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The basic idea of the bootstrap
• Population distribution F (·) 7→ sample X1, . . . , Xn 7→

empirical distribution function
Fn(x) = 1

n
∑

1I[Xi ≤ x ] ≡ En 1I[Xi ≤ x ]

• Parameter θ = T (F ), its estimate θ̂n = T (Fn)

• Inference goal: assess sampling variability of θ̂n about θ

• Bootstrap (Efron 1979): take samples of size n with
replacement (X (r)

1 , . . . , X (r)
n ), r = 1, . . . , R from Fn(·),

obtain parameter estimates θ̃
(r)
∗ = T (F (r)

n )

• Exact bootstrap: all possible subsamples; Monte Carlo:
random set of say R = 1000 replications

• An estimate of the distribution function of θ̂n is
Gn,R(t) = 1

R
∑R

r=1 1I[θ̃(r)
∗ ≤ t ] ≡ E∗[θ̃∗ ≤ t ]
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Bias, variance, CIs
• θ ↔ θ̂n is like θ̂n ↔ θ̃

(r)
∗

• Estimate of bias:

B[θ̂n] = E[θ̂n − θ] ≈ E∗[θ̃∗ − θ̂n] = B̂B[θ̂n] (1)

• Estimate of variance:

V[θ̂n] = E(θ̂n − E θ̂n)
2 ≈ E∗(θ̃∗ − E∗ θ̃∗)

2 = V̂B[θ̂n] (2)

• Percentile CI:

IPr[θ̂n ≤ t ] ≈ E∗ 1I[θ̃∗ ≤ t ] (3)

• Bias-corrected CI:

IPr[θ̂n ≤ t ] ≈ E∗ 1I[2θ̂n − θ̃∗ ≤ t ] (4)
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Problems and reservations
Bootstrap does not always work!!! Canty, Davison, Hinkley
& Ventura (2006)
• Effects of outliers
• Inconsistency of the bootstrap (due to a combination of model,

statistics, and resampling scheme)
• Non-pivotality
• Incorrect resampling model: non-homogeneous residuals,

dependent data (time series and spatial processes: block
bootstrap; survey: design-consistent bootstrap)

• Over-sensitivity to assumptions in situations giving rise to different
potential resampling models (e.g., transformations, regression)

• Nonlinearity, discreteness, non-smoothness of T (·) (order statistics,
maxima, minima, etc.)

• Incorrect model-based calculations (e.g., misspecified linear model
or model for variance)

• Irregular situations (e.g., estimates on the boundary)
• Estimators with rate of convergence different from n−1/2 (e.g.,

mode)
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Motivation for balancing
Suppose the goal is very simple: estimate the mean and
variability around it. Then the bootstrap estimates are:

B̂B[µ̂] =
1
R

∑
r

x̄ (r) − x̄

V̂B[µ̂] =
1

R − 1

∑
r

(
x̄ (r) − 1

R

∑
s

x̄ (s)
)2

Wait a second! We know the sample mean is unbiased for
population mean, but B̂B[µ̂] 6= 0!
The problem is: the Monte Carlo bootstrap estimates
contain simulation noise.
Workaround: balanced bootstrap
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Balanced bootstrap
• First order balance: each unit is resampled the same

number of times (Davison, Hinkley &
Schechtman 1986)

• Reduces (simulation) variability of the bias estimate (by
removing the linear part from it — adequate for linear or
symmetric statistics)

• Reduces the variability of the variance estimate
somewhat

• Achieved by permuting the vector of R concatenated
sample unit labels

• Efficient implementations: Gleason (1988)
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Balanced bootstrap - II
• Second order balance: each pair of units is resampled

the same number of times (Graham, Hinkley, John &
Shi 1990)

• Further reduces (simulation) variability of the bias
estimate (by removing the quadratic part from it)

• Reduces the (simulation) bias of the variance estimate
• Achieved by orthogonal arrays/randomized block

designs — difficult: to get a complete design,
concatenate n − 2 orthogonal Latin squares available
only if n is a prime power; fractional designs available:
R = kn using Bose’s differences

• Although balanced bootstraps improve on the moments
of the estimators, their percentile estimates may be
biased for some bad designs with extremely high
resampling frequencies of some units

