
Fractional Polynomials and Model Averaging

Paul C Lambert
Center for Biostatistics and Genetic Epidemiology

University of Leicester
UK

paul.lambert@le.ac.uk

Nordic and Baltic Stata Users Group Meeting, Stockholm
7th September 2007

Paul C Lambert Fractional Polynomials and Model Averaging Stockholm, 7th September 2007 1/28



Fractional Polynomials

Fractional Polynomials are used in regression models to fit
non-linear functions.

Often preferable to cut-points.

Functions from fractional polynomials more flexible than from
‘standard’ polynomials.

See (Royston and Altman, 1994) or (Sauerbrei and Royston,
1999) for more details.

Implemented in Stata with fracpoly and mfp commands.
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Powers

The linear predictor for a fractional polynomial of order M for
covariate x can be defined as,

β0 +
M∑

m=1

βmxpm

where each power pm is chosen from a restricted set.

The usual set of powers is

{−2,−1,−0.5, 0, 0.5, 1, 2, 3}

x0 is taken as ln(x)
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Selecting the Best Fitting Model

All combinations of powers are fitted and the ’best’ fitting model
obtained.

Using the default set of powers for an FP2 model there are

8 FP1 Models
36 FP2 Models (including 8 repeated powers)

The best fitting model for fractional polynomials of the same
degree can be obtain by minimising the deviance.

When comparing models of a different degree, e.g. FP2 and FP1
models, the model can be selected using a formal significance
test or the Akaike Information Criterion (AIC).

Model selection uncertainty is ignored.
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German Breast Cancer Study Group Data

686 women with primary node positive breast cancer (Sauerbrei
and Royston, 1999).

Time to recurrence or death (299 events).

Covariates include,

Age (years)
Menopausal staus
Tumour Size (mm)
Tumour Grade
Number of positive lymph nodes
Progesterone Receptor (fmol)
Oestrogen Receptor (fmol)
Hormonal Therapy

5 covariates were selected using mfp command.
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Breast Cancer - Best Fitting Model for Age
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Best Fitting Model (−2 −.5), AIC = 3562.73
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Breast Cancer - Best Fitting Model for Age
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Best Fitting Model (−2 −.5), AIC = 3562.73

FP2(-2 -0.5): ln(h(t)) = ln(h0(t)) + β1Age−2
∗ + β2Age−0.5

∗
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Breast Cancer - The 5 Best Fitting Model for Age

Powers AIC
(-2,-0.5) 3562.73
(-1,-1) 3562.77
(-2,-1) 3562.78
(-2,0) 3562.83

(-2,0.5) 3563.05
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Breast Cancer - Age
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Breast Cancer - Age
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Powers (−1 −1), AIC = 3562.77
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Breast Cancer - Age
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Powers (−2 −1), AIC = 3562.78
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Breast Cancer - Age
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Breast Cancer - Age
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Breast Cancer - No. Positive Lymph Nodes
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Best Fitting Model (1 2), AIC = 3498.99
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Breast Cancer - No. Positive Lymph Nodes
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Powers (−1 −1), AIC = 3499.05
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Breast Cancer - No. Positive Lymph Nodes
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Breast Cancer - No. Positive Lymph Nodes
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Breast Cancer - No. Positive Lymph Nodes
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Model Averaging 1

In FP models the model selection process is usually ignored when
calculating fitted values and their associated confidence intervals.

Model Averaging is popular Bayesian research area (Hoeting
et al., 1999), (Congdon, 2007).

Increasing interest from frequentist perspective (Burnham and
Anderson, 2004) (Buckland et al., 2007) (Congdon, 2007) (Faes
et al., 2007)

Usually interest lies in model averaging for a parameter.

Here we are interested in averaging over the functional form
obtained from different models.
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Model Averaging 2

If there are K contending models, Mk , k = 1, . . . ,K with
weights, wk , which are scaled so that

∑
wk = 1, then the

estimate of a parameter or quantity, θ (assumed to be common
to all models) is taken to be,

θ̂a =
K∑

k=1

wk θ̂k

The variance of θ̂a is,

var
(
θ̂a

)
=

K∑
k=1

w 2
k

(
var
(
θ̂k |Mk

)
+
(
θ̂k − θ̂a

)2
)
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Obtaining the Weights, wk

In a Bayesian context we want, wk = P(Mk |Data)

These probabilities are not trivial to calculate and various
approximations are available.

One such approximation is to use the Bayesian Information
Criterion (BIC)

BICk = ln(Lk)− 1

2
p ln(n)

The AIC can also be used to derive the model weights (Buckland
et al., 2007)

AICk = ln(Lk)− 2p

Recently Faes used the AIC to derive model weights for
fractional polynomial models (Faes et al., 2007).
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Obtaining the Weights, wk

Let

∆k = BICk − BICmin or ∆k = AICk − AICmin

The weights, wk , are then defined as,

wk =
exp
(

1
2
∆k

)∑K
j=1 exp

(
1
2
∆j

)

Paul C Lambert Fractional Polynomials and Model Averaging Stockholm, 7th September 2007 13/28



Using Bootstrapping to Obtain the Weights, wk

An alternative to using the AIC or BIC for the model weights,
wk , is to use bootstrapping (Holländer et al., 2006).

For each bootstrap sample the best fitting fractional polynomial
model is selected.

