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Abstract
This paper concerns “profit-sharing” within an incomplete regu-

latory contract where a municipality delegates a risk-neutral firm to
manage a local utility. Together with a price cap regulation (PCR)
mechanism, the contract envisages the possibility of the municipality
revoking the contract if the firm’s profits are percieved “excessively”
high. We show that when this threat is credible and the cost of exer-
cising it is not too high, a long-term efficient equilibrium arises which
guarantees the firm with an appropriate level of profits. The con-
sequent regulation timing consists of an endogenous regulatory lag
where the regulation has a PCR nature, followed by a period of ROR
in which the firm is motivated to adjust its price downward to avoid
contract recall. We also show that excessive revocation costs make the
firm an unregulated monopolist with an infinite regulatory lag where
ROR looks like a pure PCR.
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1 Introduction
This paper investigates “profit-sharing” device in a regulatory contract signed
between a municipality and a private firm for the supply of local public utility
services. The type of administrative contract we study envisages for the
municipality the temporary delegation of the utility provision to a private
operator. While the ownership of the asset is maintained public, “the right to
use it” becomes private. This form of delegation is justified by the presence
of a residual segment of public utility industries which - notwithstanding
technological change - is still a natural monopoly and is likely to remain so
in the foreseeable future. The entire traditional business of a firm in a utility
industry is no longer defined as a natural monopoly; however, in services such
as sewage and fresh water, urban waste and provision of public transport,
the problem of access facilities remains and - consequently - the problem of
natural monopoly regulation with these residual segments. Here, therefore,
delegation of the contract to a private firm becomes an alternative to direct
public management or to full privatization of the asset.
Both the municipality and the private firm have potential gains from this

delegation contract: on the one side, the private firm has returns guaranteed
by the contract exclusivity and, on the other side, the municipality promotes
efficiency and better and/or cheaper service injecting - through the private
firm provision - technological, financial and managerial resources into the
utility supply. The clean-cut allocation of functions between the municipality
and the private firm - on the one hand planning, control and regulation of
the utility and on the other hand management of the utility - is defined and
ruled in the contract: in this perspective, the contract is itself a regulatory
mechanism where the municipality has the position of residual decision maker
with respect to the private firm as a consequence of property rights which it
maintains1.
In local public utility services, the contract is usually delegated under spe-

cific institutional features differently qualified at national level: in France,
the country with the longest experience in this field, the gestion déléguée in
public utility sectors allows for various forms of contracts2 which are differ-

1The municipality’s role of residual decision maker can also be related to the need to
protect the customers’ “right to be served”. See about Goldberg (1976).

2Among these forms concession, affermage, régie intéressée, gérence are the most
known and particularly used in the water sector (see about Carles and Dupuis, 1989;
Lorraine, 1995).
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ently characterized by the degree of delegation and by financial constraints
on investments. Similarly, in Italy the concessione allows for two forms of
contract3 on the grounds of the relative weight given to planned new invest-
ment and to management of the utility itself. In Germany the industrial
activities of local public utility (Daseinsvorgsorgee) are delegated through
different forms of contracts which have to take account for the Lander’s spe-
cific legislation in these sectors4.
Notwithstanding their different designs, all these contracts have common

features like the definition of a price regulation mechanism, an investment
plan and quality objectives in the service provision. Moreover, at juridical
level, all these contracts share a dual nature: the administrative (public)
nature on the basis of which the municipality holds a favourable position
within the contract, and the private nature via which the wishes of both
parties are expressed and the agreement is determined. In other words,
they are incomplete regulatory contracts where the municipality plays the
role of residual claimer in the relationship with the firm whenever future
contingencies unspecified in the contract occur.
Our analysis takes its cue from the evidence of these different positions

of the two parts in the contract. In particular, we focus on the point that
the municipality is able to exercise the role of residual claimer revoking the
contract to the private firm: once the revocation applies, the management
of the utility is back in the hands of the municipality which can choose from
direct management, or privatization of the asset, or delegation of the contract
to another private firm.
In the real world, revocation usually refers to the right of the municipality

to remove the delegation of the utility provision a) in the event of breach of
the contract by the private operator (i.e. it may occur when the firm does
not respect the terms established in the contract) and b) in the case of re-
demption of the contract by the municipality itself (i.e. it may occur when
political pressure - safeguarding collective welfare - induces the municipality
to consider the firm’s profits as “excessively” high). However, in these two

3These forms are called concessione di costruzione e gestione and concessione di
erogazione di servizio: in the former new investment required by contract is primary with
respect to the management of the utility, while in the latter management of the utility is
the primary aim of the contract itself (see about Mameli, 1998).

4The most used forms of delegation contract in Germany are: Verwaltungshelfer, Of-
fentliche Eirichtung in privater Regie, Nutzungsubertragung, Betreiber (see about Marcou,
1995).
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dimensions the municipality’s right to revoke has substantially different ori-
gins: while in the former it relates to conditions made clear in the contract,
in the latter it belongs to the different positions of the two parties in the
contract. In both the dimensions, the right of revocation is ruled in specific
clauses of the contract where the timing, procedures and possible contractual
indemnities belonging to the exercise of this municipality’s right are defined5.
Though in the regulation of firms managing public utility there is a well-

developed literature concerning the use and effects of revocation when breach
of contract occurs 6, no in-depth analysis has been performed when revocation
occurs via exercise by the municipality of its right to redeem the contract.
We move from this lack in literature, and investigates revocation when the
right of redemption hold7: in particular, we consider how the threat of the
municipality’s revocation affects the private firm’s decisions regarding devel-
opment of its profits. We do this in a simple model where a risk-neutral
firm has been delegated to manage an indivisible public project whose prof-
its evolve stochastically over time. Moreover, by the above discussion, we
assume that the municipality has the right, at any time, to revoke delegation
and return to direct management if the project is a positive net present value
investment. In this respect, therefore, revocation is analogous to a contrac-
tual claim that displays option-like characteristics where the municipality
has the right - but not the obligation - to purchase an asset (the utility) of
uncertain value for a present exercise price, and the value of such a claim is
derived from the market value of the project. The exercise price refers to the
sum necessary to overcome the obstacles to renewing direct management of

5It is interesting to stress here that while in Italy and in France these contracts are
governed by administrative law, in Great Britain there is no law of public contract and the
delegation of public utilities’ provision to private operators (i.e. contracting out) is first and
foremost a political choice that requires the issue of an ad hoc law for its implementation.
Moreover, in Great Britain contracts between public authorities and private operators are
subject to private law: this means that relations between public authorities and private
firms, and between private firms and users of the service, are outlined only within the
contract itself.
The model developed here - as will be seen in the following sections - can also be

extended to contracting out where, within the contract of delegation to the private firm,
there are explicit redemption clauses that reflect those considered in this analysis.

6Many contributions on this topic belong to the analogy between a regulatory contract
and a law contract in determining appropriated damages to be paid in the event of breach
by one of the parties (see about Lyon and Huang, 2000; Brennan and Boyd, 1997; Gregory
and Spulber, 1997; Lyon, 1995; Miceli and Segerson, 1994).

7Then, in the remainder of the paper revocation and redemption are used as synonyms.
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the service such as contractual indemnities on the value of the investment,
technological costs, recruiting and training costs as well as litigation costs if
the firm decides to sue the municipality for recalling the contract. The option
will be exercised optimally when the value of the project exceeds a trigger
value (i.e. an “allowed” level of profits) which is determined endogenously in
the model although the optimal exercise time remains stochastic8.
We offer an optimal regulatory mechanism where the commitment by

the municipality to end the contract if the firm’s “allowed” level of profits
is exceeded ensures that the private operator will behave consistently with
the contract itself: once the firm’s costs or production conditions improve,
it adjusts prices to keep its profits below the allowed level and therefore to
prevent revocation. However, as the revocation threat is costly, a stochastic
regulatory lag may follow during which prices are not revised and it is not
optimal for the municipality to recall the contract.
We then look at the revocation from the perspective of collective welfare

maximization and discuss the specific characteristics of the dynamic regula-
tory rule stemming from the continuous rate of hearing between the regulated
firm and the municipality, as a tool for obtaining a long-term efficient equi-
librium.
Our model is closest in spirit to the theory of monopoly regulation in a dy-

namic setting, in which mechanisms such as rate-of-return regulation (ROR)
and price-cap-regulation (PCR) arise endogenously as a self-enforcing and
mutually beneficial equilibrium9. However, in this literature both the “regu-
lator” and the “regulated” firm share the same bargaining power (i.e. both
players have the incentive to breach the contract) and they are not affected
by regulatory lags. Although playing a crucial role in determining the incen-
tive property of the regulation mechanism, these lags are of fixed time and
exogenous whereas in our setup, the different bargaining positions of the two
parties coupled with the municipality’s option to revoke determine these lags
endogenously as it is in the essence of ROR regulation (Laffont and Tirole,

8Brennan and Schwartz (1982) and Teisberg (1994) model the regulator’s future options
to cut high profits (with possibility of expropriation) as a perpetual call option which
reduces the value of the regulated firm. Recently, referring to the French municipalities’
negotiating disadvantage in the face of a cartelized water management, Clark and Mondello
(2000) model the municipality’s right to revoke delegation as a perpetual call option.
However, these models do not investigate optimal regulatory policy within the regulation
process.

