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1 Introduction

The measurement of the output gap, i.e. the difference between the economy’s actual

output and its potential or trend level, is central to much applied macroeconometric work

and particularly the analysis of monetary policy. However, it is widely recognised that

the output gap is measured with considerable uncertainty, and this is especially true for

the measures considered in real-time decision-making.1 For example, Orphanides and van

Norden (2002) [OvN] show, using US data, that the standard measures of this central

concept are extremely unreliable, with ex post revisions of the gap in the US of the

same order of magnitude as the estimated gap itself. Much of the unreliability arises

because the gap measures are based on output data which is subsequently revised and on

measures of the trend output level which are subject to estimation error. OvN decompose

the revisions observed in their output gap measures into two parts reflecting these two

sources of change. They show that, for their data, the effect of changes in the measurement

of the trend exceed the effects of changes in the published data but that both effects are

significant.2

The OvN analysis highlights the problems involved in real time decision-making by

illustrating how their gap measure changes as new information on the actual and trend

output levels becomes available with the release of each new vintage of data. However,

the OvN decomposition is based on a recursive analysis of each successive vintage of data

taken in turn. This ignores the possibility that the sequence of vintages released over time

may in itself contain useful information with which to interpret the most recent vintage

of data and to anticipate future outcomes (as discussed in Howery, 1978). Hence, for

example, there might be systematic patterns in the data revisions that can be used, in

1It is also acknowledged that the use of ex post revised data can yield misleading descriptions of

historical policy and that the use of real-time data generates different real-time policy recommendations

to those obtained on the basis of ex post revised data (see, for example, Rotemberg and Woodford (1999),

Brunner (2000), Orphanides et al. (2000), Orphanides (2001),and Amato and Swanson (2001)).
2These differences are potentially extremely important given the reliance of recent empirical work on

the identification of monetary policy shocks and impulse responses on assumptions on the ordering of

decisions and the timing of the release of information. See Christiano, Eichenbaum and Evans (1999) or

Garratt et al. (2005) for reviews.
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conjunction with the real time data, both to moderate the direct impact of the revisions

obtained in successive vintages of data on the perceived current output level and to look

forward to offset their impact on the output trend measure.3

In this paper, we exploit the information contained in the sequence of vintages more

fully than OvN through a cointegrating VAR model which, under reasonable assumptions

on the nature of the output series and measurement errors, explains both the changes in

the real time data and its revisions. The model is used to generate forecasts of contem-

poraneous and future values of output. The forecasts improve the accuracy with which

the true level of activity is measured and they can be used to supplement the historically-

observed series to obtain improved measures of the underlying trends also. As explained in

Mise et al. (2005a,b) [denoted MKN], this latter point helps to address the end-of-sample

problems associated with the widely-used Hodrick-Prescott (1997) [HP] filter in the mea-

surement of the trend (this being the source of considerable estimation error variance).

The model can be estimated recursively, taking into account successive vintages of data.

But, because it describes the revision process as well as the underlying output process,

the model makes use of all the information available at each point in time, not just the

most recent vintage available.

The proposed approach to measuring the output gap has at least three very useful

properties. First, the output gap is measured relatively precisely because modelling the

revision process moderates the effect of changes in published data, while the use of the

forecasts mitigates the end-of-sample problem associated with the use of the HP filter.

Second, by linking the trend measure to forecasts of future output levels, it can be related

to the frequently-used Beveridge-Nelson trend and can be readily interpreted in terms

of economically-meaningful concepts such as ‘potential output’. And third, as well as

producing point estimates of the output gap that are measured relatively precisely, the

underlying model can be used to describe clearly the uncertainties associated with the

3OvN also illustrate the uncertainty in the gap measure arising through the choice of detrending

techniques. (See also Canova, 1998.) We do not consider this aspect of the uncertainty in this paper,

although the methods described for conveying the extent of the uncertainty on the gap could be extended

to accommodate alternative detrending techniques.
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measure of the gap. This is extremely useful because, while it is important to recognise

the unreliability of the output gap measures, the estimated values of the gap at different

horizons are nevertheless an essential requirement in many decision-making contexts. The

output gap measures can be used appropriately, taking into account the uncertainties

surrounding these, when the model is used to supplement the point forecasts with forecasts

of the probability of the occurrence of particular events involving the gap.

The remainder of the paper is organised as follows. In Section 2, the proposed method

for measuring the output gap is elaborated through a description of the cointegrating

VAR model, through a discussion of the HP filter and its limitations when the focus of

attention is the end-of-sample, and through a comment on the calculation of probability

forecasts relating to the output gap. Section 3 describes the application of the proposed

methods to obtain output gap measures for the US and compares these with measures

obtained following the procedures of OvN. Section 4 presents some probability forecasts

obtained using our modelling framework, and Section 5 concludes.

2 Measuring the Output Gap with Real Time Data

To describe our proposed method of measuring the output gap, we need to introduce

some notation and terminology. We write (the logarithm of) the output level at time

t − j by yt−j, and denote the measure of output at time t − j that is released in time
t by tyt−j, j = 0, 1, 2, , .... Throughout the paper, the “vintage-t” dataset is defined by

Yt = {tyt−1, tyt−2, tyt−3, ...} so that it includes the time-t measure of output at time t− 1
and before. Note that it is assumed that the first release of output data for any period

takes place after a one-period delay; this corresponds to practice in both the US and

UK.4 The full information set available at time t, denoted Ωt, contains the datasets of

all vintages dated at t and earlier; i.e. Ωt = {Yt, Yt−1, Yt−2, ...}. It is worth noting that
the time-(t + 1) measure of a variable is simply the time-t measure plus the revision;

i.e. t+1yt−1 = tyt−1 + (t+1yt−1 −t yt−1). Hence, the full information set grows with the
4In the US, for example, the first release of output data provides an indication of output levels in the

previous quarter. The subsequent releases provide progressively more information, and the July release

in each year provides the most definitive statement of output over the previous year.
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addition of successive vintages of datasets by including the news on the output level in the

previous period (the ‘first release’ of information on the output level in that period) and the

revisions on the output series in previous periods; i.e. Ωt+1 = Ωt∪{t+1yt, (t+1yt−1−t yt−1),
(t+1yt−2−tyt−2), ...}.5 Finally, turning to the output trend, we note that there are a variety
of methods employed in the literature to obtain measures of the output trend at time t.

