Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata modul powersim

Example 1

Example 2

Outlook

Simulation-based power analysis for linear and generalized linear models

Joerg Luedicke

Yale University & University of Florida

Stata Conference, New Orleans, LA - July 18-19, 2013

Outline

Simulation-based power analysis

- Joerg Luedicke
- Introduction
- The simulationbased approach
- Stata module powersim
- Example 1
- Example 2
- Outlook

1 Introduction

- 2 The simulation-based approach
- 3 Stata module powersim
- 4 Example 1
- 5 Example 2
- 6 Outlook

Significance testing and statistical power

Simulation-based power analysis

Introduction

- The simulationbased approach
- Stata modul powersim
- Example 1
- Example 2
- Outlook

- Point null hypothesis significance testing
- Type I & Type II error
 - Type I: Reject H_0 when it is true
 - Type II: Failure to reject H_0 when it is false
 - Type I & Type II trade-off
- Statistical power
 - $\beta \Rightarrow$ probability of not rejecting H_0 when it is false
 - Power $\Rightarrow 1 \beta$
 - i.e., the probability of rejecting H_0 , given it is indeed false
- Importance of power analysis
 - Study planning
 - Reasonable resource allocation
 - Saving time and money

Analytical vs. simulation-based approaches

Simulation-based power analysis

Introduction

- The simulationbased approach
- Stata modul powersim
- Example 1
- Example 2
- Outlook

Analytical approach

- A number of formulas have been derived for some standard situations (e.g., difference in means between two groups).
- Usually, these formulas are fairly restrictive with respect to the underlying assumptions,
- and are not very flexible with regard to a user's potential needs.
- Simulation-based method
 - A simulation-based approach is most flexible,
 - since it allows to perform power analyses for complex and/or highly specific scenarios.
 - Downside: computation time

The simulation procedure

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata modul powersim

Example 1

Example 2

Outlook

Simulation procedure

- 1. Generate synthetic data, based on an assumed model, model parameters, and covariate distributions
- 2. Fit a model to the synthetic data
- 3. Do the significance test of interest and record the p-value
- 4. Repeat 1.-3. many times
- 5. The statistical power is the proportion of p-values that are lower than a specified α-level

The powersim command

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

- Flexible power analysis for linear and generalized linear models
- Automated simulations, based on user input via command options
- powersim creates a do-file that is used for generating predictor data
- The do-file can be modified for more complex synthetic datasets and/or user defined link functions
- The analysis model can be specified using Stata's regress or glm commands
- A summary of results is shown in the results pane
- Simulation results from each replication are stored in a dataset
- Power curves can be plotted using **powersimplot**

Specification of a data generating model

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

- Users can choose a distributional family,
- a link function,
- covariates with specified distributions,
- effect sizes for the respective regression parameters,
- correlated predictor variables (for Gaussian variables),

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

interaction effects

Available distributional families

Simulation-based power analysis Family Gaussian Inverse Gaussian Gamma Stata module powersim Poisson Binomial Negative binomial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Available link functions

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

Link function

- identity
- log
- logit
- probit
- complementary log-log
- odds power
- power
- negative binomial
- log-log
- log-complement

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Available covariate distributions

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

Covariate distribution

- normal
- Poisson
- uniform
- binomial
- χ²
- Student's t
- beta
- gamma
- negative binomial
- equally sized groups

・ ロ ト ・ 白戸 ト ・ ヨ ト ・ 日 ト

.....

2x2 block design

Example 1: Simple comparison of means in a linear model

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

- Suppose we would like to compare two independent means and calculate power for varying mean differences, measured in standard deviation units, and a varying number of sample sizes.
- In Stata, we can calculate the statistical power for the different effect and sample size combinations with the power command:

Stata's power command:

power twomeans 0 (0.4 0.5 0.6), n(10(10)100) ///
graph(ylabel(0(.1)1) title("") subtitle("") ///
xval recast(line))

Example 1: mean differences (with Stata's **power** command)

Simulation-based power analysis 1. .9 .8 .7 Power (1-β) .6 .5 .4 .3 · .2 .1 Example 1 0 20 30 50 70 10 40 60 Total sample size (N) Experimental-group mean (µ2) .5 .6

Parameters: $\alpha = .05$, $\mu_1 = 0$, $\sigma = 1$

90

100

80

Example 1: Simple comparison of means in a linear model

Simulation-based power analysis

Now we can replicate these results using simulations (assuming a linear model with Gaussian error and two equally sized (fixed) groups):

powe

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

powersim code:

powersim , /// b(0.4 0.5 0.6) /// alpha(0.05) /// pos(1) /// sample(10(10)100) /// nreps(10000) /// family(gaussian 1) /// link(identity) /// cov1(x1 _bp block 2) /// dofile(ex1_dofile, replace) : reg y x1

Example 1: mean differences (**powersim** command)

Joerg Luedicke

Introduction

The simulationbased approach

Stata modul powersim

 $\mathsf{Example}\ 1$

Example 2

Outlook

alpha = .05; N of replications per sample and effect size: 10000

Example 2: Poisson regression with an interaction effect and correlated predictors