• Implementation: the whole set of resampled units at
once
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svy replication methods
• Balanced repeated replication (McCarthy 1969): use

half-samples of the data, estimate, repeat R times,
combine results
Features: ∀h = 1, . . . , L nh = 2, R = 4([L/4] + 1) by
using Hadamard matrices

• Jackknife (Kish & Frankel 1974, Krewski & Rao 1981):
throw one PSU out, estimate, combine
Features: R = n, closest to linearization estimator,
inconsistent for non-smooth functions

• Bootstrap (Rao & Wu 1988): resample with
replacement mh units from the available nh units in
stratum h
Features: need internal scaling — best with Rao, Wu &
Yue’s (1992) weights; choice of mh; choice of R
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From BRR to bootstrap
• Wu (1991) — first order balance: each unit is

resampled the same number of times
• Second order balance: each pair of units is resampled

the same number of times
• Gurney & Jewett (1975): orthogonal arrays for

nh = p ≥ 2, R = pn

• Wu (1991): mixed orthogonal arrays
Also: quantification of near-orthogonality and resulting
biases in estimation

• Sitter (1993): balanced orthogonal multi-arrays,
(p − 1)(L + 1) ≤ R ≤ (p − 1)(L + 4)

• Nigam & Rao (1996): balanced bootstrap (Davison,
Hinkley & Schechtman 1986, Graham, Hinkley, John &
Shi 1990) for stratified samples — limited set of designs
to which the idea is applicable
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Which one looks nicer: this. . .
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. . . or this one?
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Low discrepancy sequences
Niederreiter (1992)

• For integers n, b > 2, if

n =
∞∑
j=0

aj(n)bj

then the radical inverse function in base b is

φb(n) =
∞∑
j=0

aj(n)b−j−1 ∈ [0, 1)

• For an integer b > 2, the van der Corput sequence in base b
is

{φb(n)}∞n=0

• A multivariate version is Halton sequence:

xn = (φb1(n), . . . , φbs(n))
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Measures of discrepancy
For a sequence P = {x}Nn=1 and a family of sets B

A(B, P) =
N∑

n=1

1IB(xn) (number of hits by P),

DN (B; P) = sup
B∈B

∣∣∣A(B, P)

N
− λ(B)

∣∣∣,
D∗N (P) = DN (I∗; P), I∗ =

{ s∏
i=1

[0, ui), 0 ≤ ui ≤ 1
}

DN (P) = DN (I; P), I =
{ s∏

i=1

[ui , vi), 0 ≤ ui ≤ vi ≤ 1
}

D∗N (P) ≤ DN (P) ≤ 2sD∗N (P)

D∗N (P) is usually referred to as the star discrepancy, and
DN (P), as the extreme discrepancy.
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Low discrepancy sequences
• For van der Corput sequence,

lim
N→∞

ND∗N (Sb)

lnN
= lim
N→∞

NDN (Sb)

lnN
≤ b

4 ln b

• For Halton sequence in pairwise relatively prime bases
b1, . . . , bs,

D∗N (S) <
s
N

+
1
N

s∏
i=1

(bi − 1
2 ln bi

lnN +
bi + 1

2

)
=

= A(b1, . . . , bs)N−1 lns N + O(N−1 lns−1N ) (5)

• For regular Monte Carlo methods,
D∗N (SMC) = Op(N−1/2) which is asymptotically inferior
for N >> exp(s)
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“Data matrix” QMC
• Think of the PSU × replications as a rectangular array:

throw points by 2D Halton sequence
• Map k -th element of the sequence to replication

number [Rx1k + 1] and unit number [x2kn + 1]

• QMC balance condition: N ∝ 2 · 3 = 6
• First order balance condition:
N = R(m1 + . . . + mL) ∝ n1 + . . . + nL

• Option: Force first-order balance by ordering the
sequence on x2 and assigning the first Rm1/n1 to unit 1
in stratum 1, etc. ⇒ R ∝ l.c.m. of n1, . . . , nh

• Another option: shuffle (one of) the dimensions
(Owen 1998a, Owen 1998b, Latin supercube sampling)
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“Stratified” QMC
Best for stratified samples with low number of strata L

• Set up L-dimensional Halton sequence
{xk}, k = 1, . . . ,N

• For replication r = (k − 1) mod R + 1, include unit
[nhxhk + 1] into r -th resample of h-th stratum

• Length of the sequence: N = Rmh ∝ b1 · · ·bL ⇐ first
order balance

• Dimensionality curse: the first few “good” numbers are
2, 6, 30, 210, 2310, 30030, . . .

