
Analysis of Complex Survey Data in Stata

Isabel Cañette
Senior Statistician

StataCorp LP

2010 Mexican Stata Users Group meeting
April 29, 2010

Introduction

I Surveys are aimed to collect information to study
characteristics on a fixed population

I Surveys (as opposed to census) are usually performed to cut
costs and time resources

I For the same reasons, researchers may opt for complex survey
designs, as opposed to simple random samples (SRS)

I In some situations, SRS may be impossible due to lack of a list
with all the individuals.

Stata approach to survey data

In Stata, we separate the stage of the declaration of the design
from the estimation stage. Once the design is declared (svyset), it
will be automatically taken into account every time we use the svy
prefix.

If for i.i.d data we write:

regress
proportion

Then, for survey data we write:

svy: regress
svy: proportion

Survey data characteristics

Syntax for a one-stage design:

svyset
[
psu

] [
weight

] [
, strata(varname) fpc(varname)

]
These optional arguments refer to Stata variables containing:

I sampling units, or clusters, are the actual units we sample.
I sampling weight is the inverse of the probability of an

observation being sampled (in other words, the number of
observations in the population represented by each observation
in the sample)

I Stratification consists of dividing the population into two or
more sections, and taking independent samples within each
section (strata).

I fpc (finite population correction) is the proportion of psu
sampled within each stratum (only for sampling without
replacement)

Using svyset for a SRS

If we have a SRS (without replacement), we will usually consider it
as “standard” data. There are, however, cases in which we may
want to use svyset. We’ll use this setting to illustrate the use of
fpc and weight.

Using svyset for a SRS

. use srs1, clear

. qui summarize x

. display "N =" ,`r(N)´, " mean ="`r(mean)´
N = 100 mean =10.075665

. sample 50, count
(50 observations deleted)

. gen fpcvar = 50/100

. gen pwvar = 100/50

. mean x

Mean estimation Number of obs = 50

Mean Std. Err. [95% Conf. Interval]

x 10.12268 .1299423 9.861551 10.38381

. svyset [pw=pwvar], fpc(fpcvar)

pweight: pwvar
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: fpcvar

. svy: mean x
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 50
Number of PSUs = 50 Population size = 100

Design df = 49

Linearized
Mean Std. Err. [95% Conf. Interval]

x 10.04064 .1075293 9.824552 10.25673

Simple design with two strata

We want to estimate the mean for the age of a population; we have
a stratified sample, with two strata (region), and a SRS within each
region

Region Population mean N n
1 40 500 30
2 50 200 50

true mean: (1/700)*(500*40 + 200*50) = 42.857

. use age1, clear

. gen fpcvar = cond(region ==1, 30/500, 50/200)

. gen pwvar = cond(region ==1, 500/30, 200/50)

. svyset [pw=pwvar], strata(region) fpc(fpcvar)
pweight: pwvar

VCE: linearized
Single unit: missing

Strata 1: region
SU 1: <observations>

FPC 1: fpcvar
. svy: mean age
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 2 Number of obs = 80
Number of PSUs = 80 Population size = 700

Design df = 78

Linearized
Mean Std. Err. [95% Conf. Interval]

age 43.12323 .2530591 42.61942 43.62703

Adding PSUs to the design

We want to know the income per household in a certain city, and
we don’t have a list of households. Instead of trying to create a list
of households, it would be more practical to sample blocks. Each
block would be considered a sampling unit. Our setting would be:

svyset block [pw = pwvar], fpc(fpcvar)

If instead of sampling clusters from the city, we first divided the city
into regions and then, within each region, we sampled blocks
(eventually with different criteria among regions), our setting would
be:

svyset block [pw = pwvar], strata(region) ///
fpc(fpcvar)

Multistage designs

We want to perform a survey on the eating habits of children
attending elementary schools.
A possible design would be: perform samples independently on each
state. For each state, perform a random sample of counties. Within
each county, perform a random sample of schools, and interview
each student for the selected schools.

svyset county [pw = pwvar], strata(state) fpc(fpcvar) || ///
school, fpc(fpcvar2)

If within each school we stratify per grade and sample students
independently on each grade, then we need to add another level:

svyset county [pw = pwvar], strata(state) fpc(fpcvar) ///
|| school, fpc(fpcvar2) ///
|| student, fpc(fpcvar3) strata(grade)