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata modul powersim

Example 1

Example 2

Outlook

- Now suppose that we would like to simulate the power for the test of an interaction effect of two correlated predictor variables in a Poisson model.
- The assumed model can be expressed as: y~Poisson(exp(0.5 - 0.25 * x1 + 0.4 * x2 + _bp * x1 * x2)),
- where _bp is a placeholder for the various effect sizes for which we simulate the power,
- and x1,x2 ~ $N(\mu, \Sigma)$ with zero means, unit variances, and ho = 0.5
- Now, before we fire up the simulations we create a single synthetic dataset (using **powersim**'s gendata() option) in order to check whether the assumed model is consistent with our hypotheses:

Example 2: Poisson regression with an interaction effect and correlated predictors

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

powersim command:

```
powersim , b(0.1) alpha(0.05) pos(3) ///
sample(300) nreps(500) ///
family(poisson) link(log) ///
cov1(x1 -0.25 normal 0 1) ///
cov2(x2 0.4 normal 0 1) ///
inter1(_bp x1*x2) ///
cons(0.5) ///
corr12(0.5) ///
inside ///
gendata /// // <-- creating a single realization
dofile(ex2_dofile, replace) : ///
glm y c.x1##c.x2, family(poisson) link(log)
```

Example 2: Poisson regression with an interaction effect and correlated predictors

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata modul powersim

Example 1

Example 2

Outlook

Now we could fit the analysis model to the fabricated data:

. glm y c.x1##c.x2, family(poisson) link(log) nolog

Generalized linear models	No. of obs	=	10000
Optimization : ML	Residual df	=	9996
	Scale parameter	=	1
Deviance = 11461.6822	(1/df) Deviance	=	1.146627
Pearson = 10017.90901	(1/df) Pearson	=	1.002192
Variance function: V(u) = u	[Poisson]		
Link function : $g(u) = ln(u)$	[Log]		
	AIC	=	3.25342
Log likelihood = -16263.10185	BIC	=	-80604.88

У	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
x1 x2	2475788 .3971381	.0087262 .0085716	-28.37 46.33	0.000	2646817 .380338	2304758 .4139383
c.x1#c.x2	.0994309	.0056088	17.73	0.000	.0884378	.110424
_cons	.5009491	.008613	58.16	0.000	.484068	.5178303

Example 2: Running the simulations

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

Now we run the simulations by removing the gendata() option. We also add a few more sample sizes and add an additional effect size:

powersim command:

```
powersim , ///
b(0.07 0.1) alpha(0.05) pos(3) ///
sample(200(50)400) nreps(1000) ///
family(poisson) link(log) ///
cov1(x1 -0.25 normal 0 1) ///
cov2(x2 0.4 normal 0 1) ///
inter1(_bp x1*x2) ///
cons(0.5) corr12(0.5) inside ///
dofile(example2_dofile, replace) : ///
glm y c.x1##c.x2, family(poisson) link(log)
```

Example 2: Output

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulation based approach

Stata modul powersim

Example 1

Example 2

Outlook

(output omitted)

Power analysis simulations

Effect sizes b: HO:	.07 .1 b = 0			
Sample sizes:	200 250 300	350 400		
alpha:	.05			
N of simulations:	1000			
do-file used for data	generation:	example2_dofile		
Model command:	-	glm y c.x1##c.x2,	family(poisson)	link(log)

Power by sample and effect sizes:

Sample	Effect	size
size	.07	.1
200	0.363	0.608
250	0.416	0.733
300	0.479	0.792
350	0.537	0.853
400	0.607	0.888

Example 2: Power curves

Now we can simply type: powersimplot Simulation-based power analysis 1 .9 -.8 .7 .6 Power .5 .4 .3 .2 -Example 2 .1 0 200 250 300 350 400 Sample size b = .07b = .1

alpha = .05; N of replications per sample and effect size: 1000

Example 2: Post-simulation - results dataset

des					
	• •	c /.	10.01550		
Contai	ns data	10 000	/St01559.0	0000a	
ODS:		10,000			7 111 2013 14.41
vars. size:	F	10.000			7 JUL 2010 14.41
		10,000			
		storage	display	value	
variab	le name	type	format	label	variable label
nd		double	%10.0g		Iteration ID
b		double	%10.0g		Effect b
se		double	%10.0g		Standard error of b
р		double	%10.0g		p-value
n		double	%10.0g		Sample size
c95		byte	%8.0g		95% coverage (1=covered
power		byte	%8.0g		1 = p < .05
esize		double	%10.0g		Effect size
esize_	id	byte	%8.0g	eid	Effect size ID

Example 2: Post-simulation - inspecting simulation results

Simulation-based power analysis

Joerg Luedicke

Introduction

The simulationbased approach

Stata module powersim

Example 1

Example 2

Outlook

Example: 95% CI coverage

. tabstat c95 if esize_id==2, by(n)
Summary for variables: c95
 by categories of: n (Sample size)

n	mean
200	.95
250	.959
300	.949
350	.945
400	.951
Total	.9508

User-written commands for analyzing simulation results:

- simsum from Ian White (SSC)
- simpplot from Maarten Buis (SSC)

Outlook

Simulation-based power analysis

Joerg Luedicke

Introduction

- The simulation based approach
- Stata modul powersim
- Example 1
- Example 2
- Outlook

- Implementing additional features:
 - More models:
 - (un)ordered categorical
 - zero-inflated count models

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- beta regression
- random effects models
- meglm
- Correlated predictor data:
 - binary-binary
 - binary-normal
- Dialog box (?)

Simulation-based power analysis

Introduction

The simulationbased approach

Stata modul powersim

Example 1

Example 2

Outlook

Thank you!

Contact: joerg.luedicke@ufl.edu

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