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Regression models for clustered or
longitudinal data

Longitudinal, repeated measures, or clustered data
commonly encountered

Correlations between observations on a given subject may
exist, and need to be accounted for

If outcomes are multivariate normal, then established
methods of analysis are available (Laird and Ware,
Biometrics, 1982)

If outcomes are binary or counts, likelihood based
inference less tractable
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Generalized estimating equations

Described by Liang and Zeger (Biometrika, 1986) and
Zeger and Liang (Biometrics, 1986) to extend the
generalized linear model to allow for correlated
observations

Characterize the marginal expectation (average response
for observations sharing the same covariates) as a function
of covariates

Method accounts for the correlation between observations
in generalized linear regression models by use of empirical
(sandwich/robust) variance estimator

Posits model for the working correlation matrix
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The marginal mean model

* We assume the marginal regression model:

g(ELY,|x;])=x,

 Where X; is a p times 1 vector of covariates, [ consists of
the p regression parameters of interest, g(.) is the link
function, and Yl] denotes the jth outcome (for j=1,...,J) for
the ith subject (for i=1,...,N)
» Common choices for the link function include:
g(a)=a (identity link)
g(a)=log(a) [for count data]
g(a)=log(a/(1-a)) [logit link for binary data]
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Model for the correlation

* Assuming no missing data, the J x J covariance matrix for
Y is modeled as:

V= oA R@) A"

* Where @ is a glm dispersion parameter, A is a diagonal
matrix of variance functions, and R(Q) is the working
correlation matrix of Y
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Model for the correlation (cont.)

» If mean model is correct, correlation structure may be mis-
specified, but parameter estimates remain consistent

* Liang and Zeger showed that modeling correlation may
boost efficiency

* But this is a large sample result; there must be enough
clusters to estimate these parameters

* Variety of models that are supported in Stata
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Model for the correlation (cont.)

* Independence

0
R@)=| .

* Number of parameters: 0
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Model for the correlation (cont.)

» Exchangeable (compound symmetry)

1 a --- o
a a
R(a)=| . )
a a --- 1

* Number of parameters: 1
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Model for the correlation (cont.)

* Unstructured

1 a,, ) alJ\
R(O’): a, 1 a,,
a, @, - 1)

* Number of parameters: J(J-1)/2

3/16/2001 Nicholas Horton, BU SPH




Model for the correlation (cont.)

* Auto-regressive

1 a J-1

a 1

Q

J-2

Q

R(a) =

a';‘1 cr;‘2 1

* Number of parameters: 1
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Model for the correlation (cont.)

 Stationary (g-dependent)

1 q a,., )
a, a
R( 0’) — .1 {—2
aJ -1 aJ -2 1 }

* Number of parameters: 0 <g <= J-1
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Model for the correlation (cont.)

* Fixed
1 ¢ G, )
R@)= G2 1 Gy
Gy Gy 1)

* Number of parameters: 0 (user specified)
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Model for the correlation (cont.)

+ IfJ is small and data are balanced and complete, then an
unstructured matrix is recommended

« If observations are mistimed, then use a structure that
accounts for correlation as function of time (stationary, or
auto-regressive)

» If observations are clustered (i.e. no logical ordering) then
exchangeable may be appropriate

 If number of clusters small, independent may be best

* Issues discussed further in Diggle, Liang and Zeger (1994,
book)
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Missing data

+ Standard GEE models assume that missing observations
are Missing Completely at Random (MCAR) in the sense
of Little and Rubin (book, 1987)

* Robins, Rotnitzky and Zhao (JASA, 1995) proposed
methods to allow for data that is missing at random (MAR)

* These methods not yet implemented in standard software
(requires estimation of weights and more complicated
variance formula)
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Variance estimators

» Empirical (aka sandwich or robust/semi-robust)

consistent when the mean model is correctly specified
(if no missing data)
* Model-based (aka naive) [default in Stata]

consistent when both the mean model and the
covariance model are correctly specified
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Syntax for xtgee

xtgee depvar varlist, family(family) link(link) corr(corr)
i(idvar) t(timevar) robust

Family: binomial, gaussian, gamma, igaussian, nbinomial,
poisson

Link: identity, cloglog, log, logit, nbinomial, opwer, power,
probit, reciprocal

Correlation: independent, exchangeable, ar#, stationary#,
nonstationary#,unstructured, fixed

Also options to change the scale parameter, use weighted
equations, specify offsets
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Example: Mental Health Service
Utilization

» Connecticut child studies (Zahner et al, AJPH, 1997)

* Outcome: use of general health, school, or mental health
services (dichotomous report)

» Sample: 2,519 children

* Other dichotomous predictors: age, gender, academic
problems
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Data format and variables

