Including auxiliary variables in models with missing data using full-information maximum likelihood estimation Rose Anne Medeiros Department of Sociology Rice University 2013 Stata Conference Introduction Models with observed variables - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on x is either: - et a conditional on observed variables (missing at modom-MAR) - For the MAH assumption to hold, the predictors of missingness must be modeled - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on *x* is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random—MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled 4/25 - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on *x* is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random–MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on x is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random–MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on x is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random–MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on x is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random–MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled 4/25 - The likelihood function is adjusted so that incomplete observations are used in estimation. - Implemented in Stata's sem command with the method (mlmv) option. - Assumes that missingness on x is either: - Unrelated to other observed variables and unrelated to the unobserved values of x (missing completely at random–MCAR) - Related to other observed variables, but unrelated to the unobserved value of x conditional on observed variables (missing at random–MAR) - For the MAR assumption to hold, the predictors of missingness must be modeled #### Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001) - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001) - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). - Variables that are: - Correlated with missingness on x, and/or - Correlated with the observed values of x - While not part of the substantive model they can improve the performance of FIML by: - Making the MAR assumption more reasonable - Acting as proxies for x if MAR is violated - Increase efficiency by reducing uncertainty due to missingness - See Collins, Schafer, and Kam (2001). #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed - Underlying constructs that are approximated by observed variablesError terms #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed - Underlying constructs that are approximated by observed variables - Error terms #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed - Underlying constructs that are approximated by observed variables - Error terms #### Endogenous vs. exogenous - Exogenous variables are variables not predicted by any other variables in the model (a.k.a. predictor variables) - Endogenous variables are those that are predicted by other variables in the model (a.k.a. outcome variables) - Observed variables are variables that have been measured, e.g. age, sex - Latent variables are variables that are not observed - Underlying constructs that are approximated by observed variables - Error terms - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. - Use auxiliary variables as extra predictors in the model - Include auxiliary variables as extra dependent variables (DVs) - Preferred for models with observed variables - Saturated correlates approach (SCA) - Preferred for models with latent variables Note: Both the saturated correlates approach and extra DV models can be applied to models with all observed or latent variables. Introduction Models with observed variables #### A simple model Using complete case analysis $$sem (y <- x1 x2)$$ Using FIML (without auxiliary variables): $$sem (y <- x1 x2), method(mlmv)$$ ### A simple model #### Using complete case analysis: regress y x1 x2 $$sem (y <- x1 x2)$$ Using FIML (without auxilary variables): $$sem (y <- x1 x2), method(mlmv)$$ ### A simple model #### Using complete case analysis: regress y x1 x2 sem (y <- x1 x2) Using FIML (without auxilary variables): sem (y <- x1 x2), method(mlmv) ### A simple model #### Using complete case analysis: regress y x1 x2 sem (y <- x1 x2) #### Using FIML (without auxiliary variables): sem (y <- x1 x2), method(mlmv) #### The extra DV model with observed variables - Auxiliary variables are predicted