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Motivation 
 Stata is a powerful and flexible statistical package 

for researchers who need to compute ML estimators 
that are not available as prepackaged routines. 

 Prospective and advanced users would want to 
know: 

I.   ML estimation facilities in Stata and GAUSS. 
II.   The main advantages of Stata compared with 

GAUSS. 
III.  What is still needed and what might be refined to 

implement the whole ML methodology in Stata. 



Objective 

 The main purpose of this presentation is to 

compare the ML routines and capabilities 

offered by STATA and GAUSS.  



The Maximum Likelihood 
Method 

  The foundation for the theory and practice 
of maximum likelihood estimation is a 
probability model: 

Where Z is the random variable distributed according 
to a cumulative probability distribution function F() 
with parameter vector                       from   , which 
is the parameter space for F().  



The Maximum Likelihood 
Method 

 Typically, there is more that one variable of 
interest, so the model: 

Describes the joint distribution of the random 
variables, with            . Using F(), we can 
compute probabilities for values of the Zs 
given values of the parameters    . 



The Maximum Likelihood 
Method 

 Given observed values z of the 
variables, the likelihood function is: 

Where f() is the probability density function 
corresponding to F().  

We are interested in the element (vector) of      that 
was used to generate z. We denote this vector by                          



The Maximum Likelihood 
Method 

 Data typically consist of multiple 
observations on relevant variables, so we 
will denote a dataset with the matrix Z. Each 
of N rows, zj, of Z consists of jointly 
observed values of the relevant variables: 



The Maximum Likelihood 
Method 

 f() is now the joint-distribution function of the 
data-generating process. This means that the 
method by which the data were collected now 
plays a role in the functional from of f().  

 We introduce the assumption that “observations” 
are independent and identically distributed (i.i.d.) 
and rewrite the likelihood as: 



The Maximum Likelihood 
Method 

 The maximum likelihood estimates for       
are the values     such that: 



The Maximum Likelihood 
Method 

 We are dealing with likelihood functions that are 
continuous in their parameters, let’s define some 
differential operators to simplify the notation. For 
any real valued function a(t), we define D and 
D2 by: 

DERIVATIVE GRADIENT VECTOR 



Maximum Likelihood: Commonly 
used Densities in Micro-

econometrics 

MODEL  RANGE  
OF y 

DENSITY f(y) COMMON 
PARAMETERIZATION 

Normal (-∞, ∞) 
Bernoulli 0 or 1 Logit 

Exponential (0, ∞) 
Poisson 0, 1, 2,… 

Source: Cameron, Colin A. and Pravin K. Trivedi. Microeconometrics. 
Methods and Applications, Cambridge, 2007, pág. 140. 




Comparison: Stata and 
Gauss 



The Log-Likelihood Function 
in Stata 

SYNTAX 
args lnf mu sigma 
quietly replace `lnf'=ln(normalden($ML_y1, `mu', `sigma')) 



The Log-Likelihood Function in 
Gauss 

Where N is the number of observations, P(Yi, 0) is the 
probability of Yi given 0, a vector of parameters, and wi 
is the weight of the i-th observation. 

proc loglik(theta,z); 
local y,x,b,s; 
x=z[.,1:cols(z)-1]; 
y=z[.,cols(z)]; 
b=theta[1:cols(x)]; 
s=theta[cols(x)+1]; 
retp(-0.5*ln(s^2)-0.5*(y-x*b)^2/s^2); 
endp; 



Procedure to maximize a 
likelihood functions in Stata  

Syntax: 
ml model lf my_normal f (y1=x1 x2)/sigma, 

technique(bhhh) vce(oim) waldtest(0) 

ml maximize 

Where: 
Bhhh:  Is a method of optimization Berndt-Hall-Hall-Hausman 
Oim:  Variance-covariance matrix (inverse of the negative Hessian 

matrix) 



