
Fiscal Policy Rules in an Overlapping
Generations Model with Endogenous Labour

Supply

Giovanni Ganelli
University of Warwick and Trinity College Dublin

January 28, 2002

Abstract

A ¯scal policy rule in which taxation is a function of existing gov-
ernment debt (a "wealth-tax") is usually believed to be e®ective in
providing stability. Using a discrete-time version of Blanchard's over-
lapping generations model, extended to include money and an endoge-
nous labour supply we show that, contrary to the intuition, a wealth
tax might not be enough to ensure the existence of a unique, well de-
¯ned, saddle-path equilibrium. We suggest that a government willing
to run a positive and sustainable level of debt could use an alternative
¯nancing rule, imposing an additional tax component, that is a func-
tion of the di®erence between the real interest rate and the tax rate
on wealth.
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1 Introduction
Public debts in several European countries have reached very high levels in
the 1980s. This phenomenon has been the cause of great concern among pol-
icy makers and public opinion. Expressions like unsustainability, instability
and default risk have entered the day-to-day debate on economic policies.
The fears related to growing debts have been translated in to the strict con-
straint imposed on EU economies by the Maastricht Treaty and the Stability
and Growth Pact.

Among academic economists, similar issues have always been regarded
as important. Interest in sustainability of ¯scal policy can be found, for
instance, in Keynes (1923) and Domar (1944). Christ (1979) studies the
implications of di®erent rules for stability, in an ad hoc Keynesian framework.

The events of the 1980s have caused a revival of the interest in ¯scal policy
stability. Attempts have been made to de¯ne, on empirical grounds, indica-
tors of sustainability. Blanchard et al. (1990), for example, construct short,
medium and long-term indicators of sustainability. Their exercise, based
on the idea that a sustainable policy is one that does not violate the in-
tertemporal budget constraint, has the merit to acknowledge the importance
of forward looking behaviour in a®ecting policy outcomes. This approach,
however, can be criticized on the grounds of being mostly an accounting ex-
ercise, that heavily depends on how good the forecasts about future variables
are.

In our opinion, there is a need to use modern, fully microfounded models
to investigate which ¯scal policy rules are "stable", in the sense that they are
consistent with the existence of a well de¯ned equilibrium and of a unique
convergent path. The most natural candidates for this kind of analysis are
models of overlapping generations, in which Ricardian equivalence is broken
and the debt is allowed to have real e®ects. A contribution in this direction
is the work by Rankin and Ro±a (1999), that uses a Diamond (1965) type,
two-period-lives model to investigate the existence of a maximum sustain-
able level of debt. The main question they want to address is whether there
can occur "catastrophes", de¯ned as situations in which a well-de¯ned debt
steady-state suddenly ceases to exist while other variables, like consumption
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and the capital stock, still lay in an economically feasible range of values. Be-
cause of their interest in catastrophes, they mostly concentrate on comparing
various steady-states for constant levels of debt, and they do not conduct a
comparative analysis of di®erent ¯scal policy rules.

In this paper, we aim at comparing the dynamic e®ects of di®erent ¯scal
policy rules, including ones in which the level of debt is endogenous, rather
than being ¯xed at some constant, exogenous level. To do this, we use a
modi¯ed version of the perpetual youth model provided by Blanchard (1985),
in which agents face in every period a positive probability of death. Our point
of departure is the discrete time treatment of Blanchard's model provided by
Frenkel and Razin (1996). In the original Blanchard framework, disposable
income is either given1 or it follows an exogenously imposed declining path.
In our model, by endogenising the labour supply, we aim to give a better
account of the impact of the labour-leisure trade o® decisions of agents. On
the other hand, we assume that labour is the only factor of production. This
is equivalent to holding the level of capital ¯xed. Since in Blanchard (1985)
capital is endogenous, our contribution is orthogonal to his in this respect.

The model that we present is similar to others that have been recently
developed in the literature, especially Leith and Wren-Lewis (2000), who
use a perpetual youth model to study the interaction between monetary
and ¯scal policy. While they introduce nominal rigidities in the analysis,
they retain the original assumption of an exogenous labour supply. Another
similar model is developed by Heijdra and Ligthart (2000), whose focus is
not on debt, but on comparing the macroeconomic e®ects of three di®erent
tax regimes (capital, labour income and consumption tax).

We conduct three policy experiments. For comparative purposes, we start
by looking at the case in which the government is not allowed to use debt at
all. We ¯nd that the introduction of a positive probability of death is not
enough, by itself, to cause an e®ect of balanced budget expansions on the
real interest rate. This policy, on the other hand, reduces both consumption
and leisure. The overall welfare e®ect is therefore negative.

We then study a policy similar to the one considered by Blanchard (1985),
in which a government is initially holding its debt constant, and subsequently
decides to increase the level of debt to a new, higher, steady state. As gov-
ernment expenditure is constant, we are assuming that taxes adjust endoge-

1Disposable income is endogenous in Blanchard's model (since the real wage is endoge-
nous), but it is given to the agent himself.
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nously to meet the increased payments of interest. We show that this policy
is likely to raise the real interest rate.

We ¯nally consider the case of a "wealth tax", in which taxation is an in-
creasing function of government debt (that enters positively agents' wealth).
Contrary to what we could expect, making taxes an increasing function of
existing debt does not authomatically guarantees stability. In other words,
the presence of a wealth tax might not be enough to ensure the existence of
a unique, well-de¯ned saddle path leading to the equilibrium. In this situa-
tion, it could be the case that a huge increase in the tax coe±cient on debt
is needed in order to have a saddle path solution. Such an increase, how-
ever, could be not easy to implement for the government, because of political
pressures. We suggest an alternative rule that can yield the same outcome,
in which the government drastically reduces the tax rate on debt but adds
another tax component, that is a function of the di®erence between the real
interest rate and the tax coe±cient on debt wealth. Our intention here is not
to suggest that such a rule would be optimal, but only to give some insights
in to what policy could be followed by a government that is in a position
of having to control is debt, but that is prevented from implementing more
stringent policies because of some political reasons. We believe that this sit-
uation re°ects the dilemma faced by some European governments in the late
1980s and early 1990s, that were in a situation of having to reduce drastically
their debt, but could not rely on very large parliamentary majorities to un-
dertake more structural policies, like heavy taxation of wealth or permanent
cuts in government expenditure.

The paper is organized as follows. Section 2 introduces the model, section
3 analyzes some steady-state and dynamic properties in the case in which
there is no public sector, that is nested in our more general speci¯cation.
Sections 4 and 5 look at the e®ects of di®erent policy rules, while Section 6
draws some conclusions.

2 The Model

2.1 Private Agents
We consider a closed economy. In every period each agent faces a constant
probability of death (1¡ q):We also assume no population growth. The size
of the cohorts of agents born in every period is constant across time and can
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be normalized to 1: The size of the world population is therefore constant as
well and equal to

P1
a=0 q

a = 1
1¡q . Only one good is produced in the economy.

Agents gain utility from consumption, money balances and leisure. In what
follows, we introduce the optimization problem of a representative agent of
age a at time t. Before proceeding with the illustration of the model, it is
useful to clarify our terminology, that becomes more complicated because of
the introduction of overlapping generations. We will call variables relating
to an individual of age a individual variables, while aggregate variables will
be the one obtained aggregating across individuals of all the di®erent ages,
and per-capita variables will be aggregate variables divided by the size of the
population.

