Fractional Polynomials and Model Averaging

Paul C Lambert

Center for Biostatistics and Genetic Epidemiology
University of Leicester
UK
paul.lambert@le.ac.uk

Nordic and Baltic Stata Users Group Meeting, Stockholm 7th September 2007

Fractional Polynomials

- Fractional Polynomials are used in regression models to fit non-linear functions.
- Often preferable to cut-points.
- Functions from fractional polynomials more flexible than from 'standard' polynomials.
- See (Royston and Altman, 1994) or (Sauerbrei and Royston, 1999) for more details.
- Implemented in Stata with fracpoly and mfp commands.

Powers

- The linear predictor for a fractional polynomial of order M for covariate x can be defined as,

$$
\beta_{0}+\sum_{m=1}^{M} \beta_{m} x^{p_{m}}
$$

- where each power p_{m} is chosen from a restricted set.
- The usual set of powers is

$$
\{-2,-1,-0.5,0,0.5,1,2,3\}
$$

- x^{0} is taken as $\ln (x)$

Selecting the Best Fitting Model

- All combinations of powers are fitted and the 'best' fitting model obtained.
- Using the default set of powers for an FP2 model there are
- 8 FP1 Models
- 36 FP2 Models (including 8 repeated powers)
- The best fitting model for fractional polynomials of the same degree can be obtain by minimising the deviance.
- When comparing models of a different degree, e.g. FP2 and FP1 models, the model can be selected using a formal significance test or the Akaike Information Criterion (AIC).

Selecting the Best Fitting Model

- All combinations of powers are fitted and the 'best' fitting model obtained.
- Using the default set of powers for an FP2 model there are
- 8 FP1 Models
- 36 FP2 Models (including 8 repeated powers)
- The best fitting model for fractional polynomials of the same degree can be obtain by minimising the deviance.
- When comparing models of a different degree, e.g. FP2 and FP1 models, the model can be selected using a formal significance test or the Akaike Information Criterion (AIC).
- Model selection uncertainty is ignored.

German Breast Cancer Study Group Data

- 686 women with primary node positive breast cancer (Sauerbrei and Royston, 1999).
- Time to recurrence or death (299 events).
- Covariates include,
- Age (years)
- Menopausal staus
- Tumour Size (mm)
- Tumour Grade
- Number of positive lymph nodes
- Progesterone Receptor (fmol)
- Oestrogen Receptor (fmol)
- Hormonal Therapy

German Breast Cancer Study Group Data

- 686 women with primary node positive breast cancer (Sauerbrei and Royston, 1999).
- Time to recurrence or death (299 events).
- Covariates include,
- Age (years)
- Menopausal staus
- Tumour Size (mm)
- Tumour Grade
- Number of positive lymph nodes
- Progesterone Receptor (fmol)
- Oestrogen Receptor (fmol)
- Hormonal Therapy
- 5 covariates were selected using mfp command.

Breast Cancer - Best Fitting Model for Age

Best Fitting Model (-2 -.5), AIC $=3562.73$

Breast Cancer - Best Fitting Model for Age

Best Fitting Model (-2 -.5), AIC $=3562.73$

FP2(-2 -0.5): $\ln (h(t))=\ln \left(h_{0}(t)\right)+\beta_{1}$ Age $_{*}^{-2}+\beta_{2}$ Age $_{*}^{-0.5}$

Breast Cancer - The 5 Best Fitting Model for Age

Powers	AIC
$(-2,-0.5)$	3562.73
$(-1,-1)$	3562.77
$(-2,-1)$	3562.78
$(-2,0)$	3562.83
$(-2,0.5)$	3563.05

Breast Cancer - Age

Best Fitting Model (-2 -.5), AIC $=3562.73$

Breast Cancer - Age

Powers (-1 -1), AIC = 3562.77

Breast Cancer - Age

Powers (-2 -1), AIC = 3562.78

Breast Cancer - Age

Powers (-2 0), AIC = 3562.83

Breast Cancer - Age

Breast Cancer - No. Positive Lymph Nodes

Best Fitting Model (1 2), AIC $=3498.99$

Breast Cancer - No. Positive Lymph Nodes

Powers (-1 -1), AIC = 3499.05

Breast Cancer - No. Positive Lymph Nodes

Powers (-2 -.5), AIC = 3499.12

Breast Cancer - No. Positive Lymph Nodes

Powers (-2 -1), AIC = 3499.44

Breast Cancer - No. Positive Lymph Nodes

Model Averaging 1

- In FP models the model selection process is usually ignored when calculating fitted values and their associated confidence intervals.
- Model Averaging is popular Bayesian research area (Hoeting et al., 1999), (Congdon, 2007).
- Increasing interest from frequentist perspective (Burnham and Anderson, 2004) (Buckland et al., 2007) (Congdon, 2007) (Faes et al., 2007)
- Usually interest lies in model averaging for a parameter.
- Here we are interested in averaging over the functional form obtained from different models.

