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Abstract. This paper analyzes the forecasting performance of an open economy DSGE
model, estimated with Bayesian methods, for the Euro area during 1994Q1 � 2002Q4. We
compare the DSGE model and a few variants of this model to various reduced form forecasting
models such as several vector autoregressions (VAR), estimated both by maximum likelihood
and two di¤erent Bayesian approaches, and traditional benchmark models, e.g. the random
walk. The accuracy of the point forecasts are assessed in a traditional out-of-sample rolling
event evaluation using several univariate and multivariate measures. Forecast intervals are
evaluated in di¤erent ways and the log predictive score is used to summarize the precision
in the joint forecast distribution as a whole. We also discuss the role of Bayesian model
probabilities and other frequently used low-dimensional summaries, e.g. the log determinant
statistic, as measures of overall forecasting performance.
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1. Introduction

One of the objectives behind the formation of dynamic stochastic general equilibrium
(DSGE) models is to explain and understand macroeconomic �uctuations using a coherent
theoretical framework. The use of DSGE models in policy analysis, however, has been crit-
icized by both academics and practitioners. The main argument has been the inability of
DSGE models to - loosely speaking - �t the data. For instance, Pagan (2003) retains that
there is a trade-o¤ between theoretical and empirical coherence in DSGE models and VARs,
the latter being more empirically than theoretically coherent relative to the former.
The new generation of DSGE models developed by Christiano, Eichenbaum and Evans

(2005) among others, have shown great promise of improving the empirical properties by
introducing nominal and real frictions into the model economy. Of course, the evaluation
of �t can be assessed in various ways. For policy makers, the comparison of out-of-sample
forecasting properties is of particular interest, as policy actions typically rely upon accurate
assessments of the future development of the economy. Results in Smets and Wouters (2004)
suggest that the new generation of closed economy DSGE models compare very well with
vector autoregressive (VAR) models in terms of forecasting accuracy.
This paper evaluates the forecasting accuracy of an open economy DSGE model for the

Euro area. This models enables us to predict several so called open economy variables such
as, for example, the exchange rate, imports and exports. Evaluating the DSGE model for
the latter variables are of particular interest, because previous research have demonstrated
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the di¢ culties to project these variables accurately. By opening up the model economy we
hope to better capture the workings of the real world economy, but it could very well be that
the added complexity by itself deterioates the forecasting performance of the model. It is not
uncommon to �nd that very small models are able to beat larger ones in forecasting. This
motivates a thorough investigation of the model�s forecasting performance with regards to
both domestic and open economy macroeconomic variables.
A major di¤erence between our analysis and Smets and Wouters�(2004), apart from the

extension to the open economy setting, is that we include a unit-root stochastic technology
shock, following Altig, Christiano, Eichenbaum and Lindé (2003). This induces a common
stochastic trend in the variables and makes it possible to jointly model economic growth and
business cycle �uctuations. In the empirical estimation and forecast evaluation we are hence
not forced to detrend the data.
The DSGE model�s forecasting properties are evaluated against a wide range of less theoret-

ically oriented forecasting tools such as VARs, Bayesian VARs (BVARs), and naïve forecasts
based on univariate random walks as well as on the simple means of the most recent data ob-
servations. Several authors have recently noted the theoretical connection between Bayesian
model posterior probabilities and out-of-sample forecasting performance, e.g. Geweke (1999)
and Del Negro, Schorfheide, Smets and Wouters (2004). Adding three alternative speci�ca-
tions of the benchmark DSGE model to the model set, allows us to study this link in some
detail.
The forecasting performance of the models will be assessed in what is sometimes referred to

as a rolling forecast evaluation. We use the observations in 1994Q1� 2002Q4 to evaluate the
forecasts. We employ several univariate and multivariate measures to determine the accuracy
of the point forecasts. Point forecasts are naturally the main concern of policy makers and
has typically been the interest in the forecasting literature, see e.g. the M-competition in
Makridakis et al. (1982). Recently, there has been a growing interest in forecast uncertainty.
The so called fan charts used by Bank of England and Sveriges Riksbank (central bank of
Sweden) to communicate the uncertainty in the in�ation forecasts is one example. Using a
Bayesian methodology we can derive the exact �nite sample joint forecast distribution of all
the endogenous variables in the system. We therefore also move beyond the evaluation of
point forecasts to assess the reasonableness of, for example, predictive intervals.
The results indicate that the forecasting performance of the open economy DSGE model

compares well with reduced form forecasting models such as VARs and BVARs. This holds
true both in terms of the point forecast accuracy and when evaluating the accuracy of the
whole forecast distribution. The paper also shows, using a spectral decomposition, that scalar
valued multivariate measures of the forecasting performance should be interpreted with care
since they run the risk of being dominated by dimensions in the set of projected variables
which are minor interest to the policy maker.
The rest of the paper is organized as follows. Section 2 presents the theoretical DSGE model

and reports the estimation results of four di¤erent speci�cations. In Section 3 we brie�y discuss
the alternative models used for forecasting such as vector autoregressive models and couple
of naïve setups. Section 4 presents the accuracy measures that are subsequently employed in
the empirical section. Section 5 reports the forecasting properties of the various theoretical
and empirical models under consideration. Lastly, Section 6 summarizes and provides some
conclusions.
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2. The DSGE model

2.1. Model. This section gives an overview of the model economy and presents the key equa-
tions in the theoretical model. We refer to Adolfson, Laséen, Lindé and Villani (2005) for a
more detailed description of the model.
The model economy includes four di¤erent categories of operating �rms. These are domestic,

importing consumption, importing investment, and exporting �rms, respectively. Within each
category there is a continuum of �rms that each produces a di¤erentiated good. The domestic
�rms produce their goods out of capital and labour inputs, and sell them to a retailer which
transforms the intermediate products into a homogenous �nal good that is in turn sold to the
households. Each importing �rm (consumption and investment) buys a homogenous good in
the world market and converts it into a di¤erentiated good through a brand naming technology.
An import consumption packer then aggregates the di¤erentiated import consumption goods
so that the �nal import consumption good is a composite of these di¤erentiated products.
Likewise, the imported investment goods are aggregated by an import investment packer.
The exporting �rms pursue a similar scheme. They buy the domestic �nal good, di¤erentiate
it and send their speci�c product to an export packer which aggregates the di¤erent export
goods before the composite is sold to the consumers in the foreign market.
The �nal domestic good is a composite of a continuum of i di¤erentiated goods, each

supplied by a di¤erent �rm, which follows the constant elasticity of substitution (CES) function

(2.1) Yt =

24 1Z
0

(Yi;t)
1

�dt di

35�
d
t

; 1 � �dt <1;

where �dt is a stochastic process that determines the time-varying markup in the domestic
goods market. The demand for the di¤erentiated product of the ith �rm, Yi;t, follows

(2.2) Yi;t =

 
P di;t

P dt

!� �dt
�dt�1

Yt:

The domestic production function for intermediate good i is given by

(2.3) Yi;t = z1��t �tK
�
i;tH

1��
i;t � zt�;

where zt is a unit-root technology shock, �t is a covariance stationary technology shock, and
Hi;t denotes homogeneous labour hired by the ith �rm. Notice that Ki;t is not the physical
capital stock, but rather the capital services stock, since we allow for variable capital utilization
in the model. A �xed cost zt� is included in the production function. We set this parameter
so that pro�ts are zero in steady-state, following Christiano et al. (2005).
We allow for working capital by assuming that a fraction � of the intermediate �rms�wage

bill has to be �nanced in advance. Cost minimization yields the following nominal marginal
cost for intermediate �rm i:

(2.4) MCdt =
1

(1� �)1��
1

��
(Rkt )

� [Wt(1 + �(Rt�1 � 1))]1��
1

(zt)1��
1

�t
;

where Rkt is the gross nominal rental rate per unit of capital services, Rt�1 the gross nominal
(economy wide) interest rate, and Wt the nominal wage rate per unit of aggregate, homoge-
neous, labour Hi;t.
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Each of the domestic �rms is subject to price stickiness through an indexation variant of
the Calvo (1983) model. Since we have a time-varying in�ation target in the model we allow
for partial indexation to the current in�ation target, but also to last period�s in�ation rate in
order to allow for a lagged pricing term in the Phillips curve. Each intermediate �rm faces
in any period a random probability (1� �d) that it can reoptimize its price. The reoptimized
price is denoted P d;newt .1 The di¤erent �rms maximize pro�ts taking into account that there
might not be a chance to optimally change the price in the future. Firm i therefore faces the
following optimization problem when setting its price

(2.5)
max
P d;newt

Et
1P
s=0

(��d)
s �t+s[(

�
�dt�

d
t+1:::�

d
t+s�1

��d ���ct+1��ct+2:::��ct+s�1��d P d;newt )Yi;t+s

�MCdi;t+s(Yi;t+s + zt+s�
j)];

where the �rm is using the stochastic discount factor (��d)
s �t+s to make pro�ts conditional

upon utility: � is the discount factor, and �t+s the marginal utility of the households�nominal
income in period t + s, which is exogenous to the intermediate �rms. �dt denotes in�ation
in the domestic sector, ��ct a time-varying in�ation target of the central bank and MCdi;t the
nominal marginal cost.
The �rst order condition of the pro�t maxmization problem in equation (2.5) yields the

following log-linearized Phillips curve:�b�dt � b��ct� =
�

1 + �d�

�
Etb�dt+1 � ��b��ct�+ �d

1 + �d�

�b�dt�1 � b��ct�(2.6)