The representative agent maximizes the expected utility function2:

E(Ut) =
1X

s=t

(¯q)s¡t[log(Ca+s¡t;s) +Â log
Ma+s¡t;s
Ps

+Ã log(1¡La+s¡t;s)] (1)

Preferences are homothetic and separable in consumption, real balances
and leisure. The endowment of time in each period is normalized to 1: La+s¡t;s
is the quantity of labour supplied in every period, (1¡La+s¡t;s) is leisure. A
standard assumption in this framework is the existence of insurance compa-
nies. We assume that insurance companies pay a net premium of ( 1¡qq ) on
the agent's ¯nancial wealth for each period of his life, while they encash the
agent's ¯nancial wealth if the agent dies3. Agents can hold ¯nancial wealth
as real balances or as government debt. In addition, they supply labour and
pay lumps-sum taxes. The representative agent's period t budget constraint
in real terms is, therefore:

Da;t+1 +
Ma;t
Pt

+ Ca;t =
1
q
[
Ma¡1;t¡1
Pt

+ (1 + rt)Da¡1;t] +
Wa;t
Pt
La;t ¡ ¿t (2)

Where D;M;W;r; ¿ and P denote respectively government debt, nominal
money, nominal wage, real interest rate, real lump-sum taxes and prices. It

2Ca+s¡t;s denotes consumption of an agent of age a + s ¡ t at time s: An analogous
notation holds for the other variables.

3As agents die in each period with probability q; these arrangements ensure a safe
return of 1 on money and of (1 + rt) on debt.
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can be shown (see Appendix) that the maximization of (1) subject to (2)
and to a standard No-Ponzi Game condition (eq. ?? in the Appendix) is
equivalent to the unconstrained maximization of:

1X

s=t

(¯q)s¡t[log(Ca+s¡t;s) +Â log
Ma+s¡t;s
Ps

+ Ã(1¡ La+s¡t;s)] + (3)

+¸f1
q
[

1
1 + it

Ma¡1;t¡1
Pt¡1

+Da¡1;t](1 + rt) ¡
1X

s=t

®s;tqs¡t(Ca+s¡t;s+
is+1

1 + is+1

Ma+s¡t;s
Ps

+

¡Wa+s¡t;s
Ps

La+s¡t;s + ¿ t)g

Where the expression in the curly brackets is the agent's intertemporal bud-
get constraint, i is the nominal interest rate, and ®s;t is the present value
factor, de¯ned as:
®s;t = 1 when s = t; and
®s;t = 1

(1+rt+1):::::(1+rs)
when s > t:

The ¯rst-order conditions with respect to Ca+s¡t;s; Ma+s¡t;s and La+s¡t;s
are given by:

Ca+s¡t;s =
1
¸
¯s¡t

®s;t
(4)

La+s¡t;s = 1¡ 1
¸
¯s¡t

®s;t
Ps

Wa+s¡t;s
Ã (5)

Ma+s¡t;s
Ps

=
1
¸
Â
¯s¡t

®s;t
1 + is+1
is+1

(6)

Equation (4) implies the following Euler equation for individual consumption:

Ca+s¡t+1;s+1

Ca+s¡t;s
= ¯ ®s;t
®s+1;t

= ¯(1 + rs+1) (7)

Equation (7) is the discrete-time equivalent of Blanchard's expression, it
states the fact that individual consumption rises if the real interest rate is
bigger than the subjective discount rate 1¡¯

¯ : The rate of growth of individual
consumption does not depend on wealth. As we are going to see in what
follows, however, the level of individual consumption is a function of total
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wealth, and the rate of growth of per-capita consumption is a function of
human wealth.

Substituting (4), (5) and (6) in to the intertemporal budget constraint
and solving for 1

¸ we obtain:

1
¸
= (

1¡ q¯
1 + Â+ Ã

)f(1 + rt)
1
q
[

1
1 + it

Ma¡1;t¡1
Pt¡1

+Da¡1;t] +Ha;tg (8)

Where Ha;t is human wealth, de¯ned as:

Ha;t =
1X

s=t

®s;tqs¡t(
Wa+s¡t;s
Ps

¡ ¿s)

Human wealth is de¯ned as the present discounted value of potential gross
earnings (that would be earned if the agent chose to consume no leisure), mi-
nus taxes. Of course, as leisure provides utility, agents will not choose to
supply a quantity 1 of work in each period. This can be seen by substi-
tuting (8) back in to the ¯rst order conditions, and deriving the individual
consumption, leisure and real balance demand functions for period t:

Ca;t = (
1 ¡ q¯

1 +Â +Ã
)f(1 + rt)

1
q
[

1
1 + it

Ma¡1;t¡1
Pt¡1

+Da¡1;t] +Ha;tg (9)

La;t = 1 ¡Ã Pt
Wa;t
Ca;t (10)

Ma;t
Pt

= Â
(1 + it+1)
it+1

Ca;t (11)

The expression 1¡q¯
1+Â+Ã in (9) is the propensity to consume out of total

(¯nancial plus human) wealth. The fact that this parameter is constant over
time is a consequence of our logarithmic speci¯cation, that implies a unit
intertemporal elasticity of substitution. The constant propensity to consume
is an inverse function of the weights on real balances and leisure in the utility
function (Â and Ã) and of the agent's temporal horizon (it decreases as the
e®ective discount factor q¯ increases).

To gain some intuition on the meaning of equation (10), it is useful to
rearrange it as:
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(1¡ La;t)Wa;t = ÃPtCa;t

The above expression tells us that there is an inverse proportionality between
expenditure on consumption and expenditure on leisure (de¯ned in terms of
the opportunity cost of not working). Finally, equation (11) is a standard
money demand equation in microfounded models.

Before proceeding to de¯ne the aggregate variables, it is useful to specify
the behavior of ¯rms and of the government.

2.2 The Behavior of Firms
To make aggregation possible, we assume that the agents supply their labour
in a perfectly competitive market. For the same reason, we assume that the
marginal productivity of labour is invariant across ages. Anotherr simplifying
assumption is that labour is the only factor of production, with constant
returns. The technology used by ¯rms is therefore:

Yt = Lt (12)

Where Lt is the quantity of labour used in the production process. Under
these assumptions, from the pro¯t maximization condition we obtain WtPt = 1
in every period t.

2.3 The Government

In this paper we abstract from useful government spending. The government
therefore spends on public expenditure that does not a®ect private utility.
Government expenditure can be ¯nanced by seigniorage, lump-sum taxes and
debt, according to the single-period budget constraint:

Gt + (1 + rt)Dt = ¿t +
(Mt¡Mt¡1)
Pt

+Dt+1 (13)

In addition to this, the government must also respect a No-Ponzi game con-
dition. It is important to notice that, since the government has an in¯nite
life horizon, the real interest rate applied to Dt in (13) is (1+rt); as opposed
to(1+rt)q in the private agents' budget constraint.
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2.4 Per-Capita Variables
We are now ready to start the aggregation process. Summing across ages we
get the aggregate variables that, once divided by the size of the population
1

1¡q ; give the per-capita variables. All per-capita variables will be indexed
by the superscript PC: It is also useful to de¯ne formally total wealth as the
sum of ¯nancial and human wealth:

TWt = (1 + rt)[
1

1 + it
Ma¡1;t¡1
Pt¡1

+Da¡1;t] +Ha;t

Accordingly, per-capita consumption is given by:

CPCt =
1X

a=0

(1 ¡ q)qaCa;t = (
1 ¡ q¯

1 + Â+ Ã
)TWPCt (14)

Where (1¡ q)qa is the proportion of agents of age a in the world population4,
and:

TWPCt =
1X

a=0

(1 ¡ q)qaTWt =HPCt + (1 + rt)[
1

1 + it
MPCt¡1
Pt¡1

+DPCt ](15)

HPCt =
1X

a=0

(1 ¡ q)qaf
1X

s=t

®s;tqs¡t(
Ws
Ps

¡ ¿s)g =
1X

s=t

®s;tqs¡t(1 ¡ ¿s) (16)

MPCt¡1 =
1X

a=0

(1¡ q)qa¡1Ma¡1;t¡1

DPCt =
1X

a=0

(1 ¡ q)qa¡1Da¡1;t

4The size of each cohort of agents is normalized to 1, and each agents has a probability
of surviving in every period equal to q: For the law of large numbers, therefore, qa is the
number of agents of each cohort that survive till the age a:
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Notice that, in the aggregation of wealth, we have used the fact that both
taxes and real wages are invariant across ages, and that real wages can be set
to 1 with the special production function (12). As a consequence, per-capita
human wealth is equal to individual wealth for each agent.

