealing with the issue of dynamic opti-
mal capital income taxation. In particular, these two authors argued that
the long run tax rate on capital income should be zero. This somehow
striking result has been clarified only recently by a few works that have,
on the one hand, highlighted the strict similarity with the more traditional
static optimal taxation principles and, on the other hand, formally derived
the conditions under which it can hold. In particular, Judd [14] has shown
that the zero tax rate result descends directly from the fact that a tax on
capital income is equivalent to a tax on future consumption: thus, capital
income should not be taxed if the elasticity of consumption is constant over
time. However, as far as infinitely lived representative agent (ILRA) models
are concerned1, while this condition is necessarily true in the steady state,
along the transition path, instead, it holds only if the utility function is
(weakly) separable in consumption and leisure and homothetic in consump-
tion. Moreover, both De Bonis and Spataro [9] and Erosa and Gervais [10]2

point out that, when separability is assumed out, the violation of the zero
tax principle stems from the well known Corlett-Hague [8] rule: since leisure
cannot be taxed directly, the second best solution is to tax (subsidize) the
good that is more (less) complementary to it, i.e. consumption.

A further insight into the mechanism driving the mentioned result has
been given by the adoption of the Overlapping Generation models with life
cycle (OLG-LC). As shown by a number of authors3, in this setup a non
zero tax rate result holds in general, even in the long run, since optimal
consumption and labor are not constant over life, in the presence of life-
cycle behavior4.

Finally, another source of non zero taxation, highlighted in both ILRA
and OLG-LC models, stems from the difference between government and

1See Atkeson et al. [1] and Chari et al. [7].
2Both articles adopt the primal approach to the Ramsey problem; however, the former

deals with an ILRA model, while the latter with an overlapping generation one.
3See Atkinson and Sandmo [2] and Erosa and Gervais [11]; for a review see Renström

[17] and Erosa and Gervais [10].
4In this model a crucial condition for the government to implement the “second best”

policy is the availability of age-dependent taxes. The other central hypothesis, which is

common to all the models mentioned above, is the presence of a “commitment technology”,

in order to guarantee the credibility of the announced capital income taxation policy.
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individual discount rates. De Bonis and Spataro [9], for example, end up
with a non zero (negative) tax on capital income, even in the long run
and with homothetic in consumption and separable utility functions, if the
government is more patient than individuals, while the Chamley-Judd result
is still valid if the government is less patient5.

The aim of this work is to extend the analysis of optimal dynamic tax-
ation by considering a perpetual youth (PY) model à la Blanchard [4] with
growing population6. This extension enables us to encompass the issues
mentioned above which, up to now, have been studied separately or under
special assumptions. In fact by adopting the PY framework we can deal
with overlapping generations, finite life-time horizon (via a constant proba-
bility of death), life-cycle behavior and investigate the role played by both
the intertemporal and intergenerational discount rates of the policymaker.
Another feature by which we depart from the previous literature is to allow
for a special kind of imperfection in the credit market, namely unfair life
insurance contracts.

The main results can be summarized as follows: first, the zero tax rule
is violated, in both the short and the long run, in the presence of the (as-
sumed) difference between the weight that the government attaches to each
generation and each generation’s actual weight in the current population;
second, the same failure occurs in the presence of the probability of dying
and the OLG framework, even if the government and individual’s intertem-
poral/intergenerational discount rates are equal. Third, we show that the
presence of unfair life insurance contracts influences only the level but not
the qualitative result of the non zero taxation. In the light of these findings,
the Chamely-Judd result turns out to be a special case.

The work proceeds as follows: in the first section we present the model
and derive the equilibrium conditions for the decentralized economy. Next,
we characterize the Ramsey problem by adopting the primal approach. Fi-
nally, we present the results by focusing on the new ones. Concluding re-
marks and a technical appendix will end the work.

