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Powerful new tools for time series analysis Introduction

This presentation discusses two recent developments in time series
analysis by Graham Elliott of UCSD and coauthors and their
implementations as Stata commands, available via ssc.

The first, urcovar, is a test for a unit root in a time series (Elliott &
Michael Jansson, Journal of Econometrics, 2003) which extends the
ERS dfgls test by adding stationary covariates to gain additional
power.

The second, qll, is based on Elliott and Ulrich Müller’s Review of
Economic Studies paper (2006) in which they illustrate that tests for
parameter constancy and tests for an unknown break process can be
unified to produce a single efficient qLL test for stability of the
regression function.
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Powerful new tools for time series analysis Unit root test with additional covariates

urcovar

The presence of a unit root in the time series representation of a
variable has important implications for both the econometric method
used and the economic interpretation of the model in which that
variable appears.

The “first generation” tests of Dickey and Fuller (dfuller) and Phillips
and Perron (pperron) have been supplanted by more powerful
“second generation” tests such as dfgls of Elliott–Rothenberg–Stock.
ERS showed that there is no uniformly most powerful test, but that
their DF-GLS alternative is approximately most powerful for the unit
root testing problem.
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Powerful new tools for time series analysis Unit root test with additional covariates

As is well known in the applied economics literature, even a test with
DF-GLS’s favorable characteristics may still lack power to distinguish
between the null hypothesis of nonstationary behavior (I(1)) and the
stationary alternative (I(0)).

In many applications, using a longer time series is not feasible due to
known structural breaks, institutional changes, and the like. Another
potential alternative, the panel unit root test, brings its own set of
complications (do we assume all series are I(1)? that all are I(0)?).
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Powerful new tools for time series analysis Unit root test with additional covariates

Elliott and Jansson addressed this issue by considering a model in
which there is one potentially nonstationary (I(1)) series, y , which
potentially covaries with some available stationary variables, x . This
idea was first put forth by Bruce Hansen in 1995 who proposed a
covariate augmented D–F test, or CADF test and showed that this test
had greater power than those which ignored the covariates.

Elliott and Jansson extended Hansen’s results to show that such a test
could be conducted in the presence of unknown nuisance parameters,
and with constants and trends in the model. Their proposed test may
be readily calculated by estimating a vector autoregression (var) in the
{y , x} variables and performing a sequence of matrix manipulations.
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Powerful new tools for time series analysis Unit root test with additional covariates

The model considered is:

zt = β0 + β1t + ut , t = 1, . . . , T

A(L)

(
(1− ρL)uy ,t

ux ,t

)
= et

with zt = {yt , x ′
t}′, xt an m × 1 vector,

β0 = {βy0, β
′
x0}′, β1 = {βy1, β

′
x1}′ and ut = {uy ,t , u′

x ,t}′.

A(L) is a stable matrix polynomial of finite order k in the lag operator L.

This is a vector autoregression (VAR) in the model of x and the
quasi-difference of y . The relevant test is that the parameter ρ is equal
to unity, implying that y has a unit root, against alternatives that ρ is
less than one.
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Powerful new tools for time series analysis Unit root test with additional covariates

The potential gain in this test depends on the R2 between y and the
set of x covariates. As Elliott and Pesavento (J. Money, Credit,
Banking 2006) point out, the relevant issue is the ability of a unit root
test to have power to distinguish between I(1) and a local alternative.
The local alternative is in terms of c = T (ρ− 1) where ρ is the largest
root in the AR representation of y .

How far below unity must ρ fall to give a unit root test the ability to
discern stationary, mean-reverting behavior (albeit with strong
persistence, with ρ > 0.9) from nonstationary, unit root behavior? The
various tests in this literature differ in their power against relevant local
alternatives.
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Powerful new tools for time series analysis Unit root test with additional covariates

The c parameter can be expressed in terms of the half-life (k ) of a
shock, where a unit root implies an infinite half-life:
k = log(0.5)/ log(ρ). When related to the local alternative,
k/T = log(0.5)/c. For about 120 observations (30 years of quarterly
data), c = −5 corresponds to a half-life of 16.8 time periods (over four
years at a quarterly frequency). From Elliott, Rothenberg, Stock (ERS,
Econometrica, 1996), the standard Dickey-Fuller test (dfuller)has
12% power to reject the alternative. The ERS DF-GLS test (dfgls)
has 32% power.