9See for example Salant and Woroch (1991, 1992) and Gilbert and Newbery (1989).
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1994, p.15). Price reviews are initiated by the municipality when revocation
is worth exercising. This excludes that price renewals being perceived as the
time in which the PCR takes some of the well-recognized inefficiencies of
ROR. Only excessive revocation costs make the firm an unregulated monop-
olist, where ROR resembles a PCR with an infinite regulatory lag (Crew and
Kleindorfer, 1996, p. 213). Furthermore, the result of an endogenous regu-
latory lag may also explain the empirical evidence indicating that, although
contracts between local authorities and private operators are of limited du-
ration, their renewals are often signed without any variations of contractual
terms (Joskow and Schmalensee, 1986, p.7).
On a formal level, our paper builds upon two distinct streams of literature.

The first one relates to the stochastic control techniques recently developed
to identify optimal timing rules and optimal barrier regulations10. These
techniques have been widely used in the literature of irreversible investments
(Pindyck, 1991; Dixit, 1992; Dixit and Pindyck, 1994), and emphasize the
role of the option value of delaying investment decision, i.e. the value of
waiting for better (although never complete) information on the stochastic
evolution of a basic asset. The second one considers the existence of efficient
sub-game perfect equilibria for infinite-horizon-threat-games where, in the
absence of a binding commitment for the threatener, it is an equilibrium for
the victim to make a stream of payment over time (Klein and O’Flaherty,
1993; Shavell and Spier, 1996). The expectation of future payment keeps the
threatener from exercising its threat. Indeed, we formulate a time-dependent
game in continuous time, where optimal revocation for the municipality re-
quires identification of the time at which to pay a sunk cost in return for a
public project whose value is stochastic. The municipality does not revoke
the contract until revenues that it expects to earn from managing the invest-
ment by itself is equal to the expected present value of the profits regulation
that the firm adopts11.
The plan of the paper is as follows: Section 2 describes the model focusing

firstly on the contract and the timing, then on the firm’s value and finally on
the municipality’s option to revoke. Section 3 examines the regulation that
belongs to this scheme. Section 4 discusses results and the policy implica-
tions. Finally, the Appendix gives precise statements of the results derived
10We refer here to the works of Harrison and Taksar (1983) and Harrison (1985).
11See Moretto and Rossini (1997, 2001) for the formulation and application of these

infinite-horizon-threat-games.
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heuristically in Section 3 with all the proofs.

2 The Basic Framework

We begin with a description of the key features of the regulatory contract,
then we turn to the performance of the regulatory mechanism and to the
policy implications.

2.1 The regulatory contract and its timinig

We consider a simple model where a self-interested-risk-neutral municipality
delegates a risk-neutral firm to manage a one-time sunk indivisible public
project. Here, what is called “delegation” is the temporary (although long
duration) supply of a local public service by a municipality to some pri-
vate operator under contractual relationship12. For the simple contract we
consider, the municipality maintains the ownership of the asset while the
firm has the “right to use it” and we assume that no new investments are
undertaken during the delegation13. At t = 0, the parties sign a contract
specifying a price cap that consumers should pay for the service inclusive
of an automatic adjustment clause such as p̂t = p̂e(RPI−x)t, where the price
is allowed to increase by the difference between the expected inflation rate
(the Retail Price Index, RPI) and an exogenously given expected increase
in the productivity the firm should obtain over time (x). Moreover, the dele-
gation contract also includes a revocation (redemption) clause by which the
municipality always has the right to recall delegation if the firm’s profits are
perceived as “excessively” high, in favor of direct management of the util-
ity14. However, to manage the utility the municipality has to pay a (sunk)
12In principle, our analysis could be applied to utilities of global range (national utili-

ties), but given our assumption on revocation of the contract, the local dimension is more
realistic. In fact, the management of a contract at national level can affect the delegated
firm’s bargaining power which, in turn, can affect the revocation decision (regulatory cap-
ture).
13For the analysis of a regulatory contract where new investments are negotiated be-

tween a municipality and a private firm see Dosi, Moretto and Valbonesi (2001).
14In our framework, the private operator will never refuse to operate because the utility

is always a positive net present value project, as described below.
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revocation cost I which, without any loss of generality, we assume does not
include any contractual indemnities on the value of the asset.
The setting of the game is the following. At time zero, the municipality

assigns the contract to the firm and negotiates the price celing p̂ and the
x factor. On the basis of the estimated revocation cost I and the expected
evolution of the firm’s profits, the municipality determines an upper trigger
level of profits15. The firm is allowed to continue unaltered until this level is
crossed. The first time the municipality ascertains that this trigger value has
been crossed, it intervenes calling for a revocation of the contract. The firm
reacts to the commitment of the municipality to end the contract by adjusting
its price downward to keep its profits below the allowed level. Once reduced,
the new price remains valid until profits cross the trigger level again, inducing
a new price revision. The firm can choose to reduce its profits to guarantee
the continuity of delegation or to deviate and keeps its profits, knowing that
consequently the contract will end.
This simple setting captures the characterisitcs of a delegation contract

where the PCR is negotiated under the threat of a more stringent renegotia-
tion and where the renegotiation timing is determined endogenously by the
dynamic of the contract, i.e. the PCR incorporates an endogenous “profit-
sharing” mechanism.

2.2 The firm’s value

Once set up, we assume that the single project allows some flexibility in its
operation at each time t ≥ 0, by varying certain inputs according to the
following production function:

qt = atl
ϕ
t with 0 < ϕ < 1 (1)

where qt denotes the production at time t, lt is the operating input such as
labor (or some intermediate input) and at is a technology-efficiency parameter
whose value is determined stochastically. The operating input is a perfectly
flexible factor which can be rented at the instantaneous price wt whose value
15Asymmetric information at time zero between the firm and the municipality about

the revocation cost does not preclude the timing of the game.
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is also stochastic. The operating cash flow function is defined as:16

π(pt, at, wt) = max
lt
ptqt − wtlt (2)

subject to equation (1)and the price-cap pt ≤ p̂t ≡ p̂e(RPI−x)t. For sake of
simplicity and without sacrificing in generality, we assume that in the above
maximization the price constraint is always binding, which allows us to write
the operating cash flow as:17

π(p̂t, θt) = Π(p̂t)θt (3)

where:
Π(p̂t) = (1− ϕ)ϕ1−ξ p̂ξt

and:
θt = θ(at, wt) ≡ aξtw1−ξt with ξ =

1

1− ϕ
> 1 (4)

The new variable θt summarizes at every instant the business conditions
for the project, and satisfies the conditions ∂θt

∂at
> 0 and ∂θt

∂wt
< 0 : it is higher

the higher the productivity indicator at and the lower the flexible-factor
rental cost wt.
Uncertainty is introduced in the model by assuming that both at and wt

evolve over time according to geometric Brownian motions, with instanta-
neous rates of growth αa ≥ 0, αw ≥ 0 and instantaneous volatilities σa > 0,
σw > 0. That is:

dat = αaatdt+ σaatdW
a
t , a0 = a

16In our framework the difference between PCR and fixed price regime is not relevant
as the regulated firm does not face competition.
17For example, the operating profits function (3) can be obtained by fixing pt ≤ p̂t and

assuming that the firm faces a completely inelastic demand function. That is:

π(pt; at, wt) = max
pt
ptqt −wtl(qt)

subject to: D(pt) ≤ qt and

D(pt) = dtp
−µ
t with µ→ 0

where the parameter dt is an index of the position of the demand curve. This form of
the demand function is in agreement with the findings of Joskow and Schmalensee (1986,
p.3). These authors underline that the demand for utilities such as electricity, water and
gas by most industrial customers and all residential customers is very inelastic especially
in the short term.
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dwt = αwwtdt+ σwwtdW
w
t , w0 = w

where dW a
t and dW

w
t are the standard increments of two Wiener processes

(possibly correlated), uncorrelated over time and satisfying the conditions
that E(dW a

t ) = E(dW
w
t ) = 0 and E[(dW

a
t )
2] = E[(dWw

t )
2] = dt . In other

words, we assume that the input’s price and the factor’s productivity are
expected to grow at a constant mean rate, but the realized growth rates are
stochastic, normally distributed and independent over time. These assump-
tions allow us to reduce the model to one dimension.
By expanding dπ(p̂t, θt) and applying Itô’s lemma for Brownian process

it is easy to show that π(p̂t, θt) is driven by:

dπt = απtdt+ σπtdWt with π0 = π, (5)

with:
α ≡ [αθ + ξ(RPI − x)],

where αθ ≡ ξαa − (ξ − 1)αw + ξ(ξ − 1)(1
2
(σa)2 + 1

2
(σw)2 − γσaσw)], and:

σ ≡
q
(σa)2ξ2 + (σw)2(ξ − 1)2 − 2γσaσwξ(ξ − 1).