by all predictor variables. - Residual terms for model dependent variables and the auxiliary variables are correlated. # Syntax for the extra DV model ``` sem (y a1 a2 <- x1 x2), /// cov(e.y*e.a1 e.y*e.a2) /// auxiliary with DV cov(e.a1*e.a2) /// auxiliary with auxiliary method(mlmv)</pre> ``` The same model in a more compact form: ``` sem (y a1 a2 <- x1 x2), cov(e.y*e.a1-a2 e.a1*e.a2) meth(mlmv) ``` # Syntax for the extra DV model ``` sem (y a1 a2 <- x1 x2), /// cov(e.y*e.a1 e.y*e.a2) /// auxiliary with DV cov(e.a1*e.a2) /// auxiliary with auxiliary method(mlmv)</pre> ``` #### The same model in a more compact form: ``` sem (y al a2 <- x1 x2), cov(e.y*e.al-a2 e.al*e.a2) meth(mlmv) ``` ### Outline Introduction Models with observed variables Models with latent variables # A simple SEM model ``` sem (x1 x2 x3 <- X) /// (y1 y2 y3 <- Y) /// (Y <-X) ``` ### A simple SEM model ``` sem (x1 x2 x3 <- X) /// (y1 y2 y3 <- Y) /// (Y <-X) ``` #### Auxiliary variables are correlated with: - All other auxiliary variables - Any completely exogenous observed variables - Residual for all endogenous observed variables #### Auxiliary variables are correlated with: - All other auxiliary variables - Any completely exogenous observed variables - Residual for all endogenous observed variables #### Auxiliary variables are correlated with: - All other auxiliary variables - Any completely exogenous observed variables - Residual for all endogenous observed variables # Specifying a model using the SCA ``` sem (x1 x2 x3 <- X) /// (y1 y2 y3 <- Y) /// (Y <-X) /// (a1 a2 <- _cons), /// cov(e.x1-x3*e.a1-a2) /// X observed with auxilary cov(e.y1-y3*e.a1-a2) /// Y observed with auxilary cov(e.a1*e.a2) /// auxilary with auxilary method(mlmw)</pre> ``` - Without auxiliary variables, we can use estat gof, stats(indices) to obtain the Comparative fit index (CFI) and Tucker-Lewis index (TLI) after running an over-identified sem model - These and other incremental fit indices compare the fitted model to a baseline (or null) model - With auxiliary variables, the default baseline model does not produce the desired comparison - We can specify the desired baseline model and calculate these fit indices by hand - Graham and Coffman (2012) point out issues in the calculation of RMSEA in models with auxiliary variables and suggest using a utility rho.exe which can be requested from Graham. - Without auxiliary variables, we can use estat gof, stats(indices) to obtain the Comparative fit index (CFI) and Tucker-Lewis index (TLI) after running an over-identified sem model - These and other incremental fit indices compare the fitted model to a baseline (or null) model - With auxiliary variables, the default baseline model does not produce the desired comparison - We can specify the desired baseline model and calculate these fit indices by hand - Graham and Coffman (2012) point out issues in the calculation of RMSEA in models with auxiliary variables and suggest using a utility rho.exe which can be requested from Graham. - Without auxiliary variables, we can use estat gof, stats(indices) to obtain the Comparative fit index (CFI) and Tucker-Lewis index (TLI) after running an over-identified sem model - These and other incremental fit indices compare the fitted model to a baseline (or null) model - With auxiliary variables, the default baseline model does not produce the desired comparison - We can specify the desired baseline model and calculate these fit indices by hand - Graham and Coffman (2012) point out issues in the calculation of RMSEA in models with auxiliary variables and suggest using a utility rho.exe which can be requested from Graham. - Without auxiliary variables, we can use estat gof, stats(indices) to obtain the Comparative fit index (CFI) and Tucker-Lewis index (TLI) after running an over-identified sem model - These and other incremental fit indices compare the fitted model to a baseline (or null) model - With auxiliary variables, the default baseline model does not produce the desired comparison - We can specify the desired baseline model and calculate these fit indices by hand - Graham and Coffman (2012) point out issues in the calculation of RMSEA in models with auxiliary variables and suggest using a utility rho.exe which can be requested from Graham. - Without auxiliary variables, we can use estat gof, stats(indices) to obtain