In contrast, with an R2 = 0.2, the Elliott–Jansson (EJ) test has power
of 42%. The power rises to 53% (69%) for R2 = 0.4 (0.6). For higher
absolute values of c (shorter half-lives), the gains are smaller. For
c = −10, or a half-life of 8.4 periods, the power of the D-F (DF-GLS)
test is 31% (75%). The EJ test has power of 88%, 94% and 99% for
R2 = 0.2, 0.4, 0.6. One clear conclusion: DF-GLS always has superior
power compared to dfuller.
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Powerful new tools for time series analysis Unit root test with additional covariates

Like other unit root tests, you must specify the deterministic model
assumed for y . As in dfgls, you can specify that the model contains
no deterministic terms, a constant, or constant and trend. But as the
Elliott–Jansson model contains one or more x variables as well, you
may also specify that those variables’ deterministic model contains no
deterministic terms, a constant, or constant and trend.

Five cases are defined:
1 No constant nor trend in model
2 Constant in y only
3 Constants in both {y , x}
4 Constant and trend in y , constant in x
5 No restrictions
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Powerful new tools for time series analysis Unit root test with additional covariates

The urcovar Stata command implements the EJ test using Mata to
perform a complicated sequence of matrix manipulations that produce
the test statistic. EJ’s Table 1 of asymptotic critical values is stored in
the program and used to produce a critical value corresponding to the
R2 for your data. The command syntax:

urcovar depvar varlist [if exp] [in range] [ , maxlag(#) case[#) firstobs ]

where the case option specifies the deterministic model, with default
of case 1. The maxlag option specifies the number of lags to be used
in computing the VAR (default 1). The firstobs option specifies that
the first observation of depvar should be used to define the first
quasi-difference (rather than zero). The urcovar command is
available for Stata 9.2 or Stata 10 from ssc.
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Powerful new tools for time series analysis Unit root test with additional covariates

As an illustration of urcovar use, we consider an experiment similar
to that tested in EJ, who in turn refer to a Blanchard–Quah model. The
variable of interest is U.S. personal income (PINCOME). The single
stationary covariate to be considered is the U.S. unemployment rate
(UNRATE). Both are acquired from the FRED database with the
freduse command (Drukker, Stata Journal, 2006) and have been
converted to the common quarterly frequency for 1950Q2–1987Q4
using tscollap (Baum, STB-57, 2000).

We first present a line plot of these two series, then the output from a
conventional DF-GLS test, followed by the output from urcovar,
cases 3 and 5. The maxlag considered in both the dfgls and
urcovar tests is set to eight quarters.
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Powerful new tools for time series analysis Unit root test with additional covariates
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Powerful new tools for time series analysis Unit root test with additional covariates

. dfgls PINCOME, maxlag(8) trend

DF-GLS for PINCOME Number of obs = 142

DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value

8 -0.830 -3.519 -2.875 -2.593
7 -0.585 -3.519 -2.890 -2.607
6 -0.173 -3.519 -2.905 -2.620
5 -0.071 -3.519 -2.918 -2.633
4 -0.272 -3.519 -2.932 -2.645
3 -0.334 -3.519 -2.944 -2.656
2 0.332 -3.519 -2.955 -2.666
1 0.655 -3.519 -2.966 -2.676

Opt Lag (Ng-Perron seq t) = 8 with RMSE 11.44531
Min SC = 5.103851 at lag 3 with RMSE 11.96667
Min MAIC = 5.000489 at lag 7 with RMSE 11.56349
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Powerful new tools for time series analysis Unit root test with additional covariates

. urcovar PINCOME UNRATE, maxlag(8) case(3)

