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Abstract

This paper enhances the dynamic optimal taxation results of Jones, Manuelli, and Rossi (1993, 1997).

They use a growth model with human capital and find that optimal taxes on both capital income and

labor income converge to zero in steady state. For one of the models under consideration, I show that

the representative household’s problem does not have an interior solution. This raises concerns since these

corners are inconsistent with aggregate data. Interiority is restored if preferences are modified so that human

capital augments the marginal utility of leisure. With this change, the optimal tax problem is analyzed and,

reassuringly, the Jones, Manuelli, and Rossi results are confirmed: neither capital income nor labor income

should be taxed in steady state.
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1 Introduction

In seminal papers, Chamley (1986) and Judd (1985) have shown that capital income should not be taxed

in steady state. Jones, Manuelli, and Rossi (1993, 1997) (hereafter JMR) extend this result to show that

labor income should also be free from taxation in the limit. JMR add human capital to the model to derive

their remarkable results. A key part of the analysis involves the manipulation of the household’s first order

conditions. However, it will be shown below that for a popular class of models nested within the JMR

framework, the household’s problem does not have an interior optimum: Given any interior solution to the

first order conditions, there always exists a feasible variation that increases utility. This is of concern since

an aggregative model with corners cannot fit the data. It also invites a closer look at the optimal tax results.

The class of models in which the difficulties arise is derived from Heckman (1976). However, in Heckman’s

original formulation utility depends on effective leisure — human capital multiplied by raw hours of leisure

— while JMR’s utility function depends only on raw leisure.1 If utility is returned to the original Heckman

form, the corners disappear and the standard first order characterization of equilibrium may be used. In this

case, it is shown that the JMR extension of the Judd–Chamley optimal tax result continues to hold. That

is, neither labor income nor capital income should be taxed in the limit.

Section 2 presents the JMR model and demonstrates that the household’s optimum is not interior when

technology has the Heckman specification. Section 3 restores interiority by taking the original Heckman

utility function. With this change, the optimal tax policy is characterized in the limit. Section 4 is a brief

conclusion.

2 Model

First the full JMR (1997) model is presented. Then the Heckman sub-class is considered. The representative

household is a price taker with access to accumulation technologies for both physical capital and human

capital. The optimization problem is

maximize
∞∑

t=0

βtu(ct, 1− nmt − nht)

subject to
∞∑

t=0

pt[(1 + τ c
t )ct + xht + (1 + τm

t )xmt + xkt − (1− τn
t )wtzt − (1− τk

t )rtkt − (1 + τ c
t )Tt] ≤ b0

kt+1 ≤ (1− δk)kt + xkt

ht+1 ≤ (1− δh)ht + G(xht, ht, nht)

zt ≤ M(xmt, ht, nmt)

1Ladrón-de-Guevara et al. (1999) consider similar issues in a related model without taxation. They find that non-convexities
may arise when raw leisure enters the utility function.
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with initial conditions b0, h0, and k0 given. This appears as (P.1) on page 97 of JMR (1997). Utility

depends on consumption ct and hours of leisure. The time endowment is normalized to unity. Hours of

work are divided between the market, nmt, and human capital formation, nht. The purchased good is used

for investment as well as consumption: xht is investment used in the production of human capital, xkt is

investment in physical capital, and xmt is investment used in the production of effective labor. Thus zt is

effective labor. Physical capital is kt; human capital is ht; exogenous lump sum transfers are Tt; the τs are

tax rates; b0 is initial holdings of government debt. Non-negativity conditions apply; however, it is convenient

to allow the household to choose xkt < 0 (physical capital may be sold), though this will never occur in

equilibrium. Current value prices rt and wt, and present value prices pt, are determined in equilibrium.

The depreciation rates δk and δh are given positive parameters. The production functions G and M are

smooth with positive and diminishing marginal products. Both G and M are homogeneous of degree one in

(x, h).