5Among other articles focusing on the optimal capital income taxation problem see

Jones et al. [12], modeling human capital accumulation, and Chari et al. [7], Zhu [20] and

Yakadina [19], dealing with stochastic frameworks.
6Buiter [5] and Weil [18] amend the Blanchard’s model by allowing for population

dynamics.
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2 The model

We consider a neoclassical-production-closed economy in which there is a
large number of agents and firms.

Private agents, who are identical in their preferences, differ as for their
date of birth s; moreover they undergo a probability of dying in each period,
equal to δ; since in each period there is also a fraction α of new born, the
population growth rate is equal to α− δ ≡ n. As a consequence, a cohort of
individuals born at date s, at time t has cardinality:

αe−δteαsN (0)

with N (0) the size of population at time 0 and s ≤ t. Now, by set-
ting N (0) equal to one, without loss of generality, the size of the whole
population, at time t, is:

N (t) =
∫ t

−∞
αeαs−δtds = ent.

Furthermore, individuals offer labor and capital services to firms by tak-
ing the net-of-tax factor prices, w̃ (s, t) and r̃ (s, t) as given. Firms, which are
identical to each other, own a constant return to scale technology F satisfy-
ing the Inada conditions and which transforms the factors into production-
consumption units. Finally, the government can finance an exogenous and
constant stream of public expenditure G, by issuing internal debt B(t) and
by raising proportional taxes both on interests and wages, referred to as
τk (s, t) and τ l (s, t) respectively. Notice that taxes can in principle be
conditioned on the date of birth7.

2.1 Private agents

The agents’ preferences can be represented by the following instantaneous
utility function:

U (c (s, t) , l (s, t))
7This strong assumption can be ruled out if one eliminates life cycle behavior. Our

results, in fact, do not rely on it.
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where c (s, t) and l (s, t) are instantaneous consumption and labor supply
respectively of individuals of cohort s, as of instant t. Such utility function is
strictly increasing in consumption and decreasing in labor, strictly concave,
and satisfies the standard Inada conditions.

Agents maximize the (expected) discounted sum of lifetime utils by
choosing the optimal time path of consumption (savings) and labor hours
under the budget constraint.

That is:

max
{c(t),l(t)}∞s

∫ ∞

s
e−(β+δ)(t−s)U (c (s, t) , l (s, t)) dt (1)

sub ȧ (s, t) =
(
r̃ (s, t) + δ̃r (s, t)

)
a (s, t) + w̃ (s, t) l (s, t)− c (s, t) (2)

lim
t→∞

a (s, t) e−
∫ t

s (r̃(s,v)+δ̃r(s,v))dv = 0, a (s, s) = a

where β is the intertemporal discount rate, a the agent’s wealth; the
notation

.

() indicates the derivative with respect to time, while r̃ (s, t) =
r (t)

(
1− τk (s, t)

)
and w̃ (s, t) = w (t)

(
1− τ l (s, t)

)
are the net-of-tax factor

prices. Notice that δ̃r is the instantaneous flow of income due to insurance
(net of capital taxes)8; moreover, δr, the gross value, may differ from the
actuarially fair value δ, due to market imperfections.

The FOCs of this problem imply:

Uc(s,t) = p (s, t) (3)

Ul(s,t) = −p (s, t) w̃ (s, t) (4)

−
[
r̃ (s, t) + δ̃r (s, t)

]
p (s, t) = ṗ (s, t)− (β + δ) p (s, t) (5)

where the expression Ui(t) is the partial derivative of the utility function
with respect to argument i = c, l at time t and p (s, t) is the current value
shadow price of wealth. According to such conditions, it can be shown that
the growth rates of consumption and labor are:

8We assume here that the government taxes also life insurance payments; however, our

results do not change qualitatively if this assumption is abandoned.
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ċ

c
=

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

) 1
θc
− θcl

θc

l̇

l
(6)

l̇

l
=

1
θl

[(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

) (
1− θlc

θc

)
−

.
w̃(s,t)
w̃(s,t)

]
1− θclθlc

θcθl

, (7)

with θj = −Ujjj
Uj

, j = c, l, the elasticity of the marginal utility and θij =

−Uijj
Ui

. Notice that, in case the utility function is additively separable in con-

sumption and labor, the growth rates above are: ċ
c =

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

)
1
θc

and l̇
l =

(
r̃ (s, t) + δ̃r (s, t)− (β + δ)

)
1
θl

.