Model Averaging 2

- If there are K contending models, $M_{k}, k=1, \ldots, K$ with weights, w_{k}, which are scaled so that $\sum w_{k}=1$, then the estimate of a parameter or quantity, θ (assumed to be common to all models) is taken to be,

$$
\widehat{\theta}_{a}=\sum_{k=1}^{K} w_{k} \widehat{\theta}_{k}
$$

- The variance of $\widehat{\theta}_{a}$ is,

$$
\operatorname{var}\left(\widehat{\theta}_{a}\right)=\sum_{k=1}^{K} w_{k}^{2}\left(\operatorname{var}\left(\widehat{\theta}_{k} \mid M_{k}\right)+\left(\hat{\theta}_{k}-\widehat{\theta}_{a}\right)^{2}\right)
$$

Obtaining the Weights, w_{k}

- In a Bayesian context we want, $w_{k}=P\left(M_{k} \mid\right.$ Data $)$
- These probabilities are not trivial to calculate and various approximations are available.
- One such approximation is to use the Bayesian Information Criterion (BIC)

$$
B I C_{k}=\ln \left(L_{k}\right)-\frac{1}{2} p \ln (n)
$$

- The AIC can also be used to derive the model weights (Buckland et al., 2007)

$$
A I C_{k}=\ln \left(L_{k}\right)-2 p
$$

- Recently Faes used the AIC to derive model weights for fractional polynomial models (Faes et al., 2007).

Obtaining the Weights, w_{k}

- Let

$$
\Delta_{k}=B I C_{k}-B I C_{\min } \quad \text { or } \quad \Delta_{k}=A I C_{k}-A I C_{\min }
$$

- The weights, w_{k}, are then defined as,

$$
w_{k}=\frac{\exp \left(\frac{1}{2} \Delta_{k}\right)}{\sum_{j=1}^{K} \exp \left(\frac{1}{2} \Delta_{j}\right)}
$$

Using Bootstrapping to Obtain the Weights, w_{k}

- An alternative to using the AIC or BIC for the model weights, w_{k}, is to use bootstrapping (Holländer et al., 2006).
- For each bootstrap sample the best fitting fractional polynomial model is selected.
- The weights w_{k}, are simply obtained using the frequencies of the models selected over the B bootstrap samples.
- If comparing fractional polynomial models of different degrees then some selection process is needed. This is usually done by setting a value for α.

Using fpma

Using fpma

fpma x1, ic(aic) xpredict: stcox x1 Models Included (in order of weight)						
	Powers		AIC	deltaAIC	weight	cum. weight
1	-2	-. 5	3562.73	0.00	0.0802	0.0802
2	-1	-1	3562.77	0.03	0.0789	0.1591
3	-2	-1	3562.78	0.04	0.0785	0.2376
4	-2	0	3562.83	0.09	0.0766	0.3142
5	-2	. 5	3563.05	0.31	0.0686	0.3827
6	-1	-. 5	3563.05	0.32	0.0685	0.4512
7	-2	-2	3563.26	0.53	0.0616	0.5128
8	-2	1	3563.38	0.65	0.0580	0.5709
9	-1	0	3563.50	0.77	0.0546	0.6255
10	-. 5	-. 5	3563.52	0.79	0.0540	0.6795
(output omitted)						
43	2		3578.18	15.44	0.0000	1.0000
44	3		3578.32	15.58	0.0000	1.0000

- New variables created xb_ma xb_ma_se xb_ma_lci xb_ma_uci

Using fpma - Bootstrapping $(\alpha=0.05)$

Using fpma with bootstrapping

. fpma x1, ic(bootstrap) xpredict xpredname(x1_ma_boot1) reps(1000) : stcox x1 Running 1000 bootstrap samples to determine model weights
(bootstrap: maboot)

	Powers	Freq.	weight	cum. weight	
1	-2	-2	252	0.2520	0.2520
2	-2	-1	167	0.1670	0.4190
3	-1	-1	163	0.1630	0.5820
4	-1	-.5	88	0.0880	0.6700
5	1		71	0.0710	0.7410
6	-2	-.5	67	0.0670	0.8080
7	-.5	-.5	51	0.0630	0.8710
8	-2	-.5	30	0.0510	0.9220
9	-.5	0	19	0.0300	0.9520
10	0	0	6	0.0060	0.9710
11	0	.5			
(output omitted)		1	0.0010	0.9990	
22	-1	0	1	0.0010	1.0000
23	-.5	.5			