Clearly the physical capital constraint will bind. This can be used to substitute for xkt in the budget

constraint. Then the problem becomes

max
∞∑

t=0

βtu(ct, 1− nmt − nht)

s.t.
∞∑

t=0

pt[(1 + τ c
t )ct + xht + (1 + τm

t )xmt + kt+1 − (1− δk)kt

− (1− τn
t )wtzt − (1− τk

t )rtkt − (1 + τ c
t )Tt] ≤ b0

ht+1 ≤ (1− δh)ht + G(xht, ht, nht)

zt ≤ M(xmt, ht, nmt).

For t ≥ 0 the coefficient of kt+1 in the budget constraint is

pt − pt+1[1− δk + (1− τk
t+1)rt+1]. (1)

If there is an interior optimum the household must face prices and taxes such that (1) equals zero for all

t ≥ 0. See (1.d) in JMR (1997). If (1) were positive, kt+1 = 0 would be optimal. If (1) were negative,

kt+1 ↑ ∞ would be optimal. It is worth emphasizing this arbitrage condition for physical capital because its

companion condition for human capital will play a key role in the analysis. Since (1) equals zero, and since

the effective labor constraint clearly binds, the household’s problem becomes
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max
∞∑

t=0

βtu(ct, 1− nmt − nht)

s.t.
∞∑

t=0

pt[(1 + τ c
t )ct + xht + (1 + τm

t )xmt − (1− τn
t )wtM(xmt, ht, nmt)− (1 + τ c

t )Tt]

≤ b0 + p0k0[1− δk + (1− τk
0 )r0]

ht+1 ≤ (1− δh)ht + G(xht, ht, nht).

2.1 Heckman household technology — no interior optimum

At this point the household’s production functions G and M are specialized as follows: G(xht, ht, nht) =

Ĝ(xht, nhtht) with Ĝ homogeneous of degree one in its two arguments, and M(xmt, ht, nmt) = nmtht. See

Heckman (1976, p. S13) and also JMR (1993, § III). Since xmt is no longer relevant, the household’s problem

now becomes

max
∞∑

t=0

βtu(ct, 1− nmt − nht)

s.t.
∞∑

t=0

pt[(1 + τ c
t )ct + xht − (1− τn

t )wtnmtht − (1 + τ c
t )Tt]

≤ b0 + p0k0[1− δk + (1− τk
0 )r0]

ht+1 ≤ (1− δh)ht + Ĝ(xht, nhtht).

The purpose of this section is to show that this problem does not have an interior solution. The method

will be to assume an interior solution and derive a contradiction. The Lagrangian for the problem is

L =
∞∑

t=0

{
βtu(ct, 1− nmt − nht)− λpt[(1 + τ c

t )ct + xht − (1− τn
t )wtnmtht]

+ µt[(1− δh)ht + Ĝ(xht, nhtht)− ht+1]
}

.

If the solution were interior the first order conditions for ct, nmt, nht, xht, and ht+1 respectively would be

βtu1(ct, 1− nmt − nht) = λpt(1 + τ c
t ) (2)

βtu2(ct, 1− nmt − nht) = λpt(1− τn
t )wtht (3)

βtu2(ct, 1− nmt − nht) = µthtĜ2(xht, nhtht) (4)

λpt = µtĜ1(xht, nhtht) (5)

λpt+1(1− τn
t+1)wt+1nmt+1 = µt − µt+1[1− δh + nht+1Ĝ2(xht+1, nht+1ht+1)]. (6)
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Again, the goal is to use the first order conditions, and more generally use the assumption of interiority,

to generate a contradiction. From (3), (4), and (5),

Ĝ2(xht, nhtht)/Ĝ1(xht, nhtht) = (1− τn
t )wt, t ≥ 0. (7)

This looks very much like the first order condition for a cost minimization problem. Indeed, this is the case.

Let `t = 1− nmt − nht denote hours of leisure. Then the household’s problem can be written as

max
∞∑

t=0

βtu(ct, `t)

s.t.
∞∑

t=0

pt[(1 + τ c
t )ct + xht − (1− τn

t )wtht(1− `t − nht)− (1 + τ c
t )Tt]

≤ b0 + p0k0[1− δk + (1− τk
0 )r0]

ht+1 ≤ (1− δh)ht + Ĝ(xht, nhtht)

1− `t − nht ≥ 0.