Elliott-Jansson unit root test for PINCOME 1950q2 - 1987q4
Number of obs: 143
Stationary covariates: UNRATE
Deterministic model: Case 3
Maximum lag order: 8

Estimated R-squared: 0.9950
H0: rho = 1 [ PINCOME is I(1) ]
H1: rho < 1 [ PINCOME is I(0) ]
Reject H0 if Lambda < critical value

Lambda: 11.8307
5% critical value: 17.9900

. urcovar PINCOME UNRATE, maxlag(8) case(5)

Elliott-Jansson unit root test for PINCOME 1950q2 - 1987q4
Number of obs: 143
Stationary covariates: UNRATE
Deterministic model: Case 5
Maximum lag order: 8

Estimated R-squared: 0.8407
H0: rho = 1 [ PINCOME is I(1) ]
H1: rho < 1 [ PINCOME is I(0) ]
Reject H0 if Lambda < critical value

Lambda: 17.1558
5% critical value: 29.1170
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Powerful new tools for time series analysis Unit root test with additional covariates

The DF-GLS test is unable to reject its null of I(1) at any reasonable
level of significance. When we augment the test with the stationary
covariate in the EJ test, quite different results are forthcoming. Case 3
allows for constant terms (but no trends) in both the quasi-difference of
PINCOME and UNRATE. The R2 in this system is over 0.99. Case 5
allows constant terms and trends in both equations of the VAR, with an
R2 of 0.84.

Like the DF-GLS test, the EJ test has a null hypothesis of
nonstationarity (I(1)). The EJ test statistic, λ, must be compared with
the interpolated 5% critical value. A value of λ smaller than the
tabulated value leads to a rejection, and vice versa. In both cases, we
may reject the null hypothesis at the 95% level of confidence in favor of
the alternative hypothesis of stationarity.
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Powerful new tools for time series analysis The qLL test for stability of the regression function

qll

Elliott and Müller’s 2006 paper in Review of Economic Studies (EM)
addresses the large literature on testing a time series model for
structural stability. They consider “tests of the null hypothesis of a
stable linear model

yt = X ′
t β̄ + Z ′

t γ + ε

against the alternative of a partially unstable model

yt = X ′
t βt + Z ′

t γ + ε

where the variation in βt is of the strong form” (p. 907), or nontrivial.
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Powerful new tools for time series analysis The qLL test for stability of the regression function

Consideration of this alternative has led to a huge literature based on
the “diversity of possible ways {βt} can be non-constant.” EM point out
that optimal tests and their asymptotic distributions have not been
derived for many particular models of the alternative.

Their approach develops a single unified framework, noting that the
“seemingly different approaches of ‘structural breaks’ and ‘random
coefficients’ are in fact equivalent.” (p.908) EM unify the approaches
that describe a breaking process with a number of non-random
parameters with tests that specify stochastic processes for {βt}
without requiring to specify its exact evolution.

The processes considered include breaks that occur in a random
fashion, serial correlation in the changes of the coefficients, a
clustering of break dates, and so on. Under a normality assumption on
the disturbances, “small sample efficient tests in this broad set are
asymptotically equivalent” and “leaving the exact breaking process
unspecified (apart from a scaling parameter) does not result in a loss
of power in large samples.” (p. 908)
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Powerful new tools for time series analysis The qLL test for stability of the regression function

The consequences of this approach to the problem of structural
stability are profound. “The equivalence of power over many models
means that there is little point in deriving further optimal tests for
particular processes in our set” (p. 908) and the researcher can carry
out (almost) efficient inference without specifying the exact path of the
breaking process.

Furthermore, the computation of EM’s Quasi-Local Level (qLL) test
statistic is straightforward, and it remains valid for very general
specifications of the error term and covariates. The computation
requires no more than (k + 1) OLS regressions for a model with k
covariates, in contrast to many approaches which require T or T 2

regressions. No arbitrary trimming of the data is required.
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Powerful new tools for time series analysis The qLL test for stability of the regression function

In the structural break literature, a fixed number of N breaks at
τ1, . . . , τN are assumed. Much of the literature addresses N = 1: e.g.
the “Chow test”, cusums tests of Brown–Durbin–Evans, Bai and
Perron, Andrews and Ploberger, etc.