2.2 Firms

Since firms run their business in a perfectly competitive framework, in each
instant they hire capital and labor services according to their market prices
(gross of taxes) and in order to maximize current period profits. This means
that, for each firm i:

dF
(
Ki (t) , Li(t)

)
dKi (t)

= r (t) (8)

dF
(
Ki (t) , Li(t)

)
dLi (t)

= w (t) . (9)

Due to the assumed identity of the firms and the presence of a CRS
technology, such conditions can also be expressed for the economy as a
whole, in per capita terms:

fk(t) = r (t) (8’)

fl(t) = w (t) , (9’)

where l(t) = L(t)
N(t) =

∫ t
−∞ νp (s, t) l (s, t) ds, in which νp (s, t) = αe−α(t−s)

is the weight of cohort s in the whole population at period t.

2.3 The government and market clearing conditions

The government fixes an amount of exogenous public expenditure and fi-
nances it through taxes on income and by issuing debt. There is no con-
straint on the amount of debt (neither on the levels nor on the growth
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rates)9. We assume that the government has access to a commitment tech-
nology that prevents it from revising the announced path of distortionary
tax rates whenever the possibility of lump sum taxation arises10. Thus, one
obtains the usual condition:

.
B (t) = r (t) B (t) + G− T (t) . (10)

Finally, since the market clearing condition implies that, at each date,
the sum of capital and debt equal the aggregate private wealth, that is:

A (t) = K (t) + B (t) , (11)

then, eq. (10) can be also written as

∫ t
−∞ αeαs−δt

[ .
b (s, t)−

(
r̃ (s, t) + δ̃r (s, t)

)
b (s, t) + τ l (s, t) w (t) l (s, t)

+ (δr − δ) b (s, t) + τk (s, t) (r (t) + δr (s, t)) k (s, t)− g
]
ds = 0. (12)

3 The Ramsey problem

Since the primal approach to the Ramsey [16] problem consists in the maxi-
mization of a direct utility function through the choice of quantities (i.e. al-
locations)11, a key point is restricting the set of allocations among which the
government can choose to those that can be decentralized as a competitive
equilibrium. Thus, in this paragraph we define a competitive equilibrium

9The only constraint on the debt law of motion is the usual no-Ponzi game condition,

namely: lim
t→∞

B (t) e
−

t∫
r

0
(v)dv

= 0, and the starting condition B (0) = B.
10This point concerns the “time inconsistency” problem affecting optimal taxation when

a dynamic set up is considered: typically, the government has incentives to deviate from the

announced (ex-ante) second best policy, upon achieving the instant in which the policy

is phased in; in fact this happens because the stock of accumulated capital ex-post is

perfectly rigid and now should be taxed more heavily, since this would mimic a lump sum

taxation. The commitment hypothesis implies also that the capital tax at the beginning

of the policy is given, that is, fixed exogenously at a level belonging to the (0, 1) interval.
11See Atkinson and Stiglitz [3]; on the other hand, the “dual” approach takes prices and

tax rates as control variables (see Chamley [6] and Renström [17] for some examples).
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and the constraints that must be imposed to the policymaker problem, in
order to achieve such a competitive outcome.

The first constraint can be obtained as follows: first, by taking eq. (2)
and multiplying both sides by e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv, we can write the following

expression:

d
[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

= e−
∫ t

s [r̃(s,v)+δ̃r(s,v)]dv [w̃ (s, t) l (s, t)− c (s, t)] ;

next, by multiplying both sides by p (s, t) and exploiting the individuals’
FOCs (3 to 5) we obtain:

p (s, s) e−
∫ t

s [r̃(s,v)+δ̃r(s,v)−(β+δ)]dv
d

[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

=

−e−
∫ t

s [r̃(s,v)+δ̃r(s,v)]dv [Ul (s, t) l (s, t) + Uc (s, t) c (s, t)] ⇒

−Uc (s, s)
d

[
a (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

= e−(β+δ)(t−s) [Ul (s, t) l (s, t) + Uc (s, t) c (s, t)] ;

finally, by integrating out and exploiting the individual’s transversality
condition, we get:

∫ ∞

s
e−(β+δ)(t−s)

[
Uc(s,t)c (s, t) + Ul(s,t)l (s, t)

]
dt = a (s, s) Uc(s,s). (13)

Since this constraint has to be satisfied for the whole economy, it must
be

∫ t

−∞

∫ ∞

s
αe−δteαs

{
e−(β+δ)(t−s)

[
Uc(s,t)c (s, t) + Ul(s,t)l (s, t)

]
(14)

−e−(t−s)a (s, s) Uc(s,s)

}
dtds = 0,

which is referred to as the “implementability constraint”12.
As for the second constraint, writing eq. (2) in the following way:

12In the rest of the paper we assume for simplicity that a (s, s) = a is equal to zero for

each cohort.
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ȧ (s, t) = [r (t) + δr] a (s, t) + w (t) l (s, t)− c (s, t)

−τk (s, t) [r(s, t) + δr] a(s, t)− τ l (s, t) w(t)l (s, t) ; (15)

integrating over the population to get the aggregate wealth:

A (t) =
∫ t

−∞
a (s, t) αe−δteαsds;

then, deriving with respect to time, one gets:

.
A (t) = a (t, t) αe−δteαt︸ ︷︷ ︸ +

=0

∫ t

−∞

d
[
a (s, t) αe−δteαs

]
dt

ds

where a (t, t) is the initial wealth of individuals, which is supposed to be
zero.

The expression above can be written as:

.
A (t) = −δA (t) +

∫ t

−∞

.
a (s, t) αe−δteαsds, (16)

so that, including (15) into (16), we obtain:

.
A (t) = −δA (t) + [r (t) + δr]A (t)− [r (t) + δr]

∫ t

−∞
τk (s, t) a (s, t) αe−δteαsds+

(17)

− C (t) + W (t)−
∫ t

−∞
τ l (s, t) w(t)l (s, t) αe−δteαsds,

where C (t) and W (t) are aggregate consumption and gross aggregate
wages, respectively. Note that the sum of the two integrals in eq. (17) is
the total amount of revenues, T (t) .

Finally, recalling the law of motion of aggregate debt, exploiting the
market clearing condition and substituting the expression for T (t) of (10)
into (17), we get:

.
K (t) = (δr − δ) (K(t) + B (t)) + r (t) K (t) + W (t)− C (t)−G, (18)
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which can also be written as:

∫ t
−∞ αeαs−δt

[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t)

− (δr − δ) (b (s, t) + k (s, t)) + c (s, t) + g] ds = 0. (19)

Such expression is usually referred to as the “feasibility constraint”.
We can now give the following definition:

Definition 1 A competitive equilibrium is: a) an infinite sequence of
policies π =

{
τk (s, t) , τ l (s, t) , b (s, t)

}∞
0

, b) allocations {c (s, t) , l (s, t) , k (s, t)}∞0
and c) prices {w (t) , r (t)}∞0 such that, at each instant t: b) satisfies eq.
(1) subject to (2), given a) and c); c) satisfies eq. (8′) and eq. (9′); eqs.
(19) and (12) are satisfied.

Such allocations are often referred to as “implementable”.
In the light of the definition given above, the following proposition holds:

Proposition 1 An allocation is a competitive equilibrium if and only if it
satisfies implementability and feasibility.

Proof. The first part of the proposition is true by construction. The
reverse (any allocation satisfying implementability and feasibility is a com-
petitive equilibrium) is provided in Appendix A.