Since h, xh, and nh do not appear in the utility function, they will be chosen to maximize income, i.e., to

minimize
∑∞

t=0 pt[xht − (1 − τn
t )wtht(1 − `t − nht)] subject to the human capital accumulation constraint

and the non-negativity of market hours. In particular, for any {`t, ht}∞t=0, the household will choose xht and

nht to minimize xht + (1 − τn
t )wthtnht subject to these constraints. This is a standard cost minimization

problem with an upper bound on one of the inputs. Under the maintained assumption that the solution

is interior, it will satisfy (7). Since Ĝ is homogeneous of degree one, the minimized cost is proportional to

“output:” xht + (1− τn
t )wthtnht = [ht+1 − (1− δh)ht]ξ(1, (1− τn

t )wt) where ξ is the unit cost function for

Ĝ(xh, zh).

Substitute the minimized cost back into the budget constraint. The household’s problem becomes

max
∞∑

t=0

βtu(ct, `t)

s.t.
∞∑

t=0

pt

{
(1 + τ c

t )ct + [ht+1 − (1− δh)ht]ξ(1, (1− τn
t )wt)− (1− τn

t )wtht(1− `t)− (1 + τ c
t )Tt

}
≤ b0 + p0k0[1− δk + (1− τk

0 )r0].

Collect together the terms with ht and re-write the budget constraint as follows:

p0(1 + τ c
0 )(c0 − T0) +

∞∑
t=1

{
pt(1 + τ c

t )(ct − Tt)

+ht[pt−1ξ(1, (1− τn
t−1)wt−1)− pt(1− δh)ξ(1, (1− τn

t )wt)− pt(1− τn
t )wt(1− `t)]

}
≤ b0 + p0k0[1− δk + (1− τk

0 )r0] + p0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0(1− `0)]. (8)
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At an interior optimum, the coefficient of ht in (8) must equal zero:2

pt−1ξ(1, (1− τn
t−1)wt−1)− pt(1− δh)ξ(1, (1− τn

t )wt)− pt(1− τn
t )wt(1− `t) = 0, t ≥ 1. (9)

This states that the present value cost of a marginal unit of human capital (pt−1ξt−1) equals its stock value

next period (pt(1− δh)ξt) plus its flow return (pt(1− τn
t )wt(nmt +nht)). The flow rate of return is equalized

across market hours and training hours due to the static optimality conditions. But note that the marginal

unit of human capital does not augment the value of leisure hours since human capital does not enter the

utility function (cf. Ladrón-de-Guevara et al., 1999).

If the expression in (9) were strictly negative (positive), any increase (decrease) in ht would provide more

income for consumption, so optimality and interiority would be incompatible. This is much like the reasoning

associated with (1) above. However, there is a key difference here. There is a choice variable in (9): `t. So

this is not a standard arbitrage condition on prices.

Let the superscript zero denote the hypothesized interior optimum, e.g., `0t . Consider a variation c̃s, ˜̀
s,

h̃s at a given s ≥ 1.3 Since the interior optimum satisfies (9), and since the variation must also satisfy the

budget constraint (8), it must be that

ps(1+τ c
s )c0

s = ps(1+τ c
s )c̃s + h̃s

[
ps−1ξ(1, (1−τn

s−1)ws−1)−ps(1−δh)ξ(1, (1−τn
s )ws)−ps(1−τn

s )ws(1− ˜̀
s)

]
.

In particular, if ˜̀
s = `0s + ε`, then

ps(1 + τ c
s )c0

s = ps(1 + τ c
s )c̃s + h̃sps(1− τn

s )wsε` (10)

since (9) vanishes at the interior optimum. If also h̃s = h0
s + εh then (10) yields

c̃s = c0
s − (h0

s + εh)(1− τn
s )wsε`/(1 + τ c

s ).

