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     ABSTRACT 

This paper addresses the problem of estimating the aggregate international demand 
schedule for emerging market (EM) securities as an asset class. The standard ‘push-pull’ 
model of capital flows is modified by reference to recent work on portfolio choice in the 
context of credit rationing leading to a simultaneous equation model that determines EM 
yield and capital flows together. Interaction effects include lagged flows and yields to 
reflect herding and asset bubbles, with a time-varying risk aversion variable affecting 
yields and flows. This model is then tested on monthly data for US bond purchases, using 
the General-to-Specific Approach (GETS) to find significant variables, lags, and shock 
dummies for yield spread and bond flows separately; followed by a Full Information 
Maximum Likelihood (FIML) estimation of the two equations together. The results are 
robust and give a very good fit for both yields and flows, contributing a valuable insight 
into the dominant impact of short-term shifts in the demand schedule on emerging 
markets. 
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1.INTRODUCTION ∗  

 
The expansion and contraction of portfolio capital flows from the global financial centres 

towards emerging markets over the past decade has generated considerable controversy 

over the underlying economic determinants of these flows, and by extension their 

instability. Most research has focused on the conditions in emerging markets themselves  

- often known as ‘fundamentals’- rather than the determinants of the demand for 

emerging market securities as an asset class.1 None the less, recent academic literature 

has begun to emphasise ‘home market’ factors such as US interest rates, changing risk 

appetite, herding behaviour and momentum trading as key determinants of flows.  

 

However, attempts to model these flows have revealed difficulties in separating home 

from host factors - or ‘push’ and ‘pull’ effects as they are conventionally known – 

because aggregate flows and yield spreads do not simply reflect an underlying process of 

portfolio allocation based on known risk and return characteristics of emerging markets 

in relation to wealth and riskless return on the investors’ own market. This is because: 

first, capital flows themselves affect asset prices both directly (asset bubbles) and 

indirectly (default risk); second, the changing level of investor risk appetite on the home 

market affects both asset prices and capital flows; and third, international capital markets 

                                                 
∗ The authors acknowledge financial support from the Department for International Development under the 
CSSR ‘Globalisation and Poverty’ Research Programme. We would like to thank Ashoka Mody for 
valuable guidance on data sources; and Angela Cozzini of Cross-Border Capital for EM liquidity figures. 
1 For a discussion of the role of these factors in the context of capital market instability during the late 
1990’s, see FitzGerald (2002). 
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do not fully clear – in the sense that at the unconstrained market price, some borrowers 

remain unsatisfied.2      

 

In this paper, we attempt to encompass these three characteristics in an empirically 

testable model of capital flows. Section 2 reviews the recent literature which has found 

that home or ‘international’ factors are at least as significant as host factors or 

‘fundamentals’ in determining not only capital flows themselves but also asset yields and 

credit ratings. The ‘push-pull model’ that underpins most econometric work in this field 

is discussed in Section 3, which suggests that the reduced form commonly used for 

estimation may fail to fully identify asset demand effects in a rationed market such as the 

observed inverse relationship between yields on EM assets and flows on the one hand, 

and of the correlation between these yields and those of other high-risk assets on home 

markets on the other. Moreover, only very recently have disequilibrium concepts been 

introduced to the push-pull model by Mody and Taylor (2002). Section 4 sets out our 

proposed model of the asset demand schedule based on a simultaneous equation system 

that determines yield spreads and capital flows with explicit inclusion of interaction 

effects. The two equations include lagged flows and yields to reflect herding and asset 

bubbles, with a risk aversion variable in both yield spread (to reflect asset pricing) and 

capital flows (to reflect credit rationing). This model is then tested on data for monthly 

bond flows from the US to emerging markets over the 1993-2001 period in Section 5. 

The results of a general-to-specific (GETS) econometric approach to the separate time 

series for yield spreads and bond flows, and of full information maximum likelihood 

(FIML) estimation of the two equations together, are robust and support the proposed 

                                                 
2 See Stiglitz and Weiss (1992). 
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model. Section 6 concludes with some suggestions for further research, and draws some 

tentative policy implications in relation to the stabilization of fluctuations in demand  

for emerging market assets. 

 

2. CAPITAL FLOWS AND THE IMPLICIT ASSET DEMAND SCHEDULE  

 

The macroeconomic theory of international capital markets is still in its infancy, in 

marked contrast to the sophistication of the microeconomics of portfolio choice. Sticky 

prices, market segmentation, heterogeneous investors, persistent currency misalignments 

despite arbitrage and the cost of scarce information all need to be accounted for if the 

model is even to approximate the real world in a useful way (Dumas, 1994). In 

consequence, the relatively simple framework which combines international (push) and 

domestic (pull) factors in determining the capital flow to any one country still dominates 

empirical work. This approach reflects, in essence, a simple microeconomic portfolio 

composition rule based on given relative returns and risks of various assets, but without 

significant macroeconomic interaction at the aggregate level.  

 

The relevant literature starts in the early 1990s, when the surge of capital flows to 

emerging markets got underway. On the basis of the observed comovement of Latin 

American reserves and exchange rates (as a proxy for capital flows), Calvo, Leiderman 

and Reinhart (1993) - using principal components analysis and structural VAR - conclude 

that common external shocks are a major determinant of capital inflows, which in turn 

 4



lead to reserve accumulation and exchange rate appreciation.3 Fernandez-Arias (1996) 

uses a panel of thirteen developing countries to address the determination of country risk 

as the channel through which exogenous shocks are transmitted to portfolio inflows, 

finding that external (‘push’) factors have a substantial impact on creditworthiness as 

reflected in the secondary market debt prices. Montiel and Reinhart (1999) employ fixed-

effects panel data analysis for 15 emerging market countries and examine the volume and 

composition of capital inflows. They conclude that international interest rates have an 

important effect on not only the volume but also the asset composition of flows. Montiel 

and Reinhart (2001) confirm the influence of US interest rates but argue that there are 

also step effects at work due to the progressive integration of international capital 

markets, which go beyond separate ‘push’ and ‘pull’ factors. Finally, Mody, Taylor and 

Kim (2001) use a vector equilibrium correction model to forecast pull and push factors 

for inflows to 32 developing countries of bond, equity and syndicated loans. Push factors 

include US growth, US interest rates (short and long-term) and the US high-yield spread 

as a proxy for risk aversion. They conclude that in general, pull factors are more 

important in the long-run but that push factors are determinant in short-run dynamics.4 

 

The country level approach in these articles has the disadvantage that the push factors 

may be underestimated because flows from all host countries are included but only US  

 

                                                 
3 However, Chuhan, Claessens, Mamingi (1998) show that reserves are only weakly correlated with 
portfolio capital flows, and so should not be used as a proxy. 
4 However, they treat bond yields (i.e.the EMBI) as an exogenous variable, implicitly assuming that yields 
are unaffected by the capital flows themselves: this may lead to an underestimation of the strength of asset 
demand fluctuations. 
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factors are considered. In consequence, some authors have examined the capital outflows 

to emerging markets from the US alone. Taylor and Sarno (1997) examine the 

determinants of US portfolio capital outflows towards Latin America and Asia using 

cointegration techniques. They find that global (‘push’) and domestic (‘pull’) factors have 

similar importance in explaining short-run equity flows to Asia and Latin America. 