3.1 Solution

Let us suppose that the policy is introduced at the end of period t0. The
problem the policymaker faces is the following:

max
{c(s,t),l(s,t),k(s,t)}∞0

∫ ∞

max(s,t0)

∫ t

−∞
µg (s, t) e−γg(t−max(s,t0))U (c (s, t) , l (s, t)) dsdt

sub

∫ ∞

max(s,t0)

∫ t

−∞
µp (s, t)

{
e−(β+δ)(t−max(s,t0))

[
Uc(s,t)c (s, t) + Ul(s,t)l (s, t)

]
+

−e−(t−max(s,t0))a (s,max (s, t0))Uc(s,max(s,t0))

}
dsdt = 0

9



and
∫ t

−∞
µp (s, t)

[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t) +

− (δr − δ) (b (s, t) + k (s, t)) + c (s, t) + g] ds = 0, ∀t > t0,

lim
t→∞

k (s, t) e
−

∫ t
max(s,t0)(r̃(s,v)+δ̃r(s,v))dv = 0, a (s, t0) given, ∀s

where µg (s, t) and γg are the weight that the government attaches to the
generation born in year s and the government discount rate, respectively13,
and µp = αeαs−δt the size of cohort s.

Now, by differentiating the feasibility constraint we get:

c (s, t) = −
.
k (s, t)+(δ + r (t)) k (s, t)+w (t) l (s, t)+(δr − δ) (b (s, t) + k (s, t))−g.

By substituting it into the problem, we get14:

max
{l,k}∞max(s,t0)

∫ ∞

max(s,t0)

∫ t

−∞
µge

−γg(t−max(s,t0))U
(
c
(
k,

.
k
)

, l
)

dsdt

sub

∫ ∞

max(s,t0)

∫ t

−∞
µp

{
e−(β+δ)(t−max(s,t0)) [Ucc + Ull] +

− e−(t−max(s,t0))a (s,max (s, t0))Uc(s,max(s,t0))

}
dsdt = 0.

By applying the calculus of variations method, the problem can be stated
as follows:

max
{l,k}∞max(s,t0)

∫ ∞

max(s,t0)

∫ t

−∞

{
µge

−γg(t−max(s,t0))U
(
c
(
k,

.
k
)

, l
)

+

+ λ̂µp

[
(Ucc + Ull)− e(β+δ−1)(t−max(s,t0))a (s,max (s, t0))Uc(s,max(s,t0))

]}
dsdt

13Note that, in principle, the former parameter may depend also on t. Moreover, we

omit the government budget constraint since, by Walras’ law, it is satisfied if the imple-

mentability and feasibility constraints hold.
14From now onward, we omit both the s and t indexes, when it does not generate

ambiguity.
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where λ̂ is the current value multiplier associated to the implementability
constraint, defined as λ̂ (t) = λe−(β+δ)(t−max(s,t0)). Thus, the solution for k

is15:

e−γg(t−max(s,t0))

{
Ucµp

[
µg

µp

+ λ (1 + Hc)
] [

(r + δr)− γg +
(
Ucc

.
c + Ucl

.
l
)]

+

(20)

Uc

[
.
µg + (1 + Hc)

(
λ

.
µp +

.

λ

)
+ µpλ

.
Hc

]}
= 0

where λ = λ̂eγg(t−max(s,t0)) = λe−(β+δ−γg)(t−max(s,t0)) and the term Hi =
Uiii+Ujij

Ui
is what is usually referred to as the “general equilibrium elasticity”. Now,

by dividing expression (20) by Ucµp, and rearranging terms, we get:

.
c

c
=

1
θc

(
r + δr − γg

)
− δ

[
−

.
µg

δµp
+ λ (1 + Hc)

]
[

µg

µp
+ λ (1 + Hc)

] +

−
(
β + δ − γg

) λ (1 + Hc)[
µg

µp
+ λ (1 + Hc)

] +
λ

.
Hc[

µg

µp
+ λ (1 + Hc)

] − θcl
l̇

l

 .

