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Simulating data for our models
Simulating data is a powerful tool to understand the model we
want to fit, and also to spot identification issues.
Let’s start by fitting a linear model on the homework dataset1

use homework
regress math homework

The same coefficients can be obtained by using xtmixed
. xtmixed math homework, nolog noheader

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 3.126375 .2860801 10.93 0.000 2.565668 3.687081
_cons 45.56015 .7055719 64.57 0.000 44.17726 46.94305

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

sd(Residual) 9.661575 .2998812 9.09134 10.26758

1Kreft, I.G.G and de J. Leeuw. 1998. Introducing Multilevel Modeling. Sage.
Rabe-Hesketh, S. and A. Skrondal. 2008. Multilevel and Longitudinal Modeling
Using Stata, Second Edition. Stata Press



Simulating data for this model is very simple
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x = weekly hours spent on Math homework

(artificial data)
Linear Model (OLS)

. gen x = 8*runiform()

. gen y1 = 3.13*x + 45.56 + 9.66*rnormal()

(Notice that I should use the saved results instead of copying them from the screen;

I’m just doing this for didactic purposes)



Random-effect models
Random intercept only: we are assuming that the intercept varies
randomly across schools
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xb
school1: xb + re
school2: xb + re
school3: xb + re
school4: xb + re

school1: y
school2: y
school3: y
school4: y

(artificial data)
Model with random intercept

The syntax to fit this model would be:
xtmixed math homework || schid:



Random intercept and random slope: we are assuming that both,
intercept and slope, vary randomly across schools)
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x = weekly hours spent on Math homework

(artificial data)
Model with random intercept and random coefficient

xtmixed math homework || schid: homework



. xtmixed math homework || schid: homework, nolog noheader nolrtest

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 1.974516 .8314652 2.37 0.018 .3448746 3.604158
_cons 46.46441 1.608962 28.88 0.000 43.3109 49.61792

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

schid: Independent
sd(homework) 3.709275 .6847578 2.58316 5.326314

sd(_cons) 7.12292 1.255007 5.042925 10.06082

sd(Residual) 7.34461 .2419451 6.88539 7.834457

. est store original1



Simulating data for one-level random-effects models

math coef
homework 1.974516

_cons 46.46441
schid Estimate

sd(homework) 3.709275
sd(_cons) 7.12292

sd(Residual) 7.34461

set seed 1357
set sortseed 159
set obs 100 // 100 schools
generate schid = _n // school identifier
generate nu0 = 7.12*rnormal() // random intercept per school
generate nu1 = 3.709*rnormal() // random slope per school
expand 200 // 200 students per school
generate stud_id = _n // student identifier
generate homework = 8*runiform() // indep. variable
generate residual = 7.34*rnormal() // residuals
generate math = 1.97*homework + 46.46 + nu0 + nu1*homework + residual
xtmixed math homework || schid: homework, nolog noheader nolrtest
est store simulated1



. estimates table original1 simulated1

Variable original1 simulated1

math
homework 1.9745165 1.8530287

_cons 46.464411 46.569009

lns1_1_1
_cons 1.3108365 1.3818598

lns1_1_2
_cons 1.9633177 1.8942815

lnsig_e
_cons 1.9939667 1.9986072



We have assumed that the slope and the intercept are independent.
We could have assumed that there was a correlation among them.

. xtmixed math homew || schid: homew, cov(unstructured) var nolo nolr nohead

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 1.980164 .9284486 2.13 0.033 .160438 3.799889
_cons 46.32561 1.758934 26.34 0.000 42.87816 49.77305

