Multivariate random-effects meta-analysis for sparse data using smvmeta

Christopher James Rose

Center for Epidemic Interventions Research and Cluster for Reviews and Health Technology Assessments Division for Health Services

Norwegian Institute of Public Health Oslo, Norway

Northern European Stata Conference, Oslo, Norway 10 September 2024

I have no conflicts of interest to declare $^{\rm 1}$

 $^{^1\}mbox{I'm}$ the author of the method and smvmeta command I'm talking about today

Multivariate meta-analysis, sparse data, and smvmeta

Meta-analysis Multivariate meta-analysis with sparse data

How to use smvmeta

Installing smvmeta Setting up an analysis Performing meta-analysis and making forest plots

How smvmeta works

The model used by smvmeta

Why and when you should trust smvmeta Validation experiments

Summary

Questions?

Multivariate meta-analysis, sparse data, and smvmeta

Meta-analysis

- Systematic review identify and synthesize all relevant evidence
- Meta-analysis "pool" estimates from multiple studies into a single estimate
- Univariate (pairwise) meta-analysis synthesize multiple estimates of one variate

Meta-analysis

- Systematic review identify and synthesize all relevant evidence
- Meta-analysis "pool" estimates from multiple studies into a single estimate
- Univariate (pairwise) meta-analysis synthesize multiple estimates of one variate
- Example using Stata's bcgset data on efficacy of BCG vaccine for tuberculosis

	BCG	Vaccine	С	ontrol			Risk ratio	Weight
Study	Yes	No	Yes	No			with 95% CI	(%)
Aronson, 1948	4	119	11	128		_	0.41 [0.13, 1.26]	5.06
Ferguson & Simes, 1949	6	300	29	274			0.20 [0.09, 0.49]	6.36
Rosenthal et al., 1960	3	228	11	209			0.26 [0.07, 0.92]	4.44
Hart & Sutherland, 1977	62	13,536	248	12,619			0.24 [0.18, 0.31]	9.70
Frimodt-Moller et al., 1973	33	5,036	47	5,761		-	0.80 [0.52, 1.25]	8.87
Stein & Aronson, 1953	180	1,361	372	1,079			0.46 [0.39, 0.54]	10.10
Vandiviere et al., 1973	8	2,537	10	619			0.20 [0.08, 0.50]	6.03
TPT Madras, 1980	505	87,886	499	87,892			1.01 [0.89, 1.14]	10.19
Coetzee & Berjak, 1968	29	7,470	45	7,232			0.63 [0.39, 1.00]	8.74
Rosenthal et al., 1961	17	1,699	65	1,600			0.25 [0.15, 0.43]	8.37
Comstock et al., 1974	186	50,448	141	27,197			0.71 [0.57, 0.89]	9.93
Comstock & Webster, 1969	5	2,493	3	2,338		-	1.56 [0.37, 6.53]	3.82
Comstock et al., 1976	27	16,886	29	17,825		-	0.98 [0.58, 1.66]	8.40
Overall					-		0.49 [0.34, 0.70]	
Heterogeneity: τ^2 = 0.31, I^2 =	92.22%	, H ² = 12.	86		-	-		
Test of $\theta_i = \theta_j$: Q(12) = 152.23, p = 0.00					Favors vaccine	Favors control		
Test of $\theta = 0$: z = -3.97, p = 0	.00							
					1/8 1/4 1/2	2 4	_	

Random-effects REML model

Note: "effect size" often used in place of variate, estimate, etc.