In contrast, the time-varying parameter literature considers a random
process generating βt : often considered as a random walk process.
The approaches of Leybourne and McCabe, Nyblom, and Saikkonen
and Luukonen are based on classical statistics, while Koop and Potter
and Giordani et al. consider a Bayesian approach. All of these
approaches are very analytically challenging.

EM argue that tests for one of these phenomena will have power
against the other, and vice versa. Therefore a single approach will
suffice.
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EM raise the interesting question: why do we test for parameter
constancy? They consider three motivations:

1 Stability relates to theoretical constructs such as the Lucas
critique of economic policymaking

2 Forecasting will depend crucially on a stable relationship
3 Standard inference on β̄ will be useless if {βt} varies in a

permanent fashion; persistent changes will render a fixed model
misleading

“The more pervasive these three motivations are, the more persistent
the changes in {β}.” (p. 912) Therefore, EM propose that a useful test
should maximize its power against persistent changes in {βt}.
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The conditions underlying the EM test allow for diverse breaking
models, from relatively rare (including a single break) to very frequent
small breaks (such as breaks every period with probability p). Breaks
can also occur with a regular pattern, such as every 16 quarters
following U.S. presidential elections.

Computation of the qLL test statistic is straightforward, relying only on
OLS regressions and construction of an estimate of the long-run
covariance matrix of {Xtεt}. For uncorrelated εt , a robust covariance
matrix will suffice. For possibly autocorrelated εt , a HAC
(Newey–West) covariance matrix is appropriate.

The null hypothesis of parameter stability is rejected for small values
of q̂LL: that is, values more negative than the critical values.
Asymptotic critical values are provided by EM for k = 1, . . . , 10 and are
independent of the dimension of Zt (the set of covariates assumed to
have stable coefficients).
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The qll Stata command implements the EM qLL test using Mata to
produce the test statistic. EM’s Table 1 of asymptotic critical values is
stored in the program and used to produce 10%, 5% and 1% critical
values corresponding to number of regressors with potentially unstable
parameters. The command syntax:

qll depvar varlist [if exp] [in range] [ , (zvarlist) rlag(#) ]

where the parenthesized zvarlist optionally specifies the list of
covariates assumed to have stable coefficients (none are required).
The rlag option specifies the number of lags to be used in computing
the long-run covariance matrix of {Xtεt}. If a negative value is given,
the optimal lag order is chosen by the BIC criterion. The qll
command is available for Stata 9.2 or Stata 10 from ssc.

We consider a regression of inflation on the lagged unemployment
rate, the Treasury bill rate and the Treasury bond rate. We assume the
latter two coefficients are stable over the period. We test over the full
sample and a 1990–2000 subsample.
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. qll inf L.UR (TBILL TBON), rlag(8)

Elliott-Müller qLL test statistic for time varying coefficients
in the model of inf, 1960q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 164)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-2.260 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.

. qll inf L.UR (TBILL TBON) if tin(1990q1,), rlag(8)

Elliott-Müller qLL test statistic for time varying coefficients
in the model of inf, 1990q1 - 2000q4
Allowing for time variation in 1 regressors
H0: all regression coefficients fixed over the sample period (N = 44)

Test stat. 1% Crit.Val. 5% Crit.Val. 10% Crit.Val.
-6.647 -11.05 -8.36 -7.14

Long-run variance computed with 8 lags.
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In both samples, using eight lags to calculate the long-run covariance
matrix, the null hypothesis that the coefficients on the lagged
unemployment rate (L.UR) are stable cannot be rejected at the 10%
level of confidence. The Elliott–Müller qLL test indicates that the
stability of this regression model, allowing for instability in the
coefficient of the unemployment rate only, cannot be rejected by the
data.
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