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tion, obtaining the C&S-R analysis as a special case with truncated
quadratic utility. We restate the discount factor restrictions in terms
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1 Introduction

Asset pricing in incomplete markets is an intriguing problem because of the
price ambiguity it has to deal with. Traditionally this ambiguity is either
removed completely by assuming a representative agent equilibrium or it is
acknowledged in its fullest by looking at no-arbitrage bounds. Arguably the
former assumption is too strong and the latter assumption is too weak. Good-
deal pricing introduces moderately strong equilibrium restrictions somewhere
between the two extremes, postulating the absence of attractive investment
opportunities — good deals — in equilibrium. Under the influence of CAPM
and APT attractive investments became associated with high Sharpe Ratios,
both in theoretical and empirical work (Ross 1976, Shanken 1992, Cochrane
and Sad-Requejo 2000), but Cerny and Hodges (2001) show that one can im-
pose the good-deal restrictions with considerable generality. The generic term
‘good deals’ was introduced by Cochrane and Sad-Requejo (2000) (henceforth
C&S-R) who were the first to successfully apply the good-deal restrictions
to option pricing. The idea of C&S-R was to restrict the availability of high
Sharpe Ratios at every point in time. Using the dual discount factor restric-
tions and backward recursion they calculated option price bounds that are
based on very believable equilibrium restrictions, yet are much narrower than
the corresponding super-replication bounds.

While the idea of no-good-deal restrictions as a strengthening of the
no-arbitrage principle is attractive, the association of good deals with high
Sharpe Ratios has its pitfalls. One limitation is related to the interpretation
of equilibrium restrictions — Sharpe Ratio does not preserve the stochastic
dominance ordering and as a consequence high Sharpe Ratios do not include
all arbitrage opportunities. To make the equilibrium restrictions meaningful
one must eliminate not just high Sharpe Ratios but also arbitrage opportu-
nities and all the convex combinations between the two types of investments.
This leaves one with a problem of determining how much of a given excess

returns is pure Sharpe Ratio and how much of it belongs to an arbitrage.



Consequently one may not be quite sure whether that particular distribution
of excess return is acceptable in equilibrium. The second limitation relates to
the tightness of no-good-deal bounds. The objective of no-good-deal pricing
is to formulate equilibrium restrictions which are more stringent than the no-
arbitrage requirement. Unfortunately, in some models Sharpe Ratio bounds
are only as tight as the no-arbitrage bounds. Cerny and Hodges (2001) show
that this problem is common to all reward-for-risk measures derived from
bounded utility functions.

In this paper we show how one can address both limitations of the Sharpe
Ratio analysis. Every increasing utility function defines a consistent rank-
ing of investment opportunities if one measures good deals by, for example,
the certainty equivalent of the risky investment. The first contribution of
our paper is in demonstrating that the C&S-R analysis is a special case cor-
responding to the truncated quadratic utility. Maximization of truncated
quadratic utility gives us a measure of risk which is identical to Sharpe Ratio
for excess returns with small dispersion and which, for a general distribution,
determines how much of the excess return should be attributed to pure arbi-
trage and how much to pure Sharpe Ratio. For any excess return distribution
the pure Sharpe Ratio is an upward correction of the standard Sharpe Ratio
capturing the true investment potential. This correction can be significant,
with standard Sharpe Ratio of 2 and with lognormally distributed returns
calibrated to annual data the correction is more than 100%, see Table 1.

To overcome the second limitation of Sharpe Ratios one faces two chal-
lenges. Firstly, one must be able to derive discount factor restrictions for good
deals defined by unbounded utility functions. Secondly, one must link these
restrictions to a Sharpe-Ratio-like risk measure. The second contribution of
our paper is here; we derive the good-deal discount factor restrictions for a
general utility function, and for standard utility functions (CARA, CRRA)
we relate these restrictions to the absence of Generalised Sharpe Ratios. Our

general result permits to prove an interesting property of C&S-R good-deal



bounds: for Ito price processes the good-deal bounds are invariant to the
choice of the reward-for-risk measure (utility function). The representative
agent equilibrium in this case always corresponds to pricing with the minimal

martingale measure, closely related to the numeraire portfolio.

1.1 Summary of the results

As an answer to ‘What are the discount factor restrictions implied by stan-

dard utility functions?’ we can offer the following:
1. Truncated quadratic utility

1+ hg(basis) < Em* < 1+ hg (1)

2. Negative exponential (CARA) utility

%h%(basis) < Emlnm < %h% (2)
3. CRRA utility 0 <~ # 1
(1+ B2 (basis)) = < Em' ¥ < (1+ h2) 5 (3)
4. Logarithmic utility v =1
In (1 + hi(basis)) < —2EInm < In (1 + h?) (4)

where m > 0 is the change of measure, hg is the Sharpe Ratio adjusted
for arbitrage, hg, and h., are the generalized Sharpe Ratios generated by
the CARA and CRRA utility, respectively. All variables with attribute
‘basis’ refer to the market containing only basis assets (that is without

focus assets to be priced).

For each of the utility functions the two inequalities are a direct conse-

quence of the Extension Theorem, familiar from no-arbitrage pricing'. The

IFor the derivation of the Extension Theorem for near arbitrage opportunities and for

proofs of general properties of good-deal price bounds see Cerny and Hodges (2001).



left hand side inequalities are known in financial literature, although the au-
thors do not seem to be aware of the common principle (extension theorem)
underlying all of them. These restrictions have been used to diagnose asset
pricing models, and correspond to the above utility functions as follows 1.
Hansen and Jagannathan (1991), Hansen, Heaton, and Luttmer (1995), 2.
Stutzer (1995), 3. Snow (1991), for derivation see also Bernardo and Ledoit
(1999) 4. Bansal and Lehmann (1997). The economic interpretation of the
left hand side inequalities is simple: the best deal in a market containing only
basis assets cannot be better than the best deal in a market including also
the focus asset. The genuine no-good-deal restrictions are the right hand side
inequalities, which quantify by how much can the best deal improve after the
introduction of a focus asset. Here the only representative was the restriction
(1) of Cochrane and Sa&d-Requejo (2000).