Similarly, as prices and interest rates are independen of age, per-capita
money demand is given by:

MPCt
Pt

= Â
(1 + it+1)
it+1

CPCt (17)

Finally, aggregating the labor-leisure equation(10), and using again the
result that WsPs = 1 independently of age, we get:

LPCt =
1X

a=0

(1 ¡ q)qaLa;t = 1¡ Ã(1¡ q)
1X

a=0

qaCa;t = 1¡ ÃCPCt (18)

The latter relationship is useful to illustrate an important characteristic of
the model, namely the fact that private consumption and output (equal to
the quantity of labour supplied) are determined by government expenditure.
To show this, notice that in this simple closed economy, equilibrium in the
goods market, in per-capita terms, boils down to:

Y PCt = LPCt = CPCt + Gt (19)

Solving for LPCt and CPCt from (18) and (19) we obtain:

Y PCt = LPCt =
1

1 + Ã
+
Ã

1 +Ã
Gt (20)

CPCt =
1

1 + Ã
¡ 1

1 +Ã
Gt (21)

In the case in which leisure does not provide utility (Ã = 0); equations
(20) and (21) reproduce the neo-classical result of no e®ect on output and
complete crowding-out of consumption following a ¯scal expansion (dY=dG =
0 , dC=dG = ¡1). In this case agents supply inelastically all their endowment
of time. The balanced-budget multiplier derived in the IS/LM literature,
(dY=dG = 1; dC=dG = 0); on the other hand, emerges in the limiting case
in which Ã ! 1.
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While Y PCt and CPCt can be expressed as functions of an exogenous,
predetermined variables like government expenditure, the real interest rate
is a function of its future levels, behaving like a "jump" variable. In order
to see this, it is useful to go through the intermediate step of characterizing
the dynamic behavior of consumption.

2.5 Per-Capita Consumption Dynamics
The dynamic of per-capita consumption is given by (see Appendix for the
derivation):

CPCt = (
1¡ q¯

1 + Â+ Ã
)(1¡ q)HPCt + (1 + rt)q¯CPCt¡1 (22)

In the case of in¯nite life (q = 1) equation (22) reduces to a standard
Euler equation. In that case human wealth is not important for predicting
future consumption. The above expression also nests the logarithmic case
in the Frenkel and Razin (1996) model, in which money and leisure do not
provide utility (Â = Ã = 0).

3 Steady State and Dynamics without Gov-
ernment

We will now characterize the steady-state and the dynamics of the model.
It is convenient to consider ¯rst the case in which government expenditure,
taxes and debt are permanently ¯xed to zero. As the model displays multiple
equilibria, one problem is how to discriminate between them. The prelim-
inary analysis of this section gives some insights about this, that will also
turn out to be useful once we reintroduce the government in the model.

3.1 Steady State

In an economy without public sector, consumption and output are perma-
nently ¯xed at the "natural" level

1
1 + Ã

: It follows that a steady-state version

of equation (22) is5:
5Barred variables denote the steady-state.
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Figure 1: E®ect of a reduction in q on steady-state R

RHRL

f(R), g(R)

R=1 + r

q ↓

RH’RL’

1 + r = 1 ¡ (1 + Ã)(
1 ¡ q¯

1 +Â +Ã
)(1¡ q)HPC (23)

Where HPC is the steady-state level of human wealth with ¿ = 0; i.e.:

HPC =
1X

s=t

( q
1 + r

)s¡t = 1+ r
1 + r ¡ q (24)

Substituting (24) in (23) and denoting with R = 1+ r the gross real interest
rate we can derive the following quadratic equation in R :

R2 ¡ fq + 1
q¯

[1¡ (
1¡ q¯

1 + Â+ Ã
)(1 ¡ q)(1 + Ã)]gR +

1
¯

= 0 (25)

To solve explicitly for R from this equation would be possible, but not
very illuminating. The implications of (25) are more easily understood look-
ing at Figure 1.
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The two solutions of (25) are the points in which the parabola f( R) = R2

meets the line g( R) = fq+ 1
q¯

[1¡ ( 1¡q¯
1+Â+Ã)(1¡ q)(1 +Ã)]gR¡ 1

¯
: Given the

ranges of values of the parameters, the slope of this line is obviously positive.
From Figure 1 it is clear that we are faced with 2 possible equilibria. As

the real interest rate is expected to behave like a jump variable, one way of
discriminating between them is to select the unstable one. This can only be
done after characterizing the dynamics of R: However, we can say something
about the two di®erent steady-states before looking at the dynamics, if we
assume that deviations from the Ricardian equivalence case (q = 1), are not
too large. The ¯rst argument is a type of Samuelson correspondence prin-
ciple: the equilibrium that has desirable stability properties must also yield
desirable comparative static properties. In this case, it is easy to check that,
as the derivative of fq+ 1

q¯
[1¡ ( 1¡q¯

1+Â+Ã)(1¡ q)(1 +Ã)]g computed at q = 1;

being equal to ¯¡1¯ ( Â
1+Â+Ã); is negative, in the neighborhoods of this value a

fall in q will imply an increase of the "higher" equilibrium (that is a move-
ment from RH to R0H in Figure 1) and a fall of the "lower" equilibrium (from
RL to R0L in Figure 1): It follows that, if the deviation from the in¯nite life
case is not too big (if q is not too much smaller than 1), RH displays the more
sensible result in terms of comparative static: when the probability of sur-
viving to the next period become smaller, agents become more short sighted
and therefore the real interest rate increases (present consumption becomes
more costly in terms of future consumption). This would suggest to restrict
our attention to the higher equilibrium RH : Another argument that leads to
the same conclusion can be developed considering that, when agents have
in¯nite lives, our model collapses to a discrete time version of the Ramsey
(1928) model. When q = 1; equation (25) yields the two solutions RL = 1
and RH = 1

¯ : Since RH = 1
¯ is the solution of the Ramsey model, while

RL = 1 is not, the higher equilibrium is more satisfactory. Another reason
to select the higher equilibrium in the q = 1 case comes from the observation
that, since there is no in°ation in the steady state, R = 1 implies r = i = 0;
i.e. an in¯nite money demand. In addition, it is clear from equation (24)
that R = 1 also implies an in¯nite level of steady-state human wealth. It is
also possible to argue that the higher steady state is the one consistent with
the individual dynamics of wealth and consumption. The ¯rst thing to notice
is that in a steady-state, although per-capita variables are constant, there is
still some dynamics at the individual level. Since each agent is born with zero
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non-human wealth, in order to have a steady-state with positive per-capita
¯nancial (non-human wealth) wealth, individuals must be accumulating ¯-
nancial wealth, as long as they stay alive. Since in the steady-state individual
human wealth, equal to per-capita human wealth, is constant, this implies
that in the steady state individual total wealth is growing. Remembering
that, with logarithmic preferences, individual consumption is proportional
to total wealth (eq. 9), it is clear that, in the steady-state, individual con-
sumption must be growing. From equation (7) we can see that, in order to
have growing individual consumption, it must be R > 1

¯ : If we start from the
Ricardian equivalence case (q = 1); and then we marginally reduce q, only
the higher equilibrium satis¯es the condition for growing consumption.