Procedure to maximize a 
likelihood functions in Gauss  



Capabilities:  Stata 
vs Gauss  

 Methods 
 Optimization Algorithms 
 Covariance Matrix 
 Inference Data and Inference 
 Initial Values 
 Report of the Coefficients 
 Other 



Stata’s Capabilities: Methods  

CAPABILITIES  STATA GAUSS 

Linear Form Restrictions  YES (lnf) NO 

No Analytical Derivatives YES (d0) YES 

Analytical Gradients 
 First Derivative YES (d1) YES 

Analytical Hessian  
Second Derivative YES (d2) YES 



Stata’s Capabilities: 
Optimization Algorithms 

CAPABILITIES  STATA GAUSS 
Newton-Raphson (NR)  YES YES 

Berndt-Hall-Hall-Hausman 
(BHHH)  YES YES 

Davidon-Fletcher-Powell 
(DFP)  YES YES 

Broyden-Fletcher-Goldfarb-
Shanno (BFGS) YES YES 

SD (steepest descent)  NO YES 
Polak-Ribiere Conjugate 

Gradient  NO YES 



Stata’s Capabilities: 
Covariance Matrix 

CAPABILITIES  STATA GAUSS 

The inverse of the final information matrix 
from the optimization YES YES 

The inverse of the cross-product of the 
first derivatives YES YES 

The hetereskedastic-consistent 
covariance matrix YES YES 



Stata’s Capabilities: 
 Data and Inference 

CAPABILITIES  STATA GAUSS 
Robust YES YES 
Cluster YES NO 

Weights* YES YES 
Survey Data   YES (SVY) NO 

Modification of the Sub-
sample YES NO 

Constrains YES NO 
Wald Test YES YES 

Switching** YES YES 

*  Stata  contains  frequency,  probability,  analytic  and 
importance   weights. Gauss have only frequency weight.

**Switching between algorithms.




Stata’s Capabilities: 
 Initial Values 

CAPABILITIES  STATA GAUSS 

Initial Values YES* YES 

Plot YES YES 

*Stata  searches  for  feasible  initial  values  with  ml 
search.




Stata’s Capabilities: 
Report of the Coefficients 

CAPABILITIES  STATA* GAUSS 

Hazard ratios (hr) YES NO 

Incidence-rate ratios  (irr) YES NO 

Odds ratios (or) YES NO 

Relative risk ratios (rrr) YES NO 

*It must  be used the command ml display




Stata’s Capabilities: 
 Other 

CAPABILITIES  STATA GAUSS 

Convergence YES YES 

Syntax Errors YES YES 

Graph: the log-likelihood 
values YES YES 



Example with the Poisson model 
ESTIMATION IN STATA   ESTIMATION IN GAUSS  

program define my_poisson 
   version 9.0 
   args lnf mu 
   quietly replace `lnf' = $ML y1*ln(`mu')- 
`mu' - lnfact($ML y1) 
end 

ml model lf my_poisson f (y1=x1 x2)/
sigma, technique(bhhh) vce(oim) 
ml maximize 

library maxlik; 
maxset; 
proc lpsn(b,z); /* Function - Poisson Regression */ 

local m; 
m = z[.,2:4]*b; 
retp(z[.,1].*m-exp(m)); 
endp; 

proc lgd(b,z); /* Gradient */ 

retp((z[.,1]-exp(z[.,2:4]*b)).*z[.,2:4]); 
endp; 

x0 = { .5, .5, .5 }; 
_max_GradProc = &lgd; 
_max_GradCheckTol = 1e-3; 
{ x,f0,g,h,retcode } = MAXLIK("psn",
0,&lpsn,x0); 
call MAXPrt(x,f0,g,h,retcode); 



Conclusions 

 Stata’s features seems best suited for 
analyzing specific models of decision 
making processes and other micro-
econometric applications. 

 Gauss is ideal for analyzing a more ample 
range of statistical issues based on 
maximum likelihood estimation. 