Estimation
After declaring your survey design with svyset, you only need to
use the svy prefix for your supported estimation command.
. webuse nhanes2, clear
. svyset psu [pw=finalwgt], strata(strata)
(output omitted)
. svy: probit highbp weight i.region
(running probit on estimation sample)
Survey: Probit regression
Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31
F(4, 28) = 51.58
Prob > F = 0.0000

Linearized
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .0229814 .0016002 14.36 0.000 .0197178 .0262449

region
2 -.1367888 .1321226 -1.04 0.309 -.4062547 .1326772
3 -.0568238 .1284056 -0.44 0.661 -.3187087 .2050611
4 -.1563827 .1255029 -1.25 0.222 -.4123475 .0995822

_cons -2.889106 .1712036 -16.88 0.000 -3.238278 -2.539934

Variance for totals
Total estimator: one-stage design.

I L strata h = 1, .., L
I i = 1, ..., nh PSU’s are sampled from stratum h.
I Cluster i from stratum h is composed of j = 1, . . . , mhi

elements.

Ŷ =
L∑

h=1

nh∑
i=1

mhi∑
j=1

whijyhij

V̂ (Ŷ) =
L∑

h=1

(1 − fh)
nh

nh − 1

nh∑
i=1

(yhi − ȳh)
2

where
I yhi is the weighted PSU total for cluster hi
I ȳh is the mean of PSU totals in stratum h

Variance for totals (cont)

Total estimation: multistage design

V̂ (Ŷ) =
L∑

h=1

(1 − fh)
nh

nh − 1

nh∑
i=1

(yhi − ȳh)
2+

L∑
h=1

fh ∗ (contribution from further stages)

Notice that:
I yhi are estimated totals per PSU, not actual totals
I If we don’t use fh when we svyset, then we will be using

only information on the primary stage
I If fh are too small, further stages will contribute very little

to the variance estimator.

Variance estimation: linearized for regression models

We use Taylor expansion for models that are fitted via estimation
equations:

Ĝ (β) =
∑

j

wjS(β; yj , xj) = 0

For example, for OLS, G are the normal equations; for (pseudo) ml
estimation, G are the scores.

V̂ (β̂) = DV̂ (Ĝ (β))|β=β̂D ′

where D is the inverse of the derivative of G with respect to β. We
use the formulas for the total to estimate the variance of Ĝ (β)).

Variance estimation: linearized for regression models
If we svyset with only weights and PSU, this is equivalent to
using the “plain” command with weights and vce(cluster).

. sysuse auto, clear

. svyset rep [pw=trunk]
(output omitted)
. svy: logit for mpg
(output omitted)

Linearized
foreign Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg .2167174 .1159963 1.87 0.135 -.10534 .5387749
_cons -5.726014 2.838586 -2.02 0.114 -13.60719 2.155165

. logit for mpg [pw=trunk], vce(cluster rep)
(output omitted)

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .2167174 .1159963 1.87 0.062 -.0106312 .4440661
_cons -5.726014 2.838586 -2.02 0.044 -11.28954 -.1624873

Replication-based methods

I Allow us to compute variance estimates without having the
whole design information

I They use a set of variables containing weights: estimation is
performed using each variable weight, and all those results are
used to compute the variance

I Different methods differ on how weights are computed, and
therefore on the formula used to compute the variance.

I Currently, we have two replication-based methods: jackknife
and brr (balanced repeated replications).

I In the near future, we will also have bootstrap and sdr
(successive difference replications).

The bootstrap

By default, the bootstrap variance estimator is computed as:

V̂ (θ̂) =
b
r

r∑
i=1

(
θ̂(i) − θ̄(.)

) (
θ̂(i) − θ̄(.)

)′

where
I θ̂(i) is the point estimate for the ith replication
I θ̄(.) is the mean of {θ(1), . . . , θ(r)}

Computation of bootstrap vce for survey data requires that
weights be supplied by user.
Available in the near future. In the meantime, you can use the
user-written command bs4rw (use findit to locate it).

Bootstrap example

. use nmihs_bs, clear

. svyset [pw=finwgt], bsrweight(bsrw*) vce(bootstrap)
pweight: finwgt

VCE: bootstrap
MSE: off

bsrweight: bsrw1 bsrw2 bsrw3 bsrw4 bsrw5 bsrw6 bsrw7 bsrw8 bsrw9 bsrw10
(output omitted) bsrw996 bsrw997 bsrw998 bsrw999 bsrw1000
Single unit: missing

Strata 1: <one>
SU 1: <observations>

FPC 1: <zero>
. svy, nodots: logit lowbw highbp
Survey: Logistic regression Number of obs = 9949

