Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Too much or too little? New tools for the static CCE Estimator.

Jan Ditzen

Free University of Bozen-Bolzano, Bozen, Italy

www.jan.ditzen.net, jan.ditzen@unibz.it

https://janditzen.github.io/xtdcce2/

September 10, 2024

Motivation I

- In panel time series models with (N, T) ⇒ ∞ cross-section dependence via unobserved common factors (or heterogeneity) is likely to occur.
- Often modelled using interactive fixed effects

$$y_{i,t} = \beta_i x_{i,t} + u_{i,t} \tag{1}$$

$$u_{i,t} = \gamma_{1,i}f_{1,t} + \dots + \gamma_{M,i}f_{M,t} + \vartheta_{i,t}$$
(2)

- where we have *M* interactions between unit specific effects and time effects.
- $\gamma_{m,i}$ is the factor loading of factor $f_{m,t}$.

Motivation II

• The explanatory variables can also consist of a factor structure:

$$x_{i,t} = \gamma_{x,1,i} f_{x,1,t} + \dots + \gamma_{M_x,i} f_{M_x,t} + \epsilon_{i,t}$$

- Assumption: $corr(\vartheta_{i,t}, \epsilon_{i,t}) = 0!$
- This setting poses two challenges:
 - Correlation across units, cross-sectional dependence
 - **2** If the factors in $x_{i,t}$ and $u_{i,t}$ overlap, the observables and unobservables are correlated
- Popular estimator: Common Correlated Effects Estimator (Pesaran, 2006)

(Static) Common Correlated Effects

• Pesaran (2006) proposes to span the space of the common factors using cross-section averages (CSA) in a static model:

$$y_{i,t} = \beta_i x_{i,t} + \psi_{x,i} \bar{x}_t + \psi_{y,i} \bar{y}_t + \epsilon_{i,t}$$

where $\bar{x}_t = 1/N \sum_{i=1}^{N} x_{i,t}$ and $\bar{y}_t = 1/N \sum_{i=1}^{N} y_{i,t}$ are the cross-section averages.

- Can be combined with a pooled or mean group estimator.
- Estimator is \sqrt{N} consistent.
- Proved to be versatile in many conditions (Kapetanios et al., 2011; Chudik et al., 2011; Westerlund, 2018).
- Extended to dynamic models (Chudik and Pesaran, 2015) and estimation of long run coefficients (Chudik et al., 2016).

Introduction

Static CCE

Stata Implementations

- First implementation in xtmg (Eberhardt, 2012).
- Also implemented in xtdcce2 (Ditzen, 2018a, 2021):
 - Static and dynamic models
 - Estimation of long run coefficients
 - Bootstrapping
 - Different types of cross-section averages
 - Estimation of degree and testing for cross-section dependence
 - Various estat and predict functions
- Syntax:

xtdcce2 depvar indepvars [if] , ... cr(varlist , options)

cr() defines variables added as cross-section averages.

Static CCE

New developments

- In "early" years discussion on CCE focused on validity under stationary factors, autocorrelated factors, strong and semi strong cross-section dependence and dynamic models.
- A recurring topic is also bootstrapping.
- In past years discussion on what "spanning factor space" actually means intensified:
 - Regularized CCE
 - When does the "Rank Condition" hold?
 - Information Criteria to select CSA.

- Large number of cross-section averages might only contain limited information, inducing non-trivial bias for pooled and mean group CCE, see Karabiyik et al. (2017).
- Juodis (2022) suggest rCCE approach:
 - Calculate cross-section averages (CSA)
 - Estimate number of common factors in CSA, \hat{m} , using ER or GR from Ahn and Horenstein (2013)
 - Replace cross-section averages with the first \hat{m} eigenvectors of CSA.
- Requires bootstrapping.
- Disadvantage: approach sensitive to estimation of factors and only for static panels.

xtdcce2, ... cr(rcce)

xtdcce2 depvar indepvars [if] , ... cr(varlist , rcce[(options)])

- options are:
 - criterion(er|gr) specifies criterion to estimate number of common factors using the ER or GR criterion from Ahn and Horenstein (2013)
 - scale scales cross-section averages
 - npc(real) specifies number of eigenvectors without estimating it.
- Bootstrap is not automatically performed.
- Number of factors estimated based on xtnumfac (Ditzen and Reese, 2023).
- Unbalanced panels supported, then missing values in CSA are imputed.

