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Abstract

This paper examines the learning dynamics of boundedly rational agents,
who are asked to voluntarily contribute to a discrete public good. In an in-
complete information setting, we discuss contribution games and subscription
games, the latter including a money-back guarantee in case of provision fail-
ure. The theoretical results on myopic best response dynamics implying strik-
ing differences between strategies played in the two games are confirmed by
simulations, where the learning process is modeled by an Evolutionary Al-
gorithm. We show that the contribution game even aggravates the selective
pressure leading towards the non-contributing equilibrium, thereby support-
ing results from laboratory experiments. In contrast to this, the subscription
game removes the ‘fear incentive’, implying a higher percentage of successful
provisions over time.
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1 Introduction

The standard prediction on individual behavior when it comes to the question of
voluntarily contributing to a public project is that strategic incentives to free-ride
on the contributions of others lead towards a Nash—equilibrium characterized by
a Pareto-inefficient underprovision of the public good.! This problem is even ag-
gravated in incomplete information settings, since additionally there are no incen-
tives to reveal individual preferences truthfully, a phenomenon Cornes and Sandler
(1996) label as ‘informational” free-riding.

Throughout the last two decades, attention has been drawn towards the analy-
sis of discrete public goods, which are characterized by the feature that successful
provision requires a certain amount of money to be raised or a minimum number of
participants. Recent research on this subject shows that free-riding ceases to be the
dominant strategy, but rather that discrete public good games are characterized by
multiple equilibria, where efficient provision is one of the possible outcomes (see
e. g. Palfrey and Rosenthal, 1984; Bagnoli and Lipman, 1989; Admati and Perry,
1991; Marx and Matthews, 2000).

In this context it is important to distinguish between two types of discrete public
good games: the contribution game and the subscription game.> While contributions
are lost in the first type, if the public good is not accomplished, they are refunded
in the latter, thereby eliminating what van de Kragt ef al. (1983) and Palfrey and
Rosenthal (1984) call the ‘fear incentive” adversely interfering with successful com-
pletion of the project. Nevertheless, efficient provision is a possible outcome for
both types of games.

By summarizing the results from the literature, it is possible to identify three
sets of problems which deserve particular treatment: Palfrey and Rosenthal (1984)
emphasize the participation issue and point out that there is a problem concerning
demand revelation. The latter arises especially in the incomplete information set-
ting underlying the analysis of this paper. Last, due to the multiplicity of equilibria,
there is a problem of equilibrium selection. So, do agents really coordinate them-
selves and cooperate to obtain efficient outcomes, and if so, how? A common argu-
ment brought forward in this context is that learning processes — for instance, as
modeled by evolutionary game theory — can serve as a means for equilibrium se-
lection and will be a central aspect of our work (see Marimon, 1993; Vega-Redondo,
1996; Samuelson, 1997; Fudenberg and Levine, 1998).3

1A comprise presentation of the theory of public goods can be found in Cornes and Sandler (1996).

2Admati and Perry (1991) were the first to use this terminology.

3 Already Bliss and Nalebuff (1984) argue that in a dynamic context an agent has the opportunity
to learn the response of other players. Palfrey and Rosenthal (1984, p. 191) state in their conclud-
ing remarks: ‘Because of the multiplicity of equilibria, learning or some form of coordination, is probably
very important (possibly necessary) for the attainment of a Nash equilibrium’. Cavaliere (2000) solves the
coordination problem by allowing for communication and correlated strategies.



More specific, this paper explores the question whether boundedly rational in-
dividuals, who possess little information on the structure of the economy, learn best
responses when asked to voluntarily contribute to a discrete public good. We exam-
ine contribution and subscription games in the presence of incomplete information,
(a) within a static framework, (b) by extending the analysis with the myopic best
response dynamics of a repeated one—shot game for the special case of uniform be-
havior, and (c) by providing numerical simulations for the case of heterogeneous
actions. In the latter, the decision process of agents is described by an Evolutionary
Algorithm (EA), which belongs to the general class of adaptive learning algorithms
and serves as a means to simulate the evolutionary game; see Riechmann (20014,c).