As we are going to see in what follows, the analysis of the dynamics of
the model leads to the same conclusion. In particular, it will allow us to
prove that, even for large deviations from Ricardian equivalence, reducing q
rises (lowers) the higher (lower) equilibrium. This conclusion will give more
generality to the arguments developed above.

3.2 Dynamics

In this simpli¯ed version, the dynamics of the model can be summarized by
a ¯rst-order non-linear di®erence equation for the gross real interest rate,
given by (see Appendix for the derivation):

Rt+1 =
1

1
q
[1 ¡ (1 + Ã)

(1¡ q¯)
(1 + Â+ Ã)

(1 ¡ q)] + q¯ ¡ ¯Rt
(26)

Equation (26) reduces to the quadratic expression that characterizes the
steady state if we impose Rt = Rt+1 = R: The dynamics out of the steady
state can be investigated with the help of Figure 2, where we plot equation
(26) together with the Rt = Rt+1 line. Equation (26) is a hyperbola, that

cuts the Rt = 0 axis at
1

1
q
[1 ¡ (1 + Ã)

(1 ¡ q¯)
(1 + Â+ Ã)

(1¡ q)]
. We can restrict

our attention to the positive arm, that tends to the vertical asymptote Rt =
1
q
[1¡ (1 + Ã) (1¡ q¯)

(1 + Â+ Ã)
(1¡ q)]

¯ as Rt+1 ! 1:
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Figure 2: Dynamics in the no-Government case

Rt+1

Rt

RH
RL

Rt+1=f(Rt)

Rt+1 =Rt

From equation (26) it is evident that, starting form every point on the
left or on the right of RL; the economy will converge back to RL; while the
opposite happens around RH : Therefore, RH is the unstable equilibrium. As
this is a forward-looking, rational-expectations model, this property should
not be regarded as problematic. On the contrary, it is a very desirable
feature. The logic of the rational expectations method is that, if there is
a unique possibility that ensures boundedness, this is the one that will be
selected. In other words, the real interest rate acts as a jump variable, making
the model "well behaved" in terms of dynamics. This con¯rms that, in what
follows, we can restrict our attention on RH :

From Figure 2 is also possible to derive an analysis of the e®ects of the
probability of death on the real interest rate that is not limited to the case
in which the value of q lies in the vicinity of 1. It is possible, infact, to show

that the derivative of
1
q
[1¡(1+Ã)

(1¡ q¯)
(1 + Â+ Ã)

(1¡ q)] +q¯ with respect to q

is equal to (q2¯¡1)
q2

Â
(1+Â+Ã) , that is unambiguously negative. This implies that

a decrease in q; by raising the denominator of (26), will shift the hyperbola
downward, thus raising RH and lowering RL: In the unstable steady-state,
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an increase in the temporal horizon of agents decreases the real interest
rate. This con¯rms that the unstable steady-state is the one that yields
the more sensible result in terms of comparative static and of consistency
with the dynamics of individual variables, even if deviations from Ricardian
equivalence are large (if q is considerably smaller than 1).

As we are going to see in what follows, when we reintroduce the public
sector in the model we can use similar arguments to discriminate between
equilibria. The conclusions drawn from this simple version of the model are
consistent with the more general case.

3.3 The Role of Money

Before reintroducing the government in the analysis, it is interesting to make
a digression about the role of money in this simple version of the model.
It is straightforward to show that, in a non-monetary version of the model
(Â = 0), the two solutions are RL = 1 and RH = 1

¯ even when q < 1: In
other words, it is the presence of money that allows the real interest rate
to deviate from the Ramsey solution. In a non monetary economy, agents
would choose a °at pattern of consumption even when Ricardian equivalence
does not hold. The intuition behind this is that, with no money and no
government debt, the supply of assets is zero. In order for the assets market
to clear, therefore, even the demand for assets must be zero. This is exactly
what happens at RH = 1

¯ : For levels of the interest rate lower than this
(including RL = 1), consumption must be decreasing (eq. 7). Since human
wealth is constant in the steady-state, this can only happen if agents are
accumulating negative ¯nancial wealth. The demand for assets, therefore,
should be negative, whereas we know that the supply is zero. It follows that
solutions di®erent from RH = 1

¯ are not acceptable, because they imply that
the assets market fails to clear.

In other words, with no money and no bonds in the economy, there is
nothing that can be used as a "reserve of value", allowing agents to diver-
sify their consumption intertemporally. Even with ¯nite lives, therefore, the
pattern of individual consumption can not deviate from that of disposable
income. Introducing money allows us to depart from a situation in which
individual consumption is °at.
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4 E®ects of Fiscal Policy
We will now reintroduce the government in the model. In the policy rules
studied in this section government debt is either not allowed or exogenous.
The analysis of a case in which debt is endogenous is carried out in next
section.

In the ¯rst policy experiment we look at a balanced budget expansion
(G = ¿; D = 0). In the second one we consider the steady-state e®ects
of increasing debt from a constant level to another constant level. In the
latter case, government expenditure is kept constant and taxes are assumed
to adjust endogenously. As the focus is on ¯scal policy, in both cases we
hold the money supply permanently ¯xed at a constant level M; ruling out
seigniorage. For the reasons explained above we restrict our attention to the
unstable equilibrium RH :

4.1 Balanced-Budget Expansions
We now turn to the case in which the government is allowed to spend but not
to use debt. Assuming a constant level of expenditure perfectly matched by
lump-sum taxes in every period, the steady state of human wealth becomes:
HPC =

P1
s=t(

q
1 + r

)s¡t(1¡ ¿ ) = (1 ¡ ¿ ) 1 + r
1 + r ¡ q . We can therefore derive

a modi¯ed version of equation (25):

R2 = fq ¡ 1
q¯

[1¡ (1 ¡ ¿)
(1¡G) (

1¡ q¯
1 +Â +Ã

)(1¡ q)(1 + Ã)]gR ¡ 1
¯

(27)

As G = ¿; the above equation reduces to (25). This implies a quite un-
expected result. Although our model is based on some "non neo-classical"
assumptions, like the deviation from Ricardian Equivalence, balanced-budget
¯scal expansions turn out not to a®ect the real interest rate. In Blanchard
(1985), the real interest rate is equated to the marginal productivity of capi-
tal. As a balanced-budget expansion decreases capital in his model, the real
interest rate increases. The assumption that labour is the only factor of pro-
duction implies that, even with ¯nite horizons, following a balanced-budget
expansion our model behaves like the Ramsey one, in which the real interest
rate is independent of movement in G, rather than like Blanchard's.
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As in the steady state in°ation is zero, nominal and real interest rates
coincide. This implies no direct e®ect via the interest rate on real balances.
Remembering equations (20) and (21), it is clear that, following a once and
for all ¯scal expansion, there will be a step increase in the quantity of labour
supplied and a step decrease in consumption. Both consumption6 and leisure
fall. Money demand, being a function of consumption, falls as well. The over-
all welfare e®ect of a balanced-budget ¯scal expansion is therefore negative.

The welfare results of our model are qualitatively the same that can be
derived, for the long run7, in a closed-economy version of the Redux model
presented by Obstfeld and Rogo® (hereafter OR, 1995, p.703) The latter is
nested in the model presented Ganelli (2000), when government expenditure
does not provide utility. In the present model and in the OR model the
output multiplier is positive and the consumption multiplier is negative, and
both are less than one in absolute value. If we assume Ã < 1; the negative
welfare e®ect is mitigated in our case, compared to the OR model. When
Ã = 1 our model and the closed economy version of the OR model coincide.