Example

- Dell et al. (2012) investigate effect of temperature (*wtem_{i,t}*) and precipitation (*wpre_{i,t}*) on economic growth (*g_{i,t}*).
- Balanced panel of 89 countries and over 42 years (1962-2003):1

$$g_{i,t} = \mu_i + \beta_{1,i}$$
 wtem_{i,t} + $\beta_{2,i}$ wpre_{i,t} + $u_{i,t}$

• Estimated number of common factors (output shortened):

. xtnumfac	g wtem wpre ,	stand(5)			
N =	3738	Т		=	42
$N_g =$	89	vars	3.	=	3
IC	# factors	IC	#	factors	
 ER 	1	GR		1	
8 factors m ER, GR from 	naximally consi n Ahn and Horer	idered. nstein (2013 -	3)		

¹This is only an example!

Ditzen

Regularized CCE Example MG (no CSA)

. xtdcce2 g wtem wpre, cr(g wtem (Dynamic) Common Correlated Effe	wpre) octs Estim	ator - Me	an Group			
Panel Variable (i): cc_num		N	umber of	obs	=	3738
Time Variable (t): year		N	umber of	group	os =	89
Degrees of freedom per group: without cross-sectional average with cross-sectional averages	s = 39 = 36	0	bs per gr	oup ((T) =	42
Number of		F	(534, 320)4)	-	0.40
cross-sectional lags	0 to	0 P.	rob > F		-	1.00
variables in mean group regress	ion = 178	R	-squared		-	0.94
variables partialled out	= 356	R	-squared	(MG)	-	0.10
		R	oot MSE		-	5.04
		C	D Statist	ic	=	0.79
			p-value	9	=	0.4322
g Coef. Sto	l. Err.	z P	> z	[95%	Conf.	Interval]
Mean Group:						
wtem4927157 .39	91215 -	1.23 0	.217	-1.2	27498	.289548
wpre .0794224 .08	63427	0.92 0	.358	089	8062	.248651

Mean Group Variables: wtem wpre Cross Sectional Averaged Variables: g wtem wpre Heterogenous constant partialled out.

- cr(g wtem wprec) adds cross-section averages of g, wtem and wprec.
- No strong cross-section dependence left in residuals.
- No coefficients significant.
- Space of one common factor spanned by 3 cross-section averages.

Example

. xtdcce2 g wtem (Dynamic) Common	wpre, cr(g Correlated	wtem wpr Effects	e, rcce Estimat	(npc(1)) or - Mea) in Group			
Panel Variable (i): cc_num			Nu	mber of	obs	=	3738
Time Variable (t): year			Nu	mber of	group	os =	89
Degrees of freed without cross-s with cross-sect	om per group ectional ave ional average	o: erages ges	= 39 = 36	Ob	s per g	roup	(T) =	42
Number of	-	-		F (534, 32	04)	=	0.44
cross-sectional	lags		= 0	Pr	ob > F		=	1.00
variables in me	an group reg	gression	= 178	R-	squared		=	0.93
variables parti	alled out		= 356	R-	squared	(MG)	=	-0.04
				Ro	ot MSE		=	5.43
				CE	Statis	tic	=	18.31
					p-valu	8	-	0.0000
g	Coef.	Std. Er	r.	z P>	z	[95%	Conf.	Interval]
Mean Group: wtem wpre	8734512 .1390204	.247195	3 -3. 2 1.	53 0. 43 0.	000 154	-1.38	57945 20843	3889572 .3301251

Mean Group Variables: wtem wpre

1 Regularized Cross-Section Averages from variables:

g wtem wpre

Heterogenous constant partialled out.

- cr(..., rcce(npc(1)) employs rCCE estimator with 1st eigenvalue instead of CSA.
- Some strong cross-section dependence left in residuals.
- Temperature significant.
- xtdcce2 can also estimate number of common factors in CSA Example.

Static CCE The Rank Condition

- Key for consistent estimation is the rank condition.
- Rank condition implies that loosely speaking(!!) rank of average factor loadings has to be larger or equal than rank of factors.
- Karabiyik et al. (2017, 2021) show that if rank condition fails, CCE is inconsistent!
- Implies that adding CSAs with zero loadings, might lead to problems!
- In empirical practice: more CSA required than factors.