��d� (1� ��)
1 + �d�

b��ct + (1� �d)(1� ��d)�d (1 + �d�)

�cmcdt + b�dt� ;
where a hat denotes log-linearized variables (i.e., X̂t = dXt=X).
We now turn to the import and export sectors. There is a continuum of importing con-

sumption and investment �rms that buy a homogenous good at price P �t in the world market,
and di¤erentiate this good by brand naming. The exporting �rms buy the (homogenous) do-
mestic �nal good at price P dt and turn this into a di¤erentiated export good through the same
type of brand naming technology. The nominal marginal cost of the importing and exporting
�rms are thus StP �t and P

d
t =St, respectivley. The di¤erentiated import and export goods are

subsequently aggregated by an import consumption, import investment and export packer,
respectively, so that the �nal import consumption, import investment, and export good is
each a CES composite according to the following:
(2.7)

Cmt =

24 1Z
0

�
Cmi;t
� 1
�mct di

35�
mc
t

; Imt =

24 1Z
0

�
Imi;t
� 1

�mit di

35�
mi
t

; Xt =

24 1Z
0

(Xi;t)
1
�xt di

35�
x
t

;

where 1 � �jt < 1 for j = fmc;mi; xg is the time-varying markup in the import consump-
tion (mc), import investment (mi) and export (x) sector. By assumption the continuum of
consumption and investment importers invoice in the domestic currency and exporters in the
foreign currency. In order to allow for short-run incomplete exchange rate pass-through to
import as well as export prices we therefore introduce nominal rigidities in the local currency
price. This is modeled through the same type of Calvo setup as above. The price setting

1For the �rms that are not allowed to reoptimize their price, we adopt the indexation scheme P dt+1 =�
�dt
��d (��ct+1)1��d P dt where �d is an indexation parameter.
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problems of the importing and exporting �rms are completely analogous to that of the do-
mestic �rms in equation (2.5), and the demand for the di¤erentiated import and export goods
follow similar expressions as to equation (2.2). In total there is thus four speci�c Phillips curve
relations determining in�ation in the domestic, import consumption, import investment and
export sectors.
In the model economy there is also a continuum of households which attain utility from

consumption, leisure and real cash balances. The preferences of household j are given by

(2.8) Ej0

1X
t=0

�t

264�ctU (Cj;t � bCj;t�1)� �htAL (hj;t)1+�L1 + �L
+Aq

�
Qj;t
ztP dt

�
1� �q

1��q375 ;
where Cj;t, hj;t and Qj;t=P dt denote the j

th household�s levels of aggregate consumption, labour
supply and real cash holdings, respectively. Consumption is subject to habit formation through
bCj;t�1. �ct and �

h
t are persistent preference shocks to consumption and labour supply, respec-

tively. To make cash balances in equation (2.8) stationary when the economy is growing they
are scaled by the unit root technology shock zt. Households consume a basket of domestically
produced goods and imported products which are supplied by the domestic and importing con-
sumption �rms, respectively. Aggregate consumption is assumed to be given by the following
constant elasticity of substitution (CES) function:

(2.9) Ct =

�
(1� !c)1=�c

�
Cdt

�(�c�1)=�c
+ !

1=�c
c (Cmt )

(�c�1)=�c
��c=(�c�1)

;

where Cdt and C
m
t are consumption of the domestic and imported good, respectively. !c is the

share of imports in consumption, and �c is the elasticity of substitution across consumption
goods.
The households invest in a basket of domestic and imported investment goods to form the

physical capital stock, and decide how much capital services to rent to the domestic �rms,
given certain capital adjustment costs. These are costs to adjusting the investment rate as
well as costs of varying the utilization rate of the physical capital stock. The households
can increase their capital stock by investing in additional physical capital (It), taking one
period to come in action, or by directly increasing the utilization rate of the capital at hand
(ut = Kt= �Kt). The capital accumulation equation for the physical capital stock ( �Kt) is given
by

(2.10) �Kt+1 = (1� �) �Kt +�t

�
1� ~S (It=It�1)

�
It;

where ~S (It=It�1) determines the investment adjustment costs through the estimated para-
meter ~S00, and �t is a stationary investment-speci�c technology shock. Total investment is
assumed to be given by a CES aggregate of domestic and imported investment goods (Idt and
Imt , respectively) according to

(2.11) It =

�
(1� !i)1=�i

�
Idt

�(�i�1)=�i
+ !

1=�i
i (Imt )

(�i�1)=�i
��i=(�i�1)

;

where !i is the share of imports in investment, and �i is the elasticity of substitution across
investment goods.
Further, along the lines of Erceg, Henderson and Levin (2000), each household is a monopoly

supplier of a di¤erentiated labour service which implies that they can set their own wage.
After having set their wage, households inelastically supply the �rms�demand for labour at
the going wage rate. Each household sells its labour to a labour packing �rm which transforms
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household labour into a homogenous good that is demanded by each of the domestic goods
producing �rms. Wage stickiness is introduced through the Calvo (1983) setup, with partial
indexation to last period�s CPI in�ation rate, the current in�ation target and the technology
growth. Household j reoptimizes its nominal wage rate Wnew

j;t according to the following

(2.12)
max
Wnew
j;t

Et
P1
s=0 (��w)

s [��ht+sAL
(hj;t+s)

1+�L

1+�L
+

�t+s
(1��yt+s)
(1+�wt+s)

��
�ct :::�

c
t+s�1

��w ���ct+1:::��ct+s�(1��w) ��z;t+1:::�z;t+s�Wnew
j;t

�
hj;t+s];

where �w is the probability in any period that a household is not allowed to reoptimize its
wage, �yt a labour income tax, �

w
t a pay-roll tax (paid for simplicity by the households), and

�z;t = zt=zt�1 the growth rate of the permanent technology level.2

The households can save in domestic bonds and foreign bonds, and also hold cash. This
choice balances into an arbitrage condition pinning down expected exchange rate changes
(i.e., an uncovered interest rate parity condition). To ensure a well-de�ned steady-state in the
model, we allow for imperfect �nancial integration in the international �ncancial markets. We
assume that there is a premium on the foreign bond holdings which depends on the aggregate
net foreign asset position of the domestic households, following Lundvik (1992) and Benigno
(2001):

(2.13) �(at; ~�t) = exp(�~�a(at � �a) + ~�t);

where At � (StB�t )=(Ptzt) is the net foreign asset position, and ~�t a shock to the risk premium.
The budget constraint for the households given by

Mt+1 + StB
�
t+1 + P

c
t Ct (1 + �

c
t) + P

i
t It + Pta(ut)Kt(2.14)

=

Rt�1 (Mt �Qt) +Qt +R�t�1�(at�1; e�t�1)StB�t
+
�
1� �kt

�
Rkt ut �Kt + (1� �yt )

Wt

1 + �wt
ht +

�
1� �kt

�
�t

��kt
h
(Rt�1 � 1) (Mt �Qt) +

�
R�t�1�(at�1; e�t�1)� 1�StB�t +B�t (St � St�1)i

+TRt +Dt;

where the right-hand side describes the resources at disposal. The households earn interest on
the amount of nominal domestic assets that are not held as cash, Mt�Qt. They can also save
in foreign bonds B�t , which pay a risk-adjusted pre-tax gross interest rate of R

�
t�1�(at�1;

e�t�1).
St is the nominal exchange rate (foreign currency per unit of domestic currency), Rkt the gross
rental rate of capital, and Wt the nominal wage rate. The households earn income from
renting capital and labour services (Kt and ht) to the intermediate �rms, where ut denotes
the varying capital utilization rate and �Kt the physical capital stock. They pay taxes on
consumption (� ct), capital income (�

k
t ), labour income (�

y
t ), and on the pay-roll (�

w
t ). �t

denotes pro�ts, TRt lump-sum transfers from the government, and Dt the household�s net
cash income from participating in state contingent securities at time t. The right hand side
describes how the households spend their resources on consumption and investment goods,
priced at P ct and P

i
t respectively, on future bond holdings, and pay the cost of varying the

capital utilization rate Pta(ut) �Kt, where a(ut) is the utilization cost function.