However, for the short-run dynamics of bond flows, global factors (particularly U.S. 

interest rates) are found to be more important than domestic factors. Chuhan, Claessens, 

Mamingi (1998) model US portfolio flows to Latin American and Asian markets using 

panel data method. They find, in contrast, that push factors (the slowdown in US 

industrial production and the drop in US interest rates) are the main determinants of 

portfolio flows to Latin America and Asia. However, while equity flows are more 

sensitive to global ‘push’ factors, bond flows are found to react more to credit ratings and 

secondary market price of debt.  

 

The only attempt to model asset demand and supply effects in conjunction is an 

innovative disequilibrium model of capital flows to four emerging markets – Brazil, 

Mexico, Thailand and Korea - in Mody and Taylor (2002). They derive this model from 

the Stiglitz-Weiss (1981) theory of credit rationing, which allows for such market 

disequilibria explicitly. Using the maximum likelihood estimation technique, they 

estimate supply and demand functions for capital flows jointly for each country. The 

technique estimates the probability of the demand for capital exceeding the supply at any 

one point in time, which the authors term a ‘capital crunch’. The global 'push' factors 

include: short-term and long-term US interest rates, the US high yield spread (to proxy 

 6



the default risk in the US), a measure of industrialized country economic activity (proxied 

by an index of US industrial production), and the cost of capital (EMBI of spreads over 

the US risk-free rate). Pull factors (the ‘demand for capital’) considered include the 

international cost of capital as proxied by the EMBI, domestic stock market indices and 

reserve levels. They find that the supply of capital (i.e. push effect) operates through two 

distinct channels: first, US industrial production growth raises the supply of capital; 

second, increased US high-yield spreads reduce the supply of capital to emerging 

markets. This second effect is interpreted by the authors as reflecting an increase in the 

cost of risk capital, which in turn is expressed in the EM yield spread (proxied by the 

EMBI). 

 

This model marks a significant step forward from the single-equation push-pull model, 

particularly the explicit handling of capital rationing. However, there are two aspects 

where our approach differs from that of Mody and Taylor. First, the negative impact of 

the US high yield spread on flows to emerging markets indicates that what is being 

captured is changes in risk aversion, not US default risk as such, because in portfolio 

theory increased risk in one asset should increase demand for other assets. Second, the 

inclusion of yield spread as an independent variable in their capital demand function 

overlooks the fact that flows can clearly affect spreads inversely. In other words, flows 

and spreads should be modelled simultaneously. 

 

As we have seen, the literature on bond flows takes the yield spread itself to be an 

exogenous factor. However, there is also a recent literature on the determination of EM 
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bond spreads themselves. Eichengreen and Mody (1998) use a ‘standard model ’of 

spreads as a function of global economic conditions (proxied by the rate on ten-year U.S. 

treasuries), issuer characteristics such as the region of the borrower and whether it is 

sovereign, and country characteristics. They find that a rise in U.S. interest rates is 

associated with a lower probability of a bond issue (i.e primary supply estimates) while 

reducing spreads. In contrast, Min (1998) finds no effect of U.S. T-bill rates on yield 

spreads for EM dollar bonds, but points out that bond rates (unlike syndicated bank debt) 

are not tied to US short rates. The International Monetary Fund introduces market 

expectations in suggesting that “the stance and predictability of U.S. monetary policy is 

important in explaining fluctuations in developing country interest rate spreads” (IMF 

2000: 68). Arora and Cerisola (2000) estimate the influence on country risk (proxied by 

sovereign bond spreads) of U.S. monetary policy, host fundamentals, and world capital 

market conditions. They point out that the ambiguous results in the literature may be due 

to proxying U.S. monetary policy by the yield on Treasury securities. When the U.S. 

Federal Funds target rate is used, they find direct positive effects on sovereign bond 

spreads, as theory anticipates. However, this particular literature does not seem to take 

into account the effect of capital flows themselves as asset prices and debt levels, and 

thus yield spreads. 
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3. PUSH-PULL MODELS OF CAPITAL FLOWS 

 

The standard model used in the empirical literature5 states that the portfolio capital flow 

(Fij) from any one country of origin (i) to a country of destination (j) is the result of 

‘push’ and ‘pull factors’, or ‘capital supply’ and ‘country characteristics’. For a vector of 

known home country (or international market) variables w and host country variables h 

then , 

 

 Fij=F(wi ,hj) 

 

Push factors (w) conventionally include: home country wealth (e.g. GDP); home 

monetary policy (e.g. money supply); riskless home interest rate (e.g. US treasury yield); 

and home asset risk (e.g. US bond yield spread) The econometric literature indicates that 

roughly half of the observed flow variance can be explained by these factors.  Pull factors 

(h) usually include: EM yield spreads (or EMBI prices); risk ratings; host country growth 

rates and debt levels etc. One of these country characteristics (such as credit rating) may 

have a separate estimation equation involving further exogenous variables –such as 

Fernandez-Arias (1996). 

 

At first sight, single-equation ‘push-pull’ models might seem to be the reduced form of a  

simultaneous equation model where demand (Fd ) is a function of host characteristics (w) 

                                                 
5 See Jeanneau and Micu (2002) for an excellent literature survey of these models and Fernandez-Arias and 
Montiel (1996) for the microeconomic theory underpinning the expected returns and risk factors that 
determine creditworthiness.  
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and the return or ‘price’ (P), while supply (Fs ) of these assets is a function of host 

characteristics (h) and price (P).  
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The existence of exogenous variables (w,h) in the two equations means that there would 

be no identification problem as such.6  However, the three coefficients (f) in the reduced 

form that is usually estimated do not in fact correspond to the original response 

coefficients (b) for the supply and demand functions and should not be interpreted as 

such.7 Specifically, the price response from the demand schedule (c1) is included in the 

measured effect (f2) of host characteristics on flows. In our context, the observed inverse 

correlation between yield spreads and capital flows indicates that the risk information 

included in yield is more important than the underlying expected return information, and  

the valuation of this risk depends on risk appetite in the home market as well as default  

risks as such. The implication is that it is necessary to estimate the flow and yield  

schedules separately and then handle the simultaneity problem explicitly, if we are to  

determine the ‘push’ factors (w) correctly. 
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More seriously, the implicit Fs equation is not in fact a supply schedule for assets as such 

because the decisions of primary issuance (e.g. by EM treasuries) in response to price are 

unknown, and in any case as much affected by market access as by yield spreads as such, 

as Eichengreen and Mody (1998) point out. The ‘pull’ factors (h) contain information 

about the quality of the asset (expected return, default risk etc.), not the quantity supplied. 