The drift and the standard deviation parameters of the process πt are lin-
ear combinations of the corresponding parameters of the primitive processes
at andwt, with weights given by the exponents of (4) and γ = E(dW a

t dW
w
t )/dt.

Hence, making use of (3) and (5), and provided that ρ−α > 0, the expected
value at time t of discounted cash flows from an infinite-lived project can be
expressed as Vt =

Π(p̂t)θt
ρ−α , resulting in dVt being given simply by:

dVt = αVtdt+ σVtdWt, V0 = V (6)

In the remainder of the paper Vt, which evolves according to (6) with
starting state V0, is taken as the primitive exogenous variable for the munici-
pality’s delegation-revocation process. In the interest of simplicity, V0 can be
interpreted both as the project value and as the “reasonable” rate of return
at the delegation time to induce the firm to manage the utility. However, as
any “reasonable” rate of return on an investment could be imbedded directly
through a contractual (fixed) price for the service, this formulation sacrifices
no generality18. Finally, if revocation is carried out, the firm suffers a loss
V, while the municipality derives a gain V − I . As V > V − I , a revoca-
tion implies a dead weight loss given that the firm’s loss exceeds the local
authority’s gain.
18In terms of cash flow, the local authority may set at time zero the price of service p̂
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2.3 What is the value of an option to revoke?

For the municipality, optimal revocation implies finding the time at which to
pay the sunk cost I in return for a project whose value V evolves according
to (6). If we denote the value of the municipality’s revocation clause at t = 0
by Fm(V ), it is equivalent to valuing a perpetual call option, i.e.:

Fm(V ) = max
T
E0

h
(VT − I)e−ρT | V0 = V

i
(7)

where T (V ∗) = inf (t ≥ 0 | Vt − V ∗ = 0+) is the unknown future time when
the revocation is made and V ∗ is the value that triggers it. The maximization
is subject to equation (6), ρ is the constant discount rate and V0 is the value
of the utility at time zero. To simplify discussion we assume, if not otherwise
indicated, that V0 < V ∗ so that T ∗ > 0 (see Appendix for the general case).
By an arbitrage argument and applying Ito’s lemma, the value of the option
to revoke held by the local authority is given by solution of the following
Bellman equation (Dixit and Pindyck, 1994, p. 147-152):

1

2
σ2V 2Fm

00 + αV F 0m − ρFm = 0 for V ∈ (0, V ∗], (8)

where Fm(V ) must satisfy the following boundary conditions:

lim
x→0Fm(V ) = 0 (9)

Fm(V
∗) = V ∗ − I (10)

F 0m(V
∗) = 1 (11)

If the value of the utility goes to zero, the value of the option should
also go to zero. Efficient operation conditions (10) and (11) respectively
imply that, at the trigger V ∗, the value of the option is equal to its liabilities
where I indicates the sunk cost for revoking the contract (matching value
condition) and suboptimal exercise of the option is ruled out (smooth pasting
condition). By the linearity of (8) and using (9), the general solution is:

so that the firm breaks even:
Π(p̂)θ0 ≤ (ρ− α)s0

where s0 is a “reasonable” rate of return (Joskow, 1973).
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Fm(V ) = AV
β1 , (12)

A is a constant to be determined and β1 > 1 is the positive root of the
quadratic equation:

Φ(β) =
1

2
σ2β(β − 1) + αβ − ρ = 0 (13)

Furthermore, as (12) represents the option value of optimally revoking,
the constant A must be positive and the solution is valid over the range of V
for which it is optimal for the municipality to keep the option alive (0, V ∗].
By substituting (12) for (10) and (11) we get:

V ∗ =
β1

β1 − 1
I, with

β1
β1 − 1

> 1 (14)

and:

A(V ∗) =
1

β1
(V ∗)1−β1 > 0,

Putting together (7), (10), (11) and (14), we can write the municipality’s
investment opportunity at time t as:

Fm(Vt) =


AV

β1
t for all Vt < V ∗

Vt − I for all Vt ≥ V ∗
(15)

The optimal trigger value V ∗ indicates the firm’s value for which the
municipality will find it profitable to revoke or, in other words, the local
authority will find it expedient to manage the public service by itself the
first time Vt, randomly fluctuating, hits the upper threshold level V ∗.

3 Firm performance under the threat of re-
vocation

From the previous section, once the delegation is in place, the municipality
does not have any incentive to revoke the contract as long as Vt is below the
revocation level V ∗. Indeed as, by (10) and (15), Vt−I−AV β1

t < 0 for all Vt <
V ∗, recalling the delegation implies a cost to the local authority which makes
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the (threat of) revocation not credible. On the contrary, for Vt > V ∗ the local
authority’s gain from managing the utility is strictly positive, Vt − I > 0.
Here, the threat is credible. This reveals the simple stationary nature that
this extreme threat possesses: the first time V hits V ∗ revocation is carried
out, the firm suffers the loss V ∗ and the municipality’s gain is V ∗ − I. This
extreme equilibrium represents the minimax point of the game19.
To avoid revocation, the firm may be willing to reduce profits to keep Vt

below V ∗ and then to guarantee the continuity of the contract. However,
without a binding commitment a one-time transfer, based on the difference
Vt − V ∗, will be inefficient (Klein and O’Flaherty, 1993; Shavell and Spier,
1996). The firm knows that the municipality has an incentive to carry out the
threat as soon as V ∗ is hit. In this respect, the municipality can set the length
of the relationship whereas the firm cannot. If the firm makes a once-for-all
reduction of its profits the first time Vt hits V ∗, the local authority will revoke
immediately after regardless of the level of the regulation. Furthermore,
by backward induction, the same happens for any finite number of profit
reductions. The firm does not have any incentive to regulate its profits to
delay revocation. The municipality does not expect to see regulations and
optimally carries out the threat as soon as V ∗ is hit. The unique sub-game
perfect equilibrium is inefficient: the revocation is carried out regardless of
the firm’s gain by staying in the market20. To avoid this inefficiency the firm
must regulate in continuum its profits. For t ≥ T ∗ the firm elects V ∗ as its
ceiling and chooses to reduce expected profits via a downward adjustment
of the PCR just enough to keep Vt from crossing the ceiling V ∗, so that
continuing the contract or revoking it makes no difference to the authority.
Our solution concept is subgame-perfect equilibrium in (non Markov)

stationary strategies. In particular, we look for a regulatory function r(.)
mapping the past history of the observable variable V to the current firm’s
“profits regulation” chosen from [0,∞) such that Vt < V ∗. A strategy rule
for the municipality is a mapping φ(r(.)) from the observation space of the
municiaplity in [revoke, do not revoke].
The theory of the “regulated” Brownian motion can be used to character-

19We stress that the threat of revocation refers to V, and not to the current profits π.
20For V > V ∗, “...the threatener’s problem is that he will have an incentive to carry

out his threat even if he is paid... Because this means that the victim will not prevent the
threatened act by paying, he will not pay. The threatener cannot overcome this problem
in a single (or finite) period setting, and his threat will therefore fail in this version of the
model” (Shavell and Spier, 1996, p. 3-4).
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ize the optimal stationary strategy21. Letting the firm start with the initial
value V0, the optimal stationary strategy from here on is a simple one: for
Vt < V

∗, it allows Vt to evolve according to the geometric Brownian motion
(6); at V ∗ a costless “profits regulation” rt is applied so that the “regulated”
process V rt ≡ Vt − rt never goes above V ∗22. Therefore, the overall process
can be described as23:

dVt = αVtdt+ σVtdWt − drt, V0 = V, for V ∈ (0, V ∗] (16)

where the increment drt gives the sum the firm is willing to pay (i.e. the
profits reduction that the firm is willing to bear) between t and t+dt to keep
the delegation contract alive. Moreover, the optimal profits regulation rt,
which represents the upside value of the project cut by the regulation, takes
the form (see Appendix and figure 3)24:

rt = [1− inf
T∗≤v≤t

µ
V ∗

Vv

¶
]Vt if Vt ≥ V ∗ (17)

This profits control has several interesting features:

• Firstly, from (16) the sum the firm is willing to pay depends on the
municipality’s behaviour only through dt times units ago, which is in-
terpreted as a reaction time. Specifically, if the firm does not wish to
pay when Vt ≥ V ∗ it takes dt units of time for the municipality to
analyze and react25;