Some of these make use of data that becomes available both before and after time t, so

that care also needs to be exercised in describing the information set on which the trend

measure is based. Specifically, writing the trend output level at time t − j by eyt−j, we
denote the measure of trend output at time t − j that is calculated using method k on
the basis of an information set available at time t, say Ωt, by eykt−j|Ωt.
In OvN, attention is focused on the differences between ‘real time’ measures of the

output gap based on successive vintages of output data and ‘final’ measures obtained

from the last available vintage of data. Hence the comparison is between the real time

measure of the gap xrot = t+1yt − eyot |Yt+1 and the final measure xfot = Tyt − eyot |YT , where
t = 1, ..., T − 1, and the ‘o’ superscript denotes the HP filter method used by OvN. OvN
also consider a ‘quasi-real’ estimate, xqot = Tyt − eyot |YT,t, in which the time-T measure
of output at time t is compared to a trend measure obtained on the basis of a subset

of YT ; namely YT,t = {Tyt, Tyt−1, Tyt−2, ...}, t < T . Evaluating the differences between

the quasi-real measure of the output gap xqot and the real time measure xrot isolates the

changes in the gap measures arising from the revision of the trend measure in the light

of subsequent data. OvN find this element to be significant but relatively small, and it is

argued that it is the addition of new points to the sample, which causes eyot |YT to deviate
from eyot |YT,t, that explains much of the difference between the real time and final measures
of the output gap.

OvN’s three measures of the output gap highlight the different effects of revisions in

published data and of differences in the use of information. But their decomposition is

5Realistically, the measurement of output at a particular time will be revised for some time, say p

periods, after which no ‘news’ becomes available on this output level and measured output will remain

unchanged. Full information therefore consists of the first release of the output level measurement plus

the p subsequent revisions.
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potentially misleading. For example, MKN show that the HP filter has very poor prop-

erties in estimating the trend component of the end-point of a series, with the estimation

variance upto 40 times that of the error inherent in the series in some circumstances (see

also Baxter and King (1999), or St-Amant and van Norden (1998)). So, even if is de-

cided to focus only on the vintage-t dataset in determining the trend output measure, it

is important to take appropriate account of all the information available in that dataset,

including its implications for expected future values of the series, to try to mitigate the

end-of-sample effect. OvN’s chosen method of calculating the HP filter does not do this so

that comparison of the quasi real and final measures do not reflect accurately the impact

of the effect of changes in the trend measure over time.6 Moreover, focusing on vintage-t

data without reference to the revisions that have taken place in previous periods’ data

potentially overstates the effects of changes in the published data in time t, since these

revisions might have been anticipated. The conclusion, then, is that all information avail-

able at time t should be employed in constructing an output gap measure in real time,

with particular attention payed to forecasts of future values of the output series. The

appropriate modelling framework for accommodating all information is described in the

section below, and this is then used to explain how forecasts can be used to eliminate the

end-of-sample problems associated with the HP filter.

2.1 A Joint Model of Actual and Revised Output Series

In order to make use of the full information available, the real time measures of output

should be modelled alongside the “actual”, realised value of output, taking into account

the revision process as well as the underlying output process.7 In most of this section, we

assume for illustrative purposes that data is revised just once after its initial release, so

that we can model the two processes jointly in a bivariate VAR. However, we note also

6As we discuss below, forecasts of future values of the series (obtained in real time), can be used to

supplement the vintage-t data and ‘extend’ the series beyond the end-of-sample. The ‘mid-sample’ trend

estimate obtained for time t in this way is clearly more comparable to OvN’s final measure than the trend

underlying the quasi-real output gap.

7See also Howery (1978) and Diebold and Rudebusch (1991).
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that if revisions continue upto q periods after the first release of data, then a VAR of size

q + 1 would be required to model the processes adequately, and we illustrate this more

general case too.

Our modelling approach assumes first that actual output is first-difference stationary.

This means that, if data on output is released with a one period delay and the actual out-

put is observed with the revision after one further period, (tyt−2 −t−1 yt−3) is stationary.
The approach also assumes that measurement errors (i.e. revisions) are also station-

ary. The first of these assumptions is supported by considerable empirical evidence,8 and

the latter is eminently reasonable. Under these assumptions, any linear combination of

these two series can be modelled in a bivariate VAR.9 Hence, the output growth measure

(tyt−1 −t−1 yt−2) and the data revision series have the following joint fundamental Wold
representation:  tyt−1 −t−1 yt−2

tyt−2 −t−1 yt−2

 =
α1
α2

+A(L)
²t
ξt

 (2.1)

Here, α1 is mean output growth (measured by ‘first-release’ data), α2 is the mean value

of the revisions, A(L) =
P∞
j=0Aj(L), where the {Aj} are 2 × 2 matrices of parameters,

assumed to be absolutely summable, and L is the lag-operator. Also, ²t and ξt are mean

zero, stationary innovations, with non-singular covariance matrix Ψ = ψjk, j, k = 1, 2.

The model in (2.1) emphasises the point that the chosen measure of output growth at time

t− 1 and the revision of the measure of output at time t− 2 between t− 1 and t are both
revealed at time t. For notational convenience, in what follows we write α = (α1,α2)

0,

where α2 = 0 if there is no bias in the measurement error.

The general model in (2.1) can be expressed in various different ways. For exam-

ple, assume that A−1(L) can be approximated by the lag polynomial A−1(L) = B0 +

B1L+ ..+Bp−1Lp−1, where B0= I2 without loss of generality. In this case, (2.1) can be

8See, for example, Murray and Nelson (2000) and Pappell and Prodan (2004).
9For example, output growth measured by the change in the ‘first-release’ output level, (tyt−1−

t−1yt−2), can be written in terms of actual growth and the relevant revisions and so is itself station-

ary; i.e. (tyt−1− t−1yt−2) = (t+1yt−1 −t yt−2) + (tyt−1− t+1yt−1)− (t−1yt−2− tyt−2).
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rewritten to obtain the AR representation tyt−1 −t−1 yt−2
tyt−2 −t−1 yt−2

 = a−B1
 t−1yt−2 −t−2 yt−3
t−1yt−3 −t−2 yt−3

− · · ·−Bp−1
 t−p+1yt−p −t−p yt−p−1
t−p+1yt−p−1 −t−p yt−p−1

+
²t
ξt


(2.2)

and hence tyt−1

tyt−2

 = a+Φ1

 t−1yt−2

t−1yt−3

+Φ2

 t−2yt−3

t−2yt−4

+ · · ·+Φp

 t−pyt−p−1

t−pyt−p−2

+
²t
ξt


(2.3)

where a = A−1(1)α,

Φj = Bj−1

1 0

1 0

−Bj for j = 1, ..., p− 1, and Φp = Bp−1

1 0

1 0

 .
Seen in the context of (2.3), the vector of errors (²t, ξt)

0 has a clear interpretation: ²t is the

“news on output level in time t− 1 contained in the first-release data becoming available
at time t”; and ξt is the “news on the level of output in time t−2 contained in the revised
data becoming available at time t”.