Indeed, as there is an active secondary market, EM bond purchases by (say) US investors 

may be ‘supplied’ by (say) Japanese disinvestors. Moreover, the fundamentals (h) such as 

debt overhang and growth rates are not truly independent variables but are in fact affected 

by flows themselves through debt accumulation and asset bubbles; so default 

probabilities depend on past and present flows. In other words, h = h(F).  

 

Finally, EM bond markets are rationed at equilibrium in the sense that prices are 

unconstrained but the market does not clear because EMs would like to borrow more (i.e. 

supply more assets) at the going price than investors are willing to lend (i.e. purchase 

assets). The implications of this are clearly set out by Folkerts-Landau (1985), who 

extends the familiar model of rationed credit markets to international debt. Higher 

lending rates have an adverse selection effect on borrowers, increasing the default risk 

along with higher levels of indebtedness. With imperfect information, full pricing of 

assets to reflect risk is impossible, and entire asset classes are thus ‘rationed out’ of the 

debt market. In consequence, there is a backward-sloping supply curve of funds beyond a 

certain interest rate; and in this range the lenders’ profit-maximising level of credit is 

lower than developing countries’ demand for external finance.   

                                                                                                                                                 
6 See Pindyck and Rubinfeld (1991, chapter 11) ‘Simultaneous-equation estimation’. 
7 Nor, indeed, can they be derived again from the reduced form. 
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In sum, the macroeconomic ‘push-pull’ model is in effect a representation of shifts in the 

demand schedule for EM assets, with the ‘fundamentals’ reflecting asset quality. This 

notion informs the model we estimate below. 

 

4. PROPOSED MODELLING APPROACH 

 

The microeconomic logic of investment behaviour in response to particular financial 

incentives also has consequences for the pricing of developing country assets, quite 

independently of the underlying fundamentals.8  Moreover, asset valuation methods and 

portfolio composition rules used by investors in practice tend to be rather crude, being 

largely based on considerations of liquidity and exit possibilities (Clark, Levasseu and 

Rousseau, 1993). The resulting asset bubbles can have a serious impact on the real 

economy in both developed and developing countries even in the presence of low 

inflation, fiscal balance and monetary rectitude (IMF, 2000).  

 

There are thus severe limitations to the use of yield spreads on emerging market bonds as  

evidence of markets perception of asset quality in the form of underlying default risk: 

“care is needed in interpreting yield spreads, since they are influenced by a variety of 

factors other than the perceived creditworthiness of the borrower including investors’  

                                                 
8 See IMF (1995) – in particular Section 5 (pp. 37-44) ‘Institutional investor behaviour and the pricing of 
developing country stocks’.  Recent work on herding by investors indicates that three causes can be 
involved. First, payoff externalities where payoff to an agent adopting an action is positively related to the 
number of agents adopting the same action. Second, principle-agent considerations such that a manager, in 
order to maintain or gain reputation when markets are imperfectly informed, may prefer either to ‘hide in 
the herd’ to avoid evaluation or ‘ride the herd’ in order to improve reputation. And third, information 
cascades where later agents, inferring information from the actions of prior agents, optimally decide to 
ignore their own information (Devenow and Welck, 1996).  
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appetite for risk and the liquidity of particular instruments” (Cunningham, Dixon and 

Hayes, 2001, p.175). Moreover, despite the fact that yield dispersion has increased over 

time as well as increasing after crises, which can be interpreted as growing investor 

discrimination in a cumulative learning process, it is still the case that beyond investment 

grade9, the relationship between risk (as reflected in ratings) and price (reflected in yield 

spreads) tends to break down – particularly during droughts when credit rationing reduces 

transactions volume severely.  

 

Clearly higher home interest rates, lower volatility in home assets, higher covariance 

between these and emerging market assets, and higher risk aversion will all reduce 

demand for emerging market assets independently of the supply conditions (Disyatat and 

Gelos, 2001). Further, pervasive herding behaviour causes a 'momentum' effect in which 

demand for an asset becomes a positive function of the quantity (capital flow) itself. 

There is thus good reason to see risk aversion (or ‘risk appetite’) as a variable in itself 

which is not only changing but also path dependent, varying with past experience of 

yields and bubbles and thus potentially strongly pro-cyclical. For instance, the IMF 

recognises that risk appetite changes over time in practice, and uses for this purpose the 

JP Morgan ‘Global Risk Aversion Index (IMF 2001) which measures monetary liquidity 

and credit premia.10 

 

                                                 
9 According to the Bank of England, the spread/rating curve tends to the origin, moves through 250 basis 
points at Moody’s A2 and 500 basis points at B3, becoming asymptotic to infinity beyond B3 
(Cunningham, Dixon and Hayes, 2001). 
10 The Bank of England, however, warns that “it is difficult to construct robust indicators of risk appetite” 
because of the problem of separating out the effects of pure contagion and underlying fundamentals in 
aggregate indicators (Cunningham, Dixon and Hayes, 2001, p.185). 
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Econometric analysis of US mutual fund portfolios shows that their momentum trading in  

emerging market equities is positive – they systematically buy winners and sell losers 

(Kaminsky et al. 2000). Contemporaneous momentum (buying winners and selling 

losers) is stronger during crises; lagged momentum trading (buying past winners and 

selling past losers) is stronger during non-crises. Investors also engage in contagion 

trading: that is they sell assets from one country when asset prices fall in another. In a 

similar vein, Disyatat and Gelos (2001) find that benchmarking explains observed 

behaviour of dedicated US mutual funds better than a rebalancing rule implied by the 

standard mean-variance optimisation model, but do not explore variations in risk aversion 

over time.  

 

Kumar and Persaud (2001) point out that changes in risk appetite (and the implications 

for contagion) have received comparatively little attention in the academic literature, 

even though discussed in market and policy circles. They argue that most of the 

indicators used to proxy risk aversion in the empirical literature confuse the level of risk 

itself with risk appetite: spreads are a function (K) of risk, where K reflects risk appetite, 

itself containing structural components (the underlying utility function and financial 

market structure) and a time varying element reflecting shorter-term factors such as so-

called ‘wake-up calls’. In their model, risk is proxied by the variance of the asset price 

(σ2) and the expected return is then: 

 

E(R) = α + K log (σ2)    

 

 14



where E(R) is the expected return, α is a measure of ‘global’ risk, and K is risk aversion. 

