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Meta-analysis
• Systematic review — identify and synthesize all relevant evidence
• Meta-analysis — “pool” estimates from multiple studies into a single estimate
• Univariate (pairwise) meta-analysis — synthesize multiple estimates of one variate

• Example using Stata’s bcgset data on efficacy of BCG vaccine for tuberculosis

Aronson, 1948
Ferguson & Simes, 1949
Rosenthal et al., 1960
Hart & Sutherland, 1977
Frimodt-Moller et al., 1973
Stein & Aronson, 1953
Vandiviere et al., 1973
TPT Madras, 1980
Coetzee & Berjak, 1968
Rosenthal et al., 1961
Comstock et al., 1974
Comstock & Webster, 1969
Comstock et al., 1976

Overall
Heterogeneity: τ2 = 0.31, I2 = 92.22%, H2 = 12.86
Test of θi = θj: Q(12) = 152.23, p = 0.00
Test of θ = 0: z = -3.97, p = 0.00
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Note: “effect size” often used in place of variate, estimate, etc.
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Heterogeneity and random-effects meta-analysis

• Simplest meta-analysis model assumes all studies share the same estimation target
• However, this is rarely the case in biomedicine and other fields

(e.g., some differences between populations, treatments, outcomes, etc.)
• Differences in estimation targets is called heterogeneity

• Heterogeneity is often dealt with using random-effects (RE) meta-analysis
• Estimation target in RE meta-analysis is a distribution of study-level targets
• Usually modelled using a normal distribution, N(µ, τ2)

6 / 28



Heterogeneity and random-effects meta-analysis

• Simplest meta-analysis model assumes all studies share the same estimation target
• However, this is rarely the case in biomedicine and other fields

(e.g., some differences between populations, treatments, outcomes, etc.)
• Differences in estimation targets is called heterogeneity
• Heterogeneity is often dealt with using random-effects (RE) meta-analysis
• Estimation target in RE meta-analysis is a distribution of study-level targets
• Usually modelled using a normal distribution, N(µ, τ2)

6 / 28



Multivariate meta-analysis

• Multivariate case — each study reports a multivariate estimate
• The total number of variates studied by all included studies is p
• Each study can report estimates for between 1 and p variates

• There may be heterogeneity and the variates may be correlated
• The classic example is diagnostic test accuracy:

the variates are sensitivity and specificity
sensitivity and specificity are correlated (increasing one tends to decrease the other)

• Failing to account for correlation → bias
(Riley, 2009; Riley, Thompson, and Abrams, 2008)
• Higher-dimensional applications include the study of risk factors
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Example multivariate meta-analysis
ROCF Recall
Catastroph.
Temp. Summ.
K-L Grade
S. Joints
Heat Thold
Urban/Semi
C. Retain.
Education
Support
Expectation
Pain
Warm Thold
Pain S.-E.
BMI
Men. Health
Function
Pat. Resur.
Male
Comorbidity
Older Age
Kinesophob.
Surg. Dur.

Risk Factor

Associated with
less pain

Associated with
more pain

-0.46 0.00 0.46

0.34
0.28
0.21

-0.15
0.15
0.16

-0.15
-0.14
-0.14
0.14
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0.11
0.08
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-0.05
-0.04
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Correlation
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0.05

-0.23
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-0.05
-0.32
-0.25
-0.32
-0.04
-0.37
0.04

-0.14
-0.20
-0.03
-0.17
-0.13
-0.17
-0.13
-0.06
-0.12
-0.23
-0.23

95% CI

to
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to
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to
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to
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to
to
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to
to
to

0.55
0.42
0.36

-0.08
0.23
0.36
0.03

-0.02
0.04
0.31
0.10
0.18
0.29
0.14
0.15
0.08
0.10
0.07
0.05
0.13
0.05
0.23
0.23

0.005
0.000
0.005
0.000
0.000
0.173
0.125
0.009
0.156
0.172
0.341
0.000
0.654
0.913
0.182
0.646
0.942
0.603
0.508
0.676
0.577
1.000
1.000

p-value

1
2
2
3
2
1
1
1
1
1
1
8
1
1
4
5
2
1
4
3
4
1
1

k

92.4%
89.1%
77.2%
65.3%
65.1%
61.9%
60.1%
60.0%
58.4%
57.1%
56.9%
50.5%
44.5%
38.9%
35.2%
34.9%
34.8%
33.7%
29.2%
29.0%
28.5%
23.6%
23.6%

P-score

.
59.9%

0.0%
0.0%
0.0%

.

.

.

.

.

.
97.3%

.

.
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.
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0.0%

.

.