2For the households that are not allowed to reoptimize, the indexation scheme is Wj;t+1 =

(�ct)
�w (��ct+1)

(1��w) �z;t+1W
new
j;t , where �w is an indexation parameter.
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Following Smets and Wouters (2003), monetary policy is approximated with the instrument
rule (expressed in log-linearized terms)bRt = �R bRt�1 + (1� �R) �b��ct + r� ��̂ct�1 � b��ct�+ ryŷt�1 + rxx̂t�1�(2.15)

+r��
�
�̂ct � �̂ct�1

�
+ r�y�ŷt + "R;t;

where "R;t is an uncorrelated monetary policy shock. Thus, the central bank is assumed to
adjust the short term interest rate in response to deviations of CPI in�ation from the time-
varying in�ation target

�
�̂ct � b��ct�, the output gap (ŷt, measured as actual minus trend output),

the real exchange rate (x̂t) and the interest rate set in the previous period. In addition, note
that the nominal interest rate adjusts directly to the in�ation target.
To clear the �nal goods market, the foreign bond market, and the loan market, the following

three constraints must hold in equilibrium:

(2.16) Cdt + I
d
t +Gt + C

x
t + I

x
t � z1��t �tK

�
t H

1��
t � zt�� a(ut) �Kt;

(2.17) StB
�
t+1 = StP

x
t (C

x
t + I

x
t )� StP �t (Cmt + Imt ) +R�t�1�(at�1; e�t�1)StB�t ;

(2.18) �WtHt = �tMt �Qt;
where Cxt and I

x
t are the foreign demand for export goods, P

�
t the foreign price level, and

�t =Mt+1=Mt is the monetary injection by the central bank. When de�ning the demand for
export goods, we introduce a stationary asymmetric technology shock ~z�t = z�t =zt, where z

�
t is

the permanent technology level abroad, to allow for di¤erent degrees of technological progress
domestically and abroad.
The structural shock processes in the model is given in log-linearized form by the univariate

representation

x̂t = �xx̂t�1 + "x;t; "x;t
iid� N

�
0; �2x

�
where x = f �z;t, �t; �

j
t ; �

c
t ; �

h
t ; �t;

~�t; "R;t; ��
c
t ; ~z

�
t g and j = fd;mc;mi; xg :

Lastly, to simplify the analysis we adopt the assumption that the foreign prices, output
(HP-detrended) and interest rate are exogenously given by an identi�ed VAR(4) model. The
�scal policy variables - taxes on capital income, labour income, consumption, and the pay-roll,
together with (HP-detrended) government expenditures - are assumed to follow an identi�ed
VAR(2) model.3

2.2. Calibration and estimation. In order to e¢ ciently compute the likelihood function,
the model is log-linearized and the reduced form of the model is obtained by the AIM algorithm
developed by Anderson and Moore (1985). As a �rst step, we cast the log-linearized model
on matrix form as

(2.19) Et f�0~zt+1 + �1~zt + �2~zt�1 + �0�t+1 + �1�tg = 0;
where ~zt is a n~z � 1 vector with log-linearized endogenous variables and �t is a n� � 1 vector
with exogenous variables which follows

(2.20) �t = ��t�1 + "t; "t � N(0;�):

Note that since some of the processes for the exogenous variables are given by more than one
lag, we expand �t with lags of the relevant exogenous variable.

3It should be noted that Adolfson et al. (2005) report that the �scal shocks have small dynamic e¤ects in
the model. This is because households are Ricardian and in�nitively lived, and these shocks are transitory with
relatively small variance in the data, which together do not generate any wealth e¤ects.
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The solution of the fundamental di¤erence equation can then be written as

(2.21) ~zt = A~zt�1 +B�t

where A and B are the so called feedback and feed-forward matrices, respectively.
The solution of the model given by (2.21) and (2.20) can be transformed to the following

state-space representation for the partially unobserved state variables �t = (zt, �t)0 in the
model

(2.22) �t = F��t�1 + vt;

where vt
iid� N(0; Q), and the observation equation can be written

(2.23) ~Yt = A0XXt +H
0�t + �t;

where ~Yt is a vector of observed variables, Xt a vector with exogenous variables (e.g., a

constant) and �t
iid� N(0; R).

In order to facilitate identi�cation of the various shocks and parameters that we estimate
(we estimate 11 shocks that follow AR(1) processes, and 2 shocks that are assumed to be
i.i.d.), we include the following set of 15 observable variables in ~Yt in (2.23): the domestic
in�ation rate, the short-run interest rate, employment, consumption, investment, GDP, the
real wage, exports, imports, the consumption de�ator and the investment de�ator, the real
exchange rate, foreign in�ation, the foreign interest rate, and foreign output.4 Despite the
fact that the foreign variables are exogenous, we still include them as observable variables as
they enable identi�cation of the asymmetric technology shock and are informative about the
parameters governing the transmission of foreign impulses to the domestic economy.
To make the data stationary we experiment with two di¤erent strategies. In the �rst

strategy, all real variables enter ~Yt in �rst di¤erences. It is important to note that the unit
root technology shock in the theoretical model induces a common stochastic trend in the levels
of the real variables. In the second strategy, we therefore exploit the cointegration structure of
the theoretical model and all real variables except GDP enter ~Yt as deviations from the GDP
level, while GDP itself enters in �rst di¤erence form. In Figure 1 the data series are depicted
with real variables in yearly growth rates. Note that employment and the real exchange rate
are measured as percentage deviations around the mean.

4The data set employed here was �rst constructed by Fagan et al. (2001). The Fagan data set includes
foreign (i.e., rest of the world) output and in�ation, but not a foreign interest rate. We therefore use the Fed
funds rate as a proxy for this series. Note also that there is no (o¢ cial) data on aggregate hours worked, Ĥt,
available for the euro area. Therefore, we use employment in our estimations. Since employment is likely to
respond more slowly to shocks than hours worked, we model employment using Calvo-rigidity (following Smets
and Wouters, 2003). For reasons discussed in greater detail in Adolfson et al. (2005), we take out a linear trend
in employment and the excess trend in imports and exports relative to the trend in GDP prior to estimation.

8



Table 1: Calibrated parameters

Parameter Description Calibrated value

� Households�discount factor 0.999

� Capital share of income 0.29

�c Substitution elasticity between Cdt and C
m
t 5.00

�a Capital utilization cost parameter 106

� Money growth rate (quarterly rate) 1.01

�L Labor supply elasticity 1.00

� Depreciation rate 0.013

�w Wage markup 1.05

!i Share of imported investment goods 0.55

!c Share of imported consumption goods 0.31

� Share of wage bill �nanced by loans 1.00

�y Labor income tax rate 0.177

� c Value added tax rate 0.125

��� In�ation target persistence 0.975

gr Government expenditures-output ratio 0.204

Implied steady state relationships�

�� Steady state in�ation rate (percent) 2.02

R Nominal interest rate (percent) 5.30

C=Y Consumption-output ratio 0.58

I=Y Investment-output ratio 0.22
~X=Y = ~M=Y Export/Import output ratio 0.25

St= St+1 Nominal exchange rate 1.00

A Net foreign assets 0.00

X Real exchange rate 1.00

Note: The steady state is a¤ected by some parameters that are estimated, e.g. �z , �d, �m;c and �m;i,
which implies that the steady state values di¤er somewhat between the prior and the posterior. The table

reports the implied values given by these parameters evaluated at the prior mode.

A subset of the parameters are calibrated (in�nitely strict priors), whereas another subset of
parameters are estimated using Bayesian techniques. We choose to calibrate those parameters
which we think are weakly identi�ed by the variables that we include in ~Yt. These parameters
are mostly related to the steady-state values (i.e., the great ratios). Table 1 reports the
calibrated parameters along with the implied steady state values of some key variables. The
remaining parameters are estimated. The estimated parameters pertain mostly to the nominal
and real frictions in the model as well as the exogenous shock processes described above.
Table 2 shows the assumptions for the prior distribution of the estimated parameters. The

location of the prior distribution of the 51 estimated parameters corresponds to a large extent
to those in Smets and Wouters (2003) and the �ndings in Altig et al. (2003) on U.S. data. See
Adolfson et al. (2005) for a more detailed discussion about our choice of prior distributions.
The joint posterior distribution of all estimated parameters is obtained in two steps. First,

the posterior mode and Hessian matrix evaluated at the mode is computed by standard nu-
merical optimization routines. We use the �rst 10 years of the full sample 1970Q1�2002Q4 to
obtain a prior on the unobserved state, and use the subsample 1980Q1�2002Q4 for inference.
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Table 2: Prior and posterior distributions 

Prior distribution Posterior distribution   
 First differences Levels 

   No variable capital 
utilization 

Variable
capital 
utiliz. 

Persiste
nt  

markup 
shock 

IID markup 
shocks 

with 
cointe 
gration 

Parameter   610=aσ  
049.0
=aσ  0>

dλ
ρ  

0=

==

=

xmi

mcd

λλ

λλ

ρρ

ρρ
 

610=aσ
 

  type mean std.dev. 
/df mode std. dev. 