They define the expected excess return as the difference between the long price LR(P) 

and the current price of the asset: 

 

LR(P) - P = α + K log(σ2)   or 

P = LR (P) - α - K log σ2     

 

Clearly, not only does a fall in risk appetite11  (increased K) cause a fall in asset price (P) 

for a given risk level (σ), but also the impact on price will be greater for riskier asset 

classes (higher σ). Applying this argument to our context, to the extent that home risk 

aversion is reflected in US risk spreads, then the same change in risk appetite would be 

reflected in EM spreads, as well as in the aggregate flows due to the capital market 

rationing effect. As we have seen, the empirical literature does report this effect, but 

without a clear explanation.  

 

In sum, therefore, we propose an approach where shifts in the asset demand function 

dominate, and thus our model for empirical testing should have the following five 

characteristics:  

 

                                                 
11 Kumar and Persaud estimate risk appetite (K) from this model by calculating excess returns (the 
difference between spot rates and forward rates from the previous period) on seventeen emerging market 
currencies over ten years. Their risk appetite index exhibits marked quarterly and annual cycles, and 
troughs that appear to be correlated with major market discontinuities. 
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1. Spreads impact flows negatively because of the risk information they contain; 

while flows impact spreads negatively because increased demand drives up the 

price; 

2. Risk aversion varies over time, and affects flows negatively due to asymmetric 

rationing, and yield spreads positively due to risk pricing; 

3. There are lagged effect of past on present flows due to momentum trading, and 

past on present spreads due to asset bubbles; 

4. The familiar home variables such as riskless return and wealth (or liquidity) and 

host variables to reflect fundamentals such as real return and probability of 

default, are included; 

5. A simultaneous equation system to capture the interaction of price (yield spread) 

and quantity (capital flow) in equilibrium.   

 

This leads us to a proposed model structure of the following form. Capital flows (F) 

depend upon its lagged self (with a structure to be determined empirically); the EM yield 

spread (S); wealth/liquidity (L), riskless return (I) and risk aversion (R) in the home 

market; with expected coefficient signs: 
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Yield spread (S) depends upon its lagged self; capital flows (F); home risk aversion (R ) 

and host risk fundamentals (D); with the following coefficient signs:   
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5. EMPIRICAL ESTIMATION OF THE MODEL 

 

5.1.  Data 

 

The main two variables in our study are total US bond flows to developing countries and 

EMBI Sovereign Spread. The data for the first variable was taken from the US Treasury 

Department (TIC: the Treasury’s International Capital Reports) and reconsolidated so as 

to yield an aggregate of [(Asia less Japan)+Africa+(Latin America less Caribbean)]. 

EMBI Sovereign Spread was taken from Bloomberg. The data for explanatory variables 

come from various sources: International Financial Statistics (US Industrial Production 

Index), Bloomberg (US High-yield Spread), US Federal Reserve System (M3 US Money 

Stock, US Federal Funds Rate), and Cross Border Capital (Emerging Market Liquidity 

Index). All data are on a monthly basis from 1993:02 to 2001:12. Table 1 below shows 

the detailed information about the data: 
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    Table 1 Data Description 

Transformation         Mnemonic  Description of the variable 
logTBDC               LTBDC  Bond Flows to Developing Countries                
Spread_EM/100  Spread_EM  EMBI Sovereign Spread 
Spread_HY/100   Spread_HY  US High-yield Spread 
σ(Spread_EM)    SD(Spread_EM)       EMBI Sovereign Spread             
∆ Spread_HY               DSpread_HY            US High-yield Spread    
σ(Spread_HY)               SD(Spread_HY)       US High-yield Spread 
Spread_HY/σ(Spread_HY)        R(Spread_HY)          Risk Aversion 
∆log(IIP)               DLIIP            US Industrial Production Index   
∆log(M3)    DLM3            M3 US Money Stock                                 

∆ xt = xt – xt-1    σ(xt) = standard deviation of xt over the previous 12 months 
 

 

Visual examination of the main data trends (see Appendix 2) reveals some of the main 

characteristics accounted for by the model. The extreme variability of monthly bond 

flows (Figure A.1) and yield spreads (Figure A.2) is clear and well known. The bond 

flows have a rising trend into the crisis of the late 1990s, and seem to have stabilised at a 

lower (but still highly volatile) level thereafter. The inverse relationship between yields 

and flows is clear from Figure A.3 where the two graphs are combined.  

 

Our source for risk aversion is the US High-Yield Spread (HYS)12. This is plotted against 

bond flows in Figure A.4, where the inverse relationship is evident. The direction of 

causality is presumably from the US home market to EM bond flows and spreads, given 

the relative size of the two asset classes. Similarly the direct relationship between HYS 

and EM spread is evident from Figure A.5. In common with other authors (e.g. IMF 

2001; Mody and Taylor, 2002), we interpret this as reflecting changes in risk aversion 

which are shown in both the yield (the price of risk) and the flow (credit rationing). 

 

                                                 
12 The difference between the yield on sub-investment grade (‘junk’) bonds and 10 year US Treasuries. 
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The exact formulation of the proxy variable for risk aversion from the HYS data is 

complicated. The microeconomic formulation in Kumar and Persaud (2001) would imply 

that the ratio of HYS to its standard deviation would be appropriate, and it is shown in 

Figure A.6. This also has the advantage of reflecting the ‘Sharpe Ratio’ used as a rule of 

thumb by investors,13 as well as displaying a regular cyclical structure. However, we 

explain below, this proxy for risk aversion does not perform well econometrically. In 

fact, we find as Mody and Taylor (2002) do, that the change in the High-Yield Spread 

gives the best results. 

 

5.2. Methodology and Empirical Results 

 

In our model, since the effect of exogeneous variables on the dependent variables is 

spread over a period of time, we use Autoregressive Distributed Lag (ADL) model. Using 

PcGets (see Hendry and Krolzig, 2001), a general, dynamic, unrestricted, linear model of  

LTBDC and  Spread_EM  

                                                

was constructed that incorporates the variables from the 

theoretical discussion above, and applies a general-to-specific approach in order to 

determine an undominated congruent model. We apply PcGets  to two general, dynamic, 

unrestricted linear models of LTBDC and Spread_EM separately and obtain a congruent 

reduction of  the two mentioned equations. Finally, we take account of the simultaneity of 

LTBDC and Spread_EM by collecting the two equations to Simultaneous Equations 

model and estimate the system by Full Information Maximum Likelihood (FIML) using 

PcGive (Hendry and Doornik, 2001).  