A paper that looks at the consequences of a balanced-budget expansion
in a sticky-price, continuous-time, perpetual-youth model with capital accu-
mulation is Rankin and Scalera (1995). Their results are quite di®erent from
ours. In their model the long-run consumption multiplier is positive and the
output multiplier is above unity. The authors explain this as a consequence
of the fact that they have investment and capital accumulation. With no
capital accumulation, their model would give the usual Keynesian balanced-
budget multiplier (dY=dG = 1; dC=dG = 0). As we have already stressed in
section 2.4, this result only emerges here in the not very realistic case of an
in¯nite weight of leisure in agents' preferences. In other words, the presence
of an endogenous labour supply in our model is su±cient to deviate from the
neo-classical result of a zero output multiplier, even in a °exible price world,
but is not enough to generate the polar result of Rankin and Scalera (1995).

4.2 The Case of Constant Debt

We now turn our attention to another policy, in which the debt is ¯xed
exogenously. We will therefore look at the steady-state e®ect of an increase

6The reduction in steady-state consumption in our model is consistent with both the
Ramsey and Blanchard's models.

7As the present model is a °exible-prices one, it would not be appropriate to compare
our results with the short-run ones in Obstfeld and Rogo®, where prices are sticky.
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from one constant level of D to a new constant level. From the government
budget constraint with constant G, D andM; we have:

¿ t = G+ rtD

When the government decides to raise the level of steady-state debt, G is
kept constant, and taxes adjust endogenously to meet the increased interest
payments.

The steady-state value of human wealth is nowHPC =
P1
s=t(

q
1 + r

)s¡t(1¡

G¡ rD) = 1 + r
1 + r ¡ q (1¡G¡ rD); and the steady-state equation for R can

be expressed as:

R2 =
[ (1+Ã)(1¡q)(1¡q¯)

(1+Â+Ã)(1¡G) D + (1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã) ¡ q2¯ ¡ 1]

(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

R +

+
q

(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

(28)

In this case, it is no longer possible to investigate our policy experiment
without using some numerical examples. Before introducing simulations,
however, we present what we can conclude using only analytical methods.
The steady-state solutions for the real interest rate are still given by the
points where the parabola f(R) = R2 meets a straight line, that we now
denote h(R). Equation (28), however, shows that the signs of the slope and
of the intercept of the line are no longer unambiguous.

As G denotes per-capita government expenditure, a sensible assumption
is that the maximum amount of work available in each period, 1, cannot be
all used to produce public goods. The quantity (1¡G) is therefore positive.
This implies that we can derive two threshold values such that, if D is bigger
than these, the magnitudes

(1 +Ã)(1¡ q)(1¡ q¯)
(1 + Â+ Ã)(1 ¡G) D ¡ q¯

and

(1 +Ã)(1 ¡ q)(1 ¡ q¯)
(1 + Â+ Ã)(1¡G) D +

(1 + Ã)(1¡ q)(1 ¡ q¯)
(1 + Â+ Ã)

¡ q2¯ ¡ 1
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are positive. The values are:

D >
(1 + Â+ Ã)(1¡G)

(1 +Ã)(1 ¡ q)(1 ¡ q¯)q¯ = SD

and

D > [(1 + q2¯)
(1 +Â +Ã)

(1 + Ã)(1¡ q)(1¡ q¯) ¡ 1](1¡G) = SN

Whether D is bigger or not than SD determines the sign of the intercept,
while the sign of the slope, being determined by a ratio, depends on both
conditions. Since we can prove (see below) that SN > SD always, there are
only three possible regimes:

(i). D < SD < SN: In this case the intercept is negative, but the slope
is still positive (because both numerator and denominator in the ratio are
negative). This case is qualitatively similar to the one with no government
or balanced budgets (See Fig. 3).

(ii). SD < D < SN : In this case the intercept is positive, and the slope
is negative (as we have a negative numerator and a positive denominator in
the ratio). See Fig. 4.

(iii). D > SN > SD: In this case the intercept is positive, and the slope
is positive (the numerator and the denominator of the ratio that gives the
sign of the slope are both positive). See Fig 5. Notice that in both cases (ii)
and (iii) only one solution with a positive R is possible

Before proceeding to the comparative static analysis of the di®erent cases,
notice that SD > SN can be rewritten, after algebraic passages, as:

1 > (1 + Â+ Ã)
(1 + Ã)

[1 + q
(1¡ q)(1¡ q¯) ]

the above inequality implies that 1 should be bigger than a number bigger
than 1, and is therefore a contradiction. This means that we must have
SN > SD always, and the case in which SN < D < SD is therefore ruled out.
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Figure 3: Steady state with constant debt, case (i)

RL RH

f (R),  h (R)

Figure 4: Steady state with constant debt, case (ii)

f (R),  h (R)

RL RH
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Figure 5: Steady state with constant debt, case (iii)

RL RH

f (R),  h (R)

We now look at the e®ects of a steady-state increase in D in the three
di®erent regimes (i), (ii) and (iii). In doing this, we assume that the increase
is D is small enough so that the e®ect is a change within the regime, and not
a change between regimes.

(i). An increase in D shifts the intercept down. To see the e®ect on the
slope, notice that

(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D + (1+Ã)(1¡q)(1¡q¯)

(1+Â+Ã) ¡ q2¯ ¡ 1
(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

can be rewritten as
(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D + (1+Ã)(1¡q)(1¡q¯)

(1+Â+Ã) ¡ q2¯ ¡ 1¡ q¯ + q¯
(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

=

= 1+
(1+Ã)(1¡q)(1¡q¯)

(1+Â+Ã) + q¯ ¡ q2¯ ¡ 1
(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯
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since the coe±cient on D in the denominator of the previous expression is
positive, an increase in D will increase the slope if the numerator is nega-
tive (because 1 plus something negative will become 1 plus something still
negative but smaller than before in absolute value). Rearranging

(1 + Ã)(1¡ q)(1¡ q¯)
(1 + Â+ Ã)

+ q¯ ¡ q2¯ ¡ 1

we can see that this is the case, since this expression can be rewritten as

¡q(1 + Ã) + Â[(q¯(1 ¡ q) ¡ 1]
(1 + Â+ Ã)

< 0

Summarizing, an increase in D has two contrasting e®ects on the higher
steady-state RH : the fall in the intercept pushes it down, but the increase in
the slope pushes it up. The ¯nal e®ect will be determined by which of the
two prevails.

(ii). An increase in D will still imply a fall in the intercept. The slope, on
the other hand, will increase, in the sense that it will still be negative, but
smaller in absolute value, therefore less negatively sloped. The ¯rst e®ect goes
in the direction of reducing RH and the second in the direction of increasing
it, with an ambiguous ¯nal result.

(iii) This case is qualitatively similar to the one presented in (i), except for
the fact that now only in the higher steady state R takes a positive value. An
increase in D implies a fall in the intercept, but the slope increases. Again,
there are two contrasting e®ects on the higher interest rate: the fall in the
intercept pushes it down, but the increase in the slope pushes it up. The
¯nal e®ect, therefore, depends on which of the two dominates.

Although the above discussion does not allow us to state unambiguously
the sign of the e®ect of debt on the interest rate, an analytical result can
be estabilished for a particuler sub-case of the situation considered in (i),
that we will call "reference case". We present here this reference case before
moving to numerical simulations. In our reference case steady-state debt
is initially set to zero (D = 0) and the utility provided by money is also
zero (Â = 0): A case in which initial steady-state debt is ¯xed to zero is
quite a natural one to consider, since it is continuous with the no-debt cases
previously considered. As we already know, in the reference case the two
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steady-state solutions for R are RL = 1 and RH = 1
¯ . Let's now notice that

equation (28) can be rewritten as:

(q¯ ¡ k D)R2 ¡ [1 + q2¯ ¡ (1¡G)k ¡ kD]R + q = 0

where k = (1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) : Totally di®erentiating and evaluating in the ref-

erence case we have:

[q¯2R ¡ (q + q¯)]dR + (¡kR2 + kR)dD

Further, evaluating at the higher steady-state RH = 1
¯ and rearranging we

have:

dR
dD

=
k
¯q2

that proves the positive e®ect of an increase in debt on the real interest rate
in the reference case.