Also new is the reinterpretation of the discount factor restrictions in terms
of Generalised Sharpe Ratios. These provide a scale-free measure of risk
which behaves like the standard Sharpe Ratio for excess returns with small
dispersion and has the same time scaling properties. In particular, this means
that in spite of working with utility functions the measurement of good deals
is independent of the initial level of wealth. We derive simple formulae that
permit calculation of Generalized Sharpe Ratio for an arbitrary excess return

X

1
ho(X) = —1 5
%) max E [max(1 — AX, 0)]? ©)
h3(X) = —2In [m)}n Ee_)‘X] (6)
=
B2 (X) = [mngu + AX)M} T (7)
h%(X) _ eQmax,\ Eln(14XX) 1. (8)

To obtain the standard Sharpe Ratio one simply removes the truncation at
zero in (5).
The third main finding of our paper is that the instantaneous restrictions

for Ito price processes coincide for all utility functions. This may not be



obvious if one uses different types of reward-for-risk measures as in equations
(1) - (4), but it transpires easily when viewed through the prisma of certainty
equivalent gains. Denoting v the market price of risk vector, the no-good-deal

restriction becomes
1
SH? < Aa,

where a is the maximum excess certainty equivalent gain per unit of time and
A is the coefficient of absolute risk aversion. Moreover, for small certainty

equivalent gains and small Sharpe Ratios it is easy to show the equivalence

h2
Aa = —
T3

whereby one immediately obtains the C&S-R restriction ||v||* < k2.

A direct consequence of the previous observation is that the no-good-
deal price bounds for Ito price processes lie between the no-arbitrage super-
replication bounds, see El Karoui and Quenez (1995), and a unique price
determined by the minimal martingale measure. The minimal martingale
measure has been studied previously in the finance literature in the context
of mean-variance hedging in an incomplete market, see Schweizer (1991),
and it has also been applied to option pricing, see Hofmann, Platen, and
Schweizer (1992). Cerny (1999) shows that for Ito price processes the minimal

martingale measure corresponds to the numeraire portfolio of Long (1990).

1.2 Literature

The systematic exploration of the theory and applications of good-deal pric-
ing does not have a very long history. Likely reason is that the specification of
a good-deal equilibrium requires preference-based assumptions to rank the
good deals, and therefore any such technique is considered inferior to the
preference-free arbitrage pricing. However, in the recent years we came to
appreciate that the market is inherently incomplete, due to both non-traded

sources of risk and transaction costs. With this fact in mind the good-deal



restrictions appear more natural, not only because they will provide tighter
price bounds but also because the width of the price bounds can be seen as
an important characteristic of the market equilibrium.

The good-deal pricing technique of Cochrane and Sad-Requejo (C&S-R)
dates back to 1996 when it appeared as a working paper. C&S-R limit the
maximum available Sharpe Ratio in every period, something we refer to as
instantaneous good-deal restrictions, and based on this assumption they find
option price bounds among others in a model with stochastic volatility, see
also Cochrane and Sad-Requejo (1999).

Hodges (1998) argues that Sharpe Ratio pricing is implicitly supported
by a truncated quadratic utility and he suggests to base the calculation of
option price bounds on an alternative reward-for-risk measure, a generalized
Sharpe Ratio generated by the negative Exponential utility (E-SR). Instead
of instantaneous restrictions, he imposes one bound on the maximum E-SR
for an investment running over the whole time horizon. Since the asset price
bounds can be obtained by solving a dynamic hedging problem, with this
type of equilibrium restrictions one does not require the dual discount factor
restrictions.

Cerny and Hodges (2001) discuss the theoretical properties of good-deal
price bounds. The main tool of their analysis is the extension theorem al-
ready known from arbitrage pricing. They show that by considering certainty
equivalent gains from an increasing utility function one can in fact build a
general no-good-deal pricing theory of which representative agent equilibrium
and no-arbitrage pricing are the two limiting cases. The analyses of C&S-R
and Hodges appear as special cases. Cerny and Hodges prove that in finite
state models only price bounds generated by unbounded utility functions are
always tighter than the no-arbitrage bounds.

Bernardo and Ledoit (2000) propose to base the definition of good deals
on the gain-loss ratio. This reward-for-risk measure cannot be represented by

certainty equivalent gain, for the following reason. In the language of utility



functions, the gain-loss ratio is based on the Domar-Musgrave utility. With
a piecewise linear utility in a frictionless market the certainty equivalent gain
from a risky investment is either zero or plus infinity, hence the good deals
are ranked by changing the shape of the utility function. This approach has
theoretical advantages compared to using bounded utility functions and the

discount factor restrictions are similar in nature to those mentioned above

esssupm
esssupm _

Lbasis > N >
essinf m

where L denotes the maximum gain-loss ratio in the market. Alas, the gain-
loss does not work well in Ito process environment with continuous trading
where typically Ly, = +00, as in, for example, the standard Black-Scholes
model. The application of gain-loss ratio calls for alternative models of asset

returns.

1.3 Organization of the paper

The second section sets up a discrete time intertemporal model of asset prices,
briefly explains how the one-period problem arises within the multiperiod
framework, and derives the one-period good-deal discount factor restrictions
for several frequently used utility functions. The third section discusses the
links between the certainty equivalent gains, (generalized) Sharpe Ratios,
and the corresponding discount factor restrictions. As a practical example
in section four we find option price bounds in a trinomial tree using the
logarithmic utility, demonstrating that good-deal price bounds generated by
mild equilibrium restrictions are significantly tighter than the no-arbitrage
bounds.

Section five translates the discrete time results into the Ito process frame-
work and derives the instantaneous restrictions on the market price of risk.
Section six shows how the instantaneous good-deal restrictions imply restric-
tions on investment opportunities in the long run. Section seven explores the
limiting cases of the instantaneous good-deal price bounds, and section eight

concludes.



2 No-good-deal restrictions in discrete time

2.1 The relationship between one-period and multi-

period model

The following is a standard setup from mathematical finance literature. Let
us have a filtered probability space (Q,F, P, {F;}]_,) with E; denoting the
expectation conditional on the information at time ¢. There are n risky se-
curities with R™-valued processes p and ¢ denoting their price and dividends
respectively in money terms. Suppose that there is short-term riskless bor-
rowing at a bounded rate r;, that is an agent can borrow one unit of the
numeraire in period ¢ at the known rate r; and repay (1 4 7;) units of the
numeraire in the next period. It is convenient to define a cumulative return
on one unit of the numeraire invested into the bank account at the beginning

and thereafter rolled over until time ¢

Ry =1
t—1

R = [[(t+r),
i=0

Let 6 be an R"-valued portfolio process for ‘risky securities’ and let ¥} be
a scalar process describing the amount of money invested in the bond. If an
agent uses self-financing strategies his wealth w; = 0;p; +1; evolves over time

as follows
we=(14+r w1 +60a[pe+6— (1 +7r1)pea] . 9)

No arbitrage means that there is a strictly positive F;-measurable variable?