Heterogeneity and random-effects meta-analysis

- Simplest meta-analysis model assumes all studies share the same estimation target
- However, this is rarely the case in biomedicine and other fields (e.g., some differences between populations, treatments, outcomes, etc.)
- Differences in estimation targets is called *heterogeneity*

Heterogeneity and random-effects meta-analysis

- Simplest meta-analysis model assumes all studies share the same estimation target
- However, this is rarely the case in biomedicine and other fields (e.g., some differences between populations, treatments, outcomes, etc.)
- Differences in estimation targets is called heterogeneity
- Heterogeneity is often dealt with using *random-effects* (RE) meta-analysis
- Estimation target in RE meta-analysis is a *distribution* of study-level targets
- Usually modelled using a normal distribution, $N(\mu, \tau^2)$

Multivariate meta-analysis

- Multivariate case each study reports a multivariate estimate
- The total number of variates studied by all included studies is p
- Each study can report estimates for between 1 and p variates

Multivariate meta-analysis

- Multivariate case each study reports a multivariate estimate
- The total number of variates studied by all included studies is p
- Each study can report estimates for between 1 and p variates
- There may be heterogeneity and the variates may be correlated
- The classic example is diagnostic test accuracy:
 - the variates are sensitivity and specificity
 - sensitivity and specificity are correlated (increasing one tends to decrease the other)
- Failing to account for correlation \rightarrow bias (Riley, 2009; Riley, Thompson, and Abrams, 2008)
- Higher-dimensional applications include the study of risk factors

Example multivariate meta-analysis

Risk Factor					Correlation	9	5%	CI	<i>p</i> -value	k	P-score	1 ²
ROCF Reca	all				0.34	0.09	to	0.55	0.005	1	92.4%	
Catastroph.				_	0.28	0.12	to	0.42	0.000	2	89.1%	59.9%
Temp. Sum	m.			-	0.21	0.05	to	0.36	0.005	2	77.2%	0.0%
K-L Grade					-0.15	-0.23	to	-0.08	0.000	3	65.3%	0.0%
S. Joints			-		0.15	0.07	to	0.23	0.000	2	65.1%	0.0%
Heat Thold		-	_	-	0.16	-0.05	to	0.36	0.173	1	61.9%	
Urban/Sem	i		-		-0.15	-0.32	to	0.03	0.125	1	60.1%	
C. Retain.					-0.14	-0.25	to	-0.02	0.009	1	60.0%	
Education			-		-0.14	-0.32	to	0.04	0.156	1	58.4%	
Support		-			0.14	-0.04	to	0.31	0.172	1	57.1%	
Expectation	i -				-0.14	-0.37	to	0.10	0.341	1	56.9%	
Pain			-		0.11	0.04	to	0.18	0.000	8	50.5%	97.3%
Warm Thole	ł				0.08	-0.14	to	0.29	0.654	1	44.5%	
Pain SE.			—		-0.03	-0.20	to	0.14	0.913	1	38.9%	
BMI		-	-		0.06	-0.03	to	0.15	0.182	4	35.2%	70.9%
Men. Health	ı				-0.05	-0.17	to	0.08	0.646	5	34.9%	79.6%
Function			-		-0.02	-0.13	to	0.10	0.942	2	34.8%	90.1%
Pat. Resur.			_		-0.05	-0.17	to	0.07	0.603	1	33.7%	
Male		-	F		-0.04	-0.13	to	0.05	0.508	4	29.2%	0.0%
Comorbidity	/		-		0.03	-0.06	to	0.13	0.676	3	29.0%	0.0%
Older Age		-	F		-0.03	-0.12	to	0.05	0.577	4	28.5%	0.0%
Kinesophob).		——		0.00	-0.23	to	0.23	1.000	1	23.6%	
Surg. Dur.					-0.00	-0.23	to	0.23	1.000	1	23.6%	
	Associa	ated with ess pain	Associat more pa	ed with								
	-0.46	0.0	00	0.46								

Sparse multivariate random-effects meta-analysis model

Meta-analysis and meta-regression in Stata

- smvmeta is a new add-on command for random-effects multivariate meta-analysis: (Rose, C. J., The Stata Journal 24:2, 2024)
- Stata already has excellent built-in support for meta-analysis:
 - meta esize for computing effect sizes from summaries (e.g., big and little Ns)
 - meta summarize and meta forestplot for meta-analysis
 - meta regress for meta-regression
 - meta meregress and meta multilevel for multilevel meta-regression
 - meta mvregress for multivariate meta-regression
- Where does smvmeta fit in?