Since from the graphical analysis previously developed we concluded that,
out of the reference case, the sign of this e®ect is ambiguous, we have also
carried out some simulations, in which we assign speci¯c values to the pa-
rameters, and then we evaluate how the solutions to equation (28) change
as the level of debt is increased. The benchmark values for the parameters
are: ¯ = :9; q = :9; Ã = :1; Â = :05; G = :3: This reproduces a situation in
which agents are not very myopic and the deviation from Ricardian equiva-
lence is not very high. Also, the utility provided by leisure and real balances
is assumed to be small compared to the one provided by consumption. Fi-
nally, we assume that one third of the maximum amount of work available in
every period is used to produce public goods. The sensitivity of the results
with respect to changes in the parameters has also been tested, repeating the
same exercise for cases in which the deviation from Ricardian equivalence is
larger ( q = :7); or the exogenous level of government expenditure is higher
(G = :66): Our simulations show that an increase in D is likely to increase
RH : Table 1 shows the e®ect on RH of an increase from D = 2 to D = 3, in
the various cases considered. The reported values of the steady-state interest
rate are, of course, highly unrealistic. It should be noticed, however, that,
since our model is a quite simpli¯ed ones, it is not our intention to produce
realistic quantitative estimates of the levels of the steady state variables. Our
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main interest here is in the qualitative result that RH increases as the level
of exogenous debt increases8.

Table 1. E®ects of an increase in D on RH

Benchmark q = :7 G= :66
D = 2 RH = 1:194 RH = 2:170 RH = 1:285
D = 3 RH = 1:235 RH = 4:037 RH = 1:390

If, like the previous analysis suggests, an increase in the exogenous level of
debt increases the steady-state level of the interest rate, then this policy has a
two negative welfare e®ects. The ¯rst one arises through real balances. Since
in the steady state nominal and real interest rate coincide, an increase in RH
implies that agents demand less money, and this reduces their utility.The
second e®ect is due to the fact that an increase in the real interest rate
implies an higher growth rate of consumption over an individual's lifetime
(remember equation 7). Since average lifetime consumption does not change
(the level of per-capita consumption does not change, see equation 21) , this
e®ect increases the imbalance in the lifetime consumption pro¯le. We could
expect, on an intuitive basis, that this would further reduce lifetime utility.

In Blanchard (1985, p.243), a similar policy reduces the steady-state lev-
els of both capital and consumption. In his model, therefore, the real interest
rate increases unambiguously. This is what is likely to happen in our model.
In our model, however, we have no e®ect on per-capita consumption. This
di®erence is probably due to the fact that, keeping the level of capital con-
stant, we have prevented movements in the real interest rate from having
direct e®ects on consumption. In Blanchard, the decrease in capital associ-
ated with an increase in R has a direct, negative e®ect on consumption. This
does not happen in our model, because capital does not change.

5 Introduction of a Wealth Tax
In the policy experiments considered so far, government debt was either zero
or ¯xed at a constant level exogenously determined. We now turn to the case
in which taxes are a function of the existing level of debt. In this case both
debt and taxes are endogenously determined.

8This result is con¯rmed for a wide range of variation of D:
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Since government debt enters as an asset in the agents' portfolio, we refer
to this as a "wealth tax". It is important to stress, however, that this kind
of instrument, being a function of per-capita debt, should not be regarded
as a wealth tax in the strictest sense, i.e. one that distorts agents' deci-
sion. From an individual's point of view, the tax is a "lump-sum" one. The
size of the lump-sum depends on aggregate wealth, but a single individual
has no in°uence on the latter. Examples of taxation imposed on aggregate
wealth, without distortionary consequences, can be found both in the theo-
retical literature (for example Rankin and Scalera, 1995) and in large-scale
macroeconometric models used for policy simulations (Mitchell et al. 1999).

Formally, the rule that we are considering, is expressed as:

¿ t = T + ¿Dt

for every t, with 0 < ¿ < 1 andG > T:On an intuitive basis, we would expect
that if the real interest rate is smaller than the rate at which new debt feeds
in to new taxes (¿ > rt), this rule should grant stability, preventing the debt
from exploding (see below, equation 29).

The most interesting result in this section is that, contrary to the intu-
ition, we can not rule out cases in which this rule fails, for realistic parameters
values, to ensure the existence of a well-de¯ned equilibrium with a unique
convergent path. If Rt;as it appears in equation (29) below, was indepen-
dent of debt (as it is the case in the Ramsey model), then stability would
depend only on the sign of rt ¡ ¿t: If we get instability, then, it must be
because of the dynamics in Rt, which are introduced by the fact that, when
q < 1, Rt depends onDt: In other words, an overlapping generations economy
is more likely to be unstable, under a given wealth tax rule, than a Ram-
sey economy. Failing to consider the implications of ¯nite horizons means
that rules similar to the one that we are analysing are usually believed, es-
pecially in policy related analysis, to be e®ective in "closing" the model.
Mitchell et al. ( 1999, pag. 171), for instance, in comparing the properties
of di®erent macroeconometric models, refer to "The speci¯cation of a ¯scal
policy reaction function or ¯scal closure rule that enforces the government's
intertemporal budget constraint...". In their analysis, based on an in¯nite
horizons theoretical framework, a tax rule that makes taxation a function of
the existing stock of debt ensures convergence of debt (in the case of no real
growth) if ¿ (µ in their notation) is bigger than the (exogenous) real interest
rate (Mitchell et al. 1999, pag. 179).
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The implications of such a rule in our model are investigated in what
follows using a combination of graphical analysis and numerical simulations.
The dynamics of the economy can be summarized by two non-linear di®erence
equations in Rt and Dt:

Dt+1 = (Rt ¡ ¿ )Dt + G¡T (29)

Rt+1 =
1

¡(1 ¡ ¿Dt ¡ T )
(1 +Ã)
(1 ¡G)

(1 ¡ q¯)
(1 +Â +Ã)

(1 ¡ q)
q

+ q¯ +
1
q

¡ ¯Rt
(30)

Equation (29) comes from substituting the tax-rule in to the period by
period government budget constraint with constant G, and M , while (30)
can be derived following the same method used for (26) and taking in to
account that now HPCt =

P1
s=t®s;tqs¡t(1¡ ¿s) =

P1
s=t ®s;tqs¡t(1¡T ¡¿Ds):

The locus ¢Dt = 0 is a hyperbola with intercept Dt = G¡ T
¿ + 1

; and
Rt = ¿ + 1 and Dt = 0 respectively as vertical and horizontal asymptotes.
Debt converges back to the locus on the left of the vertical asymptote (where
¿ > r), and diverges away from it on the right (where r > ¿). The locus
¢Rt = 0 is the sum of a straight line with positive slope and of a hyperbola
(see Appendix). It tends to the straight line as Rt ! 1 and to the hyperbola
as Rt ! 0. Rt decreases above the locus and increases below.