>The variable mys—1 can be visualised as the ratio between one-step risk-neutral prob-
abilities and one-step objective probabilities at every node of a multinomial tree at time
t — 1. The ratio T—_ﬁ% is known under a score of names: Intertemporal Marginal Rate of
Substitution, stochastic discount factor, pricing kernel, or state price density.

Since there are finitely many securities the marketed subspace is finite dimensional and
then by Theorem 6 in Clark (1993) a strictly positive valuation operator exists which is

nothing else than the conditional change of measure ;.



myj;—1 with Ey_1my;—1 = 1 such that
Eiamye—i[pe + 60 — (L +70-1)pea] =0,

that is with artificial probabilities defined by my;_; the discounted wealth

process is a martingale between ¢ — 1 and ¢
Eimimyp—iwe = (1 + 1wy .
Now if we define unconditional change of measure my as
mp = Mo X Maj1 X ... X M|T-1

then from the law of iterated expectations Egms = 1 and we can define a

new probability measure ()

aQ _

dP—mT.

It is useful to note that the density process my
my = Eymp = Mo X Maj1 X ... X Myjp—1

is related to the conditional change of measure as follows

my

(10)

mit—1 =
mi—1

It follows from the construction of () that the discounted gain process

t
Dt 0
Gi="r+) =
t Rt+i:1Ri

and the discounted wealth process

Wy

t
Wo
> = 5 NG
7 R0+Ze G

i=1
are (Q-martingales.

2.2  One-period utility based no-good-deal restrictions

It is natural to measure the attractiveness of a self-financing investment by

the certainty equivalent of the resulting wealth w; relative to the wealth of a



riskless investment into the bank account, that is (147, 1)w; 1. Namely we
can say that there is no good deal of size a from period ¢ —1 to period t if the
certainty equivalent of the risky investments exceeds the riskless investment

by less than a, that is

max E: U[(I+7r 1) (w1 + 60 1R 1AG)] <U[(1+ 71 1)we 1 +al ,

(11)
having substituted for w; from equation (9). The value of parameter a is
considered fixed. Section 3 discusses the link between the certainty equivalent
gain a and Sharpe Ratios. It turns out that a is not a scale-free measure and
therefore it is not particularly suitable for practical applications. However,
parameter a allows us to formulate and solve the pricing problem for any
utility function, therefore formulation (11) is the most convenient at this
point.

In the rest of this section we will proceed in 2 steps. First we will explain
how to find the highest a attainable in a complete market. In the second step
we will show how, with the help of an extension theorem, this information
can be used to find the no-good-deal price of an arbitrary focus asset. The
second step will in a natural way lead to the dual discount factor restrictions.

Suppose there is a complete market with a unique conditional change of
measure my;_1, our aim is to find the maximum certainty equivalent gain
a(my;—1) in this market. Instead of looking for the optimal investment strat-
egy 0;_1 we will use an elegant trick, due to Pliska (1986), of searching for
the optimal distribution of wealth, subject to the budget constraint dictated

by the state prices m;_;

max E: U[(T+7r0)(we g+ 60 1R 1AG)] = max E: 1U(wy),
=t $.6.Be1 myp_qwr=(14re—1)we—1

whereby we obtain

max Et_1U(wt) £ U[(l + Tt—l)wt—l + a(mt‘t,l)]. (12)

wt
st Be1 mypp_qwr=(1+re—1)wi—1



The maximization problem (12) is standard, it can be solved for a finite
state model and this solution carries over to an infinite state space subject to
certain integrability condition which we assume to be satisfied. Since there is
just one linear constraint one solves (12) using unconstrained maximization

over all states with a Lagrange multiplier

max [wi(w)] = Amype—1 (w)w(w)
we

The first order conditions give
U(wi(w)) = Amyp—1(w)
Denoting I(.) the inverse function to the marginal utility U’(.) we obtain
wy = I(Amy—q)

and from the restriction E;_1 m;;—jw; = R;_yw;—1 we can recover the value
of \.

As an example let us apply the above procedure to the negative exponen-
tial utility. The time subscripts and the conditional nature of expectations

are ommited. First we find the inverse of the marginal utility

Uw) = —e

U(w) = Ae™ ™

1
I(x) = 1 In %
Optimal wealth is then
1. A
W = I(Am) = —ZlnTm.

We recover the Lagrange multiplier from the budget constraint and plug this

value back into the expression for optimal wealth

Emw = Ruwy
P AefARwoonmlnm
1
b = Rw0+E%ln%—Zln%.



Finally, we recover the certainty equivalent of the optimal risky investment

U(?j)) — _mefARwofEmlnm

U ' [EU(w)] — Rwy = %Em Inm = a(m).

2.2.1 Discount factor restriction in good-deal pricing

We have just seen how one calculates the maximum attainable a(m) in a
complete market. The crucial link between the complete and incomplete
market is provided by the extension theorem® which asserts that any incom-
plete market without good deals can be embedded in a complete market that
has no good deals. Let us denote the certainty equivalent of the best deal
attainable in the market containing only the basis assets apqsis. TWo obser-
vations follow from the extension theorem. The best deal in the completed
market cannot be worse than the best deal in the original market containing
only basis assets. On the other hand, for any € > 0 there is no good deal
of size apqsis + € in the market containing just basis assets. Consequently,
by extension theorem there must be a completion with a pricing kernel for

which a(m) < apsis + €. By letting e — 0 we obtain
Apasis = inf a(m)

where m must price correctly all basis assets. This argument has been
inspired by ‘fictitious completions’ of Karatzas, Lehoczky, Shreve, and Xu
(1991).

The restrictions of the type apasis < a(m) are well known in financial
economics, where they have been employed to test different asset pricing

models*. We are, however, primarily interested in the pricing implications

3Interestingly, both the idea of Sharpe Ratio restrictions and the use of the extension
theorem can be traced back to Ross, see Ross (1976) pg. 354 and the appendix of Ross

(1978).
4See Stutzer for CARA utility, Bansal and Lehmann for log utility. Snow, and Bernardo

and Ledoit discuss the CRRA utility. In all these cases the discount factor restrictions are

derived ad hoc from the Jensen’s inequality.



of the extension theorem. Suppose that we want to find all prices of a focus
asset that do not provide good deals of size a in the enlarged market. From
the extension theorem all such prices must be supported by pricing kernels
for which a(m) < a. This is the dual no-good-deal discount factor restriction.