Up to now there are only few approaches dealing with (threshold) public goods
in incomplete information settings. Nitzan and Romano (1990) assume an uncertain
cost structure and find that the Nash—equilibria lose their efficiency property such
that free-riding strategies reappear. Marx and Matthews (2000) as well as Gradstein
(1992, 1994) and Vega-Redondo (1995) employ models with Bayesian learning, where
each agent has statistical information on preferences or donations of others which
are periodically updated. The results are ambiguous, in that they find Bayesian
equilibria with and without completion of the public project.*

Our approach is closely related to Menezes et al. (2001) but differs from their
work to at least two major aspects: First, our model is embedded in a standard text-
book decision problem of agents who split their endowments between consumption
of a private good and a contribution to a public threshold good, where individual
utility is of the quasilinear form. Second, we employ myopic best response learn-
ing in order to derive results regarding long-run dynamics and stochastic stability
of equilibria, whereas Menezes et al. (2001) discuss dynamics for a single-object
auction.

Our theoretical results as well as outcomes from the simulation of heteroge-
neous behavior show a general superiority of subscription games over contribu-
tion games regarding the possibility of attaining the efficient equilibrium, where
the public project is completed. Yet, we also demonstrate for both types of games
that the threshold public good is less likely to be accomplished throughout the
learning process, if we introduce sources of randomness such as mistakes in strat-
egy formation into the game. In this case, chances are notably biased towards the
inefficient non—contribution equilibrium.

In this respect, our results support findings from laboratory experiments on
public good provision.® Isaac et al. (1989) and Cadsby and Maynes (1999) find that

“Models of Bayesian learning are often criticized for the assumptions they impose on individual
information processing capacities. We drop the assumption of common knowledge, that is, every
player in isolation has full knowledge of the relevant data and can costlessly figure out all equilibria.
Instead, our analysis relies on the assumption of boundedly rational agents who are involved in an
adaptive learning process.

5For an excellent survey on public goods experiments, see Ledyard (1995).



provision is encouraged in subscription games vis—i—vis contribution games,® with
the impact of the money-back guarantee increasing with the threshold level. That
successful provision of the public good is negatively related to the threshold level,
is supported by results of Suleiman and Rapoport (1992). Isaac et al. (1989) also
see evidence for ‘cheap riding’, which describes a situation where agents have the
incentives to obtain equilibrium outcomes with an unequal distribution of contri-
butions.” Moreover, they find that zero contributions occur far more often in the
contribution game when compared to free-riding strategies in the continuous pub-
lic good case, but they observe a general decay of contributions over time in all of
the considered types of games. Bagnoli and McKee (1991) test subscription games.
They focus on Nash-refinements, the efficiency of outcomes and group size effects
and find the impact of the latter negligible.

Our analysis will proceed as follows. The analysis of section 2 is devoted to the
theoretical analysis. We present the general assumptions of the model and discuss
static as well as myopic best response equilibria for both, the contribution and the
subscription game. Section 3 analyzes the learning dynamics, describes the basics
of the model of EA-learning, and derives general results for the intertemporal per-
formance of strategies. In section 4, we discuss the simulations. Section 5 concludes.

2 Private Provision of a Discrete Public Good under Incomplete Infor-
mation

2.1 The Model

We consider a model of voluntary contribution to a discrete public good under
incomplete information with n > 2 consumers, one private good X and one pure
public good G. Each consumer i is endowed with exogenous wealth w;, which he
divides between private consumption X;, and a contribution to the public good by,
such that the budget constraint w; = x; + by is satisfied. For simplicity, all prices and
marginal costs are normalized to unity. The utility function of agent i in general is
assumed to be of the quasi-linear form

U(%,G) =% +BiInG, 1)

which allows us to abstract from income effects.® The individual valuation of the
public good, Bi > 0, is private information. In what follows, we refer to 3; as the
true valuation in order to distinguish it from the actually reported value by.