- Reminder: Rank of unobserved factors (f), m, is not larger than the rank of unobserved average factor loadings (γ), g.
- Problem: both are unobserved! DeVos et al. (2024) propose a indicator if the rank conditions holds:

$$\widehat{RC} = 1 - I(\hat{g} < \hat{m}) \tag{3}$$

Rank Condition

where \hat{m} is the rank of the cross/product of the observed data estimated by ER or GR from Ahn and Horenstein (2013) and \hat{g} is rank of the unobserved factor loadings estimated from cross-section averages.

- If $\dot{RC} = 1$, rank condition holds.
- Requires bootstrap to estimate variance of rank estimator of factor loadings.
- Consistency depends on fixed T. Trick: bound dimension with shrinkage.
- Indicator only valid for static panels.

Rank Condition Classifier

xtdcce2, ... cr(rccl)

xtdcce2 depvar indepvars [if] , ... cr(varlist , <u>rccl</u>assifier[(options)])

- options are:
 - er|gr specifies criterion to estimate number of common factors using the ER or GR criterion from Ahn and Horenstein (2013)
 - standardize(integer) standardize data prior to estimation of number of common factors.
 - replications(integer) sets number of replication for bootstrapping variance of the rank estimator of the unobserved matrix of average factor loadings.
 - randomshrinkage Instead of fold-over matrix, use matrix with entries drawn from random normal distribution.
 - noshrinkage No shrinkage.
- Number of factors estimated based on xtnumfac (Ditzen and Reese, 2023).

Rank Condition Classifier

Example

. xtdcce2 g wtem wpre, cr(g wtem w (Dynamic) Common Correlated Effect	pre, rccl) s Estimator -	Mean Group		
Panel Variable (i): cc_num Time Variable (t): year		Number of obs Number of group	= s =	3738 89
Degrees of freedom per group: without cross-sectional averages with cross-sectional averages	= 39 = 36	Obs per group ((T) =	42
Number of		F(534, 3204)	=	0.40
cross-sectional lags	0 to 0	Prob > F	-	1.00
variables in mean group regression	n = 178	R-squared	=	0.94
variables partialled out	= 356	R-squared (MG)	-	0.10
		Root MSE	=	5.04
		CD Statistic	=	0.79
		p-value	=	0.4322
g Coef. Std.	Err. z	P> z [95%	Conf.	Interval]
Mean Group:				
wtem4927157 .3991	215 -1.23	0.217 -1.2	27498	.289548
wpre .0794224 .0863	427 0.92	0.358089	8062	.248651

Mean Group Variables: wtem wpre Cross Sectional Averaged Variables: g wtem wpre Heterogenous constant partialled out.

Classifier for Rank Condition (De Vos, Everaert and Sarafidis, 2024)

RC (1-I(g <m))*< th=""><th>Estimated Rank (g)</th><th>Number of</th><th>Factors</th><th>(m)</th></m))*<>	Estimated Rank (g)	Number of	Factors	(m)
1	2	1		

 cr(..., rccl) requests calculation or rank condition classifier.

• More common factors in CSA than in unobserved factors.

* RC=1 indicates rank condition holds. g is rank of matrix of cross-sectional averages, m is number of factors in the data.

Information Criteria and CCE

- Long time no theory for use of information criteria and CCE
- Information criteria can be used for 2 purposes:
 - Selection of cross-section averages
 - Lag selection in dynamic models
- 1) received recently attention:
 - DeVos et al. (2024) propose a sequential method to identify the set of relevant cross-section averages.
 - Margaritella and Westerlund (2023) propose a similar criteria as in Bai and Ng (2002); Bai (2009).
- <u>No</u> guidance on lag selection in dynamic models left for research!

Information Criteria and CCE

• Margaritella and Westerlund (2023) propose 4 criteria to identify the optimal set of cross-section averages:

$$\begin{split} &IC_{1}(M) = ln\hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\frac{N+T}{NT}ln\left(\frac{NT}{N+T}\right), \qquad IC_{2}(M) = ln\hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\frac{N+T}{NT}ln\left(C_{NT}^{2}\right) \\ &PC_{1}(M) = \hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\hat{\sigma}^{2}\left(\hat{F}_{\tilde{M}}\right)\frac{N+T}{NT}ln\left(\frac{NT}{N+T}\right), \quad PC_{2}(M) = \hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\hat{\sigma}^{2}\left(\hat{F}_{\tilde{M}}\right)\frac{N+T}{NT}ln\left(C_{NT}^{2}\right) \end{split}$$

with $\hat{\sigma}^2(\hat{F}_M)$ the error variance from a CCE estimation with *m* CSA and $(\hat{F}_{\bar{M}})$ is the error variance with the full set of CSA.