(Hessian) mode mode mode mode 

Calvo wages  wξ  beta 0.675 0.050 0.697 0.047 0.716 0.626 0.687 0.693 
Calvo domestic prices dξ  beta 0.675 0.050 0.883 0.015 0.895 0.661 0.882 0.930 
Calvo import cons. prices cm ,ξ  beta 0.500 0.100 0.463 0.059 0.523 0.523 0.899* 0.619 
Calvo import inv.  prices im ,ξ  beta 0.500 0.100 0.740 0.040 0.743 0.714 0.912* 0.774 
Calvo export prices  xξ  beta 0.500 0.100 0.639 0.059 0.630 0.669 0.853* 0.649 
Calvo employment  eξ  beta 0.675 0.100 0.792 0.022 0.757 0.795 0.784 0.833 
Indexation wages wκ  beta 0.500 0.150 0.516 0.160 0.453 0.291 0.480 0.592 
Indexation domestic prices  dκ  beta 0.500 0.150 0.212 0.066 0.173 0.171 0.188 0.200 
Index. import cons. prices cm,κ  beta 0.500 0.150 0.161 0.074 0.128 0.148 0.256 0.145 
Index. import inv. prices   im,κ  beta 0.500 0.150 0.187 0.079 0.192 0.200 0.830 0.202 
Indexation  export prices xκ  beta 0.500 0.150 0.139 0.072 0.148 0.125 0.262 0.148 
Markup domestic  dλ  inv. gamma 1.200 2 1.168 0.053 1.174 1.155 1.160 1.169 
Markup imported cons.  cm ,λ  inv. gamma 1.200 2 1.619 0.063 1.636 1.642 1.515 1.535 
Markup.imported invest.  im ,λ inv. gamma 1.200 2 1.226 0.088 1.209 1.255 1.160 1.164 
Investment adj. cost  ''~S  normal 7.694 1.500 8.732 1.370 9.052 7.143 9.499 8.227 
Habit formation  b  beta 0.650 0.100 0.690 0.048 0.694 0.614 0.647 0.761 
Subst. elasticity invest.  iη  inv. gamma 1.500 4 1.669 0.273 1.585 1.616 1.405 1.526 
Subst. elasticity foreign fη  inv. gamma 1.500 4 1.460 0.098 1.400 1.577 1.356 1.416 
Technology growth  zµ  trunc. normal 1.006 0.0005 1.005 0.000 1.005 1.006 1.005 1.006 
Capital income tax  kτ  beta 0.120 0.050 0.137 0.042 0.220 0.265 0.172 0.241 
Labour pay-roll tax  wτ  beta 0.200 0.050 0.186 0.050 0.183 0.185 0.186 0.185 
Risk premium  φ~  inv. gamma 0.010 2 0.145 0.047 0.131 0.095 0.035 0.095 

Unit root tech. shock  
zµρ  beta 0.850 0.100 0.723 0.106 0.753 0.792 0.741 0.810 

Stationary tech. shock  ερ  beta 0.850 0.100 0.909 0.030 0.935 0.997 0.904 0.980 
Invest. spec. tech shock  Υρ  beta 0.850 0.100 0.750 0.041 0.738 0.562 0.785 0.799 
Asymmetric tech. shock  *~zρ  beta 0.850 0.100 0.993 0.002 0.992 0.953 0.990 0.993 
Consumption pref. shock  

cζ
ρ  beta 0.850 0.100 0.935 0.029 0.935 0.992 0.911 0.990 

Labour supply shock  
hζ

ρ  beta 0.850 0.100 0.675 0.062 0.646 0.536 0.656 0.824 
Risk premium shock  φρ ~  beta 0.850 0.100 0.991 0.008 0.990 0.991 0.920 0.995 
Domestic markup shock  

dλ
ρ        0.995   

Imp. cons. markup shock  
cm ,λρ beta 0.850 0.100 0.978 0.016 0.984 0.975  0.960 

Imp. invest. markup shock  
im ,λρ beta 0.850 0.100 0.974 0.015 0.971 0.990  0.983 

Export markup shock  
xλ

ρ  beta 0.850 0.100 0.894 0.045 0.895 0.928  0.906 

Unit root tech. shock  zσ  inv. gamma 0.200 2 0.130 0.025 0.122 0.132 0.128 0.120 
Stationary tech. shock   εσ  inv. gamma 0.700 2 0.452 0.082 0.414 0.422 0.450 0.467 
Invest. spec. tech. shock   Υσ  inv. gamma 0.200 2 0.424 0.046 0.397 0.444 0.376 0.328 
Asymmetric tech. shock   *~zσ  inv. gamma 0.400 2 0.203 0.031 0.200 0.186 0.204 0.343 
Consumption pref. shock   

cζ
σ  inv. gamma 0.200 2 0.151 0.031 0.132 0.155 0.163 0.113 

Labour supply shock   
hζσ  inv. gamma 0.200 2 0.095 0.015 0.094 0.098 0.096 0.085 

Risk premium shock   φσ ~  inv. gamma 0.050 2 0.130 0.023 0.123 0.122 0.344 0.119 
Domestic markup shock   λσ  inv. gamma 0.300 2 0.130 0.012 0.133 0.125 0.129 0.122 
Imp. cons. markup shock 

cm ,λσ inv. gamma 0.300 2 2.548 0.710 1.912 1.810 1.147 0.943 
Imp. invest. markup shock im ,λσ  inv. gamma 0.300 2 0.292 0.079 0.281 0.341 0.414 0.219 
Export markup shock   

xλ
σ  inv. gamma 0.300 2 0.977 0.214 1.028 0.789 1.272 0.893 

Monetary policy shock  Rσ  inv. gamma 0.150 2 0.133 0.013 0.126 0.144 0.130 0.125 
Inflation target shock  cπ

σ  inv. gamma 0.050 2 0.044 0.012 0.036 0.041 0.049 0.056 

Interest rate smoothing  Rρ  beta 0.800 0.050 0.874 0.021 0.885 0.824 0.851 0.834 
Inflation response  πr  normal 1.700 0.100 1.710 0.067 1.615 1.660 1.697 1.687 
Diff. infl response  π∆r  normal 0.300 0.100 0.317 0.059 0.301 0.384 0.304 0.388 
Real exch. rate response  xr  normal 0.000 0.050 -0.009 0.008 -0.010 -0.008 0.003 -0.012 
Output response  yr  normal 0.125 0.050 0.078 0.028 0.123 -0.030 0.056 0.059 
Diff. output response  π∆r  normal 0.0625 0.050 0.116 0.028 0.142 0.130 0.104 0.129 

Log marginal likelihood     -1909.34 -1917.39 -1915.53 -1975.5 -1953.70 

*Note: The same prior is used as for the domestic price stickiness parameter. 
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Figure 1. Euro area data 1980Q1-2002Q4, yearly growth rates.

To calculate the likelihood function of the observed variables we apply the Kalman �lter.
Second, draws from the joint posterior are generated using the Metropolis-Hastings algorithm
(see Schorfheide (2000) for details).5 In Table 2 we report the posterior mode estimates of the
parameters.

5A posterior sample of 500; 000 post burn-in draws was generated. Convergence was checked using standard
diagnostics such as CUSUM and ANOVA on parallel simulation sequences.
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In order to further look into the connection between the marginal likelihoods and out-of-
sample performance we compare four di¤erent speci�cations of the DSGE model. Apart from
the benchmark model we also report estimation results in Table 2 for the following model
speci�cations: i) with variable capital utilization, ii) with persistent domestic markup shocks,
and iii) with IID markup shocks. We have chosen these speci�cations since a high or a low
cost of varying the capital utilization (captured in a high or low value of the parameter �a)
has rather large e¤ects on the impulse response functions. For example, with variable capital
utilization, marginal cost is smoother after a monetary policy shock which in turn also makes
the response of in�ation more smooth. For case ii) we �nd that allowing for persistent domestic
markup shocks implies that the domestic price stickiness is estimated to a much lower number,
see Table 2. Similarly, if all markup shocks are assumed to be independently distributed, the
source of variation as well as the price stickiness parameters (�:s) are completely di¤erent.
We interpret this as that the model needs either a high degree of price stickiness or highly
correlated markup shocks to explain the high in�ation inertia seen in the data. We also �nd a
larger role for indexation to past in�ation in this case, so that when less of the persistence is
generated by correlated shocks there must be a larger role for intrinsic persistence (i.e. lagged
in�ation) to account for the in�ation dynamics. Note that the alternative speci�cations are
estimated using the data in �rst di¤erences.
Figures 2 and 3 show the sequential estimates (posterior mode) of the di¤erent DSGE

models�parameters when extending the data set year-by-year from 1994 and onwards. For
each speci�cation of the model most of the parameters appear to be relatively stable over
time which is encouraging given that the parameters are updated according to this scheme in
the subsequent rolling forecast evaluation. However, the model estimated with cointegration
constraints show somewhat less stability. First of all, there is negative correlation between the
habit formation parameter and the persistence of the consumption preference shocks. Second,
the parameters related to investment (investment adjustment costs and the persistence and
standard deviation of the investment-speci�c technology shock) are correlated over time and
unstable. The instability in some of the estimates in the model estimated with cointegration
imposed on the data is probably an e¤ect of the rather large persistent movements in the
cointegrating relations, in combination with a relatively short sample period (the shortest is
1980Q1-1993Q4 and the longest 1980Q1-2001Q4). All in all, it seems reasonable to start the
evaluation of the forecasts as early as 1994, which leaves us with a relatively large evaluation
sample.