Alternatively, manipulation of (2.3) also provides the VECM representation explain-

ing the changes in the first release measures and the change in output realisations,

[∆tyt−1, ∆tyt−2] where ∆ = (1−L) is the difference operator. As shown in the Appendix,
the VECM representation includes the lagged value of ( tyt−1− tyt−2) as a regressor since

these two series are cointegrated, with cointegrating vector β0 = [1,−1]. This property
holds because revisions are taken to be stationary in this model, so that first-release and

actual output levels are cointegrated by assumption.10 Note that the model at (2.1), and

its equivalent forms, are quite general and have no implications for the nature of the

measurement error other than it is stationary. However, the assumption that real time

measures are unbiased (in the sense that measurement errors have no systematic content)

can be accommodated in the model through the imposition of restrictions. If first-release

measures are unbiased, we would have tyt−2 =t−1 yt−2 + ξt so that, in (2.3), the second

row of Φ1 =
µ
1 0

¶
, and the second row of Φj =

µ
0 0

¶
, j = 2, ..., p.

10The VECM representation also has implications for the corresponding MA representation in first

differences; see Appendix for details.

[7]



Finally here, we note that the above models can be readily extended when the revision

process extends beyond just one period. Hence, for example, if quarterly data continues to

be revised for upto a year, then the data requires a four-variable VAR to capture the joint

determination of the first-release output series and the three successive revisions. Hence,

the model that will accommodate the news on output levels contained in the first-release

data (²t) and in all the revised data becoming available at time t on the previous periods

(ξ1t, ξ2t, ξ3t) can be written in a form corresponding to (2.2),

tyt−1 −t−1 yt−2
tyt−2 −t−1 yt−2
tyt−3 −t−1 yt−3
tyt−4 −t−1 yt−4


= a−B1



t−1yt−2 −t−2 yt−3
t−1yt−3 −t−2 yt−3
t−1yt−4 −t−2 yt−4
t−1yt−5 −t−2 yt−5


− · · ·

−Bp−1



t−p+1yt−p −t−p yt−p−1
t−p+1yt−p−1 −t−p yt−p−1
t−p+1yt−p−2 −t−p yt−p−2
t−p+1yt−p−3 −t−p yt−p−3


+



²t

ξ1t

ξ2t

ξ3t


.(2.4)

This can be rewritten in levels form, in VECM form and in MA form exactly as in (2.3)

and the models of the Appendix.

2.2 Measuring Trend Output and the Output Gap

Estimates of the bivariate or multivariate models derived above can be used to generate

forecasts of the output series infinitely into the future and, in this section, we argue

that these can be usefully applied in the measurement of the output trend using the HP

filter. To motivate this procedure, recall that the HP filter is an additive decomposition

yt = eyt + xt where eyt is identified as a growth (trend) component and xt as a cyclical
component. The HP filter is an exponentially weighted moving average filter, and is two-

sided symmetric in the sense that it uses both past and future observations with equal

importance in order to decompose any one observation in a series. The HP filter has

the desirable property that it is optimal, in the expected squared error sense, for data

[8]



generating processes of the form

(1− L)2eyt = A(L)εt ; xt = A(L)ut (2.5)

A(L) =
∞X
j=0

ajL
j ;

∞X
j=0

a2j <∞

where εt and ut are mutually stochastically uncorrelated white noise processes (i.e. E(εtus) =

0 ∀t, s), and where their variance ratio is

λ =
·
σu
σε

¸2
, (2.6)

with λ being the value of the ‘smoothness’ parameter.11. Moreover, although the opti-

mality conditions (2.5) to (2.6) are expressed in terms of unobserved components, MKN

show that all ARIMA(p, 2, q) models that can be fitted to the observed series yt can be

expressed in this framework. In particular, this holds true for all possible ARIMA(p, 1, q)

models, with A(L) in (2.5) involving a unit moving average root, so that the series and its

trend component are I(1). Here, if yt is an ARIMA(p, 1, q), then eyt is ARIMA(p+2, 1, q)
and xt is ARMA(p+ 2, q + 1).

However, an important feature of the HP filter is that, when we have a finite series, the

optimality properties only hold for the mid-point of the series. As we move towards the

end of the series, the HP filter becomes increasingly one-sided, and for the last observation

of the series, the filter is completely one-sided. MKN note that, while the filter continues

to provide an unbiased estimate of the quantity xt at the endpoints of a finite series, the

estimates are inefficient. They illustrate the extent of the inefficiency by comparing the

estimated HP trend measures with the actual trends present in a variety of simulated series

obtained using different trend and cycle specifications. In particular, MKN note Burman’s

(1980) suggestion for addressing the inefficiency issue by augmenting the observed series

with optimal linear forecasts and demonstrate, through their simulation exercises, that

the application of the HP filter to the augmented series provides an estimate of the end-

of-sample observation which is optimal. Indeed, by augmenting a series by its univariate

forecast, the standard deviation of the estimation error for the cyclical component is

11This parameter is conventionally set to 1600 for quarterly data, following a suggestion by Hodrick

and Prescott (1997), made on somewhat arbitrary grounds.
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reduced by upto half (relative to the standard application of the HP filter) in their various

simulations.12

The clear implication of these results is that the output gap should be calculated using

a trend obtained by applying the HP filter to the forecast-augmented output series. For

the series described in the previous section, the model at (2.1), or its equivalent forms

in (2.2) or (2.3), can provide the vehicle for generating these forecasts. Forecasts of the

output series t+1yt, t+2yt+1, t+3yt+2,... could be generated using a univariate model of the

vintage-t data, but this will generally be less efficient than that provided by the bivariate

model of (2.1) which uses all the information available.13 We shall denote the end-of-

sample trend measure obtained by applying the HP filter to the output series augmented

by forecasts from the univariate model obtained using vintage-t data by eyut−1|Yt and the
corresponding measure obtained using the bivariate model of (2.1) by eymt−1|Ωt, where the
‘u’ and ‘m’ superscripts indicates the use of forecast-augmentations, suggested in MKN,

based on univariate and multivariate models respectively.