Hence u(c̃s, ˜̀
s) = u(c0

s − (h0
s + εh)(1− τn

s )wsε`/(1 + τ c
s ), `0s + ε`) and

∂u(c̃s, ˜̀
s)

∂ε`

∣∣∣∣∣
ε`=0

= −(h0
s+εh)(1−τn

s )wsu1(c0
s, `

0
s)/(1+τ c

s )+u2(c0
s, `

0
s) = −εh(1−τn

s )wsu1(c0
s, `

0
s)/(1+τ c

s ) (11)

where the last equality follows from the static interior optimum condition u0
2/u0

1 = (1 − τn
s )wsh

0
s/(1 + τ c

s ),

implied by (2) and (3). From (11), for any εh < 0 and for sufficiently small ε` > 0, the variation raises

welfare. This is inconsistent with the optimality of the interior solution.4 Thus, the assumption of an

interior optimum leads to a contradiction.
2Lemma A.1 in the appendix confirms that the first order conditions (3)–(6) imply (9).
3I.e., for all t 6= s, consumption, leisure, and human capital remain c0t , `0t , and h0

t . Also, note that the variation h̃s induces
variations x̃hs−1, ñhs−1, x̃hs, ñhs through the cost minimization problem associated with (7). Similarly, there are induced
variations in ñms−1 and ñms.

4Another possibility that could prevent the variation from raising utility is ws = 0. But then the household would have no
incentive to do any market work at s: n0

ms = 0. Again, this would violate the interiority assumption.
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3 Optimal taxation with Heckman utility

This section revisits the optimal taxation results in JMR (1997). JMR show that both capital and labor

income should not be taxed in the limit. This result is derived from the assumption of an interior solution to

the household’s problem. But as shown in section 2.1 above, the household’s optimum is not interior when

household technology takes the Heckman (1976) form. Interiority may be restored, however, if the household

not only has Heckman technology but also Heckman (1976) utility:

u(ct, (1− nmt − nht)ht).

That is, utility is generated from effective leisure and not merely hours of leisure. With this change, it will

be shown that the JMR result continues to hold: the steady state tax rate is zero for both capital income

and labor income.

3.1 Household’s problem

With the modified utility function, the first order conditions for an interior optimum become

βtu1(ct, (1− nmt − nht)ht) = λpt(1 + τ c
t ) (2′)

βtu2(ct, (1− nmt − nht)ht) = λpt(1− τn
t )wt (3′)

βtu2(ct, (1− nmt − nht)ht) = µtĜ2(xht, nhtht) (4′)

λpt = µtĜ1(xht, nhtht) (5′)

λpt+1(1− τn
t+1)wt+1nmt+1 = µt − µt+1[1− δh + nht+1Ĝ2(xht+1, nht+1ht+1)]

− βt+1(1− nmt+1 − nht+1)u2(ct+1, (1− nmt+1 − nht+1)ht+1). (6′)

The analysis of the household’s problem proceeds as in section 2.1. The cost minimization problem

associated with (7) still applies, and hence so does the budget constraint (8). With hours of leisure given by

`t = 1− nmt − nht, the household solves

max
∞∑

t=0

βtu(ct, `tht)

s.t. p0(1 + τ c
0 )(c0 − T0) +

∞∑
t=1

{
pt(1 + τ c

t )(ct − Tt)

+ht[pt−1ξ(1, (1− τn
t−1)wt−1)− pt(1− δh)ξ(1, (1− τn

t )wt)− pt(1− τn
t )wt(1− `t)]

}
≤ b0 + p0k0[1− δk + (1− τk

0 )r0] + p0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0(1− `0)].
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Unlike the analysis of (8) and (9) above, here the first order conditions do not cause the coefficient of ht in

this budget constraint to vanish. To see this, re-write the budget constraint but separate out the term with

effective leisure:

p0(1 + τ c
0 )(c0 − T0) +

∞∑
t=1

{
pt(1 + τ c

t )(ct − Tt) + pt(1− τn
t )wt`tht

+ht[pt−1ξ(1, (1− τn
t−1)wt−1)− pt(1− δh)ξ(1, (1− τn

t )wt)− pt(1− τn
t )wt]

}
≤ b0 + p0k0[1− δk + (1− τk

0 )r0] + p0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0(1− `0)]. (12)

At an interior optimum, the coefficient of ht in the second line of (12) must equal zero:5

pt−1ξ(1, (1− τn
t−1)wt−1)− pt(1− δh)ξ(1, (1− τn

t )wt)− pt(1− τn
t )wt = 0, t ≥ 1. (13)

This is based on a standard arbitrage argument. E.g., if the expression in (13) were negative, any increase in

ht would provide more income for consumption. And this increase in ht could be matched with a reduction

in `t to leave effective leisure unchanged — both in the first line of (12) and also in the utility function. The

key distinction between (13) and the more problematic (9) is the presence of the choice variable `t in the

latter. By contrast, in (13) the flow return to a marginal unit of human capital, pt(1− τn
t )wt, applies to all

hours, even leisure, due to the Heckman specification for preferences.