Substituting for the growth rate of consumption stemming from the in-
dividual optimization condition (eq. (6)), we get the expression for the
optimal capital income tax:

τk=
1

fk + δr

(
γg − (β + δ)

)
+

δ
[
−

.
µg

δµp
+ λ (1 + Hc)

]
+

(
β + δ − γg

)
λ (1 + Hc)− λ

.
Hc[

µg

µp
+ λ (1 + Hc)

]
 .

(21)

4 Discussion of the results

We now discuss the results concerning capital income taxation, in both the
short and the long run.

15See Appendix B for the solution conditions of this problem. Note that the interiority

of the solution is guaranteed by the Inada conditions. However, the FOCs are necessary

but not sufficient due to the possible non convexity of the implementability constraint.

The solution for l is omitted for brevity.
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Preliminarily, it is worth noting that eq. (21) does not yield an explicit
formula for τk, since Hc depends upon the tax rate itself16.

Next, eq. (21) shows that the imperfection in the insurance market does
not determine whether the tax rate is different from zero or not, since it
appears only in the denominator.

Furthermore, there are four independent forces determining the level
of τk: 1) the dynamics of Hc

( .
Hc

)
; 2) the difference between the social

intergenerational weight (µg) and the one corresponding to the size of each
cohort (µp); 3) the difference between the government (γg) and individual
(β + δ) intertemporal discount factors; 4) the finite horizon deriving from
the probability of death δ and the OLG mechanism.

Since factor 1) has been widely discussed in the literature, we abstract
from it assuming that the utility function is homothetic in consumption and
(weakly) separable in consumption and leisure (so that

.
Hc = 0). As for

factor 2), it is sufficient to note that the difference between the social weight
on different generations and their actual demographic weight constitutes an
additional reason for capital taxation, though stemming from equity rather
than efficiency considerations. Hence, we will pose our attention on the last
two factors and, in particular, on the fourth, which is a new independent
source of taxation stemming from our framework.

We can now state the following proposition:

Proposition 2 If the economy converges to a steady state, along the tran-
sition path, for t > 0, the tax on capital income is in general different from
zero unless µg = µp, δ = 0 and γg = β.

Proof. The proof is straightforward by inspection of eq. (21), which, if

the equality µg = µp is satisfied, so that
.
µg

µp
= −δ, becomes:

τk =
1

fk + δr

[(
γg − β

)
+ δλ (1 + Hc)

1 + λ (1 + Hc)

]
;

note that this expression, if γg = β, is zero only if the probability of
death, δ, is zero. Note also that, if µg = µp (and

.
Hc = 0), then optimal

taxes will also be constant through age.
16Moreover, we do not have any condition ensuring that the tax rate will be in the (0, 1)

interval, while we would suspect capital taxes to get sticking at the interval boundary for

a (finite) period of time since the introduction of the policy. However, in the rest of the

work we maintain the assumption of interiority of the equilibrium tax rates, for t > 0.
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Preliminarly, it is worth recalling that, when the conditions above apply
(and given that

.
Hc = 0), the economy mimics the behavior of an ILRA one,

so that the zero tax result applies along the transition path. Moreover, it
is easy to show that the zero capital income tax rule would apply also in
the absence of overlapping generations (i.e. when α = 0). On the other
hand, even purging out factors 1) to 3), it turns out that the combination
of the OLG mechanism and limited life horizons are are able to invalidate
the Chamley-Judd rule.

More precisely, this source of taxation stems from the fact that individ-
uals, when maximizing their utility, do not take into account the dynamics
of the economy generated by the demographic evolution; on the contrary,
the government recognizes that when individuals die, leave away a stock of
wealth which would be optimal to be confiscated. Thus, the policymaker
aims at exploiting this opportunity by raising a corrective capital income
tax which is in fact proportional to the probability of death. We will come
back on this point after presenting the results at the steady state.

The second best taxation policy, along the steady state path, can be
summarized in the following proposition:

Proposition 3 If the economy converges to a steady state, at such steady
state the capital income tax is different from zero unless a) µg = µp, δ = 0
and γg = β or b) γg > β and δ = 0.

Proof. To better understand the implications of the model, we distin-
guish three cases, according to whether the policymaker discount rate γg is
equal, higher or lower than the individual one.