In principle, the existence of steady-state solutions could be studied an-
alytically, imposing constant levels of D and R in equations (29) and (30)
and solving the system. Doing this without assigning speci¯c parameters
to the values would not allow us to derive neat expression for the solutions.
Before resorting to simulations, however, it is useful to stress that, combining
equations (29) and (30), it is possible to show that the steady-state values
are the solutions of a cubic equation, that therefore has either one or three
real roots. All the possible cases are presented graphically in Figures 6 to 89.
The three possible steady states are labelled, starting with the lower, as R1;
R2 and R3: If there is only one solution, this can only be in the region where
r < ¿ (Fig. 6). The case of three solutions can happen in two di®erent ways:
all the solutions where r < ¿ (Fig. 7), or one where r < ¿ and two where
r > ¿ (Fig. 8).

9The practice of drawing phase dyagrams for discrete systems is a standard one in
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Figure 6: Wealth-tax rule, one solution
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Figure 7: Wealth-tax rule: three solutions, case one
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Figure 8: Wealth tax rule, three solutions: case two
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Figure 9: Wealth tax rule in the q=1 case
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It is evident that steady-states in the region where r > ¿ can only occur
for negative values of debt. The intuition behind this is that when the real
interest rate is bigger than the taxation coe±cient, existing debt generates
new debt at a faster rate than it increases taxation. As a result, it is only
possible to have a stable level of debt if this is negative, i.e. if agents are
borrowing from the government. In this case an increase in r is good news
for the government's ¯nance. We are induced to pay little attention to the
possibility of such an outcome, however, on the basis of the observation
that equilibria with negative values of government debt are not very likely
in reality. On the normative side, we are interested in sustainability, so
we do not want to suggest a rule that would eliminate government debt
completely10.

What about the region in which r < ¿ ? From Figures 6, 7 and 8 it is clear
that the steady-state R1 in this region is globally stable. However, we are
quite doubtful about the practical relevance of this equilibrium, for several
reasons. The ¯rst one is that it implies a multiplicity problem, i.e. there is
no unique path along which the system converges. It is also of some utility to
draw some analogy with the particular case in which Ricardian equivalence
holds (q = 1): This yields a discrete-time version of the Ramsey model with
a wealth tax. In this situation, debt ¯nancing becomes irrelevant for the real
interest rate, and the solutions for R are only two, and equivalent to the
ones that we obtain when there is no government in the model: RL = 1 and

RH =
1
¯
: The ¢R = 0 locus collapses to two vertical lines in correspondence

of the two solutions for R: Figure 9 describes the dynamics in this case. It is
clear that the RL is always a sink, whereas RH implies a positive (negative)

debt and is a saddle (source) if 1 + ¿ >
1
¯

(1 + ¿ <
1
¯
): The equilibrium RH

with 1 + ¿ >
1
¯

is therefore the one that yields the case that we consider

more satisfactory in terms of the stability properties, i.e. the saddle path.
In this case the steady-state solution for debt is given by:

D =
G¡ T

1 + ¿ ¡ 1
¯

modern macroeconomics (see, for example, Blanchard and Fischer, 1989, pp. 230-31).
10A positive level of debt can be a desirable property of an economy, as long as it is

sustainable. In our model, for instance, debt facilitates consumption smoothing over time.
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that implies sensible comparative static properties (
dD
dG
> 0;

dD
d¿
< 0 ,

dD
d¯
< 0):

As already discussed in Section 3, when q = 1 the solution RL can be
ruled out because it would imply in¯nite real balances. This is consistent
with our previous discussion in the simpler version of the model, in which we
have ruled out the lower real interest rate equilibrium because it did not dis-
play the right dynamics and comparative static characteristics. Even though
we must be careful in mechanically transferring these conclusion to the case
of no Ricardian Equivalence (q < 1);we believe that they corroborate, to
some extent, our decision to deem the R1 steady state, that is the one cor-
responding to RL in the non-Ricardian case, as unacceptable. In addition,
comparing Figure 9 with Figure 6, 7 and 8 we can develop a further argu-
ment, perhaps the strongest one, to rule out R1. In Figure 9, where q = 1,
the lower equilibrium yields a value of 1 for the gross real interest rate. Fig-
ures 6, 7 and 8, however, suggest that when we marginally reduce q from 1 to
a value less than 1, the ¢Rt = 0 locus goes from a straight to an hyperbolic
shape. This implies that the RL steady-state goes from 1 to a value smaller
than 1, becoming what we have denoted as R1 in ¯gures 6, 7, and 8. A
gross real interest rate smaller than 1, however, means r < 0: Since in the
steady-state, with constant prices, real and nominal interest rate coincide,
the lower steady state implies not only a negative real interest rate, but also
a negative nominal interest rate, that is obviously economically meaningless.
The numerical simulations that we provide below (see Table 4) support this
reasoning, yielding always a value less than 1 for R1:We are quite con¯dent,
therefore, that we can rule out this equilibrium.

From the above analysis it follows that the only case in which the economy
converges along a uniquely well de¯ned path to a steady-state with positive
debt is when we have three steady states in the region where r < ¿ (Fig 8).

In this case the second steady-state R2 is a saddle-path, while the third
one R3 is a source. It is useful, at this point, to see which cases are likely
to emerge for given parameter values, and how the government's choices
can a®ect the outcome. In our simulation exercises on this case, we start
considering the same benchmark values as in Section 4 (¯ = :9; q = :9;
Ã = :1; Â = :05; G = :3), complemented by T = :2 and ¿ = 0:25: This
yields a solution in which the three steady state are in the region r < ¿; and
a well de¯ned, convergent steady-state exists. The result of the simulations
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are summarized in Table 411. Figure ## was generated in Maple setting the
parameters at the benchmark levels, and it con¯rms the shapes of the loci
already illustrated in the theoretical analysis of Figure ##.

Table 4. Steady-state values of R and D for di®erent numerical examples
(In column 2,3,4 only the parameters reported have been altered with respect
to the benchmark case)

Benchmark q = :85 ¿ = :2 ¿ = :01
R1 = :992 R1 = :987 R1 = :992 R1 = :997
R2 = 1:16 R2 complex root R2 complex root R2 = 1:053
R3 = 1:207 R3 complex root R3 complex root R3 = 1:068
D1 = :338 D1 = :380 D1 = :482 D1 = 7:815
D2 = 1:107 D2 complex root D2 complex root D2 = ¡2:309
D3 = 2:324 D3 complex root D3 complex root D3 = ¡1:713

How do changes in the parameters of the model a®ect the solutions?
Keeping everything else constant, a reduction in q from .9 to .85 gives complex
roots for the second and third steady state. Therefore, we are left only with
the R1 solution12 (See Table 4, column 2). A moderate reduction in ¿ (for
example, from .25 to .2) has the same e®ect (Table 4, column 3), while if
the reduction is drastic (for example, from .25 to .01), we have the case of
one steady-state with positive debt and two with negative debt (Table 4,
column 4). Notice that in this numerical example we have a saddle-path

corresponding to positive debt when 1 + ¿ = 1:25 > 1
¯

= 1:11; and a saddle

path with negative debt when
1
¯

= 1:11 > 1 + ¿ = 1:01: The eigenvalues

for the relevant (positive debt) steady-state have been calculated for this
numerical example and are reported in Table 5, con¯rming that it is a saddle-
path.

Figure ##:Simulations, the benchmark case
11In the benchmark case, the selected steady state implies a value of r w 16%: Although

somewhat more acceptable than the ones obtained in Section 5, the latter is still a quite
unrealistic equilibrium value. Again, it is worth stressing that is not our purpose to
produce realistic estimates of the magnitudes of the variables.