• Option: shuffle dimensions independently
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Why should this work?
Simple extension of Wu’s (1991) measure of
non-orthogonality/lack of balance, stratified QMC
implementation:

∆hi =
# times unit hi is used

R
− mh

nh
,

∆hk ,ij =
# times units hi and kj are jointly used

R
− mh

nh

mk

nk
,

|∆hi |,|∆hk ,ij | ≤ A(b1, . . . , bs)N−1 lns N + O(·)

≈ A(b1, . . . , bs)
(ln R + ln mh)

s

m2
hR

→ 0 as R →∞

and the estimator will converge to the standard v(ȳst), thus
consistent whenever the latter one is.
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Stata implementation
• Driving force: mata halton()

• Bootstrap driver: bs4rw by Jeff Pitblado; supports
weights and svy settings

• A bunch of Mata routines to convert Halton sequences
to resampling frequencies, and eventually to
resampling weights −→ bsweights.ado

• In most problems, unnoticeably slower than the
traditional random bootstrap
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bsweights syntax
bsweight prefix, reps(#) n(#) [balanced
qmcmatrix qmcstratified replace shuffle ]

reps() specifies the number of resampling replications
n() specifies the number of units to be resampled from each
stratum, or from the whole data set with no complex survey
structure
balanced specifies balanced bootstrap (without QMC), or
balanced data matrix QMC
qmcmatrix specifies the data matrix/2D implementation of QMC
subsampling design. balanced and shuffled variations are
available
qmcstratified specifies the stratified implementation of QMC
subsampling design, with dimension of Halton sequence equal to
the number of svyset data. shuffled variation is available
replace allows overwriting the existing set of weights
shuffle permutes randomly the separate dimensions of Halton
sequence
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Part I: Linear statistics
• Population: Xi ∼ Γ(4, 1) = sum of two standard

exponentials
• Sample sizes: n = 20, 50, 120, 300
• Parameter and its estimator: E X = 2, estimate with X̄
• 10,000 samples taken
• Expectations: no reported bias for the balanced

bootstrap; more stable estimates from the balanced
bootstrap and QMC bootstrap; percentiles?
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Simulation results
True bias: B[λ̂1] = 0
MSE [B̂B(λ̂1)] ≈

Random bootstrap: 0.015n−1

Unshuffled QMC: c(epsfloat)
Balanced bstrap, shuffled QMC: c(epsdouble)

Stability = E1/2[(v̂ − v)/v
]2

s2 = n−1

unshuffled QMC ≈ 0.15n−0.5

all others ≈ 0.46n−0.7

(cross at n ≈ 100)
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Part II: Nonlinear statistics
• Population: Xi ∼ N(0,Σ)

• Sample sizes: n = 20, 50, 120, 300
• Parameter and its estimator: the greatest eigenvalue of

the covariance matrix Σ, λ1 = 35.21, well separated
from the next one; estimate by the largest eigenvalue of
the sample covariance matrix

• 10,000 samples taken
• Expectations: smaller biases for the balanced and

QMC bootstrap; more stable estimates from the
balanced bootstrap and QMC bootstrap; percentiles?
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Part II: Results
True bias: B[λ̂1] ≈ 5n−1

Unshuffled QMC: E[B̂B(λ̂1)] ≈ 1.6B[λ̂1]

Bootstraps, shuffled QMC: E[B̂B(λ̂1)] ≈ 2.8B[λ̂1]
(overcorrection!)

Random bootstrap: V[B̂B(λ̂1)] ≈ 30n−1

Balanced bootstrap & QMC: V[B̂B(λ̂1)] ≈ 200n−2.3

True variance: V[λ̂1] ≈ 2800n−1

2λ2
1 = 2480

Stability of MLE = 2n−1

Stability of unshuffled QMC ≈ 0.4n−0.6

Stability of others ≈ 1.1n−0.75
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Estimated variances: n = 50
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Estimated variances: n = 300
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Confidence intervals, 5+5%
n = 50 n = 300

Normal
MLE 9.90 + 1.44 6.61 + 3.23

Random bootstrap 11.26 + 2.78 6.90 + 3.61
Balanced bootstrap 11.08 + 2.71 6.79 + 3.51