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

schid: Unstructured
var(homework) 17.72652 6.260285 8.871839 35.41875

var(_cons) 62.42455 21.38154 31.90093 122.1539
cov(homework,_cons) -27.59391 10.56626 -48.3034 -6.884412

var(Residual) 53.29462 3.465962 46.91658 60.53972

. est store original2



Simulating data for one-level models with correlated random effects
math coef

homework 1.980164
_cons 46.32561
schid Estimate

var(homework) 17.72652
var(_cons) 62.42455

cov(homework,_cons) -27.59391
var(Residual) 53.29462

clear
set seed 1357
set sortseed 159
set obs 100 // 100 schools
generate schid = _n // school identifier
matrix a = (17.73, -27.59 \ -27.59, 62.42)
drawnorm nu1 nu0, cov(a) // random slope and intercept
expand 200 // 200 students per school
generate stud_id = _n // student identifier
generate homework = 8*runiform() // indep. variable
generate residual = sqrt(53.29)*rnormal() // residuals
generate math = 1.98*homework + 46.33 + nu0 + nu1*homework + residual
xtmixed math homework || schid: homework, ///

cov(unstructured) var nolog noheader nolrtest
est store original2



. xtmixed math homework || schid: homework, cov(unstructured) var
(output omitted)
. est store simulated2

. est table original2 simulated2

Variable original2 simulated2

math
homework 1.9801637 2.1013484

_cons 46.325606 45.970628

lns1_1_1
_cons 1.4375308 1.4200276

lns1_1_2
_cons 2.0669793 2.0222833

atr1_1_1_2
_cons -1.1865765 -1.1093948

lnsig_e
_cons 1.9879177 1.9931474



Multilevel nested models

Often, researchers tend to model the "natural" nesting structure.
For example, schools are naturally nested within regions, because a
school can’t be in two regions.
xtmixed assumes, by default, that consecutive levels are nested.

. xtmixed math homework || region: ||schid:

This specification assumes that I have a random intercept for each
region, and also one random intercept for each school.



Meaning of "nested"

xtmixed assumed that schools on different regions are different, no
matter if we repeat the identificators across regions. If we code:

region schid
1 1
1 2
1 3
2 1
2 2
2 3

xtmixed will interpret that (the effect of) school 1 from region 1
and (the effect of) school 1 from region 2 are different.



Simulating data for nested random-effects models

set seed 1357
set sortseed 713
scalar sd_int_region = 5
scalar sd_int_school = 7
scalar sd_res = 1
qui set obs 20 // number of region
gen region = _n // region identifier
gen int_region = sd_int_region*rnormal()
expand 100 // number of schools per region
sort region
gen schoolid = _n // school identifier
gen int_school = sd_int_school*rnormal()
qui expand 100 // number of students per school
gen res = rnormal() // residuals
gen homework = 8*runiform() // indep. variable
gen y = 2*homework +46 + int_region + int_school + res



. xtmixed y homework || region: ||school:, nolog nolr nohead

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 2.000976 .0009745 2053.38 0.000 1.999067 2.002886
_cons 46.19403 .8541039 54.08 0.000 44.52002 47.86805

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(_cons) 3.753788 .6304813 2.700866 5.217188

schoolid: Identity
sd(_cons) 7.060727 .1122247 6.844161 7.284145

sd(Residual) .998948 .0015874 .9958415 1.002064



Crossed effects

Sometimes we don’t want to consider nested-effect models, but
crossed-effect models, i.e., models where levels that are not nested.
For example, in the pig dataset, we have the dependent variable
weight and information on the week and the id.
We may think that each individual pig has some random departure
from the line:

xtmixed weight week ||id:

or instead, that each week determines some departure from this
line:

xtmixed weigh week || week:

What if we want both? We don’t want to consider these effects as
"nested" How do we simulate data for this model?