The application of the HP filter to forecast-augmented series not only improves the

statistical properties of the derived series, but it also provides an interpretation of the

trend that the traditional HP trend does not have and helps reconcile the use of the HP

trend with those who prefer to use Beveridge-Nelson (BN) trends. Specifically, the BN

trend obtained from a time series analysis of output measures the infinite-horizon effect

of shocks on the series. Since this trend measure shows the permanent long-run effect of

a shock to output, the BN trend is often interpreted as ‘potential’ output since this is the

level to which the economy will converge in the absence of any further shocks. However,

while this measure has an intuitively reasonable interpretation, it has the disadvantage

that it does not pay attention to the dynamic path that is taken by the output series

12MKN also note that the HP filter is often used in contexts where there is no assumed underlying ‘true’

trend and cycle measures of the form (2.5) or indeed any other form. They comment that the reliability

of a trend measure can be assessed in these circumstances if a measure based on a sample of data 1, .., T is

revised as little as possible in the light of subsequent observations; this matches the discussion of OvN on

the comparison of their ‘quasi real’ and ‘final’ trend estimates. MKN confirm through their simulations

that these revisions are indeed minimised when the HP filter is applied to the forecast-augmented series.

13The exception is when the real time measures are unbiased as discussed in the earlier footnote.
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as it moves to its infinite-horizon forecast. This means that the BN trend may be even

more volatile than the actual output series itself (especially if it is based on a simple

autoregressive model of the output series) and it is often argued that this reduces the

usefulness of the trend in the context of measures of the output gap for monetary policy

or business cycle analysis. This is clearly not the case for the trend obtained from the

forecast-augmented HP filter, eymt−1|Ωt, which will display the smoothness typically desired
of a trend measure to be used as a measure of the business cycle or output gap. Further

the forecast-augmented HP filter series is reconciled with the BN trend since forecasts

of future values of eymt−1|Ωt will, by construction, themselves converge towards the output
level forecast at the infinite-horizon. The proposed measure therefore has the smoothness

properties and, at the long horizon, it can be interpreted as a potential output series.

2.3 Conveying the Uncertainty Surrounding the Output Gap Measures

In practice, decision-makers faced with the complete set of vintages of data upto and

including that at time T are concerned with obtaining a measure of the output gap for

the end-of-sample period (and possibly into the future). In some cases, attention focuses

simply on whether the gap is positive or negative, but in any case it is the time-T (and

future) magnitudes that matter in real time decision-making. Here, assuming again that

data is released with a one period delay and there is a single revision made, this means

decision-makers are interested in forecasts of xfmT =T+2 yT−eymT |ΩT+H . Hence, the relevant
output level to be forecast is T+2yT , the time-T output level that will be observed in T+2,

taking into account the one period delay in the release of data and after any revisions in the

data have been fully taken into account. And the relevant trend measure to be forecast is

that obtained on the basis of an information set that is available at some forecast horizon

well into the future (at T+H) so that there are no end-of sample problems for the measure

at T .

We can obtain point forecasts of this magnitude relatively easily: the point forecast of

T+2yT is obtained straightforwardly from the bivariate model of (2.2) based on ΩT ; and

the forecast of eymT |ΩT+H , based on ΩT , is simply the period-T observation of eymT |ΩT .14 But
14This follows because the measure eymT |ΩT is itself based on forecast values of the future unrevised and

[11]



the point forecast of the gap obviously does not convey the uncertainty associated with

the output gap measure, and this is potentially significant here given that forecasts of the

revised and unrevised series are used in various different ways in the construction of the

measure. So, using the information set ΩT at time T for example, there will be uncertainty

associated with the output gap measure at time T −2 because of the uncertainty over the
values of output beyond T and, hence, over the measure of the trend (this is due to the

end-of-sample problem which is reduced by the forecast augmentation but not eliminated).

This uncertainty is compounded in the measure dated at T − 1 by the forecast revisions
that will be made to the first-release data on TyT−1 and then further compounded at T

and beyond as the unrevised output series and revisions are subsequently forecasted.

It is important, therefore, that any output gap measure is supplemented with infor-

mation on the uncertainties associated with the measure. Indeed, as noted above, it is

frequently the case that interest focuses not on the size of the output gap but rather on its

sign (i.e. whether it is positive or negative). This reflects the fact that decision-makers’

objective functions are often concerned with ‘booms’ and ‘recessions’ (irrespective of their

size) and that these episodes are not valued symmetrically (so that the costs incurred

during a recession might outweigh the benefits experienced in boom, say). In these cir-

cumstances, the decision-maker requires the entire probability distribution function (pdf)

of the estimated output gap measure, rather than its point forecast, or at least an explicit

forecast of the probability that the output gap will exceed or fall below zero.15

The calculation of probability forecasts and pdf’s of this sort is relatively unusual in

economics (where uncertainty is typically conveyed, if at all, by the reporting of confidence

intervals). But the methods are relatively straightforward to implement and are described

in Garratt et al. (2003). For example, abstracting from parameter uncertainty for the time

being, to calculate the pdf associated with the forecast of xfmT = T+2yT − eymT |ΩT+H , one
revised series and in the absense of any additional information, the value of the updated series expected to

be observed in T+H is unchanged from that measured in period T (cf. the Law of Iterated Expectations)
15There is widespread recognition that the design of optimal monetary policy must take into account

the various forms of uncertainties faced by the monetary authorities, including those involving imperfect

information about the current state of the economy as well as future developments. See, for example,

Svensson (2001, 2002).
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would use the estimated model of (2.2) to generate R replications of the future vintages of

data, denoted bY (r)T+h for h = 1, ..., H and r = 1, ..., R. These include values of T+2+hby(r)T+h,
h = 0, 1, 2, ..., H−2, on which the trend measure eym(r)T |Ω(r)T+H can be based. The simulated
distribution of bxfm(r)T = T+2by(r)T − eym(r)T |Ω(r)T+H obtained in this way provides the pdf of the
output gap measure directly, while counting the number of times an event occurs in these

simulations provides a forecast of the probability that the event will occur; the fraction

of the simulations in which bxfm(r)T > 0 provides an estimate of the forecast probability

that the time-T output gap is positive, for example. Extending the simulation exercise

to accommodate parameter uncertainty is relatively straightforward (see Garratt et al.