- In the most general case, multivariate meta-analysis models are parameterized by:
 - a *p*-vector of mean effect sizes β
 - a $p \times p$ correlation matrix $\mathbf{\Phi}$
 - **a** $p \times p$ variance-covariance matrix Ψ that models heterogeneity
- Such a model will have $p + p^2$ parameters (note that this is quadratic in p)

- In the most general case, multivariate meta-analysis models are parameterized by:
 - a *p*-vector of mean effect sizes β
 - a $p \times p$ correlation matrix $\mathbf{\Phi}$
 - **a** p imes p variance-covariance matrix $oldsymbol{\Psi}$ that models heterogeneity
- Such a model will have $p + p^2$ parameters (note that this is quadratic in p)
- The numbers of papers reporting multivariate results tends to be small
- We are likely to have far fewer study estimates than parameters
- This is what I mean by sparsity it makes estimation challenging

- In the most general case, multivariate meta-analysis models are parameterized by:
 - a *p*-vector of mean effect sizes β
 - a $p \times p$ correlation matrix $\mathbf{\Phi}$
 - **a** $p \times p$ variance-covariance matrix Ψ that models heterogeneity
- Such a model will have $p + p^2$ parameters (note that this is quadratic in p)
- The numbers of papers reporting multivariate results tends to be small
- We are likely to have far fewer study estimates than parameters
- This is what I mean by sparsity it makes estimation challenging
- Previous models address this by requiring us to specify or assume how variates are correlated (e.g., using published values or assumed matrix structures)
- Studies typically do not publish correlation estimates; we may be unable or unwilling to make these assumptions this is where smvmeta fits in

In previous models (e.g., Riley, Lin and Chu), the number of model parameters scales quadratically with p. The model used by smvmeta scales linearly with p.

How to use smvmeta

The pain12 dataset

- Systematic review on risk factors for pain and function after total knee arthroplasty (TKA) (Olsen et al., 2020, 2022, 2023)
- $\sim 20\%$ of patients experience pain and poor function after surgery
- Identifying risk factors could lead to better outcomes

The pain12 dataset

- Systematic review on risk factors for pain and function after total knee arthroplasty (TKA) (Olsen et al., 2020, 2022, 2023)
- $\sim 20\%$ of patients experience pain and poor function after surgery
- Identifying risk factors could lead to better outcomes
- Studies typically estimate associations on a range of metrics (e.g., RRs, ORs, MDs, correlations)
- Meta-analysis must be performed on a common metric:
 - 1. Extracted the reported estimates
 - 2. Imputed the corresponding tetrachoric correlations
 - 3. Fisher z-transformed 2 the correlations

²Inverse hyperbolic tangent function

Install smvmeta, ancillary files (incl. the pain12 dataset), and list:

- . net install st0749.pkg , all
- . use pain12, clear
- . list in 1/10

	study	factor	Z	z_se
1.	Lingard 2007	Men. Health	.0242904	.038518
2.	Papakostidou 2012	Pain	.1760553	.0713318
3.	Papakostidou 2012	Older Age	0094856	.0745588
4.	Papakostidou 2012	Male	0968132	.0735721
5.	Papakostidou 2012	BMI	0395895	.0744007
6.	Papakostidou 2012	Support	.136985	.0725892
7.	Papakostidou 2012	Education	1422099	.0724378
8.	Papakostidou 2012	Urban/Semi	1482175	.0722573
9.	Sullivan 2011	Male	0012088	.0945578
10.	Sullivan 2011	Older Age	0012088	.0945578