- Optimal set of CSA is then $\hat{M} = argminIC(M)$.
- Integrated in xtdcce2 as estat ic.
- Caveat: can only be applied to static models.

Information Criteria and CCE

Example

. estat ic

IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	3.43*	3.48*	•	·	

- ICs alone are not informative.
- Option sequential compares all permutations of CSA.

Information Criteria and CCE Example

. estat ic, seq

Running 7 combinations of cross-section averages:

.

IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	3.34	3.35	28	28	
2	3.34	3.35	28	28	
3	3.25*	3.26*	25.8*	25.8*	
4	3.43	3.45	29.7	29.7	
5	3.34	3.36	27.9	27.9	
6	3.34	3.37	27.6	27.6	
7	3.43	3.48	29.7	29.7	

* indicates minimum.

Cross Section Averages:

Model 1: vpre Model 2: vtem Model 3: gw vpre Model 4: vtem vpre Model 5: g vpre Model 5: g vtem Model 7: g vtem vpre (Main Model) Click on Model to run in xtdcce2.

- Model with 3 CSA has lowest IC.
- Possible to run models directly in Stata.
- Many combinations possible which can take time.

Taming the tests for cross-section dependence zoo

• Pesaran (2015, 2021) proposes a test for weak cross-section dependence, the CD-test:

 H_0 weak dependence vs. H_1 strong dependence

• Test statistic:

$$CD = \sqrt{\frac{2T}{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \rho_{i,j},$$

with $\rho_{i,j}$ is the correlation coefficient.

- Under the null hypothesis asymptotically: $CD \sim N(0, 1)$.
- In Stata: xtcd2 (Ditzen, 2018b), xtcd, xtcsd (De Hoyos and Sarafidis, 2006),
- Problem of the CD test: tends to over reject.

Taming the tests for cross-section dependence zoo²

- Recent developments: CDw (Juodis and Reese, 2021), CDw with power enhancement (Fan et al., 2015) and CD* (Pesaran and Xie, 2021)
- CD* is complicated, but actually tests for independence against weak dependence in the presence of latent factors:

. xtcd2 g wtem	wpre				
Testing for cro CD CDw CDw H0: weak cross H1: strong cro	ss-sectional + -section dep ss-section d	dependence endence ependence	(CSD) CD* independence in weak dependence	presence of in presence	factors of factors
	CD	CDw	CDw+	CD*	
g	29.35 (0.000)	-0.66 (0.508)	3519.69 (0.000)	2.82 (0.005)	
wtem	149.24 (0.000)	-0.75 (0.452)	9856.16 (0.000)	5.08 (0.000)	
wpre	22.18 (0.000)	-1.09 (0.275)	4035.09 (0.000)	4.89 (0.000)	
p-values in par References CD: Pe CDw: Ju CDw+: CE CD*: Pe	enthesis. saran (2015, odis, Reese w with power saran, Xie (2021) (2021) enhancemen 2021) with	t from Fan et al 4 PC(s)	. (2015)	

²Beta version of xtdcce2 4.9. Results may change.

Summary

- New developments in the CCE literature on **<u>static</u>** models:
 - Regularized CCE (rCCE)
 - Rank condition classifier
 - Information criteria to select CSA
- rCCE available with xtdcce2 version 4.0.
- Rank condition classifier and IC will be available with version 4.7.
- How to install?

net install xtdcce2 , from("https://janditzen.github.io/xtdcce2/")

• More info:

jan.ditzen.net

<u>GitHub</u>

References I

- Ahn, S. C., and A. R. Horenstein. 2013. Eigenvalue Ratio Test for the Number of Factors. Econometrica 81(3): 1203–1227.
- Bai, J. 2009. Panel Data Models With Interactive Fixed Effects. Econometrica 77(4): 1229–1279.
- Bai, J., and S. Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70(1): 191–221.
- Chudik, A., K. Mohaddes, M. H. Pesaran, and M. Raissi. 2016. Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors. In Essays in Honor of Aman Ullah (Advances in Econometrics, Volumn 36), ed. R. C. Hill, G. GonzÁlez-Rivera, and T.-H. Lee, 85–135. Emerald Group Publishing Limited.