(2003) for more details), so that a complete characterisation of the uncertainty surrounding

the output gap measure can be obtained.16

3 Output Gaps in the US

The methods described above are applied to the vintages of US output data provided by

the Federal Reserve Bank of Philadelphia at http//www.phil.frb.org/econ/forecast/index.html..

This dataset includes 157 vintages of data; the first vintage is dated 1965q4 and the final

vintage is dated 2004q4. All vintages of data run from 1947q1 upto one period prior to

the release date; i.e. Yt = {ty1947q1, ...,t yt−1}, t = 1965q4, ...2004q4.
The first exercise undertaken on this data aims to investigate the gains from using

the forecast augmented HP filter approach to defining the trend. In the first instance, we

follow OvN and consider the successive vintages of data, applying the HP filter, to derive

the ‘real-time measure’ eyot |Yt+1, t = 1965q4, ...2004q3 as the end-of-sample observation of
the trend in each recursion. We compare this with the ‘quasi real’ measure eyot |YT,t, also
derived recursively, and the ‘final’ measure eyot |YT . We also derive the corresponding trends
16In this exercise, we restrict attention to the forecast-augmented HP filter as a measure of the trend.

But alternative measures of the trend exist and, in principle, these could be calculated in each of the

simulation exercises also to provide alternative gap measures. If the ‘reasonableness’ of the alternative

approaches to measuring the trend could be captured by appropriate weights, these various sets of simu-

lations could be pooled to provide density functions for the gap measures, and event probability forecasts,

that accommodate stochastic uncertainty, parameter uncertainty, and the uncertainties associated with

the appropriate measure of trend.
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based on data augmented by forecasts. The forecasts are based on eighth-order univariate

autoregressions explaining (tyt−1− tyt−2); an eighth-order autoregression is applied to

ensure there is no serial correlation in the residuals.17

Figure 1 shows the output gaps considered by OvN, namely xrot = (t+1yt − eyot |Yt+1),
xqot = (Tyt − eyot |YT,t) and xfot = (Tyt − eyot |YT ), for t = 1965q3, ..., 2004q3, and T = 2004q4,
and illustrates the considerable differences arising out of data revisions and the end-of-

sample effects on the underlying trends. Table 1 shows that the correlation between the

real time and final measures of OvN is just 0.526, and the two measures agree on whether

output growth is above or below trend in only 63% of the sample period. These figures

rise to 0.628 and 69% respectively when the comparison is between the quasi real time

and final measures (abstracting from effects of data revision) but the figures are clearly

still not high. Taking the final measure xfot as the best indicator of the true output gap

available to OvN, it is the poor performance of the xrot and xqot measures to reflect the

true output gap that is the basis of OvN’s conclusion that real time measures of the gap

are unreliable.

Table 1 also describes the effect of employing the forecast-augmentation method of

calculating the trends on the three gap measures. This has a substantial impact on the

variability of the output gap series, cutting the standard deviation and range of values

for the real time measure by around 30% and by nearer 40% in the case of the quasi-real

measure (this reduction in variability is clearly illustrated in Figure 2). This illustrates

that the forecast-augmentation is having a considerable impact on the trend measure

as the estimation error variance associated with the application of the HP filter at the

end-of-sample is reduced. The effect is to raise the correlation between the final measure

xfut and the real and quasi real measures to 0.77 and 0.78 respectively, and agreement

on the occurrence of booms and recessions rise to 83% and 81% respectively also. The

improvement in reliability using the forecast-augmentation method is pronounced and

shows that the augmentation should be applied in output gap measures. However, they

remain far from perfect, and it is clear that output gap measures obtained in real time

17Details of regressions, and diagnostic tests relating to the order of integration of the output and

revision series, are not presented for space considerations but are available from the authors on request.
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need to be treated with caution and the uncertainties on their measurement appropriately

taken into account.

Next, we turn to the multivariate analysis of the output growth and revision processes

together, considering whether there are systematic patterns in the data revisions that

underlie the successive vintages of data that are released and the extent to which a model

of the output growth data is enhanced by modelling the measured output growth and

revisions data jointly. To do this, we need to choose the lag length p in the multivariate

model in (2.4) and the length of the “revision horizon” (after which revisions are un-

systematic and insignificant). The maximum lag length we consider is p = 4 and the

maximum length of the revision horizon we consider is 3, as in (2.4). It turns out that

the data is described adequately if we allow for a revision horizon of two quarters and

lags in the VAR of order 2. To demonstrate this, Table 2 provides estimates of (2.4)

obtained using the entire data upto and including Y2004q4.
18 The Table shows that a revi-

sion horizon of 2 is sufficient to capture systematic elements in the revision process, since

none of the variables in the fourth column, explaining time-t revisions of data at t − 4
are individually or jointly statistically significant. And the Table also provides variable

exclusion tests, denoted χ2LM(10), showing that the third and fourth lags of the first three

variables in our system and all four lags of the fourth can be safely dropped from the

regressions without violating the data. Moreover, it is apparent that the joint modelling

of the growth series and the revisions is a useful approach. Both the lagged growth series

and the lagged revisions contribute significantly to the explanation of the time-t growth

(tyt−1 −t−1 yt−2), meaning that the univariate model is misspecified, and there are very
significant systematic elements in the revisions (tyt−2−t−1 yt−2) and (tyt−3−t−1 yt−3).19 We
are confident, therefore, that the multivariate model of growth and revision is appropriate

and will provide more accuracy in the forecasts of future output on which to base the

trends and output gap measures.

18In fact, we conducted this exercise recursively on the full information set, Ωt , consisting of all of the

vintages of data upto and including Yt, for t = 1965q4, .., 2004q4. Although we only report the results of

the 2004q4 analysis, qualitatively similar results were obtained throughout.

19Similar systemmatic elements are found in Swanson et al. (1999).

[15]



The regression analysis shows that the first two revisions (tyt−2−t−1yt−2) and (tyt−3−t−1
yt−3) contain systematic elements but that (tyt−4−t−1yt−4) does not. In this sense, tyt−3 is
the first measure of the ‘true’ output level in time t−3 and in practice the measure of the
output gap based on ‘true’ data that is available at time T , using the forecast-augmented

technique based on our preferred multivariate model, is given by xfmt = Tyt − eymt |ΩT
, t = 1, ..., T − 3. Table 3 provides summary statistics relating to this series, and the
corresponding real time measure obtained applying the procedure recursively over time,

xrmt , for our data upto 2004q1 (i.e. for T = 2004q4). These figures show that the

advantages of the forecast-augmentation remain, with a correlation between the real time

measure and the final measure of 0.80 and agreement on booms and recessions in 83% of

the sample.