Use smvmeta set to specify generic effect sizes, SEs, and risk factors:

```
. smvmeta set z z se factor
Meta-analysis setting information
 Data
   No. observations: 51
              Sparse: Yes
 Effect size
                Type: Generic
               Label: Correlation with pain (Fisher z-transformed)
            Variable: z
             Missing: 0
 Precision
                Type: Standard error
               Label: SE on correlation
            Variable: z se
             Missing: 0
 Factor variable
               Label: Risk Factor
            Variable: factor
              Levels: 23
             Missing: 0
 Model and method
               Model: Sparse multivariate random-effects meta-analysis (smvmeta)
              Method: Penalized maximum likelihood
```

Perform the meta-analysis using smvmeta estimate:

. smvmeta estimate, dim(3) nolog transform(corr) superior(big) sort(_Pscore, descending)

Sparse multi Factor varia Optimization	va b	ariate m le label	Number o Num. fac Dimensio	Number of obs = Num. factors = Dimensions (q) =					
		Coef.	Eff. SE	P>u	[95% Con	f. Int.]	k	P-score	 I2
ROCF Recall	1	0.342	0.126	0.005	0.089	0.554	1	92.4	
Catastroph.	L	0.278	0.074	0.000	0.118	0.424	2	89.1	59.9
Temp. Summ.	L	0.211	0.076	0.005	0.050	0.361	2	77.2	0.0
K-L Grade	L	-0.154	0.036	0.000	-0.230	-0.075	3	65.3	0.0
S. Joints	L	0.153	0.032	0.000	0.073	0.230	2	65.1	0.0
Heat Thold	L	0.159	0.117	0.173	-0.052	0.355	1	61.9	
Urban/Semi 	I	-0.147	0.097	0.125	-0.318	0.033	1	60.1	•
Comorbidity	I	0.032	0.077	0.676	-0.063	0.126	3	29.0	0.0
Older Age	L	-0.035	0.062	0.577	-0.121	0.053	4	28.5	0.0
Kinesophob.	L	0.001	0.095	1.000	-0.229	0.232	1	23.6	
Surg. Dur.		-0.001	0.095	1.000	-0.232	0.229	1	23.6	

Estimates have been tanh-transformed.

Untransformed effect sizes with larger magnitudes are superior.

Use smvmeta forestplot to make the forest plot I showed earlier

How smvmeta works

- Recall that in previous models, the number of model parameters is quadratic in p
- The number of parameters in the smvmeta model is *linear* in *p*, not quadratic:
 - smvmeta does not attempt to decompose correlation and heterogeneity \rightarrow only need to estimate a single covariance matrix Ψ
 - smvmeta reduces the dimensionality of the problem by approximating Ψ in a low-dimensional space using *random projection*

The smvmeta model

- Random projection is similar to principal components analysis (PCA)
 - establish a random (i.e., arbitrary) low-dimensional orthonormal basis in $\mathbb{R}^{q < p}$ (i.e., a random matrix \boldsymbol{R} of orthogonal unit vectors)
 - let Σ be a $q \times q$ covariance matrix (cf. $p \times p$)
 - approximate Ψ as $R\Sigma R^{\top}$ (i.e., project Σ from \mathbb{R}^{q} up into \mathbb{R}^{p})
- Estimate an approximation to the distribution of study-level targets $N\left(eta, R\Sigma R^{ op}
 ight)$
- Estimation performed using penalized maximum likelihood (see paper)
- Like PCA, good approximation with small q (e.g., $q \approx$ 6 rather than $p \approx 25$)
- Use domain knowledge to choose q, or let smvmeta choose it automatically

Why and when you should trust smvmeta

Simulation-based validation

- Some studies may not report estimates for all variates
- An estimate for a particular variate may be missing from a study:
 - completely at random (MCAR)
 - because of its value or "significance" (MNAR)

Simulation-based validation

- Some studies may not report estimates for all variates
- An estimate for a particular variate may be missing from a study:
 - completely at random (MCAR)
 - because of its value or "significance" (MNAR)
- We may have or lack domain knowledge for choosing q