QMC 16.97 + 8.38 13.19 + 10.27
Shuffled, balanced QMC 11.05 + 2.72 6.89 + 3.74
Percentile

Random bootstrap 2.95 + 11.55 3.79 + 6.82
Balanced bootstrap 2.71 + 11.05 3.73 + 6.87

QMC 7.90 + 17.59 10.05 + 13.54
Shuffled, balanced QMC 2.76 + 11.10 3.85 + 6.7
Bias-corrected

Random bootstrap 5.86 + 8.81 5.16 + 5.94
Balanced bootstrap 5.36 + 8.56 5.12 + 5.92

QMC 10.23 + 16.13 10.88 + 13.07
Shuffled, balanced QMC 5.44 + 8.31 5.22 + 5.57
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Part III: Finite population
• Five strata of Nh = 1000:

Xhi ∼ Γ(2, 1), Ehi ∼ N(0, 1), h = 1
Xhi ∼ Γ(2, 1), Ehi ∼ N(0, Xhi), h = 2
Xhi ∼ Γ(2, 1), Ehi ∼ t(4 + 3/(Xhi + 1)), h = 3
Xhi ∼ Γ(2, 3), Ehi ∼ N(0, Xhi), h = 4
Xhi ∼ Γ(2, 9), Ehi ∼ N(0, Xhi), h = 5
Yhi = Xhi + Ehi

• Sample nh = 18 units with replacement

• Parameters of interest:X̄ , Eξ[X̄ ] = 6; b1, Eξ[b1] = 1

• mh = 15 units resampled from each stratum

• # replicates: R = 154 for stratified QMC; R = 150 for the
bootstrap and data matrix QMC

• 1000 samples taken
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V[x̄ ]: stratified QMC
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V[x̄ ]: 2D QMC

0
1

2
3

4
K

er
ne

l d
en

si
ty

0 .5 1 1.5
Standard error

Linearization Balanced bstrap
QMC 2D 2D shuffled 
2D balanced 2D shuffled balanced

0
1

2
3

4
K

er
ne

l d
en

si
ty

0 .5 1 1.5
Standard error

Linearization Balanced bstrap
QMC 2D 2D shuffled 
2D balanced 2D shuffled balanced



QMC× BRR

Stas
Kolenikov

U of Missouri

Resampling
inference

Survey
inference

Motivation:
better
balancing (?)

Quasi
Monte-Carlo

Why should
this work?

Stata imple-
mentation

Simulations

Conclusions

References

V[b1]: stratified QMC
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V[b1]: 2D QMC
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Simulation results, V[x̄ ]
Estimator Stability Coverage, d.f.= Satterth-

n − L effective waite d.f.
Linearization,
jackknife 0.0482 92.5 94.4 9.43
Bootstrap 0.0509 92.8 94.7 8.84
Balanced bootstrap 0.0504 92.1 94.4 9.02
Stratified QMC:

plain 0.1074 83.9 91.8 4.70
shuffled 0.0510 92.3 94.4 8.89

Data matrix QMC:
plain 0.0719 87.2 91.3 7.73

balanced 0.2501 97.9 98.8 12.67
shuffled 0.0906 84.7 89.9 7.22

bal + shuf 0.0522 92.3 94.4 8.56
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Simulation results, V[b1]
Estimator Stability Coverage, d.f.= Satterth-

n − L effective waite d.f.
Linearization 0.1170 84.6 96.8 3.27
Jackknife 0.1520 90.0 99.5 2.50
Bootstrap 0.0929 89.0 97.5 4.33
Balanced bootstrap 0.0932 88.8 97.5 4.19
Stratified QMC:

plain 0.1676 78.6 95.1 2.50
shuffled 0.0949 89.4 96.7 4.15

Data matrix QMC:
plain 0.1350 80.7 94.3 3.23

balanced 0.0935 89.9 97.4 4.14
shuffled 0.1379 80.8 94.1 3.29

bal + shuf 0.0937 89.6 96.7 4.25
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Conclusions
• The QMC methods for generating resampling designs

show performance comparable to that of the first order
balanced designs, and thus represent an alternative
way of generating resampling designs that are
approximately first-order balanced

• However, the “raw” Hatlon sequences need to be
augmented in a number of ways to achieve this
performance
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