For example, the discount factor restrictions for the CARA utility read

Atpasis < Ei_ymy—1Inmy < Aa (13)

Et—lmt|t—1 AG; =0

In conclusion, the market including both basis and focus assets does not
provide deals better than a, as measured by CARA utility, if (and only if)
the focus assets are priced with pricing kernels consistent with basis assets

and satisfying the restriction (13).

2.3 State price restrictions

Below we summarize the no-good-deal restrictions on the conditional change
of measure my;—; for standard utility functions. The derivation proceeds as

explained above.

1. Truncated quadratic utility U(w) = —(w — w)? ; w < w and U(w) = 0

;W > W

1 2 1 2
<E,.m? _, < ( )
<1 — A((l -+ rt_l)wt_l)ab,ms> =11 1-— A((l + rt_l)wt_l)a

(14)
2. Negative exponential utility U(w) = —e= 4%
Atpasis < Eq_ymyp—1 Inmy—1 < Aa (15)
3. Power (isoelastic) utility U(w) = “1’1:,: ;Y < lbw>0

-1

2=

i
Abpasis v 1-% a
1+ <Eim,, " <1+
( (1+ Tt—1)wt—1> U ( (1+ Tt_1)wt—1)

(16)



4. Logarithmic utility U(w) = Inw,w > 0

Apasis a
In{1+ < -—-E; 1 Inmy;_1<In{1+ .
< (1+ 7at—l)wt—1> o e < (1+ T’t—l)wt—1)

(17)

A((1 + r;—1)w;—1) stands for the coefficient of absolute risk aversion

evaluated at point (1 + 7, 1)w; 1.

3 Comparing Sharpe Ratio with certainty gains

Having derived the state price restrictions (14)-(17) the task changes into
interpreting the state price bounds as reward for risk measures, preferably
ones that are close in nature to Sharpe Ratio. Note that if one uses a as the
measure of attractiveness then one has to specify the coeffcient of absolute
risk-aversion in restrictions (14)-(17). It turns out that for small Sharpe
Ratios there is an unambiguous link between Sharpe Ratios and certainty
equivalent gains, which we describe next.

Excess return X with a small Sharpe Ratio h gives a maximum certainty

equivalent gain

h2
= h? 18
0= St o) (18)
where A(w) = — [(J]I,I((z)) is the absolute coefficient of risk-aversion and limp2_, D(hh;) =

0. To keep technicalities at minimum we assume that X has bounded support
and that the utility function is sufficiently differentiable. From the Taylor

expansion we obtain
1
EU (wo + AX) = Ulwp) + U'(wo) A\EX + §U”(w0))\2EX2 +o(MEX?)

and after maximization with respect to A we obtain

. U'(w)EX  EX
A= TrwgEx? T %Ex?) (19
max EU(wo+AX) = U(wp) — %% + o (EQ ) (20)



EX

=== is small for all values of

Without loss of generality we can assume that X
X so that the Taylor series approximation can be made arbitrarily precise.

At the same time, for a small certainty equivalent gain we can write
U(wo + a) = U(wo) + U'(wo)a + o(a), (21)

and the comparison of (20) and (21) gives the desired result (18).

In conclusion, one could replace Aa in expressions (14)-(17) with %2
Naturally, this is not the only transformation that satisfies the asymptotic
property (18). For example, for small values of h? we have

2

h* = 1—|}ih2 +o(h?) =¢" -1+ o(h?),

and indeed we might equally well replace Aa with any other function f(h?) as
long as f is continuously differentiable around 0 with f(0) = 0 and f'(0) =1
The rest of this section describes how the ambiguity in choosing the function
f(h?) is resolved for negative exponential, truncated quadratic and CRRA

utility.

3.1 Sharpe Ratio and negative exponential utility

Interestingly, there is a special case where the relationship h? = 2A(w;)a
holds for large certainty equivalent gains. By inverting the no-good-deal
restriction (11) for negative exponential utility with an arbitrary random

excess return X one obtains

——In|— mfux —Ee Y| < a.

A

Hodges (1998) points out that for a normally distributed excess return X we

have
Lo —AX
§h (X)=—-In — max —Ee (22)

where h(X) is a standard Sharpe Ratio, and consequently he uses equation

(22) to define the generalized Sharpe Ratio hg for an arbitrarily distributed



excess return. The maximum E-Sharpe Ratio is hence again related to the

maximum certainty equivalent gain through (18)

1
§h2 = ACL.

and one can write the state price restriction (15) in a more intuitive form

1
B 1mye1 Inmyy < §h2E

3.2 Sharpe Ratio and truncated quadratic utility

The truncated quadratic utility provides another case where we can rela-
tively easily compare non-infinitesimal Sharpe Ratios and certainty equiva-
lent gains. One can easily show that quadratic utility maximization for a
single asset with excess return X is related to the Sharpe Ratio of that asset

h(X) as follows.

1 2 )
<1 —A((1+ rt_l)wt_l)a> =14 hr°(X). (23)

Intuitively, maximization of truncated quadratic utility will give the same

result if the excess return does not reach the points where the quadratic has
negative marginal utility. A simple calculation reveals that an excess return
X with an upper bound z,,x = esssup X and Sharpe Ratio h(X) is related

to the maximum certainty equivalent gain a as stated in (23) provided that

EX

RA(X) < ————
( )<xmax_EX

(24)

when EX > 0. For EX < 0 the value xp. in condition (24) has to be
replaced with z,;, = essinf X. We learn two things from this result. Firstly,
the comparison of (23) and the no-good-deal restriction (14) tells us that the
truncated quadratic utility leads to the same state price restriction as the
Sharpe Ratio analysis whenever the dispersion of the excess return is small,
more precisely whenever condition (24) is satisfied. Secondly, it tells us how
to re-define the Sharpe Ratio for excess returns that do not meet condition

(24) in order to obtain a state price restriction which formally coincides with



(1). Looking at equation (23) the new generalized Sharpe Ratio is defined

by the truncated quadratic utility as follows

9 B 1
ho(X) = max E [max(1 — X, 0)]? - (25)

The maximization (25) can be reformulated more intuitively. When con-
dition (24) is satisfied (25) gives the standard Sharpe Ratio. When (24) is not
satisfied we will actually increase the Sharpe Ratio by throwing away some
money in the states with highest excess return. More specifically, we can
replace the original excess return distribution X with a distribution capped
at value Ty Initially zp,a is set at plus infinity and condition (24) is not
satisfied. By lowering x,,.x we increase the Sharpe Ratio of the capped dis-
tribution and make the difference between the LHS and the RHS of condition
(24) smaller. The Sharpe Ratio reaches its maximum just when the condi-
tion (24) applied to the capped distribution is met. This maximum value is
the Generalised Sharpe Ratio hg. Mathematical justification of the argument
above is given in Appendix A.