The Table also presents corresponding statistics based on an ‘adjusted’ dataset in

which revisions relating to data one year earlier (i.e. after two revisions) are assumed to

be zero; i.e. tyt−4−k = t−syt−4−k, k = 0, 1, 2, ...for all s = 1, 2, .... Of course, this is a more

severe assumption than that these revisions are unsystematic, as shown in the data. But

the assumption effectively means that, in order to calculate the output gap at any point

in time, one requires just the three most recent vintages of data (not every vintage of

data)20 which will be most useful for the practical implementation of the methods. The

correlation coefficients in the Table show that this simplification has a relatively minor

impact on the series: correlations between the unadjusted and adjusted series are 0.95

and 0.93 for xrmt and xfmt respectively (with agreement on booms and recessions in 91%

and 93% of the sample). Given the practical advantages of the adjusted series in terms

of their data requirements, these represent our preferred measures of the output gap and

these series are presented in Figure 3 (xfmt representing the best measure of the output

gap that we have available to us, given the information set in 2004q4, and xrmt represents

the corresponding measures that would have been produced in real time).21 This figure

illustrates clearly the advantages of applying our methods for estimating the output gap

20Since the older vintages are assumed to be truncated versions of the most recent data; i.e. YT−3 =

YT,T−4, YT−4 = YT,T−5, and so on.
21It is also the adjusted measures on which we concentrate in the section below.
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which show a relatively close correspondence between the real time and final measures

over the whole period.

4 Representing the Output Gap under Uncertainty

The analysis above shows that the uncertainty surrounding the output gap measure can

be reduced through the appropriate use of forecast-augmented data, and that the fore-

casts are best calculated using a multivariate model that describes the measured output

growth series and data revisions jointly. Nonetheless, it shows that the unreliability of the

measures highlighted by OvN remains and, as argued earlier, it is therefore important that

the uncertainties surrounding the measure are properly represented for decision-making

purposes.

Figure 4 illustrates the order of magnitude of the uncertainties involved using the

information set available at 2002q2. The end period was chosen to be 2002q2 to leave

ten periods, to 2004q4, for the purpose of “out-of-sample” forecast evaluation. As we

see from the solid line, analysis undertaken in 2002q2 would show the measured output

gap rising above zero in early 1997, peaking in 2000q2 at close to 2%, before falling

to -1.3% in 2001q3. These gap measures relate to periods when ‘true’ output data is

available (i.e. data that will not be subsequently revised given our finding that revisions

continue for only two periods) and so the uncertainty surrounding these figures arises

from the estimation error in the underlying trend measure only. The 95% confidence

intervals plotted in the Figure lie approximately ±0.3% around the point forecast in 1997,
rising to ±0.7% in 2000q2 and ±1.9% in 2001q3 reflecting the uncertainties associated

with the trend measure as we move towards the end of the sample.22 As it turns out,

the measured output gap falls further in 2001q4 before reversing direction in 2002q1 (to

−1.7% and −1.1%). Although these measures are informed by data on y2001q4 and y2002q1
published in 2002q2, it is recognised that these figures will be revised in the coming

22These intervals are generated by the simulation methods discussed in Section 2.3 and relate to the

stochastic and parameter uncertainty surrounding the measures. Abstracting from parameter uncertainty,

by undertaking simulations taking into account stochastic uncertainty only, generates slightly tighter but

very similar confidence intervals.
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periods, and the gap measures are subject to the additional uncertainties associated with

the forecasts of these revisions. The 95% confidence intervals widen to ±2.4% at this time
therefore, and then widen still further to around ±3% over the following two years as the
gap estimates rely more comprehensively on forecasts of out-of-sample output levels and

trend levels. The (considerable) uncertainty associated with the forecast of the gap at this

horizon reflects the unconditional variability in the output gap observed over the sample

(as illustrated in Figure 3).

Figure 4 shows that the output gap measures based on information at 2002q2 remain

negative but, having reached its minimum level in 2001q4, the gap measure tends to zero

by 2003q4. As noted previously, the gap tends to zero by construction, but the speed of

adjustment reflects the dynamics of the underlying model of Table 2 and the smoothing

properties of the HP filter. The figure indicates that, starting from a position of around

-1.5%, an investigator would have expected the impact of shocks to output to be fully

worked through, and actual and trend output to reach their ‘potential’ level, within two

years. As it turned out, however, the negative output gap persisted for some time. Figure

4 also plots, with the dashed line, the output gap measures obtained on the basis of the

information available in 2004q4, xfmt |Ω2004q4. These show that 2001q4 was not in fact a
turning point for the output gap, defining a turning point to occur when two periods of

negative growth is followed by two periods of positive growth (or vice versa), and that the

recovery began rather later, in 2003q1. Hence, the model performs relatively well, both

in terms of the point forecast (the xfmt |Ω2004q4 all lie well within the confidence intervals
obtained on the analysis of the 2002q2 data) and in terms of forecasting recession. But

policy prescription based on the point forecasts alone would have misjudged the extent

and duration of the recession over the following two year period.

The results of Figure 4, and associated confidence intervals, give a good indication

of the likely size of the output gap within the sample, at the end of the sample and at

various forecast horizons, but the information is not presented in the most useful way

from a decision-maker’s perspective. This information can be conveyed more usefully

and more directly through the corresponding probability distribution functions showing

prob(xfm2002q2+h|Ω2002q2 < c) for a range of critical values c at at various estimated horizons,
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h. Figure 5 shows such density functions for h = −3, 0 and 4, again taking into account
stochastic and parameter uncertainty. The functions shift to the right over time, reflecting

the rising value of the point forecast, and show, for example, that the probability of an

output gap less than zero is 0.93 in 2001q3, 0.72 in 2002q2 and 0.55 in 2003q2. The

density functions are relatively steep in 2001q3, showing that there is relatively little

uncertainty on the measure at that time, but become progressively flatter at 2002q2

and 2003q2 reflecting the accumulating uncertainty at the end-of-sample and into the

forecasting horizons. The density functions of Figure 5 convey information on the output

gap in precisely the form that is required by most decision-makers whose objectives are

influenced by the expected output gap. Only in the special case where decision-makers face

constraints that are linear in the output gap and pursue objectives that are quadratic in

the output gap (the ‘LQ’ case) will attention focus on the point forecasts. More generally,

decision-makers will require to maximise complex objective functions and the solution

will require the entire density function describing the likely output gap outcomes. The

unreliability of the output gap measures noted by OvN and characterised in the previous

section does not mean that measures of the output gap cannot be used. Rather, it means

that the decision problem needs to be fully-specified, possibly including statements on the

risks involved in decisions as well as possibly non-linear objective functions, and evaluated

in the light of the various states of nature that might be faced. The density functions of

the type presented in Figure 5 provide precisely this information.