Given (13), the household’s problem is (after re-arranging)

max
∞∑

t=0

βtu(ct, `tht)

s.t.
∞∑

t=0

[
pt(1 + τ c

t )(ct − Tt) + pt(1− τn
t )wt`tht

]
≤ b0 + p0k0[1− δk + (1− τk

0 )r0] + p0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0].

This is a completely standard dynamic utility maximization problem with choice variables ct and z`t := `tht.

The first order conditions are (2′) and (3′).

In summary, for t ≥ 0 the conditions for a household optimum are as follows:

pt/pt+1 = 1− δk + (1− τk
t+1)rt+1 (1′)

Ĝ2(xht, nhtht)/Ĝ1(xht, nhtht) = (1− τn
t )wt (7)

ptξ(1, (1− τn
t )wt)− pt+1(1− δh)ξ(1, (1− τn

t+1)wt+1)− pt+1(1− τn
t+1)wt+1 = 0 (13)

5Lemma A.2 in the appendix confirms that the first order conditions (3′)–(6′) imply (13).
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βtu1(ct, `tht) = λpt(1 + τ c
t ) (2′)

βtu2(ct, `tht) = λpt(1− τn
t )wt (3′)

kt+1 = (1− δk)kt + xkt (14)

ht+1 = (1− δh)ht + Ĝ(xht, nhtht) (15)

1 = `t + nmt + nht (16)

∞∑
t=0

[
pt(1 + τ c

t )(ct − Tt) + pt(1− τn
t )wt`tht

]
= b0 + p0k0[1− δk + (1− τk

0 )r0] + p0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0]. (17)

3.2 Equilibrium

The optimal tax problem is to select the equilibrium that gives the greatest utility to the household. In

addition to the household’s optimality conditions, equilibrium is characterized by the firms’ optimality

conditions and by goods market clearing (details below).

It is convenient to express the equilibrium entirely in terms of primal variables — quantities rather than

prices. Thus some of the household’s optimality conditions may be regarded as definitions of after tax prices,

for a given allocation. Specifically, (7) defines the after tax wage, then (13) defines the price ratio pt/pt+1:

pt

pt+1
= (1− δh)

ξ(1, (1− τn
t+1)wt+1)

ξ(1, (1− τn
t )wt)

+
Ĝ2(xht+1, nht+1ht+1)/Ĝ1(xht+1, nht+1ht+1)

ξ(1, (1− τn
t )wt)

. (18)

Since ξ is the unit cost function for Ĝ, the cost minimizers satisfy

Ĝ(xht, nhtht)ξ(1, (1− τn
t )wt) = xht + nhtht(1− τn

t )wt

= xht + nhtht
Ĝ2(xht, nhtht)
Ĝ1(xht, nhtht)

=
Ĝ(xht, nhtht)
Ĝ1(xht, nhtht)

where the last line follows from homogeneity. Therefore ξ(1, (1− τn
t )wt) = 1/Ĝ1(xht, nhtht) and (18) yields

pt

pt+1
=

Ĝ1(xht, nhtht)
Ĝ1(xht+1, nht+1ht+1)

(
1− δh + Ĝ2(xht+1, nht+1ht+1)

)
, t ≥ 0. (19)

With this result, (1′) then defines the after tax interest rate for t ≥ 1. Note that p0 and (1 − τk
0 )r0 are

not restricted. Also, (2′) at t ≥ 1 divided by (2′) at time 0 yields τ c
t , but τ c

0 is unrestricted at this point.
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(Footnote 6 will identify τ c
0 .) Equation (3′) presents a real restriction since the after tax wage and the present

value price pt have already been determined. From (3′) and (7),

u2(ct, `tht)
βu2(ct+1, `t+1ht+1)

=
Ĝ2(xht, nhtht)/Ĝ1(xht, nhtht)

Ĝ2(xht+1, nht+1ht+1)/Ĝ1(xht+1, nht+1ht+1)
· pt

pt+1

=
Ĝ2(xht, nhtht)

Ĝ2(xht+1, nht+1ht+1)

(
1− δh + Ĝ2(xht+1, nht+1ht+1)

)
, t ≥ 0 (20)

where the second line follows from (19).6 This is analogous to the restriction φ(vt−1, vt) = 0 in problem (P.2)

on page 100 of JMR (1997).