 

 
13 See Caouette, Altman and Narayanan (1998), p.242. 
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The lag order selected by PcGets is two for the first model and one for the second model 

(see Hendry and Krolzig, 2001);lag-order preselection results are shown in the Appendix. 
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−−

−−−−

−−−

−−

−−

−−−
∧

−−−

+−+++

−−++−

+++

−+++

−−++=

 
Figures in parentheses show estimated standard errors.      
            
           (1) 
Estimation statistics 

RSS     3.9999  σ^  0.21953  R^2  0.84301  Radj^2  0.79951 
LogLik 175.8308  AIC  -2.83796  HQ -2.59492  SC -2.23845 
T          107  P           24  FpNull   0.00000  FpConst  0.00000 
 

Misspecification tests 

FChow(1997:7)( 54,29) = 1.880 [0.0342] Far(1-4)( 4,79) = 1.685 [0.1617] 
FChow(2001:2)(11,72) = 1.769 [0.0756] Farch(1-4)( 4,99) = 0.870 [0.4851] 
χ2

nd(2) = 1.945 [0.3781] Fhet(46,60) = 1.813 [0.0153] 
 

 

Chow tests indicate that the model is structurally stable, with no structural breaks. The 

normality test is only marginally accepted (fat tails), but there is no autocorrelation in the 

error terms. There is some indication of heteroscedasticity, but this is to be expected with 

financial time series.  
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In general, the estimated coefficients of (1) are statistically insignificant and therefore not 

of great interest. Using PcGets reduction process, we eliminate the statistically 

insignificant variables while ensuring that all the information contained in (1) is retained 

in the reduced model. Standard testing procedures are applied to the unrestricted, 

congruent general model in order to arrive at an undominated, parsimonious 

representation of the data, with diagnostic tests to confirm the validity of the reductions 

(see Hendry and Krolzig, 2001). The PcGets model reduction process reduced the 

number of coefficients from 24 to 7 and yields the following ADL model of LTBDC: 

 

Specific, 1993 (2) - 2001 (12) 

2t)0551.0(2t)0765.0(

t)0696.0(t)0498.0()555.0(t)0107.0(1t)0609.0(t

HY_DSpread151.0FedFunds316.0

FedFunds228.0DLIIP171.071.3EM_Spread0484.0LTBDC584.0LTBDC

−−

−
∧

−+

−++−+=
 

        
 

  (2) 
 

Estimation statistics 

RSS     4.6000  σ^  0.2145  R^2  0.8195  Radj^2  0.8086 
LogLik 168.3522  AIC  -3.0159  HQ -2.9450  SC -2.8411 
T          107  P           7  FpNull 0.0000  FpGUM  0.7612 
 

Diagnostics 

FChow(1997:7)(54,46) = 1.379 [0.1328] Far(1-4)( 4,96) = 1.981 [0.1035] 
FChow(2001:2)(11,89) = 1.396 [0.1887] Farch(1-4)( 4,99) = 2.065 [0.0911] 
χ2

nd(2) = 1.257 [0.5335]     
         

 

The specific model is able to explain 82% of the variation in the capital flows and the F-

test of the specific against the general model rejects only at a marginal rejection 
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probability of 0.7612, so the reduction cannot be rejected. Figure 1 shows the properties 

of the estimated model (2). The first (upper LHS) and second (upper RHS) graphs 

indicate the fit of the model over time and the fit against the actual values of LTBDC, 

respectively. The third (lower LHS) and fourth (lower RHS) graphs indicate the residuals 

and the squared residuals, respectively. Diagnostic tests confirm that (2) is a valid 

congruent reduction of the general model in (1) (See Hendry and Krolzig, 2001).  
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Figure 1.  Model of LTBDC 
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Our second model is as follows: 

 

General, 1993(2)-2001(12) 

1t)485.0(t)493.0(1t)337.0(t)318.0(

1t)427.0(t)403.0(1t)026.1(t)983.0(1t)494.0(

t)535.0(1t)339.0(t)297.0(1t)0511.0(t)0505.0(

1t)532.0(t)556.0(1t)0884.0()20.4(t

LiqEM100.0LiqEM121.0HY_DSpread081.0HY_DSpread308.1

3DLM059.03DLM102.0FedFunds588.0FedFunds469.0LTBDC482.0

LTBDC497.0DLIIP352.0DLIIP6893.0)HY_Spread(R006.0)HY_Spread(R024.0

)EM_Spread(SD190.0)EM_Spread(SD0449.0EM_Spread758.01.10EM_Spread

−−

−−−

−−

−−
∧

+−−+

+++−−

−−++−

+−++=

 

    
(3) 

Estimation statistics 

RSS 122.36817  σ^ 1.17257  R^2 0.83761  Radj^2 0.80659 
LogLik   -7.17999  AIC  0.47065  HQ 0.65293  SC 0.92029 
T           107  P          18  FpNull  0.00000  FpConst 0.00000 
 

Misspecification tests 

FChow(1997:7)(54,34) = 0.704 [0.8777] Far(1-4)(4,84) = 0.889 [0.4743] 
FChow(2001:2)(11,77) = 1.198 [0.3030] Farch(1-4)(4,99) = 2.854 [0.0276] 
χ2

nd(2) = 7.624 [0.0221] Fhet(35,71) = 1.863 [0.0134] 
 

There are two potential problems: the Chow test is only marginally accepted, possibly 

due to structural breaks; there is also evidence of heteroscedasticity, although not of the 

ARCH type. A centered impulse dummy, I(1998:8), was included to reflect the very large 

outlier (εt>3σ) reflecting the Russian collapse in August 1998.  

 

Specific, 1993(2)-2001(12) 

t)02.1(t)244.0(t)237.0(1t)0436.0()4.2(t 8:1998I7.7HY_DSpread64.0LTBDC659.0EM_Spread824.043.7EM_Spread ++−++= −
∧  

           (4) 
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Estimation statistics 

RSS   91.5499  σ^   0.9474  R^2   0.8785  Radj^2 0.87374 
LogLik     8.3431  AIC   -0.0625  HQ  -0.0119  SC 0.06241 
T          107  P            5  FpNull    0.0000  FpGUM  0.65903 
 

Misspecification tests 

FChow(1997:7)(54,48) = 0.576 [0.9748] Far(1-4)(4,98) = 0.6605 [0.6209] 
FChow(2001:2)(11,91) = 0.415 [0.9456] Farch(1-4)(4,99) = 1.7651 [0.1419] 
 

With only 5 parameters, the model is able to explain 87.9% of the variation in the spread. 