One important example of nonlinearities in objectives arises when decision-makers are

concerned with the sign or rate of change of the output gap rather than the size. The

emphasis in the media on ‘booms’ and ‘recessions’ reflects these ideas, indicating that may

be a sharp difference in the consequences of a positive output gap compared to a negative

one, irrespective of the size of the gap, or that attention should focus on the rate of change

of the output gap, irrespective of its size or sign. Certainly there is a view that monetary

authorities do not treat positive and negative output gaps symmetrically, reacting more

strongly to the inflationary pressures associated with a positive output gap than they

do to the recessionary pressures associated with a negative output gap. And there is

an argument that policy-makers are concerned with whether conditions are improving or
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deteriorating, with the gap rising or falling (see Walsh (2003), for example).

If these arguments are important, then there are particular events that are relevant

to decision-makers and direct statements on the likely occurrence of these events will be

more helpful to decision-makers than the point forecasts of the output gap and associated

confidence intervals of Figure 4. Specifically, if interest focuses on the sign of the gap,

then prob(xfmt |ΩT > 0) is a key statistic for decision-makers, and the evolution of this

statistic over time might provide a useful indicator of inflationary pressure. This indica-

tor is provided in Figure 6a, again based on the data available in 2002q2, and plotting

prob(xfm2002q2+h|Ω2002q2 > 0) for h = −3,−2,−1, 0, 1, 2, .... The probability starts at less
than 0.1 in 2001q3, reflecting the fact that the point forecast of the gap starts low at

-1.3% and that there is relatively little uncertainty because this figure relates to output

data that is not going to be revised. Nevertheless, the probability of a positive output

gap is still non-zero as there remains uncertainty about the underlying trend even at this

stage. The probability remains low through to 2002q2, but rises to 0.5 as the output level

is forecast to converge on its trend.

Equally, if interest focuses on whether the gap is rising or falling, then decision-makers

will focus on the likelihood of a turning point in the data. Taking it as given that the

output gap peaked in 2000q2, and defining a turning point as two consecutive periods

of positive growth following two consecutive periods of negative growth (or vice versa),

decision-makers would be interested in establishing the likelihood of an upturn in time

t given by prob(A) where A = {
h
xfmt−2|ΩT > xfmt−1|ΩT

i
∩ [xfmt−1|ΩT > xfmt |ΩT ] ∩ [xfmt |ΩT <

xfmt+1|ΩT ] ∩ [xfmt+1|ΩT < xfmt+2|ΩT0]}. This probability, based again on information available
in T = 2002q2, is presented in Figure 6b. We noted earlier in the discussion of Figure 4

that, based on information available in 2002q2, the point forecasts of the gap indicated

that a turning point had been experienced in 2001q4 although in fact, based on infor-

mation available in 2004q4, the recovery started later in 2003q1. Figure 6b reflects the

uncertainties surrounding the statements on turning points much more precisely and in-

formatively, showing that the probability that an upturn was experienced in 2001q4 was

estimated to be 0.64.23 Given that the probability exceeds 0.5, the investigator’s best

23The probability was zero until 2001q2 and 0.18 in 2001q3.
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guess would be that the upturn had occurred, therefore, but there is considerable uncer-

tainty associated with this view. The probability that an upturn will have happened by

2003q1 (when the upturn did occur) is estimated to be 0.80.

Obviously these probability measures correspond to the point forecasts described above

in Figure 4, and which turned out to be incorrect in terms of the size and duration of the

recession. But, because they are expressed in probabilistic terms, rather than as point

forecasts, they convey much more accurately the strength of conviction with which the

forecasts are held and will be much more directly useful for those whose interest is in the

occurrence of booms and recessions.

5 Conclusions

The analysis of this paper starts from the point that output gap measures are an essential

element of many decisions but that they are measured with considerable uncertainty both

because of the imprecision of the output data that they face at the time decisions have to

be made and because of the difficulties in establishing a precise measure of trend output.

We have argued that these uncertainties can be mitigated by modelling the output process

alongside the revision process, making use of forecasts of future output levels, to obtain

more precisely estimated measures of the gap for use in real time decision-making. But

the uncertainties surrounding the measures, correctly identified as important by OvN and

others, remain and are substantial. We have also argued, therefore, that the production of

forecasts of probabilities of events involving the gap convey the information on the level

of the gap and the uncertainties associated with this measure more precisely than the

point forecasts and confidence intervals typically delivered by analysts. The cumulative

distribution functions that we have presented, along with the estimated probabilities of

positive gap measures and of turning points in the gap, provide a very informative and

helpful means of representing the output gap data for use by decision-makers.
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6 Appendix

Manipulation of (2.3) in the text provides the VECM representation ∆tyt−1

∆tyt−2

 = a+ Γ0

 t−1yt−2

t−1yt−3

+ pX
j=1

Γj

 ∆t−j+1yt−j

∆t−j+1yt−j−1

+
²t
ξt

 (6.7)

where

Γ0 = −(I2 −Φ1 −Φ2 − · · ·−Φp) = −Φ(1)
Γj = −(Φj+1 +Φj+2 + · · ·+Φp) j = 1, 2, ..., p− 1

Given the form of the Φi described in (2.3), it is easily shown that Γ0 takes the form

Γ0 =

−k1 k1

−k2 k2

 =
−k1
−k2

 ·1 −1¸ (6.8)

where k1 and k2 are functions of the elements of the Bj, j = 0, 1, .., p−1. Hence, the model
at (2.1) can be written in a VECM form where Γ0 = αβ0and α0 = [−k1,−k2] contains
the parameters determining the speed of adjustment to equilibrium and β0 = [1,−1] is
the cointegrating vector. The form of the cointegrating vector captures the assumption

that revision errors are stationary through the inclusion of the error correction term

β0 [t−1yt−2,t−1 yt−3]
0 =t−1 yt−2 −t−1 yt−3.