1. γg = β + δ. In this case λ → λ, so that τk = δ
fk+δr

{
−

.
µg
δµp

+λ(1+Hc)
µg
µp

+λ(1+Hc)

}
;

moreover, in case µg = µp, τk is positive and equal to δ
fk+δr

.

2. γg > β + δ. In this case λ → ∞, and, again, τk = δ
fk+δr

, (provided
that

.
µg does not tend to infinity).

3. γg < β + δ. λ → 0 and τk = 1
fk+δr

[(
γg − (β + δ)

)
−

.
µg

µp

]
. Moreover, if

µg = µp, τk = 1
fk+δr

(
γg − β

)
, which is zero if γg = β, otherwise it can

be either positive or negative, depending on the relationship between
γg and β.
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Again, the economic intuition behind these results can be grasped by
reckoning that, when γg ≥ β + δ, the tax rate on capital income is propor-
tional to δ, which is the proportion of individuals of each cohort dying at
each date t; now, if we consider that, in the presence of fair life insurance con-
tracts, the individual after tax capital income would be equal to r (t) a (s, t) ,

it follows that, as mentioned above, the optimal tax policy would replicate,
at least in the aggregate, the effects of confiscating wealth upon death (which
would raise a total revenue amounting to δA (t))17. Finally, as for individ-
ual consumption, the effects of such a policy are, ceteris paribus, to lower
its growth rate with respect to that obtaining without taxation.

On the other hand, in case γg < β+δ, there is a contrasting force at work:
in fact, since the government is more forward looking (i.e. less impatient)
than individuals, it tends to subsidize future consumption; therefore, the sign
of the tax will depend on which force prevails (γg − β). As a consequence,
the zero tax result emerges as a very special case (i.e. when γg = β).

5 Conclusions

We tackle the issue of taxing capital income in a perpetual youth model
à la Blanchard (i.e. an overlapping generation framework with individuals
facing a constant probability of dying) by applying the primal approach to
the Ramsey problem. Although less handleable than the traditional ones,
this extension enables us to provide a more general model which, on the
one hand, encompasses most of the existing results obtained in separated
frameworks, and, on the other hand, delivers new insights.

The thrust of the paper is that the Chamley Judd rule comes out to be
a special case, in that several forces are at work leading to a non zero tax
rate, in both the short and the long run.

Namely, we unveil the presence of four forces: a) the dynamics of the
general equilibrium elasticity of consumption (Hc); b) the difference between

17In other words the optimal tax must leave the individual indifferent between stipulat-

ing a fair life insurance contract and paying τk in each period, or leaving the whole wealth

to the State upon death without any insurance provision and capital income taxation.

Note that if δr < δ the second scenario would leave individuals better off.

Finally, in case life insurance payments are tax exempt, the same reasoning applies;

the only change is in the denominator of the tax expression, which would be simply fk

(instead of fk + δr).
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the weight the government attaches to each generation and its actual de-
mographic size; c) the difference between the government and individual
intertemporal discount rates; d) the probability of death, δ (inducing a limit
to individual lifetime).

The first factor has been widely discussed in the literature, while the
second descends from intuitive equity arguments. The economic intuition
underlying the role of the remaining two factors is the following: the differ-
ent degree of patience between the policy maker and individuals generates
an incentive for the former to levy positive or negative taxes on capital;
however, even if the two intertemporal rates do coincide, it is optimal to
set a positive tax rate proportional to δ, because this would mimic the ef-
fects of confiscating individual wealth upon death in an economy without
life insurance.

Finally, from the analysis above it turns out that the violation of the
Chamley Judd rule does crucially depend upon the assumption of overlap-
ping generations, combined with that of finite horizons. In fact both devices
generate a difference between the optimal rate of individual consumption
growth and that resulting in the absence of taxation, which thus gives room
to corrective public intervention.
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6 Appendix A: Proof of Proposition 1

Proof. Since a competitive equilibrium (or implementable allocation) satis-
fies both the feasibility and the implementability constraints by construction,
in this Appendix we demonstrate the reverse of Proposition 1: any feasible
allocation satisfying implementability is a competitive equilibrium.