I 2

Sparse multivariate random-effects meta-analysis model 8 / 28



Meta-analysis and meta-regression in Stata

• smvmeta is a new add-on command for random-effects multivariate meta-analysis:
(Rose, C. J., The Stata Journal 24:2, 2024)
• Stata already has excellent built-in support for meta-analysis:

meta esize for computing effect sizes from summaries (e.g., big and little Ns)
meta summarize and meta forestplot for meta-analysis
meta regress for meta-regression
meta meregress and meta multilevel for multilevel meta-regression
meta mvregress for multivariate meta-regression

• Where does smvmeta fit in?
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Multivariate meta-analysis with sparse data

• In the most general case, multivariate meta-analysis models are parameterized by:
a p-vector of mean effect sizes βββ
a p × p correlation matrix ΦΦΦ
a p × p variance-covariance matrix ΨΨΨ that models heterogeneity

• Such a model will have p + p2 parameters (note that this is quadratic in p)

• The numbers of papers reporting multivariate results tends to be small
• We are likely to have far fewer study estimates than parameters
• This is what I mean by sparsity — it makes estimation challenging
• Previous models address this by requiring us to specify or assume how variates are

correlated (e.g., using published values or assumed matrix structures)
• Studies typically do not publish correlation estimates; we may be unable or

unwilling to make these assumptions — this is where smvmeta fits in
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Multivariate meta-analysis with sparse data
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In previous models (e.g., Riley, Lin and Chu), the number of model parameters scales
quadratically with p. The model used by smvmeta scales linearly with p.
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How to use smvmeta
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The pain12 dataset

• Systematic review on risk factors for pain and function after
total knee arthroplasty (TKA) (Olsen et al., 2020, 2022, 2023)
• ∼ 20% of patients experience pain and poor function after surgery
• Identifying risk factors could lead to better outcomes

• Studies typically estimate associations on a range of metrics
(e.g., RRs, ORs, MDs, correlations)
• Meta-analysis must be performed on a common metric:

1. Extracted the reported estimates
2. Imputed the corresponding tetrachoric correlations
3. Fisher z-transformed Inverse hyperbolic tangent function the correlations
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Install smvmeta, ancillary files (incl. the pain12 dataset), and list:

. net install st0749.pkg , all

. use pain12, clear

. list in 1/10

study factor z z_se

1. Lingard 2007 Men. Health .0242904 .038518
2. Papakostidou 2012 Pain .1760553 .0713318
3. Papakostidou 2012 Older Age -.0094856 .0745588
4. Papakostidou 2012 Male -.0968132 .0735721
5. Papakostidou 2012 BMI -.0395895 .0744007

6. Papakostidou 2012 Support .136985 .0725892
7. Papakostidou 2012 Education -.1422099 .0724378
8. Papakostidou 2012 Urban/Semi -.1482175 .0722573
9. Sullivan 2011 Male -.0012088 .0945578

10. Sullivan 2011 Older Age -.0012088 .0945578
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Use smvmeta set to specify generic effect sizes, SEs, and risk factors:

. smvmeta set z z_se factor
Meta-analysis setting information

Data
No. observations: 51

Sparse: Yes
Effect size

Type: Generic
Label: Correlation with pain (Fisher z-transformed)

Variable: z
Missing: 0

Precision
Type: Standard error

Label: SE on correlation
Variable: z_se
Missing: 0

Factor variable
Label: Risk Factor

Variable: factor
Levels: 23

Missing: 0
Model and method

Model: Sparse multivariate random-effects meta-analysis (smvmeta)
Method: Penalized maximum likelihood
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Perform the meta-analysis using smvmeta estimate:
. smvmeta estimate, dim(3) nolog transform(corr) superior(big) sort(_Pscore, descending)

Sparse multivariate meta-analysis (smvmeta) Number of obs = 51
Factor variable label : Risk Factor Num. factors = 23
Optimization : Penalized ML Dimensions (q) = 3
------------------------------------------------------------------------------

| Coef. Eff. SE P>u [95% Conf. Int.] k P-score I2
------------+-----------------------------------------------------------------
ROCF Recall | 0.342 0.126 0.005 0.089 0.554 1 92.4 .
Catastroph. | 0.278 0.074 0.000 0.118 0.424 2 89.1 59.9
Temp. Summ. | 0.211 0.076 0.005 0.050 0.361 2 77.2 0.0
K-L Grade | -0.154 0.036 0.000 -0.230 -0.075 3 65.3 0.0
S. Joints | 0.153 0.032 0.000 0.073 0.230 2 65.1 0.0
Heat Thold | 0.159 0.117 0.173 -0.052 0.355 1 61.9 .
Urban/Semi | -0.147 0.097 0.125 -0.318 0.033 1 60.1 .
...
Comorbidity | 0.032 0.077 0.676 -0.063 0.126 3 29.0 0.0
Older Age | -0.035 0.062 0.577 -0.121 0.053 4 28.5 0.0
Kinesophob. | 0.001 0.095 1.000 -0.229 0.232 1 23.6 .
Surg. Dur. | -0.001 0.095 1.000 -0.232 0.229 1 23.6 .
------------------------------------------------------------------------------
Estimates have been tanh-transformed.
Untransformed effect sizes with larger magnitudes are superior.