the Comparative fit index (CFI) and Tucker-Lewis index (TLI) after running an over-identified sem model - These and other incremental fit indices compare the fitted model to a baseline (or null) model - With auxiliary variables, the default baseline model does not produce the desired comparison - We can specify the desired baseline model and calculate these fit indices by hand - Graham and Coffman (2012) point out issues in the calculation of RMSEA in models with auxiliary variables and suggest using a utility rho.exe which can be requested from Graham. # Without auxiliary variables #### Fitted model #### Baseline model We want to make this same comparison when estimating models using the SCA. # Baseline model with auxiliary variables #### The default (incorrect) baseline model a2 #### The correct baseline model with SCA ### Correct baseline model with SCA ``` sem (x1 x2 x3 y1 y2 y3 a1 a2 <- _cons), /// cov(e.x1-x3*e.a1-a2) /// X observed with auxiliary cov(e.y1-y3*e.a1-a2) /// Y observed with auxiliary cov(e.a1*e.a2) /// auxiliary with auxiliary method(mlmv)</pre> ``` ### Correct baseline model with SCA ``` sem (x1 x2 x3 y1 y2 y3 a1 a2 <- _cons), /// cov(e.x1-x3*e.a1-a2) /// X observed with auxiliary cov(e.y1-y3*e.a1-a2) /// Y observed with auxiliary cov(e.a1*e.a2) /// auxiliary with auxiliary method(mlmv)</pre> ``` ### χ^2 and df for the baseline and fitted models #### Output from the correct baseline model with SCA: ``` LR test of model vs. saturated: chi2(15) = 1210.92, Prob > chi2 = 0.0000 ``` $$\chi_b^2 = 1210.92$$ and $df_b = 15$ Output from the full (fitted) model including auxiliary variables using SCA: LR test of model vs. saturated: $$chi2(8) = 4.19$$, $Prob > chi2 = 0.8397$ $$\chi_m^2 = 4.19$$ and $df_b = 8$ ### χ^2 and df for the baseline and fitted models #### Output from the correct baseline model with SCA: ``` LR test of model vs. saturated: chi2(15) = 1210.92, Prob > chi2 = 0.0000 ``` $$\chi_b^2 = 1210.92$$ and df_b = 15 #### Output from the full (fitted) model including auxiliary variables using SCA: LR test of model vs. saturated: $$chi2(8) = 4.19$$, $Prob > chi2 = 0.8397$ $$\chi_m^2 = 4.19$$ and $\mathrm{df}_b = 8$ #### Formulae for fit indices $$\text{CFI} = 1 - \frac{\chi_m^2 - \text{df}_m}{\max\{(\chi_b^2 - \text{df}_b), (\chi_m^2 - \text{df}_m)\}}$$ $$\mathsf{TLI} = \frac{(\chi_b^2/\mathsf{df}_b) - (\chi_m^2/\mathsf{df}_m)}{\chi_b^2/\mathsf{df}_b - 1}$$ Source: [SEM] Methods and formulas for sem - Theory - t-tests, correlations, etc. - Planning - Auxiliary variables may have missing values - Theory - t-tests, correlations, etc. - Planning - Auxiliary variables may have missing values - Theory - t-tests, correlations, etc. - Planning - Auxiliary variables may have missing values - Theory - *t*-tests, correlations, etc. - Planning - Auxiliary variables may have missing values #### Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model Use of saturated correlates model may increase convergence problems May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices - Using auxiliary variables has a larger impact when: - Auxiliary variables are highly correlated with both missingness and variables of interest - · High proportion of missing values - Limitations of auxiliary variables generally - Auxiliary variables with high levels of missingness are less helpful - Violation of normality assumption is more problematic with missing data - Limitations of the saturated correlates model - Use of saturated correlates model may increase convergence problems - May result in non-positive definite variance-covariance matrices #### Works cited Collins, Linda M, Joseph L Schafer, and Chi-Ming Kam. 2001. "A comparison of inclusive and restrictive strategies in modern missing data procedures." Psychological Methods 6(4):330. Enders, Craig K. 2001. "The impact of non-normality on full-information maximum-likelihood estimation for structural equation models with missing data" *Psychological Methods* 6(4):352-70. Graham, John W., and Donna L. Coffman. 2012. "Structural Equation Modeling with Missing Data." Pp. 277-94 in *Handbook of Structural Equation Modeling*, edited by Rick H. Hoyle. New York, NY: The Guilford Press. Little, R. J. A., & D. B. Rubin. 2002. Statistical analysis with missing data. Hoboken, N.J: Wiley. Rubin, Donald B. 1976. "Inference and missing data." *Biometrika* 63(3):581-92.