Breast Cancer - Age

Model Average - BIC

Breast Cancer - Age

Model Average - AIC

Breast Cancer - Age

Model Average - Bootstrap $($ alpha $=0.05)$

Breast Cancer - Age

Model Average - Bootstrap (alpha = 1)

Breast Cancer - No. of Positive Lymph Nodes

Model Average - BIC

Breast Cancer - No. of Positive Lymph Nodes

Model Average - AIC

Breast Cancer - No. of Positive Lymph Nodes

Model Average - Bootstrap $($ alpha $=0.05)$

Breast Cancer - No. of Positive Lymph Nodes

Model Average - Bootstrap (alpha = 1)

Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - BIC

Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - AIC

Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - Bootstrap $($ alpha $=0.05)$

Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - Bootstrap (alpha = 1)

Multivariable Fractional Polynomials

- The above only really applies when using fractional polynomials for only one of the covariates in the model.
- However, is is common to use models with fractional polynomials for more than one covariate.
- A simple approach is to model average over various fractional polynomial models for the covariate of interest, while keeping the functional form of the remaining covariates constant.
- The usemfp option will do this for you.

Using mfp with Model Averaging

mfp

mfp stcox $x 1$ x2 $x 3$ x4a x4b $x 5$ x6 $x 7$ hormon, nohr alpha(.05) select(0.05) (output omitted)
Final multivariable fractional polynomial model for _t

Variable	df	-_Initial__	Alpha	Status	-_Final__	Powers
x1	4	0.0500	0.0500	in	4	-2-. 5
x2	1	0.0500	0.0500	out	0	
x3	4	0.0500	0.0500	out	0	
x4a	1	0.0500	0.0500	in	1	1
x4b	1	0.0500	0.0500	out	0	
x5	4	0.0500	0.0500	in	4	-2 -1
x 6	4	0.0500	0.0500	in	2	. 5
x7	4	0.0500	0.0500	out	0	
hormon	1	0.0500	0.0500	in	1	1

Cox regression -- Breslow method for ties (output omitted)

Using fpma after mfp - Age

Using fpma after mfp

fpma x1, ic(aic) xpredict: usemfp Models Included (in order of weight)						
		owers	AIC	deltaAIC	weight	cum. weight
1	-2	-. 5	3434.72	0.00	0.0986	0.0986
2	-2	-1	3434.76	0.03	0.0969	0.1956
3	-1	-1	3434.85	0.13	0.0925	0.2881
4	-2	0	3434.89	0.17	0.0907	0.3788
5	-2	. 5	3435.24	0.52	0.0760	0.4548
6	-1	-. 5	3435.30	0.58	0.0740	0.5288
7	-2	-2	3435.43	0.70	0.0695	0.5982
8	-2	1	3435.75	1.03	0.0590	0.6572
9	-1	0	3435.96	1.24	0.0531	0.7103
10	-. 5	-. 5	3436.00	1.27	0.0522	0.7624
(output omitted)						
43	1		3452.04	17.31	0.0000	1.0000
44	. 5		3452.05	17.32	0.0000	1.0000

Model Averaging after mfp - Age

AIC weights

Model Averaging after mfp - No. of Positive Lymph Nodes

AIC weights

Discussion

- Fractional Polynomials very useful for modelling non-linear functions.
- Model selection uncertainty is usually ignored after final model is obtained.
- Model averaging is easy to implement and incorporates FP model selection uncertainty.
- Still further work needed. For example,
- Statistical properties (coverage etc).
- Comparison with fully Bayesian model averaging.

References I

Buckland, S., Burnham, K., and Augustin, N. (2007). Model selection: An intergral part of inference. Biometrics, 53(2):603-618.
Burnham, K. P. and Anderson, D. R. (2004). Multimodal inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33(2):261-304.
Congdon, P. (2007). Model weights for model choice and averaging. Statistical Methodology, 4:143-157.
Faes, C., Aerts, M., H., G., and Molenberghs, G. (2007). Model averaging using fractional polynomials to estimate a safe level of exposure. Risk Analysis, 27(1):111-123.

Hoeting, J. A., Madigan, D., E., R. A., and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4):382-417.

Holländer, N., Augustin, N., and Sauerbrei, W. (2006). Investigation on the improvement of prediction by bootstrap model averaging. Methods of Information in Medicine, 45:44-50.
Royston, P. and Altman, D. (1994). Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. JRSSA, 43(3):429-467.
Sauerbrei, W. and Royston, P. (1999). Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. JRSSA, 162(1):71-94.