Simulating data for crossed-effects models

set seed 1357
set sortseed 793
scalar sd_re_week = 1
scalar sd_re_id = 3.5
scalar sd_res = 2
set obs 50 //number of pigs
gen id = _n // pig identifier
gen re_id = sd_re_id*rnormal() // random intercept, pig level
expand 20 // number of weeks
bysort id: gen week = _n // week identifier; these repeat across pigs
gen re_week = sd_re_week*rnormal() // random effect, week
bysort week: replace re_week = re_week[1] // needs to be unique per week
gen res = sd_res*rnormal()
gen weight = 6*week + 19 + re_id + re_week + res



We can estimate the model with the following syntax:

. xtmixed weigh week || _all:R.week || id:, nolog nolr nohead

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.003322 .0415515 144.48 0.000 5.921882 6.084761
_cons 19.41274 .6880104 28.22 0.000 18.06426 20.76121

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.week) 1.033334 .1851922 .7272604 1.468221

id: Identity
sd(_cons) 3.358588 .3453138 2.745619 4.108404

sd(Residual) 2.004485 .0464529 1.915476 2.097631

Stata tip: always use the R. notation for the level with less
categories.



What does exactly, the _all:R.var notation do?

It creates a level "_all" containing all the observations in one
category; At this level, a set of covariates is included, consisting of
dummies for the categories of var, while constraining the variances
to be the same.
That is:

xtmixed weight week || _all:R.week

Is the same as

generate one = 1
tab id, gen(week_dummy)
xtmixed weight week || one: week_dummy*, cov(identity) nocons

Which is just an inefficient way to fit the model:

xtmixed weight week || week:



Naturally-nested vs model-nested models

Let’s assume that we have data on return on assets for a set of
firms, which belong to different industries and different countries.
Industries and countries are naturally crossed. We can model them
as they are:

. xtmixed asset || _all: R.country ||industry:

We might think, instead, that each industry behaves differently for
each country, i.e., we can create a "virtual" level, country-industry.

. use asset2, clear

. xtmixed asset || country: || industry:
(output omitted)
. estimates store a



Application 1: models with crossed and nested effects

Let’s assume now that we have repeated measures per firm, and we
still have information on industries and countries. We want to
model:

I crossed effects on industries and countries
I random effects on firms
I firms nested within both, industries and countries

The first two crossed-levels would be:

xtmixed asset || _all: R.country || industry:



Now we want firm nested within industry and country. If we write:

xtmixed asset || _all: R.country || industry: || firm:

Now firms will be nested within industry, which will be nested
within _all, and not necessarily within country. What we can do is
to generate a variable firm_country, which will be naturally nested
within country.

gen firm_country = group(firm country)
xtmixed asset || _all: R.country || industry: || firm_country:



Application 2: fitting a crossed-effects model with covariates

Let’s get back to the crossed-effects model:

xtmixed asset || _all: R.country || industry:

Now, let’s assume that we want to include a covariate with a
random coefficient at industry level, let’s say company size. This
can be done without big modifications on the syntax:

xtmixed asset || _all: R.country || industry: size

What happens if, in addition, we want to include a covariate with a
random coefficient at country level, let’s say, amount of taxes per
company?



If I write:

xtmixed asset || _all: R.country tax || industry: size

Then variable tax will be at the "_all" level; this will imply only
one realization per coefficient (i.e., a random variable), which will
be the same for all the dataset. This is not only not what we want,
but also it is a model not identified (Why?).



What we want to do is to create a set of random coefficients for
my covariate, with the same variance, independet, and a different
"realization" of this random coefficient for each country. This can
be done as follows:

tab country, gen(id_country)
unab idvar: id_country*
foreach v of local idvar {

gen tax_`v´ = tax*`v´
}

xtmixed asset || _all: R.country ||_all: tax_*, cov(identity) nocons ///
|| industry: size

I am estimating a set of random coefficients for tax, a different
realization for each country, and I’m using cov(identity) to establish
that these coefficients should be i.i.d.



Final remarks

I xtmixed is a versatile command that allows us to fit a variety
of models.

I Understanding the mechanics of each piece in the syntax
allows us to fit very sophisticated models.

I Simulating data allows us to get a deeper insight on multilevel
models, to understand the particular specification we want to
use, and eventually spot identification problems.

I xtmixed also allows us to specify different structures for the
errors, feature not covered in this talk. This feature opens a
new array of models, including models with multivariate
response.