3. Alternative forecasting models

The DSGE model is compared to several vector autoregressive (VAR) models, using both
maximum likelihood estimates of the parameters and Bayesian posterior distributions. In
addition, naïve forecasts based on both univariate random walks and the means of the most
recent data observations are calculated.
The VAR systems consist of either seven or thirteen variables, with trending variables mod-

elled in �rst di¤erences. The �rst is a closed economy speci�cation composed of the seven
domestic variables: the domestic in�ation rate, the short-run interest rate, employment, con-
sumption, investment, GDP, and the real wage. The second is an open economy speci�cation
which additionally includes exports, imports, the real exchange rate, foreign in�ation, the
foreign interest rate, and foreign output. Note that the consumption and investment de�a-
tors have been excluded in the VARs for reasons of parsimony. Estimating the VARs in �rst
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Figure 2. Sequential posterior mode estimates of the DSGE models�parame-
ters using a year-by-year extended data set. DSGE di¤. (� ), DSGE coint.
(� � �), Corr. mkup. (- - -), Var. cap. util. (�� �) and IID Markup (�+�).
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di¤erences may su¤er from misspeci�cation since we do not allow for any cointegration vec-
tors. However, if the cointegrating relations are not stable over time, di¤erencing may play a
robustifying role, see e.g. Clements and Hendry (1998).
The usual parametrization of the VAR model reads

(3.1) �(L)xt = �dt + "t;

where xt is a p-dimensional vector of time series, �(L) = Ip � �1L � ::: � �kLk, and L the
usual back-shift operator with the property Lxt = xt�1. The disturbances "t � Np(0;�),
t = 1; :::; T , are assumed to be independent across time. dt = (1; dMP;t)

0 is a vector of
deterministic variables. As noted in Section 2, the DSGE model embodies a time-varying
in�ation target which enables it to capture the downward shift in the nominal variables over
the sample period. A regime dummy

dMP;t =

�
1 if t � t�

0 if t > t�
:

is included in the VARs as a proxy for this change in monetary policy. The date of the regime
shift, t�, is set to 1992Q4 based on the posterior distribution of t� presented in Villani (2005).
We will also consider an alternative parametrization of the VAR model of the form

(3.2) �(L)(xt �	dt) = "t:

This somewhat non-standard parametrization of the VAR model in (3.2) is non-linear in its
parameters, but has the advantage that the unconditional mean, or steady state, of the process
is directly speci�ed by 	 as E0(xt) = 	dt. This allows us to put the BVAR and DSGE models
more on par by using a prior on the steady state of the BVAR which is comparable to the
steady state prior used in the DSGE models. To formulate a prior on 	, note that the
speci�cation of dt implies the following parametrization of the steady state

E0(xt) =
�
 1 +  2 if t � 1992Q4
 1 if t > 1992Q4

;

where  i is the ith column of 	. The prior on  1 thus determines the steady state in the latter
regime. The elements in 	 are assumed to be independent and normally distributed a priori.
The 95% prior probability intervals for the yearly steady state growth rates are given in Table
3. We will refer to speci�cations (3.1) and (3.2) as the BVAR and MBVAR (mean-adjusted
Bayesian VAR), respectively.
The prior proposed by Litterman (1986) will be used on the dynamic coe¢ cients in �,

with the following default values on the hyperparameters: overall tightness is set to 0:3, cross-
equation tightness to 0:2 and a harmonic lag decay with a hyperparameter equal to one. See
Litterman (1986) and Doan (1992) for details. Litterman�s prior was designed for data in
levels and has the e¤ect of shrinking the process toward the univariate random walk model.
We therefore modify the original Litterman prior by setting the prior mean on the �rst own
lag to zero for all variables in growth rates. The two interest rates, employment and the
real exchange rate are assigned a prior which centers on the AR(1) process with a dynamic
coe¢ cient equal to 0.9. In all VAR models we impose the small open economy restriction that
the foreign variables are exogenously given, i.e., block exogenity of (��t , y

�
t ; R

�
t ). Finally, the

usual non-informative prior j�j�(p+1)=2 is used for �.
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Table 3: 95% prior probability intervals of 	

� 4w 4c 4i R
 1 (1:54; 2:33) (2:02; 2:83) (2:02; 2:83) (2:02; 2:83) (4:93; 6:39)
 2 (4; 7) (�0:05; 0:05) (�0:05; 0:05) (�0:05; 0:05) (3; 5)

bE �y x � eX �fM
 1 (�10; 10) (2:02; 2:83) (�10; 10) (2:02; 2:83) (2:02; 2:83)
 2 (�0:05; 0:05) (�0:05; 0:05) (�0:05; 0:05) (�0:05; 0:05) (�0:05; 0:05)

�y� �� R�

 1 (2:02; 2:83) (1:54; 2:33) (4:93; 6:39)
 2 (�0:05; 0:05) (4; 7) (3; 5)

Note: The prior on the steady state is speci�ed in terms of yearly rates for the domestic and foreign in�ation

and interest rates (�, R, ��, R�) and in yearly growth rates for all real variables except employment and the

real exchange rate (i.e., �w; �c; �i, �y, � eX , �fM , and �y�). For employment and the real exchange
rate the prior is speci�ed as deviations around the steady state.

The posterior distribution of the model parameters and the forecast distribution of the en-
dogenous variables were computed numerically using the Gibbs sampling algorithm in Kadiyala
and Karlsson (1997) for the parameterization in (3.1) and the Gibbs sampler in Villani (2005)
for the speci�cation in (3.2).
To sum up, we analyze two di¤erent VAR-systems (7 and 13 variables) with 1 to 4 lags.

For each of these models, we employ two di¤erent speci�cations of the deterministic part of
the process, given by eq. (3.1) and eq. (3.2), respectively. In addition to this we also estimate
the 7- and 13-variables system with maximum likelihood. To save space we choose only to
report the results from the VARs and BVARs with four lags. However, the forecasting results
are similar across lag-lengths, possibly with a slight advantage for just the four lag models.

4. Measuring forecast accuracy

4.1. The rolling forecast evaluation scheme. We will analyze the out-of-sample precision
of forecasts from the competing models in detail. A large set of accuracy measures will
be employed to summarize the performance of the point forecasts as well as other aspects
of the forecast distribution, such as the forecast uncertainty intervals. The performance of
the forecasting models will be assessed using a standard rolling forecast procedure where
the models�parameters are estimated using data up to a speci�ed time period T where the
dynamic forecast distribution of xT+1; :::; xT+h is computed. The estimation sample is then
extended to include the observed data at time T +1 and the dynamic forecast distribution of
xT+2; :::; xT+h+1 is computed. This is prolonged until no data are longer available to evaluate
the one-step ahead forecast. Notice that the BVARs are re-estimated at a quarterly frequency
while the DSGE models are re-estimated only yearly. We start the rolling forecasts in 1993Q4,
with the �rst out-of-sample forecast produced for 1994Q1. The �nal estimation period is
2002Q3 which provides one 1-step ahead forecast to be evaluated against the �nal data point
in our sample which is dated 2002Q4. We consider the forecast horizons 1 to 8 quarters ahead.
This gives us 36 hold-out observations for the 1-step ahead forecast and 28 observations on
the longest horizon.
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4.2. Marginal likelihood as a measure of predictive performance. There is a connec-
tion between out-of-sample predictive performance and Bayesian model posterior probabilities.
The posterior probability of a model is proportional to the prior probability of that model
multiplied by its marginal likelihood, or prior predictive density:

p0(x1; :::; xT ) =

Z
p(x1; :::; xT j�)p0(�)d�:

It is important to note that the marginal likelihood is a predictive density based on the prior
distribution p0(�) as a summary of the parameter uncertainty; no data is consumed to estimate
the parameters of the model when computing the marginal likelihood. This makes it possible
to interpret the marginal likelihood as a measure of out-of-sample predictive performance,
rather than in-sample �t. This has been noted by several researchers, beginning with Je¤reys
(1961), but is most clearly formulated in Geweke (1999) using the decomposition

p0(x1; :::; xT ) =

qY
�=0

ps� (xs�+1; :::; xs�+1);

where 0 = s0 < s1 < ::: < sq+1 = T partitions the sample into disjoint subperiods.
ps� (xs�+1; :::; xs�+1) is the predictive density of xs�+1; :::; xs�+1 conditional on data up to time
s� :

ps� (xs�+1; :::; xs�+1) =

Z
ps� (xs�+1; :::; xs�+1 j�)ps� (�)d�;

where ps� (�) is the posterior distribution of � based on data up to time s� . An illustrative
special case is obtained by letting s� = � for � = 0; 1; :::; T�1. We then obtain a decomposition
of the marginal likelihood in terms of one step-ahead predictive densities

p0(x1; :::; xT ) = p0(x1)p1(x2) � � � pT�1(xT ):
The close connection between the marginal likelihood and out-of-sample forecasting accu-