Table 1 shows that standard Sharpe Ratio of 2.0 may seriously under-
estimate the true investment potential if the excess returns have high dis-
persion, whereas at the value of 0.5 this difference is negligible. The table
shows arbitrage-adjusted Sharpe Ratios hg against standard Sharpe Ratios
for log-normally distributed returns. Because the returns are unbounded
from above, the standard Sharpe Ratio is not an appropriate measure of
risk. The difference between the GSR and SR is reported in the last column.

The necessary calculations are given in the Appendix A.

3.3 CRRA Generalized Sharpe Ratios

A priori it is not very clear what reward for risk measure to consider for a
general CRRA utility. Recall that the duality between pricing kernels and

certainty equivalent gains in this case reads

i3
1-1 a v
E:_ =11 26
=11y ( + (1+7,t_1)wt_1) ) (26)



R | R o | b | hg | %error 22

h
1.04 | 1.02 | 0.04 | 0.5 | 0.502 0.5%
1.06 | 1.02 | 0.08 | 0.5 | 0.503 0.6%
1.18 | 1.02 | 0.16 | 0.5 | 0.512 2.4%
1.04 1 1.02 | 0.02 | 1.0 | 1.085 8.5%
1.06 | 1.02 | 0.04 | 1.0 | 1.093 9.3%

1.18 { 1.02 | 0.08 | 1.0 | 1.140 14.0%

1.06 | 1.02 | 0.02 | 2.0 | 3.675 83.7%

1.10 | 1.02 | 0.04 | 2.0 | 3.824 91.2%

1.34 1 1.02 | 0.08 | 2.0 | 4.845 142.3%

Table 1: R expected risky return, R risk-free return, o return volatility, h

standard Sharpe Ratio, hq arbitrage-adjusted Sharpe Ratio

it might therefore seem natural to define g = ( as the scale-free

1+""t7a1)wt71
measure called ‘certainty equivalent growth’. This is fine, except that for the
same excess return X one will obtain different values of g(X) for different
v, even asymptotically as g tends to zero. In order to achieve some kind of

uniformity across v it is helpful rewrite (26) using the coefficient of absolute

risk aversion for CRRA utility

a A((1+r)wq)a

(1 + 71wy Y

Y

and the asymptotic relationship Aa = %2 which yields

1-1 hi 71
Et,lm”tjl = <1 + Z) . (27)
By virtue of (18) all the generalised Sharpe Ratios h, have the same asymp-
totic behaviour for small values. It remains to check the consistency of this

definition with the definition of the standard Sharpe Ratio, for which the

duality is



Recall that quadratic utility has v = —1, substituting this value into equation

h2 0\
Etflmt2|t—1 = (1 - Tl> )

and it is clear that h_; # hg even though asymptotically they are the same.

(27) we obtain

Fortunately, there is an easy way out to achieve h_; = hg. It is enough to

realise that asymptotically
(1 + nh—’z’) " = (1 + h—’2’> o + o(h2)
27y N 27y K
for all k. There are many choices of k, for example kK = —2 or Kk = 2, such
that h_y = hg. A good way to pinpoint the ‘right’ value of & is to look at the
time scaling properties of the standard Sharpe Ratio and to compare it with

the time scaling properties of the Generalised Sharpe Ratio h., see section 6.

It turns out that one needs k = 2v. The discount factor restrictions then

become
1— =1 1—
(14 F2ie) 7 < Bramyl, < (1+h2)% (28)
1 1
I (14 hfpesis) < —Erilnmye s < 5 (1+h7). (29)

Comparing (28) with (16) and using the definition of certainty equivalent
gain we obtain the computational definition of CRRA Sharpe Ratio for a
given excess return X
2
14 h2(X) = [mAaxE (1+ AX)H] T

with a special case for log-utility

1+ h%(X) _ eZma.x,\ Eln(1+)\X)'

3.4 Comparing Generalized Sharpe Ratios

It is instructive to compare the restrictions on the risk-neutral probabilities

generated by the two generalized Sharpe Ratios hp and hg . We do this



Negative  Exporential Uility Truncated Quadratic Uility

0,0, 1)
(0,0,1)
0,1,0) 0.1,0)
(1,0,0)
(1,0,0)
\
Sape Rtio Qmbined Hao
0,0,1) 0,0, 1)
(0,1,0) 0,1,0)
(1,0,0) (1,0, 0)

Figure 1: No-good-deal risk-neutral probabilities consistent with the maxi-

mum Sharpe Ratios hp = hg = h = 0.85

graphically® for a model with three states and uniform objective probabil-
ities (%, %, %) The shaded triangle corresponds to no-arbitrage risk-neutral
probabilities. The no-good-deal risk-neutral probabilities lie inside the oval
boundaries. Note that the sets of no-good-deal risk-neutral probabilities im-
plied by the two generalized Sharpe Ratios match very closely, especially for
small and large Sharpe Ratio values. For h > 0.85 the no-good-deal bounds

on the risk-neutral probabilities are not strictly inside the no-arbitrage trian-

5The graphs are produced in Mathematica. The code is available from the author on

request.



gle. This is a consequence of using bounded utility functions, and it means
that even for finite values of h we can obtain no-good deal price bounds which

are as wide as the no-arbitrage super-replication bounds.

h=1.25 h=10 h=0.85

h=0.7 h=0.5 h=0.25

(D O

Figure 2: No-good-deal risk-neutral probabilities consistent with various

maximum levels of Generalised Sharpe Ratios hg, hg .

It is instructive to compare numerical values of Generalised Sharpe Ra-
tios. The table below summarises GSR-s in a trinomial tree with p; =
pa = 0.421, p3 = 0.158 and excess return X; = 32.75%, Xy = —15%, X3 =
—47.32%. The numbers are chosen to give expected excess return of 15% with

volatility 30%. The Sharpe Ratios are evaluated numerically using formulae

(5)-(8).
4 Pricing with Logarithmic Utility: An Ex-

ample

Consider a model with a constant risk-free rate r = 10% p.a. where the
expected rate of return on the stock is 15% p.a. and annual volatility is 20%.