A final alternative for describing the model is the MA representation obtained through

recursive substitution of (2.3): ∆tyt−1

∆tyt−2

 = b+C(L)
²t
ξt

 (6.9)

where b = C(1)a, C(L) =
P∞
j=0Cj(L), C0 = I2, C1 = Φ1 − I2 and Ci = Pp

j=0Ci−jΦj,

i > 1, Ci = 0, i < 0. As is well known, following Engle and Granger (1987), the presence

of a cointegrating relationship between the tyt−1 and t−1yt−2 imposes restrictions on the

parameters of C(L); namely, β0C(1) = 0. Further, given that β0 = [1,−1], this ensures
that C(1) takes the form

C(1) =

k3 k4

k3 k4

 (6.10)

for scalars k3and k4.
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Table 1: Univariate Output Gap Measures: 1965q3 — 2004q3

xrot xqot xfot xrut xqut xfut

Mean -0.002 0.007 0.001 -0.005 -0.003 0.001

SD 0.018 0.020 0.016 0.013 0.012 0.016

Min -0.066 -0.042 -0.047 -0.055 -0.031 -0.047

Max 0.038 0.052 0.038 0.016 0.024 0.038

xrot 1.000 0.928 0.526 0.833 0.822 0.520

xqot 0.847 1.000 0.628 0.813 0.912 0.623

xfot 0.631 0.694 1.000 0.771 0.780 0.998

xrut 0.771 0.771 0.822 1.000 0.928 0.769

xqut 0.796 0.796 0.796 0.885 1.000 0.779

xfut 0.631 0.694 0.987 0.834 0.809 1.000

Notes: Output gaps are denoted by xt. The ‘r’, ‘q’ and ‘f’ superscripts refer to real-time, quasi-real time

and final measures respectively, as described in the text; the ‘o’ and ‘u’ superscripts refer, respectively,

to trend measures based on methods described in OvN and MKN, using an eighth-order univariate

autoregression for forecasts, again described in the text. Summary statistics in the upper panel refer to

the mean, standard deviation, minimum and maximum values respectively. Figures in the lower panel

refer to correlation coefficients and, in italics, proportion of the sample for which there is agreement that

the output gap is positive or negative.
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Table 2: Model of Output Growth and Revisions: 1967q1 - 2004q3

Independent Variable Dependent Variable

tyt−1 −t−1 yt−2 tyt−2 −t−1 yt−2 tyt−3 −t−1 yt−3 tyt−4 −t−1 yt−4
intercept 0.0034 0.0005 0.0002 0.0002

(0.0009) (0.0004) (0.0004) (0.0004)

t−1yt−2 −t−2 yt−3 0.5749 0.0840 0.0258 0.0134

(0.0934) (0.0453) (0.0378) (0.0381)

t−2yt−3 −t−3 yt−4 -0.0171 0.0134 0.0404 0.0462

(0.0950) (0.0460) (0.0384) (0.0388)

t−1yt−3 −t−2 yt−3 -0.9579 -0.5251 -0.3075 -0.2750

(0.3713) (0.1800) (0.1503) (0.1516)

t−2yt−4 −t−3 yt−4 0.7657 -0.1743 -0.2177 -0.1570

(0.3808) (0.1846) (0.1541) (0.1555)

t−1yt−4 −t−2 yt−4 0.6577 0.4072 0.2510 0.2395

(0.4295) (0.2081) (0.1738) (0.1754)

t−2yt−5 −t−3 yt−5 -0.7371 0.2587 0.1888 0.1177

(0.4329) (0.2098) (0.1752) (0.1768)

R2 0.2817 0.0799 0.0430 0.0335

σ̂ 0.0081 0.0039 0.0033 0.0033

χ2LM(10) {0.04} {0.62} {0.44} {0.39}
FSC {0.06} {0.61} {0.77} {0.26}
FFF {0.42} {0.94} {0.75} {0.81}
FH {0.80} {0.13} {0.25} {0.44}
FN {1.00} {1.00} {1.00} {1.00}

Notes: Standard errors are given in (.). R2 is the squared multiple correlation coefficient, bσ the standard
error of the regression and χ2LM a chi-squared test statistic (with 10 d.f.) for the exclusion of the third

and fourth lags of the first three dependent variables and all four lags of the fourth from each of the

regression equations as described in the text. The remaining diagnostics are p-values, in {.}, for F-test
statistics for serial correlation (SC), functional form (FF), normality (N) and heteroscedasticity (H).
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Table 3: Multivariate Output Gap Measures: 1970q1 — 2004q1

xrmt xfmt adj xrmt adj xfmt

Mean -0.001 -0.001 -0.001 -0.001

SD 0.017 0.020 0.014 0.016

Min -0.066 -0.068 -0.066 -0.047

Max 0.060 0.044 0.051 0.038

xrmt 1.000 0.796 0.950 0.749

xfmt 0.832 1.000 0.760 0.932

adj xrmt 0.912 0.803 1.000 0.748

adj xfmt 0.854 0.934 0.839 1.000

Notes: Output gaps are denoted by xt. The ‘r’ and ‘f’ superscripts refer to real-time and final measures

described in the text and the ‘m’ superscripts refers to trend measures based on the method described in

MKN (using a multivariate model), again described in the text. The ’adjusted’ figures are based on data

assumed unrevised after four quarters. See also notes to Table 1.
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Figure 1: Real Time, Quasi Real Time and Final Output Gap Measures

following OvN, 1965q3-2004q3
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Figure 2: Quasi Real Time Measures with and without

Forecast-Augmentation, 1965q3-2004q3
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Figure 3: (Adjusted) Real Time and Final Output Gap Measures using

Forecast-Augmentation based on Multivariate Model, 1970q1-2004q3
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Figure 4: Output Gap Measures
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Figure 5: Cumulative Density Functions for Forecast Horizons

2001q3 (h = −3), 2002q2 (h = 0) and 2003q2 (h = 4) .

2001q3 (h = −3)––— 2002q2 (h = 0) — — — 2003q2 (h = 4) · · · · ·
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Figure 6a: Probability of a Positive Output Gap, prob(xfmt |Ω2002q2 > 0)
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Figure 6b: Cumulative Probability of a Turning Point

in the Output Gap, after 2000q2, based on Ω2002q2
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