12A similar result emerges if we reduce the discount rate to ¯ = :85 keeping q = :9:
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Table 5. Eigenvalues for the (R2; D2) steady-state in the benchmark case
Steady-state Eigenvalues
R2 = 1:16;D2 = 1:107 ¸1 = :951; ¸2 = 1:169

Although the properties of the solutions depend on the vector of all the
parameters, the previous analysis suggests that a well-de¯ned saddle-path
is more likely to emerge for higher values of ¿ : In some cases, the tax coef-
¯cient on debt needed to ensure a saddle-path with positive debt could be
quite high. We therefore suggest that a government that is faced with the
dilemma of designing a policy rule that is sustainable and at the same time
allows a positive debt steady state could choose an alternative policy rule.
In this new rule taxes are a function not only of debt, but also of the diver-
gence between the real interest rate and the taxation coe±cient on debt. To
clarify our motivations in proposing such a rule, let's consider the following
parametrization, in which the deviation from Ricardian equivalence is larger
than in the benchmark case: ¯ = :9; q = :685; Ã = :1; Â = :05; G = :3;
T = :2 and ¿ = 0:25: This is a case that produces only one real solution for
the steady-state (Table 6, column 1); that we disregard for the usual reasons.
If the government increases ¿ to 0:6; however, we can have a saddle-path with
positive debt (Table 6, column 2).

A saddle-path with positive debt, however, can also be obtained if the
government introduces the alternative rule:
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¿ t = T + ¿1Dt + ¿2(rt ¡ ¿1) (31)

setting the following tax rates: T = :25; ¿ 1 = :07; ¿ 2 = :5 (Table 6, column
3). The eigenvalues corresponding to this steady-state are reported in Table
7

Table 6. Introduction of a interest-tax rule

q = :685 q = :685; ¿ = 0:6 q = :685; ¿ 1 = 0:7; T = :25
R1 = :965 R1 = :958 R1 = :98

R2 complex root R2 = 1:25 R2 = 1:17
R3 complex root R3 = 1:49 R3 = 1:2
D1 = :351 D1 = :158 D1 = 1:053

D2 complex root D2 = :285 D2 = :0048600
D3 complex root D3 = :877 D3 = :1054469

Table 7. Eigenvalues for the (R2; D2) steady-state in interest-tax rule
case

Steady-state Eigenvalues
R2 = 1:17;D2 = :0048 ¸1 = ¡:059; ¸2 = 1:104

With this rule we can have a saddle-path with positive level of debt in
the region where r > ¿. The intuition behind this is quite straightforward.
As we said previously, when the real interest rate is bigger than the taxation
coe±cient on debt, taxes are not growing enough to close the debt if this is
positive, so stability can only be achieved for negative levels of debt. In the
case of the new rule, we can have a positive debt steady state because, even
though the real interest rate is bigger than the taxation coe±cient on debt,
the additional tax component increases with the real interest rate, preventing
the debt from exploding.

From equation (31) it is clear that the new tax rule is taking into account
not only the level of the debt (the stock), but also the stream of payments
for the government that the existing level of debt is generating. The new
taxation component is proportional to the net gains, for the agents, from
holding a unit of debt, that is a °ow variable. If the ¿ 1Dt component can
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be assimilated to a wealth-tax (that hits a stock), the ¿ 2(rt ¡ ¿1) component
can be considered a tax on income from ¯nancial capital.

Formally, with the new tax rule the di®erence equations governing the
system are:

Dt+1 = (Rt ¡ ¿1)Dt ¡ ¿2(Rt ¡ 1¡ ¿ 1) +G¡ T (32)

and

Rt+1 =
1

f¡[1¡ ¿ 1Dt ¡T ¡ ¿ 2(Rt ¡ 1 ¡ ¿1)]
(1 + Ã)
(1¡G)

(1¡ q¯)
(1 + Â+ Ã)

(1¡ q)
q

g + q¯ +
1
q

¡ ¯Rt
(33)

The ¢Dt = 0 locus is still the sum of an hyperbola and of a straight line
(see Appendix). The line is still upward sloping if the coe±cient ¿2 is not

too big (formally if ¿ 2 <
¯

(1 + Ã)
(1 + Â+ Ã)
(1¡ q¯)

q
(1¡ q))

In graphical terms, the introduction of the new component in taxation
shifts the horizontal asymptote of the ¢Dt = 0 locus above zero (to D = ¿2);
and makes possible a saddle-path equilibrium for a positive level of debt in
the region where r > ¿ (Fig. 10).

The plots based on the simulations for the case of the interest-rate rule
are showed in Figure ##13. they con¯rm the theoretical shapes envisaged
in Figure 10.

Figure ##:Simulations: the interest rate rule
13Although R2 and R3 look almos coincident here for scale reasons, the plot of Figure

## is based on the simulations reported in Table ##.
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Figure 10: Interest-rate tax rule
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In the case of the numerical example that we have provided, the main
advantage of using this alternative rule lays in the fact that a ¯scal package
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that implies a much lower tax rate on debt (¿ 1 = 0:7), a small increase
in the lump-sum component in taxes (T increases from .2 to .25) and the
introduction of the new tax component (at the rate ¿ 2 = :5); could be more
feasible, from a political point of view, than the alternative of a huge increase
of the tax coe±cient on debt to .6. A rule like the one that we are proposing
would approximate the e®ects of a rule in which debt inclusive of interest (for
example ¿t = ¿RtDt) but would have the advantage of being more feasible
from a political point of view. As we already stressed in the introduction, we
do not intend to argue that such a rule would be optimal. Nevertheless, we
believe that our analysis could give some useful indication to policy makers
about a possible way to follow in a situation in which political constraint
prevent more drastic measures, like an increase in the taxation of debt (or
a reduction in government expenditure). Although we are not explicitly
considering in the model the possibility that agents could refuse to subscribe
new public debt when this is being taxed (or when the tax coe±cient on
this increase drastrically, how it would be necessary to achieve stability in
the example that we have summarixed in Table 6, column 2 . The latter
is an example of what we mean by political constraints. Our analysis also
gives some warnings about the excessive faith put in the literature and in
policy analysis in ¯scal "closure" rules since, as we have seen, these can fail
to generate a well-de¯ned steady-state for sensible parameters values.

Our analysis is, of course, subject to several caveats. One is the practical
working of a rule that makes taxation a function of the real interest rate.
It could be problematic, for example, to decide which exact measure of the
nominal rates and prices to choose to build the real rate that taxes should
target. Furthermore, even if in our model output is ¯xed, in real economies
increases in the real interest rate are likely to be associated with periods of
recession. This means that also the alternative rule that we are proposing
could be the object of political criticism, since it would be problematic to
introduce a rule that automatically increases taxes during a recession. In
addition to this, such a rule would give to the monetary authorities a certain
degree of (indirect) power on ¯scal policy.

6 Conclusions
This paper uses a modi¯ed version of the Blanchard (1985) model of perpet-
ual youth to investigate the dynamic e®ects of di®erent ¯scal policy rules.
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The main ¯nding of the paper is that a simple ¯scal closure rule, based on
a wealth tax, could be insu±cient to ensure the existence of a well de¯ned
saddle-path equilibrium even when the tax rate exceeds the real interest rate.
We suggest that an alternative way of solving this problem could be to add
another taxation component, that takes in to account the level of the real
interest rate.

Our model has many limitations, in particular a very simple production
structure and fully °exible prices. The latter is re°ected in the fact that,
even with an endogenous labour supply, aggregate per-capita consumption
and output are completely determined by the level of government expendi-
ture, and therefore are ¯xed at some sort of "natural level" if government
expenditure is constant14. The present version of the model can, therefore,
be seen as a ¯rst step for the construction of models in which departures from
pure neo-classical assumptions will be larger. In particular, adding nominal
rigidities and imperfect competition, and adopting a two-country framework,
will allow an analysis of the e®ects of debt policies in a modi¯ed version of
the OR model used in paper 1. Given that OR themselves stress the impor-
tance of breaking down Ricardian equivalence in their framework, this seems
worth pursuing15.
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