The stock price moves in a recombining trinomial lattice calibrated to the



Risk measure | Value
h 0.500
ho 0.500
hg 0.502
hy 0.531
ho 0.539
hio 0.537

Table 2: The value of the standard Sharpe Ratio, arbitrage-adjusted Sharpe

Ratio and Generalised Sharpe Ratios in a recombining trinomial tree

stated volatility and expected return with upstep v = 1.15. Each time period
represents one month and stock returns are by assumption independent. Our
aim is to price a 5-month at the money European call option with strike price
K = 100. The calibrated objective probabilities of movement in the lattice are
p1 = 0.1188, po = 0.8343, p3 = 0.0469 for the upstep, middle and downstep
respectively.

We assume that the above model is a true representation of stock price
movements rather than an approximation to a diffusion model. Then, in the
absence of other securities, the market is incomplete and the no-arbitrage
price of the option is not unique. More specifically, the risk-neutral proba-

bilities ¢ = (q1, g2, ¢3) have one free parameter, and satisfy

a(a) 0.324 1.435
p@) [ =] 0334 | +a| —3.085
g3() 0.342 1.65

with —0.207 < a < 0.108 parametrizing the range of no-arbitrage pricing
kernels.

The maximum logarithmic Sharpe Ratio in the absence of the option can



be found by minimizing® the central expression in equation (17)

3
min —z:pilnM

« .
—0.207<a<0.108 i=1 DPi

which gives & = —0.165, § = (0.0877,0.8427,0.0696) and — "}, p; In £

p

0.00923. From expression (29) the basis logarithmic Sharpe Ratio is

3 ~
hlbasis = €xp (‘221% In %) —1=0.136
i=1 ¢

monthly, equivalent to 0.473 per annum.

To decide which discount factors are admissible in equilibrium after the
option is introduced, we must decide what level of Sharpe Ratio constitutes
a good deal. One can either target an absolute level of Sharpe Ratio, say 2,
or use a relative measure saying that the introduction of the option should
not allow Sharpe Ratios in excess of ¢ times the basis Sharpe Ratio, that is

only those risk-neutral probabilities are admissible which satisfy
SIIC)
-3 piln qu_ < 1n(1 + (¢ hipasis)?)- (30)
i=1 ‘
We take ¢ = 2 and find numerically
—0.188 < a < —0.133. (31)

The admissible risk-neutral probabilities are a convex combination of vectors

qr, and gy corresponding to the lower and upper bound for « in (31),

0.1330 0.0541
qr. = | 0.7455 qr=1 09149 |. (32)
0.1215 0.0310

With this range of discount factors we can price our option, bearing in mind

that at every node of the lattice we have to keep track of the highest and

6 Alternatively, one can solve the primal portfolio problem
max Eln [BR+ (1 B)R]

where R is the risky return and R/ is the risk-free return.



101.14
101.14
101.14
75.31 74.90
75.31 74.90
75.31 74.90
52.90 52.49 52.09
52.90 52.49 52.09
52.90 52.49 52.09
33.49 33.06 32.66 32.25
33.47 33.06 32.66 32.25
33.46 33.06 32.66 32.25

17.39 16.68 16.00 15.41 15.00
16.91 16.38 15.87 15.41 15.00
16.68 16.25 15.82 15.41 15.00
6.76 5.82 4.76 3.51 1.99 0.00
5.16 4.34 3.45 2.45 131 0.00
3.60 2.96 2.28 1.57 0.81 0.00
1.12 0.66 0.26 0.00 0.00
0.56 0.31 0.11 0.00 0.00
0.24 0.12 0.04 0.00 0.00
0.03 0.00 0.00 0.00
0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
t=0 t=1 t=2 t=3 t=4 t=5

Figure 3: Option price bounds with ¢ = 2.

lowest no-good-deal price CH and CF

o _ max(E{"CH,, Ef"C{L))
£ 1.00407

ol min(Ef*CE |, ElVCE )
£ 1.00407

Cl = CF= (8- K)"

The results are reported in a spreadsheet (figure 3) with the middle price
being the unique price which would result from taking ¢ = 1. This price co-
incides with representative equilibrium price of the option for a representative
agent with logarithmic utility of terminal wealth.

It is interesting to note that at t = 4 the option is a redundant asset in
all states but one. The effect of this state, however, spreads quickly and at

t = 2 the option is not redundant in any state. The option price bounds



for different values of ¢ are summarized in table 3. The value ¢ = 400

corresponds to the no-arbitrage (super-replication) bounds.

basis multiple c=1 c=2 c=4 c = —+00

max monthly SR h=0.136 | h=0.272 | h=0.375 | h = +00

implied max annual SR | A=0498 | h=1.17 | h=4.67 | h=+00

ck 5.16 3.70 2.01 2.01
cl 5.16 6.76 10.87 13.94

Table 3: No-good-deal option price bounds

4.1 Graphical representation of good-deal state prices

The good-deal discount factors corresponding to different values of ¢ are dis-
played in figure 4. The triangle contains all no-arbitrage risk-neutral proba-
bilities for the three states, with the objective probability corresponding to
the point P. The risk-neutral probabilities which give less than 4 times the
basis logarithmic Sharpe Ratio, that is those which satisfy equation (30) with

" o5 and those which only give double of

¢ = 4, are contained in the oval area
the basis Sharpe Ratio rate are within the smaller oval area o;. The segment
A;As contains all the no-arbitrage risk-neutral probabilities which are con-
sistent with the stock returns, and among those probabilities segments By B

and C7C5 represent the good-deal risk-neutral probabilities consistent with

c =4 and ¢ = 2 respectively.

"Note that, unlike in the case of bounded utility functions, the no-good-deal state prices
derived from the log utility are strictly inside the no-arbitrage triangle for all ¢ < +oco.
Consequently, the no-good-deal price bounds are strictly sharper than the no-arbitrage

price bounds for all ¢ < 4o0.



0,0, 1,

; 6/ G g5 010

02

(1,0, 0y

Figure 4: Admissible good-deal risk-neutral probabilities. Points C; and C5

correspond to ¢z, and gy from equation (32).
5 Continuous time Brownian motion setting

In continuous time we have

t
R; = exp </ rtdt) ,
0

the self-financing condition is written as

LT

—Ldt
R, =Yg TR (33)

and the discounted gain process is
t
Dt 63
Gi=—+ [ —ds.
"T R /0 R,
Suppose that the discounted gain process is an Ito process of the form
th = /Ltdt + O'tdBt

where B; is an s-dimensional Brownian motion.

The trick of risk-neutral pricing is to write dG; as

th = O't(tht + dBt)



and then set
d_ét = tht + dBt .