The reduction is accepted at a marginal rejection probability of 0.659. Figure 2 shows the 

fit of the model and the plot of the estimation errors.  
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Figure 2.  Model of Spread_EM  
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The Simultaneous Equations Model 

 

The capital flows and interest rate spread dynamics of the system have so far been 

modelled by analyzing one equation at a time implicitly ignoring the simultaneity of 

equations (2) and (4). Due to the presence of instantaneous causality between LTBDC 

and Spread_EM, a single-equation model reduction approach is generally not efficient 

(Krolzig, 2001). We therefore check the restrictions imposed by PcGets in the previous 

subsection by combining the two equations in a simultaneous equation model 

 

B yt = Γ1 yt-1 + Γ2 xt  + εt, 

 

where yt  = (LTBDC, Spread_EM)΄ and xt  is the vector of the exogenous variables in the 

system. εt is a vector white noise process with E[εt] = Σ. Identification of the structural 

parameters is ensured by the null-restrictions set by PcGets. 

 

FIML estimation14 of the system yields almost identical parameter estimates (see 

Appendix 1) and a log-likelihood of the system of -128.84561.  The standard error is 

0.95304 in the first and 0.21355 in the second equation, while the correlation of structural 

residuals in the two equation is just 0.14775. The likelihood ratio (LR) test of the 

restrictions imposed by PcGets supports the empirical models (2) and (4): a χ^2(40) =  

40.161 [0.4631] means that we can accept the reduction. The model reduction procedure  

used does not seem to be negatively affected by instantaneous non-causality.  
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5.3. Interpretation of the Results 

 

In sum, this method yields the following two statistically robust simultaneous equations 

for our system (see again Appendix 1): 

 

Flow determinants 

2t)054.0(2t)074.0(

t)068.0(t)048.0()555.0(t)011.0(1t)059.0(t

HY_DSpread138.0FedFunds304.0

FedFunds222.0DLIIP163.062.3EM_Spread0475.0LTBDC596.0LTBDC

−−

−
∧

−+

−++−+=
 

Yield determinants 

t)021.1(t)244.0(t)278.0(1t)046.0()804.2(t 8:1998I48.7HY_DSpread656.0LTBDC561.0EM_Spread836.044.6EM_Spread ++−++= −
∧  

 

In explaining aggregate bond flows, the lagged flow itself is the major explanatory 

variable, with a very high degree of persistence (60 percent) reflecting the widespread 

behaviour of momentum trading. The EM spread itself is significant and of the expected 

(negative) sign, but unexpectedly its standard deviation (to reflect volatility and thus risk) 

was not significant and thus discarded.  

 

Our preferred measure of risk aversion (the ‘Sharpe Ratio’) was discarded as not 

significant either, but the alternative measure (change in U.S. HYS) is significant when 

lagged and of the expected (negative) sign, thus supporting our notion of risk aversion 

and credit rationing – the lag presumably reflecting portfolio adjustment delays. 

However, the outstanding bond stock, which we had included as a proxy for aggregate 

                                                                                                                                                 
14 Using PcGive10 (See Hendry and Doornik, 2001). 
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debt overhang, did not prove significant, which is unfortunate as this was our main ‘pull’ 

variable reflecting default risk.  

 

Our measures of US wealth are US industrial production (as a proxy for monthly GDP) 

and liquidity (M3). The former was significant and with the correct sign; but the latter 

was not significant and thus discarded. However, although the current Federal Funds rate 

is significant and of the expected (negative) sign, the rate lagged by two months is also 

significant but with a positive sign. This could mean the presence of a difference 

operator15 which might reflect the influence of changes in the Federal Funds rate at the 

six-weekly meeting of the Open Markets Committee. 

 

The major explanator of yield spreads is lagged yield spread itself, with the expected 

(positive) sign reflecting asset bubbles and a very high degree of persistence (84 percent). 

As expected, bond flows are a significant variable, with the correct (negative) sign. 

Again, as in the case of flows, the change in HYS as a measure of home risk aversion 

itself is significant and has expected (positive) sign.   

 

As in the case of the yields equation, the bond stock was discarded in earlier trials as not 

being significant. However, unlike the case of bond flows where no dummy term had 

been significant, one only was significant in the case of yields – that for the August 1998. 

This was the worst unexpected shock in the whole period: note that dummies did not 

seem significant for the Mexican or East Asian crises. It is of interest to note that the US  

                                                 
15 Of the form (-0.22FedFundst+0.304FedFundst-2). 
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variables (funds rate, liquidity, output) did not turn out to be significant in explaining the 

yield spread – the effect of these variables being felt on the flow of bonds discussed 

above.  

 

In sum, we have a high degree of persistence in the results, with risk aversion also 

affecting both yields and flows, all of which had been expected. Substituting the yield 

equation into the flow equation, it transpires that the ‘full’ lag coefficient for bond flows 

is of the order of 0.5. The unexpected result was that the two aggregate measures of host 

risk (debt stock and volatility of yields) did not turn out to be significant: this could be 

held to support the notion of two-stage portfolio allocation procedure, with host factors 

affecting country shares within the overall flow. The resulting fits are extremely good, as 

can be seen from Figures 1 and 2. However, the predictive power of the model should not 

be over-estimated: on the one hand, factors such as the US HYS are not forecastable; 

while on the other, the fitted function follows rather than anticipates turning-points. 

 

6. CONCLUSIONS  

 

This paper has set out to demonstrate how shifts in the demand schedule for emerging 

market assets affect prices (i.e. yield spreads) and quantities (flows). In doing so we have 

identified a number of points at which the macroeconomics of capital flows and the 

microeconomics of portfolio adjustment can be brought together to better define the key 

components of this demand schedule. We have also tried to establish how shifts in this 
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demand schedule itself, independently of conditions in emerging markets, account for a 

large part of the changes in observed capital flows in the aggregate.  

 

These are clearly initial results although they are clearly significant. The model could be 

tested on other markets, such as the UK bond flows towards emerging markets, or equity 

flows instead of bonds – although there are data limitations in both cases. The next 

proposed step is to test a similar model on flows to individual emerging markets.16 This 

would involve including aggregate flows to EMs as a whole in the country-level models 

so as to reflect the two-stage process of portfolio construction. In this process, investors 

allocate funds to emerging markets as an asset class, and then between countries; where 

country characteristics and regional factors determine country shares. 

 

Meanwhile, some tentative policy implications can be derived from our argument so far. 

To the extent that the greater part of the variance of flows and yields is determined by 

conditions within home financial markets, at the very least G3 governments could pay 

more attention to the negative effects on emerging markets of volatility within their own 

capital markets. As the IMF points out, “an approach to monetary policy that provides 

financial markets with clear indications of the US authorities' intentions is likely to 

reduce the impact of a US rate increase on developing countries” (IMF, 2000:68). 

However, the ability of the G3 to stabilise or even predict their macroeconomic cycles is 

clearly limited. Thus other measures in order to stabilise capital flows towards emerging 

markets from the ‘demand perspective’ might be considered. One possibility would be to 

                                                 
16 The authors are currently engaged in this task.  

 29



encourage – by a combination of regulatory changes and tax incentives – G3 institutional 

investors to acquire and hold emerging market assets of a longer maturity than at present. 