racy may seem to make traditional out-of-sample prediction exercises obsolete. We give three
arguments for why this is not the case. First, the above stated decomposition reveals that
the marginal likelihood gives weight to the forecasting accuracy early in the sample where
the prior is dominating the posterior distribution. For example, the predictive score of the
�rst observation is based on parameters drawn directly from the prior distribution. This is of
course entirely in line with the logic of marginal likelihoods - it values the combination of the
model and the prior. However, the user of a forecasting model is likely to be more interested
in the expected future forecasting performance based on the posterior distribution available at
the time of the forecast. Second, the marginal likelihood evaluates whole forecast paths from
T +1 to T +h. It cannot detect that some models may produce mediocre forecasts at shorter
horizons and at the same time be relatively accurate, in comparison to other models, at longer
horizons. Put di¤erently, the marginal likelihood cannot be decomposed into h-step ahead
predictive densities, pT (xT+h). Third, the marginal likelihood measures forecasting accuracy
by the predictive score, a precision measure which focuses on the system as a whole. The user
may be more concerned with forecasting a subset of these variables, or in other performance
measures.
We use four di¤erent speci�cations of the DSGE model to contrast the out-of-sample fore-

casting performance in a traditional rolling event forecasting exercise to the marginal likeli-
hoods. It is of course also possible to include BVARs in the set of models for which model
probabilities are computed, see e.g. Smets and Wouters (2004). It is well known that the
posterior distribution over a collection of models can be sensitive to the choice of prior dis-
tribution, see e.g. Sims�(2003) discussion of Smets and Wouters (2003). This may not be a
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severe problem if the models under consideration have similar structure so that the models�
priors are constructed in essentially the same way. This is not the case in the DSGE vs BVAR
comparison. In the former model, the prior is elicitated on the structural parameters, using
economic theory and available microdata, whereas the priors in BVARs are mostly based on
purely statistical considerations as in e.g. the Litterman (1986) prior. Since the microfounded
DSGE prior is very likely to be substantially di¤erent from the statistical BVAR prior, the
marginal likelihoods of the two models may very well be radically di¤erent even if the two
models are very similar. An interesting alternative is developed in Del Negro and Schorfheide
(2004), which may be described in this context as a way to form a continuous path between
the DSGE and BVAR priors. An application of this methodology is given in Del Negro et al.
(2004).

4.3. Measuring the accuracy of point forecasts. Let x̂t+hjt denote the h-step-ahead pos-
terior median forecast of xt+h, standing at time t, and de�ne et(h) = xt+h � x̂t+hjt as the
corresponding forecast error. We will consider the usual univariate measures of accuracy of
point forecasts, the mean absolute forecast error (MAE) and the root mean squared forecast
error (RMSE):

MAEi(h) = N�1
h

T+Nh�1X
t=T

jei;t(h)j ;(4.1)

RMSEi(h) =

vuutN�1
h

T+Nh�1X
t=T

e2i;t(h);(4.2)

where ei;t(h) is the ith element of et(h) and Nh denotes the number of evaluated h-step-ahead
forecasts.
We also consider two multivariate measures of point forecast accuracy based on the scaled

h-step-ahead Mean Squared Error (MSE) matrix

(4.3) 
M (h) = N�1
h

T+Nh�1X
t=T

~et(h)~e
0
t(h):

where ~et(h) = M�1=2et(h). The matrix M acts as a scaling matrix that accounts for the
di¤ering scales of the forecasted variables and for the fact that the time series may be more
or less intrinsically predictable in absolute terms. Commonly used scalar valued multivariate
measures of point forecast accuracy are the log determinant statistic ln j
M (h)j and the trace
statistic tr[
M (h)]. Note the relations ln j
M (h)j = ln j
I(h)j � ln jM j and tr[
M (h)] =
tr[M�1
I(h)], so that the log determinant statistic is invariant to the choice of scaling matrix,
whereas the trace statistic is not. Because of this, and to simplify the interpretation of the
trace statistic, we set M equal to a diagonal matrix with the sample variances of the time
series based on data from 1993Q1�2002Q4 as diagonal elements. WithM equal to a diagonal
matrix, the trace statistic reduces to a simple weighted average of the RMSEs of the individual
series.
The convenient information reduction provided by scalar valued size measures of 
 (M

and h is dropped from 
M (h) here for notational convenience) may of course also hide
important information. A more detailed view is given by the singular value decomposi-
tion of 
: 
 = V �V 0;where V = (v1; :::; vk), V 0V = Ik, is the matrix of eigenvectors,
�=diag(�1; �2; :::; �k) is the diagonal matrix with ordered eigenvalues �1 � �2; :::;� �k. The
eigenvalues are the variances of the principal components yi;t = v0i~et. �1 is thus the variance
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of the least predictable (maximal forecast error variance) linear combination of the time se-
ries and �k is the variance of the linear combination of the time series with smallest forecast
error variance: Since ln j
j =

Pk
i=1 ln�i and tr(
) =

Pk
i=1 �i, it is clear that tr(
) will to a

large extent be determined by the forecasting performance of the least predictable dimensions
(largest eigenvalues), whereas ln j
j =

Pk
i=1 ln�i also takes into account the most predictable

dimensions (smallest eigenvalues), sometimes to the extent of being dominated by them. To
see the latter point, note that as �k ! 0 we have tr(
)!

Pk�1
i=1 �i, but ln j
j ! �1, for any

values of �i, i = 1; :::; k � 1. A variable with a large (squared) coe¢ cient in the �rst principal
component is thus a major contributor to tr(
), and a variable with a prominent role in the
last principal component contributes substantially to ln j
j, at least when �k is close to zero.
Thus, to get a detailed view of the multivariate accuracy measures one may look at the square
of the elements of the eigenvectors, vi, in combination with the eigenvalues, see Section 5.1
for an application.

4.4. Measuring the accuracy of density forecasts. The measures of forecasting perfor-
mance presented so far value the accuracy of the point forecasts. The Bayesian methodology
employed here allows us to easily obtain the exact �nite sample joint forecast distribution of
the system. To evaluate the out-of-sample performance of the multivariate forecast density as
a whole we employ the log predictive density score (LPDS). The log predictive density score
(LPDS) of the h-step-ahead predictive density, standing at time t, is de�ned as

St(xt+h) = �2 log pt(xt+h);

where pt(xt+h) denotes the h-step-ahead forecast distribution of the k-dimensional data vector
xt+h, standing at time t. Under the assumption that pt(xt+h) is a normal distribution, the
LPDS can be written

St(xt+h) = k log(2�) + log
���t+hjt��+ (xt+h � �xt+hjt)0��1t+hjt(xt+h � �xt+hjt);

where �xt+hjt and �t+hjt are the posterior mean and covariance matrix of the h-step ahead
forecast distribution, respectively, standing at time t.6 We will report the average LPDS over
the hold-out sample

S(h) = N�1
h

T+Nh�1X
t=T

St(xt+h);

where Nh is the number of h-step-ahead rolling forecasts.
The predictive score measures the conformity of the observations to the predictive density

as a whole. Another aspect of the predictive density is the forecast intervals. There are many
ways to construct a forecast interval with predetermined coverage probability, e.g. highest
posterior density (HPD) intervals. We shall here restrict attention to forecast intervals with
equal tail probabilities. A forecast interval is said to be well calibrated if the long run relative
frequency of realized observations included in the forecast interval equals the pre-speci�ed
coverage probability of the interval (Dawid, 1982).
Formally, de�ne the sequence of hit indicators of an h-step-ahead forecast interval with

coverage probability � as

I�t (h) =

�
1 if xt 2 [L�t (h);H�

t (h)]
0 if xt =2 [L�t (h);H�

t (h)]

6If the forecast distribution is not at least approximately normal it may be estimated by a kernel density
estimator. This will be very computationally demanding if the dimension of xt exceeds two or three.
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where L�t (h);H
�
t (h) are the lower and upper limits of the interval at time t. The relative

frequency of interval hits in the evaluation sample, �̂h = N�1
h

PT+Nh�1
t=T I�t (h), may then be

compared to the pre-speci�ed coverage rate �.
A more detailed analysis can be made for the one step-ahead forecasts. In that case, the

hit sequence from a correct forecast interval follows an iid Bernoulli process with success
probability �. This characterization does not hold for h > 1 as the forecast errors are then no
longer independent. Christo¤ersen (1998) suggests using asymptotic likelihood ratio tests to
test the Bernoulli hypothesis against several alternatives. As a Bayesian alternative to these
tests we compute posterior probabilities of the following three hypotheses

H0 : fI�t (1)gT+N1t=T+1
iid� Bern(�)

H1 : fI�t (1)gT+N1t=T+1
iid� Bern(�)(4.4)

H2 : fI�t (1)gT+N1t=T+1 �Markov(�01; �11);

where � in H1 and �01; �11 in H2 are estimated freely. The notation Markov(�01; �11) is here
used to denote a general two-state Markov chain with transition probabilities �01 = Pr(0! 1)
and �11 = Pr(1 ! 1). If H0 is supported, the forecast intervals are correct, both in terms
of coverage and independence of interval hits. If data supports H1, the hit indicators are
independent, but do not generate the intended coverage �. A large posterior probability of H2
suggests a violation of the independence property of the interval. Note that even if H2 receives
the largest posterior probability, the coverage of the interval may still be correct. Whether or
not the interval has the correct coverage when the evidence is in favor of H2 is indicated by
the relative distribution of the remaining probability mass on H0 and H1.
The posterior probabilities of H0;H1 and H2 are computed as follows. Let n0 and n1 denote

the number of zeros and ones, respectively, in the hit sequence. Let further nij denote the
number of transitions from state i to state j in the Markov chain under hypothesis H2, so that
for example n01 is the number of zeros in the sequence which are followed by ones. Assuming
independent priors � � Beta(
; �) in H1, �01 � Beta(
01; �01) and �11 � Beta(
11; �11) in
H2, the marginal likelihoods of the three hypotheses are easily shown to be

m0 = �n0(1� �)n1

m1 =
B(n0 + 
; n1 + �)

B(
; �)

m2 =
B(n01 + 
01; n00 + �01)B(n11 + 
11; n10 + �11)

B(
01; �01)B(
11; �11)
;

where B(�; �) is the Beta function. We will present results for uniform priors on �, �01 and
�11, i.e. we set 
 = � = 
01 = �01 = 
11 = �11 = 1.