21See Harrison and Taksar (1983), and Harrison (1985) for a in-depth analysis of “reg-
ulated” Brownian motion.
22The assumption that the profits control is cost-free is not technically necessary for the

results.
23By the characteristics of the profit regulation mechanism we maintain, without any

confusion, the symbol V for the firm’s regulated value (see Appendix).
24In technical terms, V ∗ is no longer an absorbing barrier but is a (reflecting) barrier

control, while the optimal control rt is a right-continuous, non-decreasing and non-negative
adapted process.
25In continuous time repeated games there is no notion of last time before t. The real

line is not well ordered and then induction cannot be applied. Continuous time can be
seen as discrete-time with a length of reaction (or information lag) that becomes infinitely
negligible to allow the threateners to respond immediately to the firm’s actions. In Simon
and Stinchcombe (1989), for example, a class of continuous strategies is defined so that
any increasingly narrow sequence of discrete-time grids generates a convergent sequence of
game outcomes whose limit is independent of the grid sequence. In Bergin and MacLeod
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• Secondly, the optimal profits control rt represents the cumulative amount
of the project’s value that the firm abandons up to time t. The firm
must increase rt fast enough to keep Vt − rt below V ∗ but wishes to
exert as little control as possible subject to this constraint;

• Thirdly, rt is parametrized by the initial condition V ∗ which, in turns,
depends on the revocation cost I. An increase in I involves a reduction
in rt;

• Finally, as rt depends only on the primitive exogenous process Vt, the
“regulated” process Vt− rt is also a Markov process in levels (Harrison,
1985, Proposition 7, p. 80-81).

The first three properties make profits regulation related to past real-
izations of Vt and then to the history of the contract. Since Vt fluctuates
stochastically over time, although the intervention is continuous, its rate of
change is discontinuous. Furthermore, the last property is important as it ef-
fectively makes the “regulated” process (16) a function solely of the starting
state. At the beginning of each period both the firm and the municipality
can predict the evolution of Vt referring only to its current state which, in
turn, makes any subgame beginning at a point at which revocation has not
taken place equivalent to the whole game. After all, although the profits
regulation is a non Markovian the “regulated” process yes.
The above strategies and the profits regulation mechanism (17) can im-

prove upon non-cooperative outcomes. They imply an instantaneous re-
sponse by the municipality when the firm departs from the profits regulation
rule (17) with the minimax threat: revocation. Since the project is infi-
nitely lived, the present value of foregone profits will ensure participation by
the firm and the expectation of future profits regulations keeps the authority
from exercising the threat.

Proposition Part I (Threat equilibria). For any V ∗ > V0 > 0, if the
firm regulates its profits with the non-decreasing proportional rule (17),
then the following municipality strategy is a subgame-perfect equilib-

(1993) a class of inertia strategies represents a delay in response: an action at time t must
also be chosen for a small period of time after t, with this small period of time tending to
zero.
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rium:

φ(Vt, rt) =



Do not revoke
at t ≥ T ∗ if the firm has followed the rule rt
to keep Vt < V ∗ for t0 < t

Revoke
if the firm has deviated from rt
at any t0 < t

Proof. see Appendix.
According to the stationary strategy rule φ, the firm observes Vt, chooses

an action (17) and the municipality stays (φ(Vt, rt) = “Not Revoke” for all
t ≥ T ∗) or, equivalently, at T ∗, sets a continuous time control rule for each
realization of Vt for any t ≥ T ∗26. The firm’s value under profits regulation is
obtained from Vt by imposition of an upper control barrier at V ∗. Regulation
increases to keep Vt lower than V ∗ and it is given by the cumulative amount
of profits control exerted on the sample path of Vt up to t. Regulation is
related to the history of the game and past value realizations, this makes
φ(Vt, rt) a time-dependent strategy. The local authority’s “threat” strategy
is adopted if the firm deviates from the regulation rule (17). The municipality
believes that this mechanism, from initial date and state (T ∗, V ∗), is kept in
use for the whole (stochastic) planning horizon. If the firm deviates, the local
authority expects a fresh rule. The punishment for the firm deviating from
the announced rule is revocation27.
However, although the public project lives forever, profits regulation takes

place within a finite (stochastic) time span. Owing to uncertainty, neither
player can perfectly predict Vt each time. As Vt follows a random walk there
is, for each time interval dt, a constant probability of moving up or down, i.e.
of the game continuing one more period. The game ends in finite (stochastic)
time with probability one, but everything is as if the horizon were infinite28.
26In our continuous time setting we can assume, without any loss of generality, that

when the municipality is indifferent it may exercise the threat; (see footnote n.25).
27The firm cannot commit itself to changing the rule without losing its credibility. In

this respect, a change in the profits regulation policy is perceived by the municipality as
a stoppage of regulation.
28In a discrete-time and constant-payoffs game, Shavell and Spier (1996) propose a

similar scheme, where the threatener uses a threat strategy with maximal punishments.

16



Proposition Part II (Regulation timing). As long as Vt < V ∗ nothing
is done. The first time Vt crosses from below V ∗, at T ∗ = inf(t ≥
0 | Vt − V ∗ = 0+), the firm regulates profits using (17) to keep the
municipality indifferent to revoking. Regulation goes on up to the point
where the unregulated firm’s value Vt crosses from above the trigger V ∗

and the authority becomes (again) indifferent, i.e. T ∗0 = inf(t ≥ T ∗ |
Vt − V ∗ = 0−).

Proof. see Appendix.
Since the authority’s strategy is time-dependent, the firm cannot decide

whether to continue or stop the regulation referring only to the current re-
alization of Vt. If the regulated value Vt − rt goes below V ∗, in the interval
[T ∗, T ∗0) the firm may be willing to stop regulating profits to increase its
value. However, for the sake of perfectness, earlier interruption is not al-
lowed before T ∗0. Earlier interruptions are not feasible as long as the threat
of contract closure is credible. The credibility relies on the fact that the
municipality’s option to revoke if the firm deviates from rt is always worth
exercising at Vt ≥ V ∗, i.e. Fm(Vt) ≥ Fm(V ∗). At T ∗0, however, the firm is
able to restore the process Vt and the game can start afresh. The timing of
the game is shown in figure 1 below.

Figure 1 about here

4 Discussion and Policy Implications
Although our regulation mechanism is simple in nature, several novel impli-
cations follow from our analysis. We summarize the discussions of our results
in the following items.

• Profit-sharing and price adjustment

As argued by Lyon (1996) and Crew and Kleindorfer (1996), most of
the PCR plans implemented in recent years for monopoly regulation do not

Our continuous time framework calls for a refinement of the threat strategy as in footnote
n.25.
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simply cap prices. To prevent firms’ profits increasing excessively, they also
include limits, called deadbands, on how much firms can gain before trig-
gering profit-sharing with customers29. In practice, these regulation plans
require, in the event of the firm’s profits going beyond a “pre-determined”
level, the x factor to be automatically adjusted upward, making the price
cap adjustment rate RPI − x more stringent30.
What is the profit deadband that should trigger revision of the price cap

mechanism? And what should the revision level of the x factor be to optimise
the expected welfare? The model presented above helps us to answer these
questions31.
First of all, it is worth stressing that the profit-sharing rule (17) is endoge-

nous: it rises as optimal response from the continuous relationship between
the firm and the municipality. Second, this rule is dynamic in nature: such
a repetition of the relationship implicitly establishes the terms of a long-
term contract which guarantees the firm with an “allowed” level of profits.
Third, the optimal deadband is given by V ∗ (or V ∗ /I): the firm’s value is
allowed to evolve according to the geometric Brownian motion (6) until V ∗

is reached. At V ∗ the price adjustment rule RPI − x is revised to stop the
process Vt from going above V ∗. From this moment onwards the Brownian
motion describing the regulated profits is given by (16), i.e.:

dVt =
h
αθ + ξ(RPI − x0)

i
Vtdt+ σVtdWt, V0 = V, for V ∈ (0, V ∗] (18)

29Among those favourable to proft-sharing see also Sappington and Sibley (1992); Sap-
pington and Weisman (1996); Burns, Turvey and Weyman Jones (1998).
30Although some authors have called this variation of the PCR a “sliding-scale” reg-

ulation (Lyon, 1996; Sappington and Weisman, 1996), we prefer to call it PCR with a
profit-sharing clause as variation of the x factor in the price cap mechanism serves to
redistribute rents to customers, making the regulation more ”fair”. We maintain the
term “sliding scale” regulation - as proposed by Joskow and Schmalensee (1986) - for a
mechanism that encompasses ROR and PCR.
31Lyon (1996) in a static model explores the efficiency property of regulatory schemes

that contemplate profit-sharing. He argues that total welfare can always be increased by
switching from a scheme of pure PCR to one with sharing. Crew and Kleindorfer (1996)
propose that the x factor be determined with a bargaining process between the firm and
the regulator in the same way as the “allowed” rate of return is determined in the costs
of service regulation.