A S G
C E S ME
A T C E N
D T HNE S
O B OPI OT R E
B | OL RNUOAAR
S D Y D OGUL L L V
1 90111502 0 O O O 1 O O O
2 90111502 0 O O 1 O 1 O O
3 90111502 0 O O 2 O O 1 O
4 80111206 0 0O O O 1 O O O
5 80111206 0 0 O 1 0 1 O O
6 80111206 0 0 0 2 O O 1 O
7 40111608 1 0 O O 1 O O O
8 40111608 1 0 O 1 O 1 O O
9 40111608 1 0 O 2 0 O 1 O
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Stata code to fit model
iisid
tis setting
xt des
Xi: xtgee serv i.old*nental i.old*school
i . boy*nmental i.boy*school
i .acadpro*nmental i.acadpro*school,

link(logit) corr(unst) fam|ly(binomal)
r obust
xtcorr
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Describe cross-sectional data (xtdes)

id: 1, 2, ..., 2519 n = 2519
setting: 0, 1, ..., 2 T = 3
Delta(type) = 1; (2-0)+1 =3
(id*setting uniquely identifies each observation)

Distribution of T_i: mn 5% 25% 50% 75% 95% max

3 3 3 3 3 3 3
Freq. Percent Cum | Pattern
___________________________ e e e - -
2519 100.00 100.00 | 111
___________________________ .
2519 100. 00 | XXX
(No mi ssing data!)
3/16/2001 Nicholas Horton, BU SPH 24
GEE popul ati on-aver aged nodel Nunber of obs = 7557
Goup and tinme vars: id setting Nunber of groups = 2519
Li nk: | ogi t Cbs per group: mn = 3
Fam | y: bi nom al avg = 3.0
Correl ation: unstructured nmex = 3
Val d chi 2(11) = 605. 12
Scal e paraneter: 1 Prob > chi 2 = 0. 0000

(standard errors adjusted for clustering on id)

Sem - r obust

|
serv | Coef . Std. Err. z P>| z| [95% Conf. Interval
_____________ g
lold_1 | . 1233576 . 1441123 0.86 0.392 -. 1590973 . 4058124
mental | -.3520988 .1933698 -1.82 0.069 -. 7310967 .0268992
_loldXment~1 | . 2905076 . 189558 1.53 0.125 -.0810192 .6620344
school | . 1850487 . 1734874 1.07 0.286 -. 1549804 .5250778
_loldXscho~1 | . 330549 . 162133 2.04 0.041 . 0127742 . 6483239
_lboy_1 | . 3652564 . 1464068 2.49 0.013 .0783043 .6522084
_lboyXment~1 | -.2779134 .1894824 -1.47 0.142 -. 6492921 . 0934654
_IboyXscho~1 | -.1538587 .1650033 -0.93 0.351 -. 4772592 .1695418
_lacadpro_1 | . 7239641 . 1445971 5.01 0.000 . 440559 1.007369
_lacaXment ~1 | . 1843236  .1911094 0.96 0.335 -.1902441 .5588912
_lacaXscho~1 | 1.136088 .1669423 6.81 0.000 . 8088873 1.463289
_cons | -2.944382 .1489399 -19.77  0.000 -3.236298 -2.652465
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Estimates of working correlation (xtcorr)

Estimated within-id corr matrix R

school nental general
cl c2 c3
rl1 1.0000
r2 0.1646 1.0000
r3 0.1977 0.2270 1.0000
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Multidimensional test of OLD effect

test _loldXmenta_1=0
(1) _loldXmenta_1 = 0.0

chi2( 1) = 2.35

Prob > chi2 = 0.1254
test _lol dXschoo_1=0, accunul ate

(1) _loldXschoo_1 = 0.0
(2) _loldXmenta_1 = 0.0
chi2( 2) = 4.55
Prob > chi2 = 0.1029 <

test _lold_1=0, accunul ate

(1) _loldXschoo_1 = 0.0
(2) _loldXmenta_1 = 0.0
(3 _lold 1 =0.0
chi2( 3) = 20. 61
Prob > chi2 = 0.0001 <
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Results from Example

» There is a significant interaction between service setting
and academic problems (df=2,p<0.0001), but not for age
and setting (df=2,p=0.10) or gender and setting
(df=2,p=0.33)

* Opverall, a higher proportion of boys use services
(df=3,p=0.04) and older children use them more than
younger children (df=3,p=0.0001)
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More resources

* Generalized estimating equations: an annotated
bibliography (Ziegler, Kastner and Blettner, Biometrical
Journal, 1998)

* Review of software to fit Generalized Estimating Equation
regression models (Horton and Lipsitz, The American
Statistician, 1999, article online at
http://www.biostat.harvard.edu/~horton/geereview.pdf)
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