This would in effect both shift the demand ‘upwards’ and reduce its volatility over the 

cycle by increasing risk appetite on a structural basis. The advantages to institutional 

investors would be higher long-term yields without the excess risk generated by the 

market instability of the past decade.  

 

Another possibility would be to create greater liquidity in the market by encouraging 

‘market makers’ (which could be the international financial institutions themselves or 

coordinated arrangements between regional central banks) to make an explicit 

commitment to counter-cyclical intervention so as to stand ready to buy assets from the 

private sector in the downswing of the cycle (when risk appetite declines) and sell in the 

upswing. This form of provision of liquidity would probably be more effective than the 

present practice of last-resort lending once crises have occurred, particularly since it 

would reduce the ex-ante volatility of emerging market assets and thus enhance their 

attractiveness to institutional investors.    
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APPENDIX 1:  ECONOMETRIC RESULTS 

General-to-specific Modelling:  bond flows  
 
Lag-order preselection          

lags r Diags LogLik Radj^2 AIC HQ SC F-prob max|t| FpGUM
3 8 0 178.2131 0.7878 -2.7330 -2.4089 -1.9336 0.9014 0.2527 ------ 
2 8 0 175.8308 0.7995+ -2.8380+ -2.5949 -2.2384 0.0241* 0.0696 0.9014 
1 8 0 164.8484 0.7755 -2.7822 -2.6202+ -2.3825+ 0.0000* 0.0000* 0.2021*
0 8 0 121.4851 0.5358 -2.1212 -2.0402 -1.9214 ------ ------ 0.0000*

Selected lag order = 2.          
 
GUM(115) Modelling LTBDC by GETS (using TICS.xls) 
        Estimation sample: 1993 (2) - 2001 (12) 
        Liberal strategy 
 Coefficient Std.Error t-value t-prob 
LTBDC_1 0.46957 0.10067 4.665 0.0000 
LTBDC_2 0.13457 0.09585 1.404 0.1641 
Spread_EM -0.03363 0.02059 -1.633 0.1063 
Spread_EM_1 -0.03363 0.02899 -1.160 0.2495 
Spread_EM_2 0.00844 0.02448 0.345 0.7312 
Constant 3.50835 0.85195 4.118 0.0001 
SD(Spread_EM) 0.15415 0.12360 1.247 0.2158 
SD(Spread_EM)_1 -0.16109 0.19510 -0.826 0.4114 
SD(Spread_EM)_2 0.05441 0.11230 0.485 0.6293 
R(Spread_HY) 0.00382 0.01031 0.370 0.7122 
R(Spread_HY)_1 0.00297 0.01514 0.196 0.8449 
R(Spread_HY)_2 -0.00266 0.00908 -0.294 0.7698 
DLIIP 0.15041 0.05756 2.613 0.0107 
DLIIP_1 0.06259 0.06719 0.932 0.3542 
DLIIP_2 -0.10868 0.06533 -1.663 0.1000 
FedFunds -0.30269 0.18213 -1.662 0.1003 
FedFunds_1 0.18060 0.27676 0.653 0.5159 
FedFunds_2 0.20988 0.20042 1.047 0.2981 
DLM3 0.02967 0.07771 0.382 0.7036 
DLM3_1 -0.05665 0.08437 -0.671 0.5038 
DLM3_2 0.03465 0.08101 0.428 0.6700 
DSpread_HY -0.00526 0.07052 -0.075 0.9407 
DSpread_HY_1 -0.03017 0.06892 -0.438 0.6627 
DSpread_HY_2 -0.12682 0.06900 -1.838 0.0696 
 
RSS 3.99991  Sigma 0.21953  R^2 0.84301  Radj^2 0.79951
LogLik 175.8308  AIC -2.83796  HQ -2.59492  SC -2.23845
T 107  P 24  FpNull 0.00000  FpConst 0.00000
 
  value prob alpha
Chow(1997:7) F( 54, 29) 1.8797 0.0342 0.0050
Chow(2001:2) F( 11, 72) 1.7693 0.0756 0.0100
normality test chi^2(  2) 1.9452 0.3781 0.0100
AR   1-4 test F(  4, 79) 1.6850 0.1617 0.0100
ARCH 1-4 test F(  4, 99) 0.8696 0.4851 0.0100
hetero test F( 46, 60) 1.8131 0.0153 0.0000
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MOD(115) Specific model of LTBDC (using TICS.xls) 
        Estimation sample: 1993 (2) - 2001 (12) 
 
 
 Coefficient Std.Error t-value t-prob Split1 Split2 reliable
LTBDC_1 0.58437 0.06086 9.602 0.0000 0.0000 0.0000 1.0000
Spread_EM -0.04839 0.01073 -4.510 0.0000 0.0000 0.0000 1.0000
Constant 3.71218 0.55476 6.692 0.0000 0.0000 0.0000 1.0000
DLIIP 0.17108 0.04979 3.436 0.0009 0.0051 0.0005 1.0000
FedFunds -0.22773 0.06961 -3.271 0.0015 0.0317 0.0316 1.0000
FedFunds_2 0.31553 0.07654 4.122 0.0001 0.0003 0.0216 1.0000
DSpread_HY_2 -0.15055 0.05515 -2.730 0.0075 0.0003 0.0071 1.0000
 
RSS 4.60001  sigma 0.21448  R^2 0.81946  Radj^2 0.80862 
LogLik 168.35220  AIC -3.01593  HQ -2.94504  SC -2.84107 
T 107  p 7  FpNull 0.00000  FpGUM 0.76122 
 
 
  value prob
Chow(1997:7) F( 54, 46) 1.3795 0.1328
Chow(2001:2) F( 11, 89) 1.3961 0.1887
normality test chi^2(  2) 1.2566 0.5335
AR   1-4 test F(  4, 96) 1.9809 0.1035
ARCH 1-4 test F(  4, 99) 2.0654 0.0911
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Yield spread: Emerging Markets 
 
Lag-order preselection          

lags r diags LogLik Radj^2 AIC HQ SC F-prob max|t| FpGUM 
3 9 0    4.4460 0.8049 0.5898 0.9543 1.4891 0.5801 0.1349 ------ 
2 9 0  -0.9809   0.8084+ 0.5230 0.7964 1.1975 0.3781 0.1497 0.5801 
1 9 0  -7.1800 0.8066   0.4707+   0.6529+   0.9203+   0.0000*   0.0000* 0.5163 
0 9 0 -49.2190 0.6146 1.0882 1.1793 1.3130 ------ ------   0.0000* 

  Selected lag order = 1.          
 