In order to express the budget constraint (17) in primal form, multiply through by the Lagrange multiplier

λ and use (2′) and (3′) to get

∞∑
t=0

βt
[
(ct − Tt)u1(ct, `tht) + `thtu2(ct, `tht)

]
= λb0 + λp0k0[1− δk + (1− τk

0 )r0] + λp0h0[(1− δh)ξ(1, (1− τn
0 )w0) + (1− τn

0 )w0]

=
u2(0)Ĝ1(0)

Ĝ2(0)

{
b0/p0 + k0[1− δk + (1− τk

0 )r0] + h0[(1− δh) + Ĝ2(0)]/Ĝ1(0)
}

(21)

where the last line uses (3′) and (7) at t = 0 to substitute for λ, and also uses previous results to substitute

for terms with (1− τn
0 )w0.

The other equilibrium conditions are that firms are price taking profit maximizers and that the goods

market clears. The production function F for the purchased good is homogeneous of degree one in physical

capital and effective labor. Thus profits will be zero. For t ≥ 0,

F1(kt, nmtht) = rt (22)

F2(kt, nmtht) = wt (23)

F (kt, nmtht) = ct + kt+1 − (1− δk)kt + xht + gt. (24)

In (24), government purchases, gt, are exogenously given. Also, (24) subsumes the physical capital accumu-

lation equation (14). Equations (22) and (23) do not impose constraints on the primal form of the optimal

tax problem. They can be used to define the before tax interest rate and wage.

Thus, in terms of primal variables, equilibrium is characterized by (15), (16), (20), (21), and (24). In

the last line of (21), p0 and τk
0 are unrestricted while r0 is defined by (22). By Walras’ law, when these

conditions are satisfied the government’s infinite horizon present value budget constraint is redundant.
6It appears (3′) also presents a restriction at time 0. From (7), (2′), and (3′) at t = 0, u2(c0, `0h0)/u1(c0, `0h0) =

(1 + τc
0 )−1Ĝ2(xh0, nh0h0)/Ĝ1(xh0, nh0h0). However, this is not a restriction. Rather, it can be used to define τc

0 since (2′) left
τc
0 available.

11



3.3 Optimal tax problem

The tax problem is not particularly interesting if the government can confiscate initial wealth. Thus it is

customary to assign reasonable exogenous values to p0 and τk
0 in (21). Let zmt := nmtht and zht := nhtht

denote effective labor for the market and for human capital accumulation. The tax problem is as follows:

max
∞∑

t=0

βtu(ct, ht − zmt − zht)

s.t.
∞∑

t=0

βt
[
(ct − Tt)u1(ct, ht − zmt − zht) + (ht − zmt − zht)u2(ct, ht − zmt − zht)

]
= A0

ht+1 = (1− δh)ht + Ĝ(xht, zht)

F (kt, zmt) = ct + kt+1 − (1− δk)kt + xht + gt

u2(ct, ht − zmt − zht)
βu2(ct+1, ht+1 − zmt+1 − zht+1)

=
Ĝ2(xht, zht)

Ĝ2(xht+1, zht+1)

(
1− δh + Ĝ2(xht+1, zht+1)

)
where A0 in the first constraint denotes the last line of (21). Let θ be the Lagrange multiplier for the first

constraint. As in JMR (1997), introduce the auxiliary function

W (ct, ht − zmt − zht, Tt, θ) :=

u(ct, ht − zmt − zht) + θ
[
(ct − Tt)u1(ct, ht − zmt − zht) + (ht − zmt − zht)u2(ct, ht − zmt − zht)

]
.