References II

- Chudik, A., and M. H. Pesaran. 2015. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics 188(2): 393–420.
 - ------. 2019. Mean group estimation in presence of weakly cross-correlated estimators. Economics Letters 175: 101–105.
- Chudik, A., M. H. Pesaran, and E. Tosetti. 2011. Weak and strong cross-section dependence and estimation of large panels. <u>The</u> Econometrics Journal 14(1): C45–C90.
- De Hoyos, R. E., and V. Sarafidis. 2006. Testing for cross-sectional dependence in panel-data models. <u>The Stata Journal</u> 6(4): 482–496.
- Dell, B. M., B. F. Jones, and B. A. Olken. 2012. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. <u>American</u> Economic Journal: Macroeconomics 4(3): 66–95.

References III

- DeVos, I., G. Everaert, and V. Sarafidis. 2024. A method to evaluate the rank condition for CCE estimators A method to evaluate the rank condition for CCE estimators. <u>Econometric Reviews</u> 0(0): 1–34. URL https://doi.org/10.1080/07474938.2023.2292383.
- Ditzen, J. 2018a. Estimating Dynamic Common-Correlated Effects in Stata. The Stata Journal 18(3): 585–617.

——. 2018b. Estimating dynamic common-correlated effects in Stata. The Stata Journal 18(3): 585 – 617.

2021. Estimating long run effects and the exponent of cross-sectional dependence: an update to xtdcce2. <u>The Stata Journal</u> 21(3): 687–707. URL

https://ideas.repec.org/p/bzn/wpaper/bemps81.html.

References IV

Ditzen, J., and S. Reese. 2023. A battery of estimators for the number of common factors in time series and panel data models. <u>The Stata</u> <u>Journal</u> 23(2): 438–454. URL https:

//journals.sagepub.com/doi/abs/10.1177/1536867X231175305.

- Eberhardt, M. 2012. Estimating panel time series models with heterogeneous slopes. The Stata Journal 12(1): 61–71.
- Fan, J., Y. Liao, and J. Yao. 2015. Power Enhancement in High-Dimensional Cross-Section Tests. Econometrica 83(4): 1497–1541.
- Juodis, A. 2022. A regularization approach to common correlated effects estimation. Journal of Applied Econometrics (October 2021): 788–810.
- Juodis, A., and S. Reese. 2021. The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation. <u>Journal of Business</u> Economic Statistics.

References V

- Kapetanios, G., M. H. Pesaran, and T. Yamagata. 2011. Panels with non-stationary multifactor error structures. <u>Journal of Econometrics</u> 160(2): 326–348.
- Karabiyik, H., S. Reese, and J. Westerlund. 2017. On the role of the rank condition in CCE estimation of factor-augmented panel regressions. Journal of Econometrics 197(1): 60–64. URL
 - http://dx.doi.org/10.1016/j.jeconom.2016.10.006.
- Karabiyik, H., J. Westerlund, and A. Juodis. 2021. On the Robustness of the Pooled CCE Estimator. Journal of Econometrics 220(2): 325–348.
- Margaritella, L., and J. Westerlund. 2023. Using Information Criteria to Select Averages in CCE. <u>The Econometrics Journal</u>.
- Pesaran, M. H. 2006. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74(4): 967–1012.

References VI

——. 2015. Testing Weak Cross-Sectional Dependence in Large Panels. Econometric Reviews 34(6-10): 1089–1117.

——. 2021. General diagnostic tests for cross-sectional dependence in panels. Empirical Economics 60(1): 13–50. URL https://doi.org/10.1007/s00181-020-01875-7.

- Pesaran, M. H., and R. Smith. 1995. Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68(1): 79–113.
- Pesaran, M. H., and Y. Xie. 2021. A Bias-Corrected CD Test for Error Cross- Sectional Dependence in Panel Data Models with Latent Factors. Cambridge Working Papers in Economics 2158.

Westerlund, J. 2018. CCE in panels with general unknown factors. Econometrics Journal 21(3): 264–276.