The process v; is known as the market price of risk. It is a known result that
the density process® m; for the unconditional change of measure my under

which B, is a martingale’ is given as

1 t t
m; = exp {—5/ ||vs|[2ds —/ ySdBS] . (34)
0 0

By analogy to equation (10) we have

Mityde

Myydt)e =

1
= exp[—§||yt||2dt] exp[—vidBy]. (35)

that is the conditional change of measure is a lognormal variable.

5.1 Instantaneous no-good-deal restrictions

The propositions below summarize one of the main findings of the paper.

Proposition 1 The market price of risk vy does not admit Sharpe ratio of

more than hy/dt between time t and t + dt if and only if
[|wel? < B2 (36)

Proposition 2 The market price of risk vy does not admit certainty equiv-
alent gain of more than adt for a utility function U from time t until time

t +dt if and only if
1 2
Sllell” < Awe)a (37)

where A(w,) = —% is the coefficient of absolute risk aversion.

8The density process m; and the discount factor A; used in Cochrane and Sad-Requejo

are related through A; = %.

9Note also that the no—good—deal restrictions on the market-price-of-risk process vy

derived in the following sections guarantee that the Novikov condition

T
Eg exp / Hl/tszt
0

is satisfied and hence the density process m; is a martingale as required.

< +00




Proof The proofs are stated in Appendix B. B

Since our analysis was performed for small Sharpe Ratios and small cer-
tainty gains it is natural that the bounds in restrictions (36) and (37) cor-
respond via (18). On the other hand, it is hard to see how one can use the
intuition (18) to correctly derive the restriction (37) directly without referring

to the ideas in Appendix B.

6 Time scaling of maximum attainable Sharpe
Ratio

An interesting question is how the instantaneous no-good-deal restrictions
affect availability of high Sharpe Ratios over a longer time horizon!". Fol-
lowing the discussion in the previous section we will limit our attention to

E-SR and Q-SR restrictions, for which we have respectively

1
e

B mi, , < 1+h

IN

Et—lmt\t—l In myjt—1

Proposition 3 If the marimum E-Sharpe Ratio attainable over a short pe-

riod dt is hg\/dt then the mazimum attainable E-SR over T periods is heVT.

Proof The best attainable deal over time interval [0, 7] is bounded from

above by
EOmT In mmr.

This expression can be written equivalently as

mr mr

In
mr_nt mr_at

Eo [mrInmr_ae + mp_ae

101t is of course plausible that the actual bound on the long run Sharpe Ratios is lower

than the one implied by the instantaneous Sharpe Ratio restrictions.



and using the law of iterated expectations we have

EomT In mr =
= Eo [Er—asme Inmr_ay + mo—piBr—aempm—anmpr_pg] =

1
< Eo |my_asIlnmp_pny + mT—AtEhQEAt =

= §h%At + Eomr_aeInmp_as

By induction then
L.y
EomrInmr < §hET
[

Proposition 4 If the maximum @Q-Sharpe Ratio attainable over a short pe-

riod dt is hQ\/ﬂ the mazimum attainable SR over T periods s exp[hQQT | —1.

Proof The best attainable deal over time interval [0, 7] is determined by

2 _ 2 2 2 2 _
Eom7 = EOmAt|0m2At|At <o Mp_pgr—2AeMT TNt =

= Eom?Z o Eaim? E m2 E m2 <

= Bo'atoHAtTT ont AL - - - BT 24800 At T—2At HT— ATV T— At

< (14 hAA8) % — explhdT]

Figure 5 compares the long time horizon Sharpe Ratio restrictions implied
by the maximum instantaneous Sharpe Ratio equal to 1. The instantaneous
E-Sharpe Ratio provides a sharper bound on the attractiveness of a long
term investment. One has to bear in mind, however, that there may be other

economic forces that limit the long run Sharpe Ratios.



17
15
125

0.75 _—
0.5 Z=
0.25

02 04 06 08 1 12 14

Figure 5: Maximum E-Sharpe Ratio and Q-Sharpe Ratio implied by instan-
taneous restrictions as a function of investment horizon. Instantaneous ratio

limit set equal to 1.
7 Limiting cases of good-deal price bounds

From the identity oy = p, it follows that the market price of risk has a

unique decomposition

v o= n+9
n = o'(oo") p

ny = 0
From here we can see that

111 = [lnl* + [ (38)

and 7 can be naturally called the minimal market price of risk!*. The minimal
market price of risk naturally defines the minimal martingale measure via
(34).

The following proposition asserts that the good-deal price bounds ob-
tained from instantaneous state price restrictions lie between the unique price
determined by the minimal martingale measure and the no-arbitrage super-

replication bounds.

' The minimal market price of risk defines the minimal martingale measure, see

Schweizer (1991).



min

Proposition 5 Consider a contingent claim Cr and let us denote Ciy} and
max respectively its no-arbitrage price bounds, Cuin(h) and Cynz,(h) re-
spectively its no-good-deal price bounds corresponding to mazximum instanta-

neous Sharpe Ratio h, and Cy its price determined by the minimal martingale

measure. Then
Cyn < Cﬁicr:lp(h) < Co < CONGp(h) < OFF

and

lim C™r (k) = lim C%2.(h) = C,
AT wén(h) NI wp(h) = Co
lim CRitp(h) = R
lim CREL(h) = CFF

Proof The relationship between good-deal price bounds and no-arbitrage
price bounds can be read off from Theorem 3.1.1 of El Karoui and Quenez
(1995). As for the relationship with the minimal martingale measure, the
martingale representation theorem under the minimal martingale measure

allows us to write the contingent claim C'r uniquely as

T T
CT - Oo+/ ’lgtht—‘—/ )\tdBt,
0 0

)\tO'Z( = 0.

Using the Ito formula we find the expectation of C7 under an arbitrary

equivalent martingale measure
T
EomTC’T = CO - Eo/ mt)\;‘wtdt,
0
where

dmy = —my(n, +¢,)dBy

moyg = 1.
Consequently the lower no-good-deal price bound is obtained as

T
o (h) = min Co — EO/ my Ayt < Co.
0

[, |17 <hZ—In,|1?



At the same time as h; \ ||n;|| we have ||1,|] — 0 and CR&p(h) — Co.

Analogous argument applies to the upper bound. B

It is interesting to note that the minimal martingale measure has already
been used to price non-redundant claims under stochastic volatility in Hof-

mann, Platen, and Schweizer (1992).