GUM(116) Modelling Spread_EM by GETS (using TICS.xls) 
        Estimation sample: 1993 (2) - 2001 (12) 
        Liberal strategy 
 Coefficient Std.Error t-value t-prob 
Spread_EM_1 0.75844 0.08846 8.574 0.0000 
Constant 10.10810 4.20204 2.406 0.0182 
SD(Spread_EM) -0.04491 0.55657 -0.081 0.9359 
SD(Spread_EM)_1 0.19069 0.53270 0.358 0.7212 
R(Spread_HY) -0.02408 0.05056 -0.476 0.6350 
R(Spread_HY)_1 0.00692 0.05113 0.135 0.8926 
DLIIP 0.68932 0.29767 2.316 0.0229 
DLIIP_1 -0.35249 0.33914 -1.039 0.3015 
LTBDC -0.49705 0.53538 -0.928 0.3557 
LTBDC_1 -0.48236 0.49472 -0.975 0.3322 
FedFunds -0.46939 0.98319 -0.477 0.6342 
FedFunds_1 0.58802 1.02692 0.573 0.5684 
DLM3 0.10211 0.40357 0.253 0.8008 
DLM3_1 0.05978 0.42778 0.140 0.8892 
DSpread_HY 1.30881 0.31843 4.110 0.0001 
DSpread_HY_1 -0.08188 0.33739 -0.243 0.8088 
LiqEM -0.12194 0.49357 -0.247 0.8054 
LiqEM_1 0.10081 0.48542 0.208 0.8360 
 
RSS 122.36817 sigma 1.17257 R^2 0.83761  Radj^2 0.80659
LogLik -7.17999 AIC 0.47065 HQ 0.65293  SC 0.92029
T 107 p 18 FpNull 0.00000  FpConst 0.00000
 
  value prob alpha 
Chow(1997:7) F( 54, 34) 0.7038 0.8777 0.0100 
Chow(2001:2) F( 11, 77) 1.1977 0.3030 0.0100 
normality test chi^2(  2) 7.6241 0.0221 0.0000 
AR   1-4 test F(  4, 84) 0.8889 0.4743 0.0100 
ARCH 1-4 test F(  4, 99) 2.8541 0.0276 0.0050 
hetero test F( 35, 71) 1.8633 0.0134 0.0000 
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MOD(116) Specific model of Spread_EM (using TICS.xls)  
        Estimation sample: 1993 (2) - 2001 (12)   
 
 Coefficient Std.Error t-value t-prob Split1 Split2 reliable
Spread_EM_1 0.82430 0.04355 18.926 0.0000 0.0000 0.0000 1.0000
Constant 7.43229 2.39856 3.099 0.0025 0.0007 0.0001 1.0000
LTBDC -0.65872 0.23730 -2.776 0.0066 0.0020 0.0003 1.0000
DSpread_HY 0.63981 0.24439 2.618 0.0102 0.0458 0.0046 1.0000
I1998:8 7.70355 1.02383 7.524 0.0000 0.0000 0.0000 1.0000
 
RSS 91.54985  sigma 0.94739 R^2 0.87851 Radj^2 0.87374
LogLik 8.34307  AIC -0.06249 HQ -0.01186 SC 0.06241
T 107  p 5 FpNull 0.00000 FpGUM 0.65903
 
  value prob
Chow(1997:7) F( 54, 48) 0.5767 0.9748
Chow(2001:2) F( 11, 91) 0.4159 0.9456
AR   1-4 test F(  4, 98) 0.6605 0.6209
ARCH 1-4 test F(  4, 99) 1.7651 0.1419
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Simultaneous Equation Model 
 

MOD( 1) Estimating the model by FIML (using TICS.xls) 

        The estimation sample is: 1993 (2) to 2001 (12) 
 

Equation for: Spread_EM 
 
 Coefficient Std.Error t-value t-prob 
Spread_EM_1 0.83659 0.04618 18.1 0.000 
Constant 6.44060 2.804 2.30 0.024 
LTBDC -0.561045 0.2786 -2.01 0.047 
DSpread_HY 0.656407 0.2440 2.69 0.009 
I1998:8 7.48811 1.021 7.34 0.000 
sigma = 0.95304     
 

Equation for: LTBDC 
 
 Coefficient Std.Error t-value t-prob 
LTBDC_1 0.596982 0.05992 9.96 0.000 
Spread_EM -0.0475242 0.01139 -4.17 0.000 
Constant 3.62237 0.5554 6.52 0.000 
DLIIP 0.163324 0.04890 3.34 0.001 
FedFunds -0.222525 0.06853 -3.25 0.002 
FedFunds_2 0.304200 0.07499 4.06 0.000 
DSpread_HY_2 -0.138531 0.05450 -2.54 0.013 
sigma = 0.213547     
 

      

log-likelihood -128.84561  -T/2log|Omega| 174.807236 

no. of observations 107  no. of parameters 12 
 

LR test of over-identifying restrictions: Chi^2(40)=   40.161 [0.4631]   

BFGS using analytical derivatives (eps1=0.0001; eps2=0.005): 

Strong convergence 
 

correlation of structural residuals (standard deviations on diagonal) 
 

 Spread_EM LTBDC

Spread_EM 0.95304 0.14775

LTBDC 0.14775 0.21355
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APPENDIX 2: DATA CHARTS 
 
FIGURE .A.1 MONTHLY BOND FLOWS 
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FIGURE A.2 EMERGING MARKET YIELD SPREAD 
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FIGURE A.3 BOND FLOWS AND YIELD SPREAD 
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FIGURE A.4 BOND FLOWS AND US HIGH YIELD SPREAD 
 
 

1990 1995 2000

6.5 

7.0 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 LTBDC  Spread_HY  

 

 41



FIGURE A.5 EM YIELD SPREAD AND US HIGH YIELD SPREAD 
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FIGURE A.6 A ‘SHARPE RATIO” MEASURE OF RISK AVERSION 
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DATA SOURCES 
 
 
US Bond Flows US Treasury Department (TIC: Treasury’s International Capital 

Reports) (htpp://www.ustreas.gov) 

 
EMBI Sovereign Spread Bloomberg    (JPSS PRD) 
        <Index>  
 
US High Yield Spread   Bloomberg   
(calculated as the difference between:   J0A0 - GA10) 

<Index>  <Index>   
 
US Industrial Production Index (seasonally adjusted)    IFS    66..IZF 
 
US Fed Funds Rate US Federal Reserve System (htpp://www.federalreserve.gov) 
 
M3 US Money Stock (seasonally adjusted) US Federal Reserve System

 (htpp://www.federalreserve.gov) 
 
Emerging Market Liquidity Index    Cross Border Capital 
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