18



where x0 = x −
d inf
0≤v≤t

(V ∗/Vv)/dt

ξ inf
0≤v≤t

(V ∗/Vv) > x is the endogenous new price decrease

factor32. Fourth, by the regulatory profit restriction x0 the probability of an
increase in the firm value decreases as the firm value rises (Teisberg, 1994).
Let’s now discuss in detail the price adjustment behind the profit-sharing

rule (17). Once the numerical value for V ∗ is known, by using (3) and (4),
the optimal policy (14) can be written as Π(pt)θt =

β1
β1−1(ρ−α)I, from which

the boundary value for θ∗ is given by:

θ∗(pt) =
β1

β1 − 1
(ρ− α)

I

Π(pt)
(19)

For any given value of the price cap p̂t, random fluctuations of θt move
the point (θt, pt) horizontally to the left or right. If the point goes to the
right of the boundary, then a price reduction is immediately undertaken, i.e.
pt ≤ p̂t, so that the point shifts down to the boundary. If θt stays on the
left of the boundary, no new price regulation is undertaken. Price reduction
proceeds gradually to maintain (19) as an equality. For example, setting
RPI − x = 0 so that p̂t = p̂, by inverting (19) we can obtain the optimal
boundary function p(θt) which determines the optimal price regulation as a
function of the sole state variable θt and the parameter of the problem ξ :

pt = p̂

Ã
θ∗

θt

!1/ξ
with

dpt
dθt

< 0 (20)

The boundary function for this case is shown in Figure 2.

Figure 2 about here

• Sliding scale regulation
32Panteghini and Scarpa (2001) consider a similar problem in a continuous time stochas-

tic model of investment choices by a regulated firm. However, in their model the RPI−x
rule remains in place as long as profits are below an exogenously given level Ṽ , and, if
Vt > Ṽ , the price decrease factor increases exogenously from x to x0.
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As the municipality’s goal is rent extraction, the profit-sharing rule (17)
also establishes a connection between ROR and PCR. Simple algebra allows
us to write (17) as a “one-side sliding scale” over a normalized “allowed” rate
of return, similar to the formula proposed by Joskow and Schmalensee (1986,
p. 29):

srt = st + ht (s
∗ − st) , with ht =

 0 , for s0 ≤ st < s∗
1− inf

T∗≤v≤t
(V ∗/Vv)

1−(V ∗/Vt) , for st ≥ s∗
(21)

where srt =
V rt
I
, st =

Vt
I
and s∗ = V ∗

I
. By (21), the actual rate of return under

regulation srt is given by the actual rate of return without regulation st, i.e. at
prices that prevail in time t, plus the adjustment s∗−st, where the revocation
rate s∗ plays the role of the upper “allowed” rate of return. Thus, if at time t
the earned rate of return goes above s∗, the output price is adjusted according
to (19) to decrease the rate of return by the fraction ht ≥ 1 of the difference
between the earned rate of return and the allowed rate of return. Contrasting
with the formula of Joskow and Schmalensee in (21) ht is time-dependent and
not-decreasing33. That is, ht is the optimal adjustment rate that keeps the
municipality indifferent to revoking the contract or leaving the project to
the firm. For the sake of perfectness, ht cannot decrease when the difference
between the earned rate of return and the allowed rate of return drops. In
the period 0 ≤ t < T ∗ where st < s∗, we will have ht = 0 and srt = st. During
this regulatory lag the firm is allowed to earn the actual rate of return at the
rates fixed at time t = 0 (i.e. pt = p̂t, which represents a period of “pure”
PCR). When st ≥ s∗, in period t ≥ T ∗, the adjustment rate ht jumps to 1
and it will remain at that value until dVt > 0 so that srt = s∗. The firm is
allowed to earn a rate of return no greater than the upper rate s∗ = β1

β1−1 > 1
(i.e. we get a period of ROR regulation with pt < p̂t, ). However, in periods
where dVt < 0 we will have ht > 1 in order to keep the difference srt − st
constant at the highest level reached up to t.
33The formula proposed by Joskow and Schmalensee would adjust prices so that the

actual rate of return srt at new prices would be given by: s
r
t = st + h (s

∗ − st) , where st
is the rate of return at the prices in the year t (old prices), h is a constant between zero
and one and s∗ is the ROR target. Hendricks (1975) and Brennan and Schwartz (1982)
have also presented models of regulated firms in which regulatory policy is represented by
predetermined bounds on the rate of return.
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The non-decreasing property of ht makes the one-side sliding scale (21)
similar to an “insurance premium” based on the rate of return st, paid in
continuous time and in advance by the firm to avoid revocation. The firm
starts paying the first time st goes above s∗ (the first occurrence time) and
cannot stop or reduce it since this would cancel its coverage. It continues
paying even when “things get better” (profits decrease as well as the munic-
ipality’s option value of revoking the contract) in order to have the option
of being active next time the value goes above s∗. When the firm’s current
rate of return goes again above s∗ (the second occurrence time), the firm will
be asked to increase its premium to maintain the coverage. It follows that
the new regulation is higher, since the firm pays the premium due after the
“second occurrence” (see figure 3 in the Appendix).

• Revocation as consistent regulatory policy

We can highlight the municipality’s optimal revocation timing by com-
paring the opportunity costs of currently revoking the contract and the cor-
responding benefits of optimally postponing the decision. This can be done
by evaluating the difference Fm(Vt)−V 0m(Vt) where, by (15), V 0m(Vt) = Vt− I
is the net value of the public project when it is acquired at time t, and
Fm(Vt) = AV

β1
t . If we assume Vt < V ∗ so that the municipality finds it

optimal to wait before revoking, we get:

Fm(Vt)− V 0m(Vt) = I + AV β1
t − Vt (22)

The first term on the r.h.s. of (22) is the direct cost of revocation. The
second term is the value of the option, and since revocation implies “killing”
this option, in (22) it appears as an opportunity cost of current revocation.
The third term is the current value of the project and is thus an opportunity
benefit. Since Vt < V ∗ and Fm(Vt) − V 0m(Vt) > 0, the direct cost plus the
opportunity cost are greater than the opportunity benefit, and the revocation
decision should be delayed.
Finally, it is important to stress that we get the same result if, reverting

the point of view, (22) is written as I−(Vt−AV β1
t ) where the term in brackets

represents the value of the regulated firm reduced by the municipality’s future
options to be revocated (Brennan and Schwartz, 1982; Teisberg, 1994).

• Revocation and welfare.
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Our option to revoke is similar in spirit to the option to own studied by
Nőldeke and Schmidt (1998). In a hold up problem in which two parties
have to make relationship-specific investments, Nőldeke and Schmidt show
that an option to own contract where one party owns the firm initially while
the other has the option to buy it at a price specified (in the contract) at
a later date, induces both parties to invest efficiently. They also show that
this result is robust to renegotiation and uncertainty, and that it permits
specification of side payments for the joint surplus between the parties.
In our specific instance, the higher the cost of revoking the contract the

higher the option to revoke. However, a higher value of the option to re-
voke increases the value of waiting for better information on the evolution of
the public project before the local authority commits itself to recall delega-
tion. In particular, the expected value of cumulative future profit reductions
(equations (27) and (40) in Appendix) can be expressed, at time t, as :

R(Vt;V
∗) = Et

½Z ∞
t
e−ρ(s−t)dr(Vs) | V rt = Vt

¾
(23)

= (ρ− α)Et

½Z ∞
t
e−ρ(s−t)r(Vs)ds | V rt = Vt

¾
= B(V ∗)V β1

t ,

with B(V ∗) = 1
β1
(V ∗)1−β1 > 0 and Vt is the firm’s regulated value as in

(16). Equation (23) is the firm’s expected cumulative controls in terms of
profit reductions. The adoption of the policy rule (17) means that it makes
no difference to a “local community” whether it receives benefits from the
firm’s profit regulations or from the local authority’s maximization of the
discounted customers’ surplus, i.e.34:

A(V ∗)V β1
t −B(V ∗)V β1

t = 0, for t ≥ T ∗.
• Regulatory information and regulatory commitment
Although it is universally recognised that the PCR offers considerable

advantages compared to ROR in improving firms’ efficiency, Crew and Klein-
dorfer (1996) argue that: “Price cap renewal, in theory and in practice, is
34Formal proof (see Appendix) shows that the municipality in revoking the contract does

so in rational expectation of subsequent (marginal) profit regulations by the firm. It turns
out that for the municipality this makes no difference to the trade-off between revoking
now and waiting another instant, i.e. the municipality’s option value is identically zero.
See Leahy (1993) for the same result in the context of a competitive industry.
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recognized as the most likely time for PCR to adopt some of the inefficiences
of ROR...(p.212)”. In this regard, it is important to underline the endoge-
nous nature of the regulatory lag resulting from our model. In this specific
instance, the price adjustment behind the profit-sharing rule (17) is parame-
trized by the deadband V ∗ (or revocation rate s∗ if we refer to (21)). Hence,
in addition to the parameters of the model, the key variable for valuing the
option to revoke and thus the municipality’s position during the delegation
period is the direct cost I which - in turn - depends, excluding indemnities,
on training and hiring costs as well as on litigation costs. Thus, information
on production and demand/cost data that the municipality uses to write the
regulatory contract are fundamental in determining the length of the reg-
ulatory lag. This effect could be weighted with respect to the well-known
tradeoff in ROR literature between a short regulatory lag that promotes al-
locative efficiency but is bad for productive efficiency, and a long regulatory
lag that produces the opposite effect on allocative and productive efficiency.
In the same work, Crew and Kleindorfer (1996) also argue that a ma-

jor issue in incentive regulation is commitment: “If a company is concerned
that the regulator will penalize it at the end of or even during the price-
cap period if it is successful, it may not pursue efficiency as strongly as
implied by the apparent incentives of PCR. Thus, the notion that the regu-
lator will not renege on the terms of PCR is very important for efficiency to
be achieved....(p.218)”. However, they subsequently admit that as the reg-
ulators’ goal is rent extraction it is not difficult to recognise that they have
limited incentives to commit, and that this difficulty is at the base of the
recent growth of regulatory contracts which incorporate sharing rules: “Such
devices provide sharing of gains to ratepayers and therefore might be seen to
be less vulnerable to reneging by the regulator if the company does well. In
addition, such devices, in limiting how well the company can do, make the
regulator less likely to renege....(p.218)”.
However, in the process we described in this paper, in addition to the

trade-off between commitment and reneging raised by Crew and Kleindor-
fer, it also becomes crucial to highlight the credibility of the municipality to
pursue these sharing rules, that is to revoke the contract when the revoca-
tion trigger V ∗ is reached. This credibility is relevant for the renegotiation
process itself since it determines the municipality’s bargaining power with
the delegated firm and - in turn - the timing of contract renewal. Indeed, if
the revocation costs, on the one hand, measure the “inefficiencies” the local
authority incurs by direct management and are, therefore, used to positively
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evaluate the decision to delegate the public service to a private operator, on
the other hand they raise the problem of the irreversibility of the delegation
once it is made. In the case of local provision of the utilities we refer to, after
the delegation has taken place the municipal authority plays the role of a
regulator with respect to the private firm: the inexperience of the municipal
authority in this role can negatively affect its credibility and thus determine
a negotiating disadvantage (Clark and Mondello, 2000).

• Market expectations

As long as public projects are, in general, not traded assets, their growth
rate α may actually fall below the equilibrium total expected rate of re-
turn α̂ required in the market by investors from an equivalent-risk traded
financial security, i.e. δ ≡ α̂ − α > 0 (McDonald and Siegel, 1986). Rely-
ing on the asset price equilibrium relationship α̂ − r = λσ, we are able to
evaluate the municipality’s value of the option to revoke, replacing α with
the risk-adjusted rate of growth α − λσ = r − δ and behaving as if the
world were risk neutral: where r is the risk-free rate of interest, δ is the
below-equilibrium return shortfall and λ is the utility’s market price of risk
(Brennan and Schwartz, 1982). The allowed rate of return becomes:

s∗ = s∗(r,λ, σ)

Although it seems reasonable to assume that utilities with higher “cap-
ital costs” will be allowed to earn higher rates of return, i.e. ∂s∗

∂r
> 0, the

empirical evidence that a higher systematic risk, as measured through the
market price of risk λ, results in a higher allowed rate-of-return, i.e. ∂s∗

∂λ
> 0

(Fan and Cowing, 1994) is also confirmed. Finally, a higher volatility also
increases the allowed rate of return, i.e. ∂s∗

∂σ
> 0, but for reasons other than

those related to interest rates and systematic risk. From section 3 we know
that an increase in the instantaneous variance, σ2, of the revenue process
reduces β1 and then increases the option multiply

β1
β1−1 . As a result, when

the economic environment becomes more volatile, the market value of the
public project can go up, but it also increases the municipality’s value of
keeping the revocation opportunity alive. Thus, the allowed rate of return s∗

is higher since the authority optimal policy is to lag behind in revoking the
contract with the firm.
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• Final remarks

The paper has modelled the regulation of a local public utility as a long-
term relationship between a firm and a municipality. The repetition of the
relationship may substitute long-term contracts and guarantee utilities with
an appropriate level of profits. Furthermore, since the price and its ad-
justment mechanism is contractually fixed when the contract is signed and
the firm is the residual claimant for its profits, a stochastic regulatory lag
exists where the regulation has a price cap nature. Excessive revocation cost
makes the firm an unregulated monopolist with an infinite regulatory lag.
This PCR is followed by a period of ROR in which the firm is induced to
adjust its price downward to keep its profits below the allowed level set by
the authority and avoid revocation.
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A Appendix: The threat game
We prove that the municipality scheme proposed is a perfect equilibrium
belonging to the class of efficient perfect equilibria (which may be very large)
for the continuous time threat-game described in the text.

1) Regulation mechanism

We define the regulation as the negative increment dVt to let Vt stay at
V ∗,that is, a policy control is a process Z = {Zt, t ≥ 0} and a regulated
process V r = {V rt , t ≥ 0} such that

V rt ≡ VtZt, for V rt ∈ (0, V ∗], (24)

where:

• i) Vt is a geometric Brownian motion, with stochastic differential as in
(6);

• ii) Zt is a decreasing and continuous process with respect to Vt ;
• iii) Z0 = 1 if V0 ≤ V ∗, and Z0 = V ∗/V0 if V0 > V ∗ so that V r0 = V ∗;
• iv) Zt decreases only when V rt = V ∗.

Applying Ito’s lemma to (24), we get:

d V rt = αV rt dt+ σV rt dWt + V
r
t

dZt
Zt
, V r0 ∈ (0, V ∗]

where V rt
dZt
Zt
≡ VtdZt = −drt is the infinitesimally small level of value given

up by the firm. In terms of the regulated process V rt , we can write:

rt ≡ r(Vt) = Vt − V rt ≡ (1− Zt)Vt, (25)

Although the process Zt may have a jump at time t = 0 it is continuous
and maintains Vt below the barrier using the minimum amount of control, in
that control takes places only when Vt crosses V ∗ from below with probability
one in the absence of regulation. Therefore, in the case of V0 < V ∗, we get
V rt ≡ Vt, with initial condition V r0 ≡ V0 = V, and Zt = 1. At T ∗ ≡ T (V ∗) =
inf(t ≥ 0 | Vt − V ∗ = 0+) the regulation starts so as to maintain V rt = V ∗.
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The firm regulates the project’s value by the amount rt = Vt− V rt ≥ 0 every
time V ∗ is hit.
Finally, the same conditions (i)− (iv) uniquely determine Zt with the repre-
sentation form (Harrison,1985; proposition 3, p. 19-20):35

Zt ≡
 min(1, V ∗/V0) for t = 0

inf
0≤v≤t(V

∗/Vv) for t ≥ 0 (26)

Figure 3 about here

2) Cost of regulation

Let’s now indicate with R(V r;V ∗) the expected value of future cumulative
losses in terms of the firm’s value due to the regulation. The rational player
evaluates R considering an infinite life project:

R(V r0 ;V
∗) = E0

½Z ∞
0
e−ρtdr(Vt) | V r0 ∈ (0, V ∗]

¾
(27)

= −E0
½Z ∞

0
e−ρtVtdZt] | V r0 ∈ (0, V ∗]

¾
Since V rt is a Markov process in levels (Harrison, 1985, proposition 7, p.80-
81), we know that the above conditional expectation is in fact a function
solely of the starting state.36 Keeping the dependence of R on V rt active
35This is an application of a well-known result by Levy (1948), for which the process:

lnV rt ≡ lnVt + lnZt ≡ lnVt − inf
0≤v≤t

(lnVv − lnV ∗)

has the same distribution as the “reflected Brownian process” | lnVt − lnV ∗ | .
36For V0 = V > V ∗ optimal control would require Z to have a jump at zero so as to

ensure V r0 = V ∗. In this case the integral on the right of (27) is defined to include the
control cost r0 incurred at t = 0, that is (see Harrison 1985, p.102-103):Z ∞

0

e−ρtdrt ≡ r0 +
Z
(0,∞)

e−ρtdrt

where r0 = V − V r0 .
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and assuming that it is twice continuously differentiable, by Ito’s lemma we
get:

dR = R0dV rt +
1

2
R00(dV rt )

2 (28)

= R0(ZtdVt + VtdZt) +
1

2
R00Z2t (dVt)

2

= R0(αV rt dt+ σV rt dWt + V
r
t

dZt
Zt
) +

1

2
R00Z2t σ

2dt

=
1

2
R00σ2V r2t dt+R

0αV rt dt+R
0σV rt dWt +R

0V rt
dZt
Zt

where it has been taken into account that for a finite-variation process like
Zt,(dZt)2 = 0. As dZt = 0 except when V rt = V