®Dawes et al. (1986) present contradicting results, which can mainly be ascribed to the fact that
they analyzed one-shot games without repetition, which is of secondary interest for us, since we are
primarily concerned about learning and the evolution of strategies over time

"More specific: ‘If one’s own contribution is indispensable, then better stay on the cheap side’.

8From the standard textbook model with this preference specification, it is well known that the
Pareto—efficient quantity of a continuous public good in a perfect information environment is given
by G= 3, Bi and independent of individual endowments; see Cornes and Sandler (1996, Ch. 7).



The objective of agent i now is to determine the best-response function b, while
taking the reports b_; of other agents as given. To keep things simple, we will
assume the nagents of the economy to be identical with respect to their preferences
and endowments, that is 3 =3 and w; = w.

The dynamic game is modeled as a simultaneous move, repeated one-shot
game, where, in each period, player i receives an endowment w(t) and chooses
a report bj(t) from the discrete set of feasible contributions

B={b'=0,b*=25,b°=25,...,b" = (m—1)5= B}, 2)

which is defined over a finite grid. The actions are equally spaced in the interval
[0,B], the distance between two neighboring actions given by & > 0. The number of
different actions in the set is #(B) = m. By assuming [ to be the largest contribution,
we imply that a rational individual never contributes more to the public good than
her maximum willingness to pay.’

The public good is assumed to be discrete, which means it is only provided, if
contributions are collected to an amount sufficiently large to cover a given threshold
level T.

n
0 if bi<T
2,

= n ) n
i;bi if i;bi >T

The agents’ contributions are regarded to be perfect substitutes. If aggregate con-
tributions exceed the threshold, there is no rebate, thereby assuming that excess
contributions are wasted. In general, we will assume T > 3, which implies that no
agent is able to complete the public project on her own. From (3) it becomes obvi-
ous that there exist "™ action profiles, i. e. combinations of actions of the agents of
the population, not all of them amounting to T in total.

G )

Definition 1 (Symmetric cost share) Let T:=T/n € B be the symmetric cost share, a
player has to contribute in order to accomplish provision of the public good, and define the
cost—preference index with T/P € [0,1].

The symmetric cost share T is contained in the set of feasible actions B and can be
interpreted as a per capita threshold. The ratio 1/B then measures the individual
cost of provision against the marginal willingness to pay. It can never exceed unity,
as no agent is willing to spend more than her valuation on the provision of the
public good.

Let us now focus on individual strategies. From the perspective of an arbitrary
player i, there are three relevant states of the society:

9For technical reasons, we require the action space to be countable. B defines a continuous set for
86— 0.



Definition 2 (States of the Society)

S1 (‘never’) (n—1)b_ij < T —B: Even if player i contributes the maximum amount she is
willing to pay, the public good will not be provided.

S2 (‘pivot’) (n—1)b_j =T — by for by < B: Player i is the pivot individual, which means
that i’s participation is essential for the public good being completed.

S3 (‘always’) (n—1)b_j > T: The public good is provided even without the contribution
of individual i.

For a uniform behavior of players, by = b, Vi = 1,...,n, the states of the society are given

by
S1: b<r, S2: b=r, S3: b>rT. 4)

The analysis now proceeds as follows: We start with a description of the two
static games, specify best replies for the different states of the society and derive
the corresponding Nash—equilibria for the case of symmetric behavior. We will
demonstrate that, similar to Menezes et al. (2001), both games are characterized by
multiple equilibria. This gives rise to the problem of equilibrium selection which
might be solved by learning processes. Additionally, we will show that the contri-
bution and the subscription game differ significantly with respect to uniqueness of
best responses and stability of equilibria.

The learning process of section 3 relies on the concept of replicator dynamics of
evolutionary game theory. Since the dynamic performance of every single action
from the action space is represented by a first-order stochastic difference equation
and the game in general is characterized by heterogeneous agents, analytical results
are very difficult to obtain. However, to give an intuitive understanding of the key
parameters governing the stochastic imitation dynamics of the learning process, we
first discuss uniform myopic best response learning as an auxiliary model, which helps
to examine the asymptotic properties of the equilibria.