MG with no CSA (back)

. xtdcce2 g wten (Dynamic) Common	n wpre, nocro n Correlated	oss Effects	Estimato:	r - Mean Gi	oup		
Panel Variable ((i): cc_num			Number	of obs	=	3738
Time Variable (t	;): year			Number	of group	ps =	89
Degrees of freed without cross-sect with cross-sect	lom per group sectional ave sional average	erages ges	= 39 = 39	Obs pe	er group	(T) =	42
Number of				F(267,	3471)	=	0.87
cross-sectional	lags		none	Prob >	• F	=	0.93
variables in me	ean group reg	ression	= 178	R-squa	red	=	0.94
variables parti	alled out		= 89	R-squa	red (MG)	=	0.01
				Root M	ISE	=	5.28
				CD Sta	tistic	=	22.42
				p-v	value	=	0.0000
g	Coef.	Std. Er	r. :	z P> z	[95%	Conf.	Interval]
Mean Group:							
wtem	6109638	.216364	8 -2.8	2 0.005	-1.03	35031	1868967
wpre	.1805911	.08841	4 2.04	4 0.041	.00	73029	.3538793

Mean Group Variables: wtem wpre Heterogenous constant partialled out.

rCCE - number of factors estimated **back**

. xtdcce2 g wter (Dynamic) Common	n wpre, cr(g n Correlated	wtem wpre Effects E	, rcce) stimator ·	- Mean Grouj	p		
Panel Variable	(i): cc_num			Number o:	f obs	=	3738
Time Variable (†	t): year			Number of	f group	ps =	89
Degrees of freed without cross-sect with cross-sect	dom per group sectional ave tional average	erages = ges =	39 36	Obs per g	group	(T) =	42
Number of				F(534, 3	204)	=	0.47
cross-sectional	l lags	-	0	Prob > F		=	1.00
variables in me	ean group reg	ression =	178	R-square	ł	=	0.93
variables parti	ialled out	=	356	R-square	d (MG)	=	0.07
				Root MSE		=	5.11
				CD Stati:	stic	=	0.43
				p-val	це	=	0.6704
g	Coef.	Std. Err	. z	P> z	[95%	Conf.	Interval]
Mean Group:							
wtem	0618716	.3554096	-0.17	0.862	758	34617	.6347185
wpre	.1070671	.0918071	1.17	0.244	072	28715	.2870057

Mean Group Variables: wtem wpre

2 Regularized Cross-Section Averages from variables:

g wtem wpre

Heterogenous constant partialled out.

Information Criteria and CCE Example

. estat ic, model((g wtem wpre) (g) (g wtem)) Running 3 combinations of cross-section averages:

. . . IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	3.43	3.48	29.5	29.5	
2	3.25*	3.26*	25.4*	25.4*	
3	3.34	3.37	27.7	27.7	

* indicates minimum.

Cross Section Averages: Model 1: g wtem wpre (Main Model) Model 2: g Model 3: g wtem Click on Model to run in xtdcce2.

- Compare specific models.
- Syntax: model((model1) (model2) ...).
- (model1) is the reference model.

Static CCE Mean Group Estimator

- Main contributions: Pesaran and Smith (1995); Pesaran (2006); Chudik and Pesaran (2019)
- $\hat{\beta}_{MG} = \frac{1}{N} \sum_{i=1}^{N} \hat{\beta}_i$
- Asymptotic variance estimator $V(\hat{\beta}_{MG}) = \frac{1}{N(N-1)} \sum_{i=1}^{N} \left(\hat{\beta}_{i} \hat{\beta}_{MG}\right)^{2}$
- Individual coefficients asymptotically normal with $(N, T) \xrightarrow{j} \infty$ with no particular order. Rank condition requires $\sqrt{T}/N \rightarrow 0$.
- Mean group asymptotically unbiased if $N \to \infty$ and T fixed and $(N, T) \xrightarrow{j} \infty$. Also needs T > K.

Static CCE Pooled Estimator

- Main contribution: Pesaran (2006)
- Estimate β_p directly with the condition $\beta_i = \beta_p$.
- Various variance estimators, such as $V(\hat{\beta}_p)_{np} = f(\hat{\beta}_i, \hat{\beta}_{MG}, \tilde{X}'\tilde{X})$ or $V(\hat{\beta}_p)_{hac} = f(\hat{\beta}_p, \tilde{X}'\tilde{X}, \hat{\epsilon}_{i,t}).$
- Depending on the estimator, we need to make sure that the residuals are cross-section dependence free!
- Asymptotically normal with $(N, T) \xrightarrow{j} \infty$ with no particular order.