∗ we are able to rewrite (28)
as:

dR(V rt ;V
∗) = [

1

2
σ2V r2t R

00(V rt ;V
∗) + αV rt R

0(V rt ;V
∗)]dt (29)

+σV rt R
0(V rt ;V

∗) dWt −R0(V ∗;V ∗)dr(Vt)

This is a stochastic differential equation in R. Integrating by part the process
Re−rt we get (Harrison, 1985, p.73):

e−ρtR(V rt ;V
∗) = R(V r0 ;V

∗)+ (30)

+
Z t

0
e−ρs

·
1

2
σ2V r2s R

00(V rs ;V
∗) + αV rs R

0(V rs ;V
∗)− ρR(V rs ;V

∗)
¸
ds

+σ
Z t

0
e−ρsV rs R

0(V rs ;V
∗) dWs − R0(V ∗;V ∗)

Z t

0
e−ρsdr(Vs)

Taking the expectation of (30) and letting t→∞, if the following conditions
apply:

(a) lim
l→0
Pr[T (l) < T (V ∗) | V r0 ∈ (0, V ∗]] = 0 for l ≤ V rt < V ∗ < ∞, where

T (l) = inf(t ≥ 0 | V rt = l) and T (V ∗) = inf(t ≥ 0 | V rt = V ∗);
(b) R(V rt ;V

∗)) is bounded within (0, V ∗];
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(c) e−ρtV rt R
0(V rt ;V

∗) is bounded within (0, V ∗];

(d) R0(V ∗;V ∗) = 1;

(e) 1
2
σ2V r2t R

00(V rt ;V
∗) + αV rt R

0(V rt ;V
∗)− ρR(V rt ;V

∗) = 0,

we obtain R(V r;V ∗) as indicated in (27). Condition (a) says that the prob-
ability that the regulated process V rt reaches zero before reaching another
point within the set (0, V ∗] is zero. As V rt is a geometric type of process this
condition is, in general, always satisfied (Karlin and Taylor, 1981, p. 228-
230). Furthermore, if condition (a) holds and R(V r;V ∗) is bounded then
conditions (b) and (c) also hold. According to the linearity of (e) and using
(d), the general solution has the form:

R(V r0 ;V
∗) = B(V ∗)(V r0 )

β1 , (31)

with:

B(V ∗) =
1

β1
(V ∗)1−β1 > 0. (32)

As for V0 ≤ V ∗, Z0 = 1 and V r0 = V0 = V, then R(V r0 ;V
∗) = R(V ;V ∗).

On the other hand, if V0 > V ∗, we get Z0 = V ∗/V0, so that V r0 = V ∗ and
R(V r0 ;V

∗) = R(V ∗;V ∗).

3) The value of revocation

Although the firm prefers to regulate rather than close (i.e. the loss from
closure is larger than the (expected) cost of regulation), it always prefers
to stop regulation if the threat of revocation is not carried out, i.e. rt =
Vt−V rt ≥ 0, for all t ≥ T ∗. To simplify discussion we assume that V0 < V ∗ so
that T ∗ > 0.While regulation reduces the project’s value but keeps the firm’s
contract alive, the municipality is not in the same condition. Indicating with
F rm(V ;V

∗) the municipality’s option value when the firm pretends to control
its profits, it can be expressed, at time zero, by:

F rm(V ;V
∗) = maxE0

n
(V rT − I)e−ρT | V0 = V

o
(33)

or using rt = Vt − V rt = (1− Zt)Vt :

F rm(V ;V
∗) = maxE0[(VT − I)e−ρT − (VT − V rT )e−ρT | V0 = V ] (34)
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In (34) the municipality’s option value, with a barrier control on Vt, takes
account of two terms depending upon the joint evolution of Vt and V rt . The
first (VT −I) is the net project’s value without the barrier, while (VT −V rT ) is
the reduction in value due to the regulation. Again, keeping the dependence
of F rm on V

r
t active and assuming it is twice continuously differentiable, by

Ito’s lemma we obtain:

dF rm =
1

2
F r

00
m V

r2
t σ2dt+ F r

0
mαV rt dt+ F

r0
mσV rt dWt + F

r0
mV

r
t

dZt
Zt

(35)

As dZt = 0 except when V rt = V
∗ the above differential equation becomes:

dF rm(V
r
t ;V

∗) = [
1

2
σ2V r2t F

r
m
00(V rt ;V

∗) + αV rt F
r
m
0(V rt ;V

∗)]dt (36)

+σV rt F
r
m
0(V rt ;V

∗) dWt − F rm0(V ∗;V ∗)dr(Vt)

Integrating by part the process F rme
−ρT ∗ gives:

e−ρT
∗
F rm(V

r
T ;V

∗) = F rm(V ;V
∗)+

(37)

+
Z T ∗

0
e−ρs

·
1

2
σ2V r2s F

r
m
00(V rs ;V

∗) + αV rs F
r
m
0(V rs ;V

∗)− ρF rm(V
r
s ;V

∗)
¸
ds

+σ
Z T ∗

0
e−ρsV rs F

r
m
0(V rs ;V

∗) dWs − F rm0(V ∗;V ∗)
Z T ∗

0
e−ρsdr(Vs)

Taking the expected value of (37), if the following conditions apply:

(a) e−ρtV rt F
r0
m(V

r
t ;V

∗) is bounded within (0, V ∗]

(b) F rm(V
r
T ∗;V

∗) = V rT ∗ − I
(c) F rm

0(V ∗;V ∗) = 0;

(d) 1
2
σ2V r2t F

r
m
00(V rt ;V

∗) + αV rt F
r
m
0(V rt ;V

∗)− ρF rm(V
r
t ;V

∗) = 0
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we obtain the expression for F rm(V ;V
∗) as in (33). Now the two conditions

(b) and (c) together with the fact that at T ∗ the regulation starts so as
to keep V rt = V ∗ (i.e. compare condition (c) with condition (11)), give
F rm(V ;V

∗) = 0. If the municipality rationally anticipates the firm’s future
profits regulation its option value is always null.
From (34) and (31), a heuristic but direct way of looking at the same result
is to see F rm(V ;V

∗) as the difference between the municipality’s option value
to manage the utility, Fm(V ) = A(V ∗)V β1 , and the firm’s expected value of
future cumulative controls due to the regulation, R(V ) = B(V ∗)V β1, that is:

F rm(Vt;V
∗) = A(V ∗)V β1

t − B(V ∗)V β1
t = 0

In other words, it should make no difference whether the “community” re-
ceives the benefits in terms of the firm’s regulation (lower profits) or by direct
transfers from the municipality.

4) Optimal threat strategy and perfect equilibrium

Since Vt follows a random walk there is, for each time interval of small length
dt, a constant probability that the game will continue one more period. The
game ends in finite (stochastic) time with probability one, but everything is
as if the horizon were infinite. Neither player is able to perfectly predict Vt at
each date and the regulation scheme described by (25) with the form (26) is
viewed by both contenders as a stationary strategy for evaluating all future
value reductions.37 In the strategy space of the agency it appears as:
37It is well known that infinitely repeated games may be equivalent to repeated games

that terminate in finite time. At each period there is a probability that the game continues
one more period. The key is that the conditional probability of continuing must be positive
(Fudenberg and Tirole, 1991, p.148). Integrating the differential form (6), the geometric
Brownian motion can be expressed as:

Vt+dt = Vte
dYt

where dYt = µdt+σdWt and µ = α− 1
2σ

2.The differential dYt is derived as the continuous
limit of a discrete-time random walk, where in each small time interval of length ∆t the
variable y either moves up or down by ∆h with probabilities (Cox and Miller, 1965, p.
205-206):

Pr(∆Y = +∆h) =
1

2

Ã
1+

µ
√
∆t

σ

!
, Pr(∆Y = −∆h) = 1

2

Ã
1− µ

√
∆t

σ

!