2.2 The contribution game (CG)

The contribution game is characterized by a situation where individual contribu-
tions are lost if the aggregate amount collected falls short the threshold T. In short,
there is no money-back guarantee in case of provision failure.

The utility function of a typical player i in the contribution game becomes

n
w—Db; for bi<T
| ;1 j
U(x,G) = n
w—hbi+BInG for bi>T
i gl i



Symmetric equilibria in the static contribution game The best responses of agent i for
a given state of the society S1 — S3 are unique and can be obtained as follows:

0 if Sl
b'={ T—(n—1)b if S2 6)
0 if S3

If the society is in state S1, from the perspective of a typical agent i, even contribut-
ing the maximum willingness to pay  will not be sufficient to complete the public
project. Thus, each unit spent on the public good is wasted and should better be
spent on the consumption of the private good, thereby yielding higher utility. The
same argument applies for the best response in state S3. In state S2, player i is
the pivot agent. Her best response here is to offer the residual between the thresh-
old level and the sum of contributions of the (uniformly acting) other agents. By
Definition 2, the residual may fall below but cannot exceed her true valuation .

Proposition 1 (Nash-equilibria of the static contribution game) S1 and S2 consti-
tute symmetric Nash—equilibria of the static contribution game according to the best re-
sponse correspondences
0 if S1
b*=< 1 if S2 (7)
0 if S3

S3 does not constitute a Nash—equilibrium.

A state of the society constitutes a Nash—equilibrium, whenever individual best
replies lead back to the respective state. As generally expected for the case of a dis-
crete public good, the static contribution game exhibits multiple equilibria. The best
response of contributing nothing in state S1 follows immediately from (7), since any
positive amount offered for completion of the public good is wasted. In S2, the soci-
ety rests in a situation of each agent offering the per capita cost share and the public
project is completed. By Definition 1, the best response in state S2 is characterized
by 1 < B, with the value depending on the exogenously fixed threshold level T > (3.
Whenever completion of the public good takes place without an agent’s own con-
tribution, her best reply simply is to offer b= 0. However, since this argument holds
for every player of the game, S3 cannot constitute a symmetric Nash—equilibrium.

Uniform myopic best response dynamics in the contribution game The static game now
is extended to a model of myopic best response which can be regarded as a naive
variant of fictitious play. As a simple rule for expectation formation, myopic best
response describes the dynamic behavior of agents, who possess only limited infor-
mation on the actions of other players. Each of the n agents chooses her best reply
according to Proposition 1 under the prediction that in period t all other players
stick to their previously played strategies. Our analysis will focus on symmetric



behavior, as is standard in games of incomplete information with ex ante identical
agents (see Menezes et al., 2001). This means all players are assumed to play identi-
cal strategies in period t even though multiple best responses to the respective state
of the society of the previous period might be available. Under this assumption,
the resulting dynamics can be described by a simple Markov process constituted
by the transition probabilities between the possible three states of society.

L

II.

Myopic best response equilibria without noise

For the contribution game, best responses are unique, which implies fairly
simple uniform myopic best response dynamics:

Proposition 2 The transition matrix between states S1, S2, and S3 for uniform my-
opic best response dynamics in the contribution game is given by

100
Pec=| 0 1 0 (8)

100
If the state of the society is S2 in period t, best responses lead back to S2 int+ 1.
This means that S2 is an absorbing state. If, on the other hand, the society is in
S3int, best responses will lead to S1 int+ 1, while a society in S1 will stay in S1
in t+ 1. Thus, the uniform myopic best response dynamics are characterized
by two absorbing states, S1 and S2, and one reflecting state S3.

In the case of uniform best responses, only one single strategy profile consti-
tutes S2: Each of the n players plays bi(t) = 1. All differing profiles constitute
either S1 or S3. Under the regime of uniform myopic best response dynam-
ics, this means that each profile deviating from b* = T ends up in the absorb-
ing state S1. Hence, S2 is a stationary yet unstable state, while S1 is the only
(asymptotically) stable Nash—equilibrium.

The system itself is highly state dependent: If the historically very first state
of the society is S2, the society will remain in S2 forever. On the other hand, if
the initial state is S1 or S3, the system will converge to S1.