5. Empirical results

5.1. Point forecasts. Figure 4 shows the root mean squared forecast errors in yearly per-
centage terms at the 1 to 8 quarters horizon from the baseline DSGE model, two VAR systems
(open and closed economy speci�cations), and two naïve setups (univariate random walks and
the means of the eight most recent data observations). The mean absolute forecast errors give
similar results and to save space we have chosen only to report the RMSEs. We see from
the �gure that the DSGE model does very well in terms of forecasts on the real exchange
rate, exports and imports, at both short and long horizons, suggesting that the open-economy
aspects of the DSGE model are satisfactory modeled. The DSGE model also seems to project
consumption, employment, and the consumption de�ator in�ation very well. For output and
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Figure 4. Root mean squared forecast errors for DSGE, BVARs, MLVARs
and naïve.

domestic in�ation the DSGE model does slightly better forecasts than the MBVARs at shorter
horizons (1 and 2 quarters) but looses somewhat in the medium run. Note also that the one-
and two-step-ahead forecasts from the DSGE model beat the random walk for most variables
with the exception of the real wage and the investment de�ator in�ation. In addition, the
DSGE model�s forecasts outperform those of the MLVAR model on most variables and hori-
zons (see Figures 4 and 6). However, at the eight quarter horizon the baseline DSGE model�s
forecast error for domestic in�ation is a lot larger compared to the ones for the two Bayesian
VAR systems. The DSGE model misses with about 1.3% on average while the forecast errors
for domestic in�ation in the MBVARs stay around 0.7%. It should be noted that the long-run
properties of the DSGE and MBVARs are similar since the latter has a prior on the uncon-
ditional mean that is comparable to the steady state prior in the DSGE model. It is thus
not obvious that the DSGE model�s theoretical structure should matter more in the long run,
and therefore have an advantage over the MBVARs in the forecasting performance at those
particular horizons.
Figure 5 depicts the RMSEs for the four di¤erent speci�cations of the DSGE model esti-

mated with data in �rst di¤erences, together with the benchmark speci�cation estimated with
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Figure 5. Root mean squared forecast errors for the DSGE models.

the DSGE models�cointegration restrictions imposed. The �gure shows that the accuracy of
the domestic in�ation forecasts from the baseline DSGE model is a lot worse than the ones
generated by the DSGE model with correlated markup shocks, which in turn is more in line
with the MBVAR evidence (the BVARs and MLVAR models behave more similarly to the
benchmark DSGE model). The problem is that the baseline model on average overpredicts
both in�ation and the real wage more often at longer horizons than the model with correlated
markup shocks (not shown). By way of some simple experiments, we found that the main
reason for this is the higher price stickiness parameter in the baseline DSGE which induces
more in�ation inertia than the model with correlated markup shocks. The baseline DSGE
model consequently has more di¢ culties capturing upturns and downturns in the in�ation
series than, for example, the model with correlated markup shocks.7

Note also that imposing the models�cointegration restrictions in the estimation on the base-
line speci�cation leads to inferior forecasting performance on almost all variables and horizons
(see Figure 5). One explanation for this behavior is that the cointegrating relations implied

7However, also other parameters contribute to the in�ation persistence, such as a higher wage indexation
and larger responses to the output gap in the monetary policy rule (cf. Table 2).
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Figure 6. Root mean squared forecast errors for the VAR models.

by the DSGE model display a large degree of persistence during the sample period. In order
to capture this feature of the data, the cointegration model is estimated to have both more
intrinsic persistence (i.e., larger nominal frictions) and a higher correlation in the exogenous
shock processes, compared to the baseline model estimated on data in �rst di¤erences (see
Table 2). This in turn causes the cointegration model to generate more persistent forecasts,
which are generally not a feature of the actual outcome in the forecasting evaluation period
where, for example, in�ation is consistently low and less persistent than in the earlier part of
the sample.
In Figure 6 we display the RMSEs for the various VAR systems. We see that the MBVARs

with a prior on the steady state seems to do better in terms of the forecasts on in�ation at
longer horizons. On the other hand, the MBVAR models seem instead to perform worse on
some of the real variables such as e.g. the real wage. The di¤erence between the Bayesian
VARs at longer horizons is to a large extent explained by the MBVARs�prior on the steady
state in Table 3. The average in�ation rate during the evaluation period turned out to be
near the center of the steady state prior which explains the good long run forecasts of in�ation
from the MBVAR models. Likewise, the poor real wage forecasts are explained by the lack of
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correspondence between the realized real wage growth in the evaluation period and the steady
state prior (compare Figure 1 and Table 3).
Table 4 shows the multivariate accuracy measures for the point forecasts, the log determi-

nant and the trace of the MSE matrix (see equation (4.3)). In order to be able to compare the
multivariate measures across the di¤erent models, we have in the �rst set chosen to include
only the variables that are common to all models. The �rst set of multivariate measures are
therefore based on the matrix of forecast errors from domestic in�ation, the real wage, con-
sumption, investment, employment, the interest rate and output. According to both the log
determinant and the trace statistics, the BVAR models appear overall to have better accu-
racy on the one and four quarter ahead forecasts than the ones generated from the di¤erent
DSGE speci�cations. However, at the 8 quarter horizon the forecasts from the DSGE model
outperforms those of the BVARs, at least judging from the log determinant statistic.
The multivariate measures based on the domestic variables consequently seem to suggest

that the DSGE model performs best at the 8 quarter horizon, while the univariate RMSEs
on e.g. domestic in�ation and the real wage indicate the opposite. The substantially worse
performance of the DSGE models at the one quarter horizon is also hard to understand simply
by looking at the univariate RMSEs. A closer look at the multivariate measures using the
spectral decomposition of the MSE matrix discussed in Section 4.3 explains the seemingly
incompatible results in Figures 4-6, on the one hand, and the multivariate measures in Table
4, on the other. Figure 7 displays the eigenvalues of the MSE matrix, both on original and
log scale, at the 1; 4 and 8 quarter horizon for four of the models. The log determinant
statistic equals the sum of the log eigenvalues of the MSE matrix. It is therefore clear from
the right column of Figure 7 that the large di¤erence in forecasting performance between the
DGSEs and BVARs captured by this statistic at the �rst quarter horizon is dominated by
the smallest eigenvalue. The DSGE models inferior forecast performance at the one quarter
horizon therefore comes from their inability to predict those variables which account for the
major part of the last principal component at the shortest horizon. Looking at the subgraphs
in the right column of Figure 8, which depicts the relative weight on the variables in the
eigenvector with smallest eigenvalue (v2jk for the jth variable), it is clear that this principal
component at the shorter horizons is essentially the forecast errors of the employment series.
The one-quarter ahead RMSEs of the employment series in Figure 4 are small for all models,
but the relative di¤erence between the DSGE models and the BVARs are substantial: the
RMSE of employment at the �rst horizon in the benchmark DSGE is almost twice those of
the two BVARs. Since the log determinant measure is very sensitive to the performance on the
most predictable dimensions, this minor di¤erence between the models receives a very large
weight in the log determinant measure. Note also that the forecast errors of employment is
still the driving force of the smallest eigenvalue at horizon 4 (Figure 8), but here the di¤erence
in log determinant statistic across models is no longer dominated by this eigenvalue (see
Figure 7). At the four quarter horizon it is mainly the largest eigenvalue which is dominating
the comparison. The determinants of this eigenvector are given in the left hand column of
Figure 8. The relatively good multivariate performance of the DSGE model with correlated
markup shocks and the seven variable BVAR is in part explained by the fairly large weight
on real wage, a variable which these two models predict more accurately than the benchmark
DSGE. Finally, on the eight quarter horizon the picture is more complicated, but the poor
performance of the benchmark DSGE on the long run forecasts of the real wage (which drives
the largest eigenvalue, see Figure 8) is more than compensated by its good forecasts of the
variables contributing to the smallest eigenvalues.
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Figure 7. Eigenvalues (left column) and log of eigenvalues (right column) of
the MSE matrix at di¤erent horizons.