Use smvmeta forestplot to make the forest plot I showed earlier
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How smvmeta works
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The smvmeta model

• Recall that in previous models, the number of model parameters is quadratic in p
• The number of parameters in the smvmeta model is linear in p, not quadratic:

smvmeta does not attempt to decompose correlation and heterogeneity
→ only need to estimate a single covariance matrix ΨΨΨ
smvmeta reduces the dimensionality of the problem by approximating ΨΨΨ in a
low-dimensional space using random projection
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The smvmeta model

• Random projection is similar to principal components analysis (PCA)
establish a random (i.e., arbitrary) low-dimensional orthonormal basis in IRq<p

(i.e., a random matrix RRR of orthogonal unit vectors)
let ΣΣΣ be a q × q covariance matrix (cf. p × p)
approximate ΨΨΨ as RΣRRΣRRΣR> (i.e., project ΣΣΣ from IRq up into IRp)

• Estimate an approximation to the distribution of study-level targets N
(
βββ,RΣRRΣRRΣR>

)
• Estimation performed using penalized maximum likelihood (see paper)
• Like PCA, good approximation with small q (e.g., q ≈ 6 rather than p ≈ 25)
• Use domain knowledge to choose q, or let smvmeta choose it automatically
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Why and when you should trust smvmeta
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Simulation-based validation

• Some studies may not report estimates for all variates
• An estimate for a particular variate may be missing from a study:

completely at random (MCAR)
because of its value or “significance” (MNAR)

• We may have — or lack — domain knowledge for choosing q
• Simulated a large number of systematic reviews with known groundtruth to

estimate empirical coverage of smvmeta’s 95% CIs
compare smvmeta’s bias and precision to random-effects meta-regression

under 3 scenarios:

Scenario Missingness mechanism Is p known?
1 MCAR No
2 MCAR Yes
3 MNAR No
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Summary of validation experiment results

• Results for the 3 scenarios are very similar
• Empirical coverage of 95% CIs is 94.4% (95% CI 94.1% to 94.7%)
• Bias is 1.03 (95% CI 1.02 to 1.04) times larger for smvmeta compared to

meta-regression (but negligible in absolute terms)
• smvmeta’s estimates are more precise than for meta-regression

(e.g., 95% CIs are about 90% as wide)

• smvmeta tends to perform better as p increases:
confidence intervals tend to get shorter compared to meta-regression
bias can be very high if p is small (p ≈ 10)
not surprising, given smvmeta is based on random projection

• The method appears to be robust to the MNAR scenario
• Recommend smvmeta for sparse problems with p ≥ 15 variates
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Summary
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Summary

• Introduced multivariate meta-analysis and the problem of sparsity
• Explained how to use smvmeta for multivariate random-effects meta-analysis
• Outlined how the method works (see the paper for more details)
• Summarized the results of simulation-based validation experiments

Thanks for listening
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The smvmeta model

yyy ∼ N
(

XXX βββ , ΛΛΛ + XXX RRR ΣΣΣ RRR > XXX >
)

n-vector of effect size estimates (known)

n × p design matrix indicating the variates (known)

p-vector of mean effect sizes (unknown)

n × n diagonal matrix of sampling
variances for the effect sizes (known)

IRp ↔ IRq

(constructed)

q × q covariance matrix (unknown)

• XXX could include covariates for meta-regression (not yet implemented)
• βββ and ΣΣΣ are estimated using penalized maximum likelihood

(inverse-Wishart penalty applied to ΣΣΣ to prevent trivial solutions; see paper)
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Assessing superiority

• Natural research questions include “Which risk factor is most important?” and
“Which treatment is best?” (superiority)
• smvmeta assesses superiority using P-scores (Rücker and Schwarzer, 2015)

measures the mean extent of certainty that a given effect size is superior to all others
P-scores are distinct from p-values

• Some preferable properties over posterior probabilities of superiority
(e.g., pbest( ) option of mvmeta; see paper)

particularly useful for meta-analyses of correlations
can be computed almost instantaneously (no MCMC needed)

• smvmeta provides an option to specify what superiority means in your
meta-analysis
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