The weights wk , are simply obtained using the frequencies of the
models selected over the B bootstrap samples.

If comparing fractional polynomial models of different degrees
then some selection process is needed. This is usually done by
setting a value for α.
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Using fpma

Using fpma
.

. fpma x1, ic(aic) xpredict: stcox x1
Models Included (in order of weight)

Powers AIC deltaAIC weight cum. weight

1 -2 -.5 3562.73 0.00 0.0802 0.0802
2 -1 -1 3562.77 0.03 0.0789 0.1591
3 -2 -1 3562.78 0.04 0.0785 0.2376
4 -2 0 3562.83 0.09 0.0766 0.3142
5 -2 .5 3563.05 0.31 0.0686 0.3827
6 -1 -.5 3563.05 0.32 0.0685 0.4512
7 -2 -2 3563.26 0.53 0.0616 0.5128
8 -2 1 3563.38 0.65 0.0580 0.5709
9 -1 0 3563.50 0.77 0.0546 0.6255

10 -.5 -.5 3563.52 0.79 0.0540 0.6795

(output omitted )
43 2 3578.18 15.44 0.0000 1.0000
44 3 3578.32 15.58 0.0000 1.0000

New variables created xb ma xb ma se xb ma lci xb ma uci
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Using fpma - Bootstrapping (α = 0.05)

Using fpma with bootstrapping
.

. fpma x1, ic(bootstrap) xpredict xpredname(x1_ma_boot1) reps(1000): stcox x1
Running 1000 bootstrap samples to determine model weights
(bootstrap: maboot)

Powers Freq. weight cum. weight

1 -2 -2 252 0.2520 0.2520
2 -2 -1 167 0.1670 0.4190
3 -1 -1 163 0.1630 0.5820
4 -1 -.5 88 0.0880 0.6700
5 1 71 0.0710 0.7410
6 -2 67 0.0670 0.8080
7 -.5 -.5 63 0.0630 0.8710
8 -2 -.5 51 0.0510 0.9220
9 -.5 0 30 0.0300 0.9520

10 0 0 19 0.0190 0.9710
11 0 .5 6 0.0060 0.9770

(output omitted )
22 -1 0 1 0.0010 0.9990
23 -.5 .5 1 0.0010 1.0000
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Breast Cancer - Age
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Breast Cancer - Age
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Breast Cancer - Age
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Breast Cancer - Age
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Breast Cancer - No. of Positive Lymph Nodes
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Breast Cancer - No. of Positive Lymph Nodes
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Breast Cancer - No. of Positive Lymph Nodes
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Breast Cancer - No. of Positive Lymph Nodes
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Breast Cancer - No. of Positive Lymph Nodes¡20

−2

−1.5

−1

−.5

0

.5

1

1.5

2

Lo
g 

H
az

ar
d 

R
at

io

0 5 10 15 20
number of positive nodes

Model Average  − BIC

Paul C Lambert Fractional Polynomials and Model Averaging Stockholm, 7th September 2007 19/28



Breast Cancer - No. of Positive Lymph Nodes¡20
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Breast Cancer - No. of Positive Lymph Nodes¡20
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Breast Cancer - No. of Positive Lymph Nodes¡20
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Multivariable Fractional Polynomials

The above only really applies when using fractional polynomials
for only one of the covariates in the model.

However, is is common to use models with fractional
polynomials for more than one covariate.

A simple approach is to model average over various fractional
polynomial models for the covariate of interest, while keeping
the functional form of the remaining covariates constant.

The usemfp option will do this for you.
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Using mfp with Model Averaging

mfp
.

. mfp stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon, nohr alpha(.05) select(0.05)
(output omitted )

Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

x1 4 0.0500 0.0500 in 4 -2 -.5
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0

x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5 4 0.0500 0.0500 in 4 -2 -1
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0

hormon 1 0.0500 0.0500 in 1 1

Cox regression -- Breslow method for ties
(output omitted )
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Using fpma after mfp - Age

Using fpma after mfp
.

. fpma x1, ic(aic) xpredict: usemfp
Models Included (in order of weight)

Powers AIC deltaAIC weight cum. weight

1 -2 -.5 3434.72 0.00 0.0986 0.0986
2 -2 -1 3434.76 0.03 0.0969 0.1956
3 -1 -1 3434.85 0.13 0.0925 0.2881
4 -2 0 3434.89 0.17 0.0907 0.3788
5 -2 .5 3435.24 0.52 0.0760 0.4548
6 -1 -.5 3435.30 0.58 0.0740 0.5288
7 -2 -2 3435.43 0.70 0.0695 0.5982
8 -2 1 3435.75 1.03 0.0590 0.6572
9 -1 0 3435.96 1.24 0.0531 0.7103

10 -.5 -.5 3436.00 1.27 0.0522 0.7624

(output omitted )
43 1 3452.04 17.31 0.0000 1.0000
44 .5 3452.05 17.32 0.0000 1.0000
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Model Averaging after mfp - Age
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Model Averaging after mfp - No. of Positive Lymph Nodes
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Discussion

Fractional Polynomials very useful for modelling non-linear
functions.

Model selection uncertainty is usually ignored after final model is
obtained.

Model averaging is easy to implement and incorporates FP
model selection uncertainty.

Still further work needed. For example,

Statistical properties (coverage etc).
Comparison with fully Bayesian model averaging.
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