The eigenvalues on the original scale in the left column of Figure 7 show that the trace
statistic is mostly determined by the largest eigenvalue, at least at the longer horizons. The
decomposition of this eigenvalue in the left column of Figure 8 may similarly be used to
investigate the di¤erences in the trace statistic.
Since the multivariate measures run the risk of being dominated by a speci�c variable

which may be of minor interest (e.g., employment), Table 4 also shows the log determinant
and trace of the MSE matrix from two other sets of variables. One is based on the forecast
errors of domestic in�ation, output and the interest rate, and another on these three variables
together with the real exchange rate, exports and imports. Looking only at the three domestic
variables it appears as if the DSGE models have a better chance of replicating the forecasting
performance of the BVARs also at shorter horizons. The same holds true when adding the
performance in terms of the open economy variables (i.e., the real exchange rate, exports and
imports) to these three variables. Both the log determinant and the trace statistic indicate
that the DSGE models have better forecast accuracy for this set of variables on the 1, 4 and
8 quarter horizons.
Turning to the comparison between the MBVAR and the BVAR without a prior on the

unconditional mean, we �nd that the MBVAR does a good job in capturing the joint accuracy
of the forecasted variables, at least according to the log determinant.
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Pk
j=1 �j where �i is the ith largest eigenvalue.

5.2. Density forecasts. Figure 9 and 10 show the accuracy of the one and four quarter ahead
forecast intervals in terms of the empirical coverage probabilities for the baseline DSGE model
and three BVAR speci�cations. The horizontal axis depicts the (intended) coverage probability
of the interval and the vertical axis the empirical coverage rate obtained in the hold-out sample.
This is measured from the sequence of hit indicators which determines how often a certain
forecast interval (say for example 75% density) covers the actual data observations at the hth
horizon. A good model should of course be equipped with a forecast density that is in close
correspondence with the actual coverage probability, that is the empirical coverage rate should
be located on the 45 degree line. The one-step ahead empirical coverage probabilities is based
on 36 hit indicators, while the four-step ahead empirical coverage probability is calculated
from 32 observations. The uncertainty in estimating percentiles from little more than 30
observations is of course large, especially in the tail of the distribution, and the exact numbers
in Figure 9 and 10 should not be over-emphasized. The empirical coverage probabilities of
the forecast intervals for the DSGE model seem in general to be more balanced at the one
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quarter horizon than the ones for the BVARs. This is especially true for domestic in�ation and
employment, where the BVAR forecast intervals�are too wide. At the four quarter horizon
(Figure 10), the DSGE seems to deteriorate in comparison to the BVARs. A reason for the
worse properties of the DSGE model could be the internal propagation of the disturbances
hitting the economy. The processes for the disturbances are generally highly correlated, which
implies that the uncertainty induced by these shocks amplify over the horizon and generate
wider uncertainty bands.
Table 4 reports the log predictive density score. Once again we have in the �rst set chosen

to include only the subset of variables that are common to the di¤erent models we evaluate,
i.e., domestic in�ation, the real wage, consumption, investment, employment, the interest rate
and output. The LPDS based on these variables appear to suggest a better overall forecast
density for the BVARs, at least at the shorter horizons, while the DSGE models gain ground
on the longest horizon. However, the LPDS from the joint forecasts of only domestic in�ation,
output and the interest rate indicate that the DSGE models have better forecasting accuracy
than the BVARs also at the one- and four-quarter horizons. Additionally, extending the
second set of variables with the real exchange rate, imports and exports, we �nd that almost
all DSGE speci�cations outperform the 13-variable MBVAR on all horizons. It is thus of
crucial importance to acknowledge that also the LPDS can be dominated by variables that
the forecaster is less interested in.
It is interesting to compare the LPDS of the seven domestic variables in the four DSGE

model to the marginal likelihood of those four models in Table 2. The marginal likelihoods
imply the following posterior probabilities: 0:9976, 0:0003, 0:002 and 0 for the benchmark
model and the models with variable capital utilization, persistent markup shocks or iid markup
shocks, respectively.8 The model probabilties thus gives an overwhelming support to the
baseline DSGE model with no variable capital utilization. It should be noted that the marginal
likelihoods are evaluated on all 15 variables, whereas the LPDS presented in Table 4 only values
the forecast density of the seven domestic variables. Comparing the marginal likelihoods of the
DSGE models to the LPDS for the set of seven domestic variables in Table 4, we nevertheless
see an exact correspondence in the ranking of DSGE models at the 1 and 4 horizons. The
benchmark DSGE has the smallest LPDS also at the eight quarter horizon, but the ranking
of the remaining three models is in con�ict with the ranking based on the marginal likelihood.
The marginal likelihood is sometimes somewhat sloppily referred to as a measure of fore-

casting performance. This is problematic as forecasting performance is for most people mainly
connected to point forecasts, while any connection between the marginal likelihood and out-
of-sample forecast performance goes through the density forecasts, see Section 4.2. Judging
by the evidence presented here, the use of the marginal likelihood as a convenient summary
of the out-of-sample performance of point forecasts is highly questionable. For example, all
four models generate more or less the same RMSE for variables such as domestic in�ation,
output, the real exchange rate, exports and imports at the short horizons (see Figure 5). The
di¤erence between the best and the worst model�s one-step-ahead forecasts for both in�ation
and output is less than 0:03 percent. At longer horizons the di¤erences between the models
are larger, and perhaps surprisingly the baseline model generates the lowest RMSE only for
one variable, employment, at the eight quarter horizon. Also the multivariate point forecast
accuracy measures indicate a loose connection between marginal likelihood and out-of-sample

8It should be noted that these di¤erences in posterior odds remain fairly constant over the evaluation period,
at least to the degree of keeping the ranking of the models unaltered. Note also that the marginal likelihood
of the DSGE model estimated on data where cointegration restrictions have been imposed cannot be directly
compared to the other DSGE speci�cations.
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performance. There is a slight (forecasting) edge for the model with correlated markup shocks,
at all horizons, according to both the log determinant and the trace of the multivariate squared
forecast error matrix for the domestic variables (see Table 3). The model with lower posterior
probability thus outperforms the baseline model with higher posterior probability in terms of
the point forecast accuracy.
The joint hypothesis test of correct interval coverage and independence of one-step ahead

forecast interval hits (see Section 4.4) is presented in Table 5. The table shows the posterior
probabilities of the three models in equation (4.4) for the 70% forecast interval. A well-
calibrated forecasting model, where the interval hits are independent and the interval has the
intended coverage, implies H0 as the correct hypothesis . From the table follows that the
baseline DSGE model has most probability mass on H0. From Table 5 also follows that the
benchmark DSGE model has somewhat better calibrated forecast intervals than the other
DSGE speci�cations. As mentioned above, the model with correlated markup shocks does a
lot better in terms of the point forecast accuracy of domestic in�ation at longer horizons but
on 1 and 2 quarters ahead the in�ation forecast accuracy in the di¤erent DSGE speci�cations
are about the same. However, from Figure 11 follows that the in�ation forecast intervals are
a lot wider in the model with correlated markups than in the baseline DSGE model. The
empirical coverage rate is hence too large.

6. Conclusions

This paper has evaluated the forecasting performance of an open economy dynamic sto-
chastic general equilibrium model for the Euro area against a wide range of reduced form
forecasting models such as VARs, BVARs, univariate random walks and naïve forecasts based
on the means of the most recent data observations.
The DSGE model performs very well in terms of univariate point forecasts on the open

economy variables such as the real exchange rate, exports and imports. The RMSEs speak
in favour of the DSGE model for these variables at both long and short horizons, suggesting
that the open economy aspects are reasonably modeled. In terms of the domestic variables,
the DSGE model also seems to forecast output, consumption and employment very well, but
has some di¢ culty with the long run projections of domestic in�ation and the real wage.
The multivariate point forecast accuracy measures, which take the joint forecasting per-

formance of the domestic variables into account, indicate that the DSGE models give more
accurate forecasts than the BVARs at the medium- to long-term horizons (4 � 8 quarters
ahead). The advantage of the DSGE model is perhaps due to the richer theoretical structure
that probably has a larger impact on the forecasts in the long-run, where the historical pat-
terns captured in the VAR-systems can lead to more erroneous forecasts, at least without a
prior on the steady state.
Turning to the overall density forecast accuracy, the di¤erences between the models appear

to be relatively small. Again, the baseline DSGE model seems to produce a somewhat better
multivariate forecast density at longer horizons, while the BVARs have an overall forecasting
advantage predominately at shorter horizons.
A caveat with the analysis in this paper is that we are using ex post data and not real-time

data. The latter could perhaps change the ranking of the models, even if the same data are
used in both the DSGE and the BVAR models. Another important issue for future work is to
include more shocks with permanent e¤ects in the model. The poor forecasting performance
of the DSGE when imposing the model-implied cointegration properties suggests that it would
be fruitful to incorporate more shocks with long-run e¤ects than just the unit-root shock in
total factor productivity considered here.
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Figure 9. Empirical coverage probability, DSGE and BVARs, 1 quarter horizon.

In future work we plan to apply the methodology of Del Negro and Schorfheide (2004)
to learn more about the misspeci�cation of the open economy DSGE model, and test the
forecasting performance of the resulting hybrid model when some of the DSGE restrictions
are relaxed. However, this would still imply that a small set of variables is considered su¢ ent to
describe the economy. A broader perspective would be to estimate dynamic factor models on
a much larger set of variables. For example, Stock and Watson (1999), and Giannone, Reichlin
and Sala (2004) have shown that this type of models has promizing forecasting properties.
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