8 Conclusions

The paper provides a generalization of the incomplete market pricing tech-
nique of Cochrane and Saa-Requejo (2000) to good deals defined by an arbi-
trary (increasing) smooth utility function. We have derived the correspond-
ing discount factor restrictions and linked these restrictions to the availability
of Sharpe Ratios and Generalized Sharpe Ratios. We have established gen-

eral properties of good-deal price bounds for Ito price processes.
Appendix A — Arbitrage-adjusted Sharpe Ratio

Suppose the excess return X has a piecewise absolutely continuous cu-

mulative distribution function F. From (25)

1
ho(X) = — 1 for A > 0. (A.1)

max f_%oo(—l + 2\z — A\?22)dF (2)

Let us examine the maximization in the denominator. The integral is well
defined as long as ffoo x2dF(x) is finite, thus a necessary and sufficient con-
dition for its existence is finite variance of X £ —min(X,0). Let us now

calculate the formal derivatives with respect to A

>l=
>~

(%\/ (=142 z — \?2?)dF(z) = 2/ (x — Mz?)dF(z) (A.2)

> :
% / (=14 20z — \2?)dF(z) = —2 / PdF(z).  (A3)

By §7.3 Theorem 11 in Widder (1989) the interchanges of differentiation and

integration are warranted. Equation (A.2) implies that with fj;o xdF(x) >0



(A.1) attains global maximum at A* > 0. When fj;o xdF(z) < 0 truncation
proceeds from the other end, formally we apply the procedure above to —X.

If we realize that % = Tmax the first order condition implies
xmax/ xdF(z) = / 2 dF (z), (A.4)

which can be restated in terms of the capped distribution as follows

e |:/ N iL‘dF($) + iUmax(l - F(iL‘max)>:| - / h iL‘QdF(LL‘) + x?nax(l - F(xmab(»v
TmaxEmin(X, Zmax) = E[min(X, $max)]2 )

The same trick can be used to show that (A.1) is in fact equal to the Sharpe
Ratio of the capped distribution.
Our task now is to evaluate (A.4) for a lognormally distributed return.

Let us write
X =ettoZ _¢r,

where Z is standard normal variable, r is risk-free rate of return, expected
52
risky return is e#*% and the variance of risky return is e2+25" — 2045 We
first recall an auxiliary result
Zmax a+ﬁz - a+£ _
e TPEAP(2) = €T T P(2max — F)
which follows easily by direct integration or by referring to Black-Scholes

formula. We apply this result repeatedly with

In(Zmax +€7) — 1
o

Zmax —

to obtain

/ T Py () = / T (@ ) (2) =

— 00 — 00
0,2
=" T D (2max — ) — €"P(2max)

/ 2 dF (z) = / ("7 — ") 2dd(z) =

— 00 —00

o2
— 2120 g (Zmax — 20) — 26T P (zax — ) + eQT(I)(ZmaX).



The first order condition therefore reads

0_2
Tmax [6”7@ (Zmax) — €"P(2max) | =

0,2
— 2207 (Zmax — 20) — 2" T D (2ayx — 0) + €2 P (2max).
To solve it one has to perform a straightforward numerical search over ax.
Appendix B

Recall that the conditional change of measure for Ito gain process is of

the form
1 2
Marfe = exp|—5||ve[|"dt] exp[~12d By]. (B.1)
It is useful to mention the following elementary result!?,

1
E; exp[—vidB;| = exp[§||1/t||2dt] (B.2)

Further by differentiating both sides with respect to v; we obtain auxiliary

results

1
E.dB; exp[—vidB;] = —vjdt eXp[§||yt||2dt] (B.3)

1
E.dBdB exp[-1vdB;] = [Idt+ vw;(dt)?] exp[§||yt||2dt] (B.4)
From the aforementioned identities it follows for example that
1 2 1 2
Eimysae = exp[—§||yt|| dt] exp[§||yt|| dt] =1+ o(dt), (B.5)
as one would expect from the conditional change of measure, and that
Etmf+dt|t = exp|—||v¢||?dt] exp[2||ve]|?dt] = 1 + ||vi||*dt + o(dt).  (B.6)

Note that the formulae (B.2)-(B.4) are exact since v; is by assumption F;-
measurable.

Proof of Proposition 1 = We can write the restriction (14) as

Etm?_;,_dqt S 1 + tht

121t is in fact formula for the moment generating function of a multivariate standard

normal variable.



and evaluate the left hand side using the expression (B.6) to obtain

L+ ||| [Pdt < 1+ h%dt

[l < A2

In deriving the instantaneous no-good-deal restrictions it is natural to
take the expression for the conditional change of measure (B.1), substitute
it into the good-deal restrictions (14)-(17) and evaluate the resulting expec-
tations using formulae (B.2)-(B.4). Having obtained our results in this way
the first time around, we observed that the good-deal restrictions depend
on the utility function only through the coefficient of absolute risk aversion.
To show this result in full generality the style of the proof has to be change
compared to that of Proposition 1.

Proof of Proposition 2 Define process z; as follows
t+7
2r = Myprp = 1 — / 25V sd B,
t

that is z, represents the conditional change of measure starting at time t.

We know that the optimal wealth satisfies
Wirar = L(Azar)
and that X is found from the condition
Eizatl(Azar) = (1 + redt)wy + o(dt)

Using the Ito’s lemma we find

[ 1
Eizael (Mzar) = I(N) + | A'(N) + 5AQI"(A) ||ve] |dt + o(dt)

and hence

(14 rdt)w, = I(N) + _AI’()\) + %AQI”(A)_ ||ve| [2dt 4 o(dt) (B.7)

Now we use the Ito’s formula again to find E,U (w¢at)

2
%U[I(Az)] = NI'(\2) + X20"(\2)
1

EU(wipar) = U[I(N)] + 3 [NI'(A) + XT"(N)] ||ve| [Pdt + o(dt) (B.8)



The good-deal restriction is
EtU(wt+dt) S U[(l + Ttdt)wt + adt]
Substituting from expression (B.7) and using Taylor expansion we obtain

EU(wirar) < U[I(N)] + U'[I(N)] { {)\I’(A) + %AQI”()\)} l|ve|? + a} dt + o(dt)

Finally, substitution for E;U(w;4:) from equation (B.8) shows that the good-

deal restriction becomes

_%AII(A)HUHQ < a+0(dt). (B.9)

Differentiating both sides of the identity U’'[I(\)] = A we obtain
U'IIIT(N) = 1

U]

_)\I/(A> _m.

Since equation (B.7) implies I(\) = w; + O(dt) we have

AN = +O(dt)

A(wy)

and the good-deal restriction (B.9) is shown to be of the form

1
Sl < Awia,
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