Then the Lagrangian for the problem is

L = −θA0 +
∞∑

t=0

βt

{
W (ct, ht − zmt − zht, Tt, θ) + ν1t[(1− δh)ht + Ĝ(xht, zht)− ht+1]

+ ν2t[F (kt, zmt)− ct − kt+1 + (1− δk)kt − xht]

+ ν3t

[
u2(ct, ht − zmt − zht)

u2(ct+1, ht+1 − zmt+1 − zht+1)
− β(1− δh)Ĝ2(xht, zht)

Ĝ2(xht+1, zht+1)
− βĜ2(xht, zht)

]}
.

Suppose the optimal tax equilibrium converges to an interior steady state in which all variables have

finite limits, including Lagrange multipliers. Let asterisks denote steady state values. Then in the limit the

first order conditions for ct, ht, zmt, zht, xht, and kt yield

W ∗
1 − ν∗2 + (1− β−1)ν∗3u∗21/u∗2 = 0 (25)

W ∗
2 + (1− δh)ν∗1 − β−1ν∗1 + (1− β−1)ν∗3u∗22/u∗2 = 0 (26)

−W ∗
2 + ν∗2F ∗

2 − (1− β−1)ν∗3u∗22/u∗2 = 0 (27)

−W ∗
2 + ν∗1 Ĝ∗

2 − (1− β−1)ν∗3
(
u∗22/u∗2 + β(1− δh)Ĝ∗

22/Ĝ∗
2

)
− βν∗3 Ĝ∗

22 = 0 (28)
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ν∗1 Ĝ∗
1 − ν∗2 − (1− β−1)ν∗3β(1− δh)Ĝ∗

21/Ĝ∗
2 − βν∗3 Ĝ∗

21 = 0 (29)

ν∗2 (F ∗
1 + 1− δk)− β−1ν∗2 = 0. (30)

The main result may now be stated.

Theorem If ν∗2 6= 0 then the steady state tax rate is zero for both capital income and labor income.

Proof The Chamley–Judd result that τk∗ = 0 is straightforward. If ν∗2 6= 0, (30) yields F ∗
1 + 1− δk = β−1.

From (19) and (20), pt/pt+1 converges to β−1. Hence (1′) yields 1 − δk + (1 − τk∗)r∗ = β−1. Since r = F1

from (22), the result follows.

Next it will be shown that ν∗3 = 0. This will then be used to prove τn∗ = 0. Add (26) and (28) to get

ν∗1 (1− δh + Ĝ∗
2 − β−1) + βν∗3 Ĝ∗

22[(β
−1 − 1)(1− δh)/Ĝ∗

2 − 1] = 0.

In steady state, (20) yields β−1 = 1− δh + Ĝ∗
2. Hence βν∗3 Ĝ∗

22[(β
−1− 1)(1− δh)/Ĝ∗

2 − 1] = 0. Since δh 6= 0,

it follows that ν∗3 = 0.

Finally it will be shown that τn∗ = 0. With ν∗3 = 0 and ν∗2 6= 0, (29) implies ν∗1 6= 0. Thus (28) and (29)

yield Ĝ∗
2/Ĝ∗

1 = W ∗
2 /ν∗2 , while (27) yields W ∗

2 /ν∗2 = F ∗
2 . Hence Ĝ∗

2/Ĝ∗
1 = F ∗

2 . And from (7) and (23), this is

precisely the condition under which τn∗ = 0.

4 Conclusion

For the model in section 2.1, the household’s problem fails to have an interior optimum. Thus, this model is

not well suited for the analysis of optimal taxation. With the modification to utility in section 3, interiority

is restored and the optimal tax problem yields the JMR (1997) result: neither labor income nor capital

income should be taxed in steady state.

The intuition for the Judd–Chamley zero capital tax result is based on the idea that a tax on capital

income is a tax on future consumption. This creates a distortionary wedge between the intertemporal

marginal rate of substitution for consumption and the corresponding marginal rate of transformation. This

wedge grows exponentially through time — just like compound interest (Judd, 2002). Hence even a small

capital income tax can generate large distortions if it is left in place a long time.