Population size = 1419516.8
Replications = 1000
Wald chi2(1) = 0.02
Prob > chi2 = 0.8894

Observed Bootstrap Normal-based
lowbw Coef. Std. Err. z P>|z| [95% Conf. Interval]

highbp .0731004 .5256499 0.14 0.889 -.9571545 1.103355
_cons -2.751879 .1138499 -24.17 0.000 -2.975021 -2.528737

Bootstrap example (2)
. use nmihs_mbs, clear
. svyset [pw=finwgt], bsrweight(mbsrw*) bsn(5) vce(bootstrap)

pweight: finwgt
VCE: bootstrap
MSE: off

bsrweight: mbsrw1 mbsrw2 mbsrw3 mbsrw4 mbsrw5 mbsrw6 mbsrw7 mbsrw8 mbsrw9
(output omitted)

mbsrw199 mbsrw200
bsn: 5

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. svy, nodots: logit lowbw highbp
Survey: Logistic regression Number of obs = 9946

Population size = 3895561.7
Replications = 200
Wald chi2(1) = 49.16
Prob > chi2 = 0.0000

Observed Bootstrap Normal-based
lowbw Coef. Std. Err. z P>|z| [95% Conf. Interval]

highbp .805297 .1148604 7.01 0.000 .5801747 1.030419
_cons -2.655877 .0094716 -280.41 0.000 -2.674441 -2.637313

Other potential uses for svy + vce(bootstrap)

Besides survey data, this feature can be used with non-survey data:
I If you have a huge dataset, the “standard” bootstrap may

take time because it needs to access the disk to preserve and
restore the data for each iteration. It may be convenient to
generate weights and use them with svy, vce(bootstrap)
instead.

I The “standard” bootstrap can’t be used with weights. You
can use this feature to do that. Your replication weights needs
to be adjusted by your sample weights. Our documentation
shows a way to do it.

I This feature can be used to perform bootstrap with clusters,
a way that would be more efficient than the “naive” one (i.e.
using option vce(cluster) for bootstrap prefix). Our
documentation also will show you a way to do that.

Estimation on subpopulations: subpop() vs if
. webuse nmihs, clear
. svy: mean birthwgt if agegrp ==1
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 6 Number of obs = 1652
Number of PSUs = 1652 Population size = 477969

Design df = 1646

Linearized
Mean Std. Err. [95% Conf. Interval]

birthwgt 3205.137 16.9503 3171.891 3238.384

. gen u = agegrp == 1

. svy, subpop(u): mean birthwgt
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 6 Number of obs = 9952
Number of PSUs = 9952 Population size = 3898763

Subpop. no. obs = 1652
Subpop. size = 477968.6
Design df = 9946

Linearized
Mean Std. Err. [95% Conf. Interval]

birthwgt 3205.137 18.5948 3168.688 3241.587

Estimation on subpopulations: Remarks

Unless you have a very good reason to do the opposite, always use
subpop() (not if/in) when working with svy data.

I if/in restricts the data to the subset of observations that
satisfy the condition, and performs the estimation as if it were
the whole sample from a known “population”.

I It underestimates the variance, because it ignores the fact that
our sample was taken from the whole population (not from the
subset with the if condition in the population), and then we
restricted the analysis to the observations that happened to be
in the subset.

Postestimation commands

Most post-estimation commands are also available for survey data:
lincom, nlcom, predict, predictnl, test, testnl, work the
same way as for “standard” estimations.
When performing a Wald test after svy estimation, degrees of
feedom for test are adjusted according to the survey design.
The command test is particularly important for survey data, where
likelihood-based commands (like lrtest) are not valid.

Performing a Wald test

. webuse nhanes2, clear

. svy: probit highbp weight i.region
(output omitted)

. test 2.region = 3.region

Adjusted Wald test

(1) [highbp]2.region - [highbp]3.region = 0

F(1, 31) = 0.61
Prob > F = 0.4400

margins

We can use margins to compute marginal means and marginal
effects. Here we compute the mean predicted probability of positive
outcome per region.

. margins region, vce(unconditional)
Predictive margins Number of obs = 10351
Expression : Pr(highbp), predict()

Linearized
Margin Std. Err. t P>|t| [95% Conf. Interval]

region
1 .1220135 .0201861 6.04 0.000 .0808436 .1631833
2 .0980896 .0125024 7.85 0.000 .0725908 .1235885
3 .1116153 .0122231 9.13 0.000 .0866861 .1365446
4 .0949684 .0098451 9.65 0.000 .0748892 .1150475