Simulation-based validation

- Some studies may not report estimates for all variates
- An estimate for a particular variate may be missing from a study:
 - completely at random (MCAR)
 - because of its value or "significance" (MNAR)
- We may have or lack domain knowledge for choosing q
- Simulated a large number of systematic reviews with known groundtruth to
 - estimate empirical coverage of smvmeta's 95% Cls
 - compare smvmeta's bias and precision to random-effects meta-regression

under 3 scenarios:

Scenario	Missingness mechanism	ls p known?
1	MCAR	No
2	MCAR	Yes
3	MNAR	No

Summary of validation experiment results

- Results for the 3 scenarios are very similar
- Empirical coverage of 95% CIs is 94.4% (95% CI 94.1% to 94.7%)
- Bias is 1.03 (95% Cl 1.02 to 1.04) times larger for smvmeta compared to meta-regression (but negligible in absolute terms)
- smvmeta's estimates are more precise than for meta-regression (e.g., 95% Cls are about 90% as wide)

Summary of validation experiment results

- Results for the 3 scenarios are very similar
- Empirical coverage of 95% CIs is 94.4% (95% CI 94.1% to 94.7%)
- Bias is 1.03 (95% Cl 1.02 to 1.04) times larger for smvmeta compared to meta-regression (but negligible in absolute terms)
- smvmeta's estimates are more precise than for meta-regression (e.g., 95% Cls are about 90% as wide)
- smvmeta tends to perform better as p increases:
 - confidence intervals tend to get shorter compared to meta-regression
 - bias can be very high if p is small ($p \approx 10$)
 - not surprising, given smvmeta is based on random projection
- The method appears to be robust to the MNAR scenario
- Recommend smvmeta for sparse problems with $p \ge 15$ variates

Summary

Summary

- Introduced multivariate meta-analysis and the problem of sparsity
- Explained how to use smvmeta for multivariate random-effects meta-analysis
- Outlined how the method works (see the paper for more details)
- Summarized the results of simulation-based validation experiments

Thanks for listening

References

- Olsen, Unni et al. (2020). "Predictors of chronic pain and level of physical function in total knee arthroplasty: a protocol for a systematic review and meta-analysis". In: *BMJ Open* 10.9, e037674.
- Olsen, Unni et al. (2022). "Factors Correlated With Physical Function 1 Year After Total Knee Arthroplasty in Patients With Knee Osteoarthritis: A Systematic Review and Meta-analysis". In: JAMA Network Open 5.7, e2219636.
- (2023). "Factors correlated with pain after total knee arthroplasty: A systematic review and meta-analysis". In: PLOS ONE 18.3, e0283446.
- Riley, Richard D (2009). "Multivariate meta-analysis: the effect of ignoring within-study correlation". In: Journal of the Royal Statistical Society: Series A (Statistics in Society) 172.4, pp. 789–811.
- Riley, Richard D, John R Thompson, and Keith R Abrams (2008). "An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown". In: *Biostatistics* 9.1, pp. 172–186.
- Rücker, Gerta and Guido Schwarzer (2015). "Ranking treatments in frequentist network meta-analysis works without resampling methods". In: BMC Medical Research Methodology 15.1, pp. 1–9.

Questions?

The smvmeta model

n-vector of effect size estimates (known)

- X could include covariates for meta-regression (not yet implemented)
- β and Σ are estimated using penalized maximum likelihood (inverse-Wishart penalty applied to Σ to prevent trivial solutions; see paper)

Assessing superiority

- Natural research questions include "Which risk factor is most important?" and "Which treatment is best?" (superiority)
- smvmeta assesses superiority using *P*-scores (Rücker and Schwarzer, 2015)
 - measures the mean extent of certainty that a given effect size is superior to all others
 - P-scores are distinct from p-values
- Some preferable properties over posterior probabilities of superiority (e.g., pbest() option of mvmeta; see paper)
 - particularly useful for meta-analyses of correlations
 - can be computed almost instantaneously (no MCMC needed)
- smvmeta provides an option to specify what superiority means in your meta-analysis