31



φ(Vt, rt) =



Do not revoke at t ≥ T ∗ if the firm
plays the rule rt = (1− Zt)Vt for t0 < t

Revoke if the firm deviated from
rt = (1− Zt)Vt at any t0 < t

where φ(Vt, rt) is the strategy at t with history (Vt, Zt). The municipality’s
“threat” strategy is chosen if the firm deviates by regulating Vt less than rt or
by abandoning rt = (1− Zt)Vt as a rule to evaluate future regulations. The
authority must believe that the regulation, from the initial date and state
(T ∗, V ∗), will be kept in use for the whole (stochastic) planning horizon. If
the firm deviates, the local authority believes that the firm will switch to
a different rule in the future and knows for sure that the municipality will
revoke immediately after. The municipality does not revoke in t if rt0 ≥
Vt0 − V rt0 for all t0 ≤ t, because value controls are expected to continue with
the same rule and F rm(V ) = 0 for all t ≥ T ∗. If rt0 < Vt0 − V rt0 for some t0 < t
the municipality expects a different rule and carries out the threat, switching
from F rm(Vt) = 0 to Fm(Vt) ≥ V ∗ − I. The game is over.
To prove this, let’s first considerR as in (27). For each t0 > T ∗, integration

by parts gives:Z t

t0
e−ρ(s−t

0)VsdZs = (38)

e−ρ(t−t
0)VtZt − Vt0Zt0 + ρ

Z t

t0
e−ρ(s−t

0)VsZsds−
Z t

t0
e−ρ(s−t

0)ZsdVs

or defining ∆h = σ
√
∆t:

Pr(∆Y = +∆h) =
1

2

µ
1+

µ∆h

σ2

¶
, Pr(∆Y = +∆h) =

1

2

µ
1− µ∆h

σ2

¶
That is, for small ∆t, ∆h is of order of magnitude O(

√
∆t) and both probabilities become

1
2 + O(

√
∆t), i.e. not very different from 1

2 . Furthermore, considering again the discrete-
time approximation of the process Yt, starting at V ∗e+∆h, the conditional probability of
reaching V ∗ is given by (Cox and Miller, 1965, ch.2):

Pr(Yt = 0 | Yt = 0 +∆h) =
½
1 if µ ≤ 0
e−2µ∆h/σ

2

if µ > 0

which converges to one as ∆h tends to zero.
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Taking expectation of both sides and using the zero expectation property of
the Brownian motion (Harrison, 1985, p.62-63), we have:

Et0
Z t

t0
e−ρ(s−t

0)VsdZs = Et0[VtZte
−ρ(t−t0)]−Vt0Zt0+(ρ−α)Et0

Z t

t0
e−ρ(s−t

0)VsZsds

(39)
By the Strong Markov property of V rt

38, it follows that Et0[VtZte−ρ(t−t
0)] =

Et0 [VtZt]Et0[e
−ρ(t−t0)] = V ∗Et0 [e−ρ(t−t

0)]→ 0 almost surely as t→∞, so that:

Et0
Z ∞
t0
e−ρ(s−t

0)VsdZs = −Vt0Zt0 + (ρ− α)Et0
Z ∞
t0
e−ρ(s−t

0)(Vs − rs)ds

Since −Vt0Zt0 + (ρ − α)Et0
R∞
t0 e

−ρ(s−t0)Vsds = 0, substituting in (27) and
rearranging we get:

R(Vt0;V
∗) = (ρ− α)Et0

Z ∞
t0
e−ρ(s−t

0)rsds (40)

Secondly, let’s assume (t0, t) is an interval in which rs is flat so that V rs ≤ V ∗,
and t is the first time in which dZt > 0. Considering the decomposition (39)
we can write (40) as:

R(Vt0 ;V
∗) = (ρ− α)

½
Et0

Z t

t0
e−ρ(s−t

0)rsds+ Et0
½Z ∞

t
e−ρ(s−t

0)rsds
¾¾

= (ρ− α)
½
Et0

Z t

t0
e−ρ(s−t

0)rsds+ Et0
½
e−ρ(t−t

0)
Z ∞
t0
e−ρ(s−t

0)r∗sds
¾¾

where we have defined V r∗s = V rt+s and r
∗
s = rt+s − rt for t0 ≤ t. Applying,

again, the Strong Markov Property of V rt we get:

R(Vt0;V
∗) = Et0

Z t

t0
e−ρ(s−t

0)rsds+ Et0
½
e−ρ(t−t

0)Et0
Z ∞
t0
e−ρ(s−t

0)∞r∗sds
¾

= (ρ− α)Et0
Z t

t0
e−ρ(s−t

0)rsds+ Et0
n
e−ρ(t−t

0)R(Vt0;V
∗)
o

= (ρ− α)Et0
Z t

t0
e−ρ(s−t

0)rsds+R(Vt0 ;V
∗)Et0

n
e−ρ(t−t

0)
o

Since rs = rt0 ≡ Vt0 − V rt0 for all s ∈ (t0, t) we can simplify the above
expression as:
38The Strong Markov Property of regulated Brownian motion processes stresses the

fact that the stochastic first passage time t and the stochastic process V rt are independent
(Harrison, 1985, proposition 7, p.80-81).
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R(Vt0;V
∗) =

(ρ− α)

ρ
rt0 =

(ρ− α)

ρ
(Vt0 − V rt0 ) (41)

>From (41), any application of controls rt0 < Vt0− V rt0 , leads to a reduction of
(40) for all t ≥ t0 and then to F rm(Vt;V ∗) > 0. Furthermore, the firm does not
regulate more than rt since, by doing so, it does not increase the probability
of a delayed closure. It does not pay less, since rt < Vt − V rt induces closure
making it worse off, i.e. 0 < Vt. Finally, as V rt is a Markov process in levels,
it is immediate by (40) that any sub-game beginning at a point at which
revocation has not taken place is equivalent to the whole game. The strategy
φ is efficient for any sub-game starting at an intermediate date and state
(t, Vt) . We have sub-game perfection.

6) Non-decreasing path of rt within [T ∗, T 0∗).

So far we have implicitly assumed that, once started at T ∗, the regulation
goes on forever. Earlier interruptions are not feasible as long as the threat of
closure by the municipality is credible. Credibility relies on the fact that the
agency’s option-to-revoke the contract if the firm deviates from rt is always
worth exercising at Vt > V ∗, i.e. Fm(Vt) ≥ Fm(V

∗). As the decision rule
strategy depends on the history of the game, the authority expects regulation
to continue according to the rule rt and any premature stop could make it
no longer subgame-perfect.
However, in an optimal Brownian path there is a positive probability of the
primitive process Vt crossing V ∗ again starting at an interior point of the
range (V ∗,∞). In this case, the firm may be willing to stop regulation. That
is, the firm regulates its value until Vt ≥ V ∗, letting the agency expect the
regulation to continue in the future according to the same rule rt = (1−Zt)Vt,
but when Vt reaches, for the first time after T ∗, a predetermined level, say
V 0 ≤ V ∗, it stops the regulation. The authority will face a jump from zero to
Fm(V

0) ≤ Fm(V ∗) making the threat of revocation no longer credible.To see
this, consider the possibility of the firm’s regulation terminating at time T 0

with T ∗ < T
0
<∞, where T 0 = inf(t ≥ T ∗ | Vt ≥ V 0) is the first hitting time

of V 0 ≤ V ∗ when regulation is on. The municipality’s option value starting
at any t ∈ [T ∗,∞)can be expressed as:

F̃ rm(Vt;V
0) = P (V 0;Vt)Et[F rm(VT 0)e

−r(t−T 0)] + (42)
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(1− P (V 0;Vt))maxEt[(V rT − I)e−r(t−T )]

where P (V 0;Vt) is the probability of the unregulated process Vt reaching
V 0 ≤ V ∗ starting at an interior point of the range (V ∗,∞), which is equal to
(Cox and Miller, 1965, p. 232-234):

Pr(T 0 <∞ | Vt) ≡ P (V 0;Vt) =
µ
Vt
V 0

¶−2µ/σ2

with µ = (α− 1
2
σ2) 39. As the starting point is now any t ∈ (T ∗,∞),we can

immediately see in (42) the dependence on both V rt and Vt. Recalling that
the option value in the case of regulation is zero and that at time T 0 when
the contract is revoked it is simply F rm(VT 0) = F

r
m(V

0),we get:

F̃ rm(Vt;V
0) = P (V 0;Vt)Et[F rm(V

0)e−r(T
0−t)]

According to the Strong Markov Property of V rt equation (42) becomes:

F̃ rm(Vt;V
0) = P (V 0;Vt)F rm(V

0)
µ
Vt
V 0

¶β2

(43)

where β2 < 0 is the negative root of (13). Since at t the unregulated process

Vt is greater than V 0 and P (V 0;Vt)
³
Vt
V 0

´β2
=
³
Vt
V 0

´β2−2µ/σ2 ≤ 1, we obtain

F̃ rm(Vt;V
0) ≤ F rm(V 0) for all t ∈ [T ∗, T 0), which implies that:

F̃ rm(Vt;V
0) = F rm(V

∗)

Ã
V 0

V ∗

!β1 µ Vt
V 0

¶β2−2µ/σ2
≤ F rm(V ∗) (44)

Therefore, to avoid revocation the regulation continues until time T 0∗ ≡
T 0(V ∗) = inf(t ≥ T ∗ | Vt − V ∗ = 0−) when the trigger V ∗ is hit again (for
the first time) after T ∗. The game ends and can then be restarted afresh.

39This probability is P (V 0;Vt) = 1 for µ ≤ 0, see footnote n. 37.
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F: Firm

NR: Do not regulate

R: Regulate

A: Regulatory Agency

NK: Do not revoke

K: Revoke
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Figure 1: Discrete time representation of the game (dominant strategies)
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Figure 2: Price regulation under threat of revocation
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