Suppose that an allocation satisfies the implementability and the fea-
sibility constraints. Then, define a sequence of after tax prices as follows:
w̃ (s, t) = −Ul(s,t)

Uc(s,t)
,

[
r̃ (s, t) + δ̃r (s, t)

]
=

(
β + δ −

.
p(s,t)
p(s,t)

)
, with p (s, t) =

Uc(s,t),∀s and ∀t, and a sequence of before tax prices as: fk(t) = r (t) and
fl(t) = w (t) . As a consequence, by construction such allocation satisfies
both the consumers’ and firms’ optimality conditions.

The second step is to show that the allocation satisfies the consumer bud-
get constraint. Take the implementability constraint and substitute Uc(s,t),

Ul(s,t) by using the expressions above:

∫ ∞

s
e−(β+δ)(t−s) [p (s, t) c (s, t)− w̃ (s, t) p (s, t) l (s, t)] dt = a (s, s) p(s, s), ∀s

then, by exploiting the expression for
.
p (s, t) we get18:

∫ ∞

s
p(s, s)e−(β+δ)(t−s)e−

∫ t
s [r̃(s,v)+δ̃r(s,v)−(β+δ)]dv [c (s, t)− w̃ (s, t) l (s, t)] dt = a (s, s) p(s, s).

Finally, by eliminating p(s, s) and defining c (s, t) − w̃ (s, t) l (s, t) =
r̃ (s, t) q (s, t)− .

q (s, t) we get:

−
∫ ∞

s

d
[
q (s, t) e−

∫ t
s [r̃(s,v)+δ̃r(s,v)]dv

]
dt

dt = a (s, s)

which holds if q (s, t) = a (s, t) and lim
t→∞

a (s, t) e−
∫ t
0 [r̃(s,v)+δ̃r(s,v)]dv = 0.

Finally, as for the public sector budget constraint, by substituting the
expression for consumption obtainable by the individual budget constraint
into the feasibility constraint, we get:

18The equations below hold ∀s.
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∫ t
−∞ αeαs−δt

[ .
k (s, t)− (δ + r (t)) k (s, t)− w (t) l (s, t)− (δr − δ) (b (s, t) + k (s, t))

−ȧ (s, t) +
(
r̃ (s, t) + δ̃r (s, t)

)
a (s, t) + w̃ (s, t) l (s, t) + g

]
ds = 0.

Finally, by defining b (t) = k (t) − a (t) and exploiting the definition of
taxes, the previous expression becomes:∫ t

−∞ αeαs−δt
[ .
b (s, t)−

(
r̃ (s, t) + δ̃r (s, t)

)
b (s, t) + τ l (s, t) w (t) l (s, t)− g

+(δr − δ) b (s, t) + τk (s, t) (r (t) + δr (s, t)) k (s, t)
]
ds = 0,

which is eq. (12) in the text.

7 Appendix B: The “calculus of variations” method

We now sketch the strategy adopted for solving the Ramsey problem pre-
sented in Section 3.1.

Following Kamien and Schwartz [15], suppose the problem has the form

max
∫ ∫

F (t, s, x (t, s) , xt (t, s) , xs (t, s)) dsdt

where the symbol xy indicate the partial derivatives of variable x with
respect to y (x can be also a vector of variables). The Euler equation for
such a problem is the following:

Fx − ∂Fxt/∂t− ∂Fxs/∂s = 0.

Moreover, in case the problem contains also a (double) integral con-
straint, such as:∫ ∫

q (t, s, x (t, s) , xt (t, s) , xs (t, s)) dsdt = 0,

this constraint can be appended to the integrand with a multiplier func-
tion λ (t, s), so that, if the solution x∗ maximizing F subject to the constraint
does exist, then there is a function λ (t, s) such that x∗ satisfies the Euler
equations for ∫ ∫

(F + λq) dsdt.
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