When human capital is present, similar reasoning applies. The accumulation technology for human

capital creates an additional channel through which taxation can potentially cause explosive intertemporal

distortions. Hence, at an optimal steady state, the intertemporal marginal rate of substitution for effective

leisure will equal the corresponding marginal rate of transformation. In terms of the model, this implies

that constraint (20) will automatically be satisfied at an optimal steady state. Since this constraint does

not bind, in the limit the economy behaves as if there were no restrictions on the tax instruments.7 Thus
7Equation (20) is an instrument restriction. It imposes the same tax rates on both the consumer and the human capital

producer.
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the Diamond–Mirrlees (1971) production efficiency theorem applies: Marginal rates of transformation must

be equal in the two production sectors, human capital and physical capital/consumption. Inspection of (7)

and (23) reveals that this efficiency condition yields a zero tax rate on labor income. In the limit, this tax

must vanish; otherwise the two production sectors would face different relative prices.

Finally, given the problems with non-interiority that were considered here, one is led to wonder if other

human capital models may lead to similar difficulties.8 It seems that caution is warranted in these situations.

8Ortigueira and Santos (2002) use a continuous time model with human capital and find that equilibrium is characterized
by corners for some parameter values and tax rates.
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Appendix

A.1 Lemma If (3)–(6) are satisfied for all t ≥ 0 with λ 6= 0 then (9) must hold for all t ≥ 1.

Proof Use (3) and (4) to substitute for µt+1Ĝ2(t + 1) in (6):

λpt+1(1− τn
t+1)wt+1nmt+1 = µt − µt+1(1− δh)− λpt+1(1− τn

t+1)wt+1nht+1, t ≥ 0.

Therefore, since `t+1 + nmt+1 + nht+1 = 1,

0 = µt − µt+1(1− δh)− λpt+1(1− τn
t+1)wt+1(1− `t+1), t ≥ 0

or

0 = µt−1 − µt(1− δh)− λpt(1− τn
t )wt(1− `t), t ≥ 1.

A comparison with (9) shows that the lemma will be proved if µt/λ = ptξ(1, (1− τn
t )wt) for all t ≥ 0. Recall

that ξ was defined to be the unit cost function for the production function Ĝ. Therefore,

ξ(1, (1− τn
t )wt)Ĝ(xht, nhtht) = xht + (1− τn

t )wtnhtht, t ≥ 0 (31)

at an interior optimum. Multiply both sides of (4) by nht, and both sides of (5) by xht, then add:

nhtλpt(1− τn
t )wtht + xhtλpt = µtĜ(xht, nhtht), t ≥ 0

by (3) and homogeneity of Ĝ. Compare this with (31) to get λptξ(1, (1− τn
t )wt) = µt as required.

A.2 Lemma If (3′)–(6′) are satisfied for all t ≥ 0 with λ 6= 0 then (13) must hold for all t ≥ 1.

Proof Use (4′) to substitute for µt+1Ĝ2(t + 1) in (6′), then simplify to get

λpt+1(1− τn
t+1)wt+1nmt+1 = µt − µt+1(1− δh)

− βt+1(1− nmt+1)u2(ct+1, (1− nmt+1 − nht+1)ht+1), t ≥ 0.

Next, use (3′) to substitute for βt+1u2(t + 1), then simplify to get

0 = µt − µt+1(1− δh)− λpt+1(1− τn
t+1)wt+1, t ≥ 0

or

0 = µt−1 − µt(1− δh)− λpt(1− τn
t )wt, t ≥ 1.

A comparison with (13) shows that the lemma will be proved if µt/λ = ptξ(1, (1−τn
t )wt) for all t ≥ 0. Recall

that ξ was defined to be the unit cost function for the production function Ĝ. Therefore,

ξ(1, (1− τn
t )wt)Ĝ(xht, nhtht) = xht + (1− τn

t )wtnhtht, t ≥ 0 (32)

at an interior optimum. Multiply both sides of (4′) by nhtht, and both sides of (5′) by xht, then add:

nhthtλpt(1− τn
t )wt + xhtλpt = µtĜ(xht, nhtht), t ≥ 0

by (3′) and homogeneity of Ĝ. Compare this with (32) to get λptξ(1, (1− τn
t )wt) = µt as required.
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