Extensions to var and svar Estimation

Michael S. Hanson & Yingzhe Zhao Wesleyan University NASUG 2007 Meeting, Boston

- Vector autoregressions (VAR) are commonly used in applied macroeconomic and financial analyses
 - Dynamic models with minimal restrictions
 - Sims (1980); Lütkepohl (1993, 2005), Hamilton (1994), Enders (2004)
 - Useful for forecasting time series
 - Lack an economic interpretation

 $X_t = A_1 X_{t-1} + A_2 X_{t-2} + \dots + A_p X_{t-p} + u_t$

$$(I - A_1 L - A_2 L^2 - \dots - A_p L^p) X_t = u_t$$

 $A(L) X_t = u_t$

where
$$\mathbb{E}\left[u_t u_t'\right] = \Sigma$$

- Structural VARs use restrictions implied by theory to recover economic shocks
 - Short-run identification: Bernanke (1986), Sims (1986)
 - Long-run identification: Shapiro & Watson (1988), Blanchard & Quah (1989)
- Effectively a dynamic simultaneous equations framework

• Structural VAR:

$$\Phi(L) X_t = \varepsilon_t$$
, where $\mathbb{E} [\varepsilon_t \varepsilon'_t] = I$

• Structural vector moving average (VMA):

$$X_{t} = \Phi(L)^{-1} \varepsilon_{t} = \Theta(L) \varepsilon_{t}$$
$$= \Theta_{0} \varepsilon_{t} + \Theta_{1} \varepsilon_{t-1} + \Theta_{2} \varepsilon_{t-2} + \dots$$

- A structural VMA allows computation of several objects of interest:
 - Impulse response functions
 - Forecast-error variance decompositions
 - Historical decompositions
- Stata[®] does not yet implement historical decompositions following var or svar estimation

Methodology

- If *X_t* has *n* series, then at most *n* structural shocks can be recovered
 - Given a series of shocks, the historical decomposition recovers the dynamics of X_{it} attributable to ε_{jt} , period by period
 - Because the VMA is infinite, one must choose a finite number of lags (*K*) of ε_{jt} to compute the historical decomposition

Methodology

• Formally,

$$X_{it} = \sum_{j=1}^{n} \sum_{k=0}^{K} \Theta_{ijk} \varepsilon_{jt-k} + \zeta_{it}$$

where *K* is the "truncation lag" and ζ_{it} is the "truncation error"

- Model of real exchange rate determination for Chinese renminbi
 - Is the renminbi "overvalued" or "undervalued"?
 - Do the economic factors that account for G7 currency fluctuations also fit the renminbi?
 - Clarida & Galí (1994) use a structural VAR to explore real exchange rate determination for British pound, German mark, Canadian dollar, Japanese yen (all vis-à-vis the U.S. dollar)

- Series: real output, real exchange rate, nominal aggregate, all relative to U.S.
- Data: annual, 1952 2004
 - Both official & black-market measures
- Identification: long-run restrictions
 - Nominal shocks have no LR real impact
 - Demand shocks have no LR impact on output

- Specifically,
 - $\begin{bmatrix} \Delta y_t \\ \Delta q_t \\ \Delta p_t \end{bmatrix} = \begin{bmatrix} \Theta_{11}(L) & \Theta_{12}(L) & \Theta_{13}(L) \\ \Theta_{21}(L) & \Theta_{22}(L) & \Theta_{23}(L) \\ \Theta_{31}(L) & \Theta_{32}(L) & \Theta_{33}(L) \end{bmatrix} \begin{bmatrix} \varepsilon_t^S \\ \varepsilon_t^D \\ \varepsilon_t^M \\ \varepsilon_t^M \end{bmatrix}$

where the LR restrictions are imposed as: $\Theta_{13}(1) = \Theta_{23}(1) = 0$ $\Theta_{12}(1) = 0$

- Stata[®] implementation:
 - matrix Theta = (.,0,0),..,0)....
 - svar D.y D.q D.p, lreq(Theta)
- Problem: want *cumulative* structural VMA representation
- Solution: create csirf object
 - Also create percentile bootstrapped CIs

- Historical Decompositions
 - Extract structural VMA coefficients
 - Construct structural shocks
 - Construct historical contribution of each shock series based on *K* lags
- Stata[®] ado file: hdecomp
 - Still under construction; will switch to Mata

- Is renminbi over- or undervalued?
 - Purchasing power parity (PPP) based models suggest significantly *overvalued*
 - Panel PPP models suggest barely to significantly *undervalued*
 - Behavioral equilibrium models are mixed
- Question: what constitutes the "equilibrium" real exchange rate?

- Our approach:
 - Long-run restrictions imply a time-varying "equilibrium" real exchange rate as a function of identified supply and real demand shocks
 - Historical decomposition yields estimate of "equilibrium" real exchange rate
 - Compute percentage gap between current and "equilibrium" real rate

Model 1: Output, Official XR, Prices

Model 2: Output, Black-Market XR, Money

Conclusion

- Constructed cumulative structural IRFs
 - Also constructed percentile bootstrapped CIs
- Constructed historical decompositions
- Computed a theoretically-motivated "equilibrium" real exchange rate for Chinese renminbi
 - Renminbi appears slightly overvalued since mid-1990s

References

- Bernanke, Ben S. "Alternative Explanations for the Money-Income Correlation," *Carnegie-Rochester Conference Series on Public Policy*, v. 25, pp. 49–99, Autumn 1986.
- Blanchard, Olivier Jean and Danny Quah. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," *American Economic Review*, v. 79 n. 4, pp. 655–673, December 1989.
- Clarida, Richard and Jordi Galí. "Sources of Real Exchange Rate Fluctuations: How Important Are Nominal Shocks?" *Carnegie-Rochester Conference Series on Public Policy*, v. 41, pp. 1–56, December 1994.
- Enders, Walter. Applied Econometric Time Series, 2nd edition, Wiley: Hoboken, NJ, 2004.

References

- Hamilton, James D. *Time Series Analysis*, Princeton University Press: Princeton, NJ, 1994.
- Lütkepohl, Helmut. *Introduction to Multiple Time Series Analysis*, 2nd edition, Springer-Verlag: Berlin, 1993.
- Lütkepohl, Helmut. *New Introduction to Multiple Time Series Analysis*, Springer-Verlag: Berlin, 2005.
- Shapiro, Matthew D. and Mark W. Watson. "Sources of Business Cycle Fluctuations," *NBER Macroeconomics Annual*, pp. 111–148, 1988.
- Sims, Christopher A. "Macroeconomics and Reality," Econometrica, v. 48 n. 1, pp. 1–48, January 1980.

References

 Sims, Christopher A. "Are Forecasting Models Usable for Policy Analysis?" Federal Reserve Bank of Minneapolis Quarterly Review, v. 10 n. 1, pp. 2–16, Winter 1986.