Summarizing the results, two long—run outcomes of uniform myopic best re-
sponse learning are possible: (a) provision of the public good in S2 or (b) non—
provision in S1, the latter being more likely regarding the remarks on state
dependency given above.

Myopic best response equilibria with noisy imitation in the contribution game

The stability analysis of equilibria can now be extended with a random ele-
ment. The assumption of uniform behavior is maintained by assuming that
the agents’ strategies are subject to an aggregate shock. With a small proba-
bility €, the agents do not play a best response, but are subject to a common

7



Figurel: Transition probabilities of myopic best response with noisy imitation in
the contribution game

random mistake. The probability of being an outcome of this error is equally
distributed among all strategies of the action space. This of course includes
the best response strategy, i. e. the possibility of ‘erroneously doing the right
thing’. The probability € will be called the mutation probability and affects the
transition probabilities between the three states of the society.

Since we are especially interested in the stability properties of S2, we will treat
S1 and S3 as a joint class. The transition probabilities for reaching, leaving or
staying in S2 can then be derived as:

m-—1
P2 = Tg 9)
m-—1
Pg,szzl—Ts (10)
1
o= (PleotPRe) = £ (11)

Figure 1 illustrates the corresponding Markov chain. It follows immediately:

Proposition 3 The pivot state S2 of the contribution game is stochastically instable
under uniform myopic best response dynamics with aggregate noise. S1 is stochasti-
cally stable.
Proof:

P2 > Pz for m>?2

S3 is no Nash—equilibrium. O

Hence, S2 is more likely to be left than to be reached and the public project
is almost always not completed in the long—run, a result that holds indepen-
dently of the initial strategy profile.



2.3 The subscription game (SG)

The subscription game is characterized by a money-back guarantee in case of pro-
vision failure, that is, if the aggregate contribution is too small and falls short of the
threshold T. Then, the endowment w is entirely spent on the consumption of the
private good x. As already mentioned above, a money-back guarantee removes the
‘fear incentive’ from individual strategies.

The utility function of a typical player i in the subscription game becomes

n
w for Z bj <T
U(x,G) = ot (12)

n
w—b+BInG for ijZT
=1

Symmetric equilibria in the static subscription game Agent i’s best replies to each of
the three states of the society according to Definition 2 can be derived as:

€B if Sl
b'{ =T-(n—1)b if S2 (13)
=0 if S3

The public good is not provided in S1. This result is independent of any arbitrary
strategy player i chooses from the action space B. The payoff is identical for all
strategies from the action space, because of the money-back guarantee. The entire
budget is spent on the consumption of the private good. In S2, the player is the
pivot individual. Her best response is to pay the residual left in order to accomplish
the public good. State S3 is characterized by a situation, where the public good is
provided even if player i does not contribute. Since any amount exceeding the
threshold level is wasted by assumption, the best response is to contribute nothing.
A comparison between (6) and (13) shows that the best replies of the subscription
and the contribution game only differ with respect to state S1, thereby revealing the
strong incentives towards low or zero contributions working in the latter game.

From (13), we can directly derive the best replies in the subscription game for
the case of symmetric behavior and determine the Nash—equilibria:

Proposition 4 (Nash—equilibria of the static subscription game) S1 and S2 consti-
tute symmetric Nash—equilibria of the static subscription game according to the best re-
sponse correspondences

€eB if SI
b*{ =t if S2 (14)
=0 if S3

S3 does not constitute a Nash—equilibrium.



In S1 the public good is not completed. Due to the money-back guarantee, it is
irrelevant what strategy from the action space is chosen. In S2, all agents are pivotal.
Each individual equally contributes the minimum per capita amount required to
accomplish the public good, that is b =T, and the threshold level of the public good
is accomplished. In S3, the argument given for the contribution game applies.

Uniform myopic best response dynamics in the subscription game We again follow a
two-step procedure, by first analyzing the basic, undisturbed dynamics and sec-
ond, by extending the dynamics with noise in order to identify the influence of
small mistakes in the agents’ play on the long—run properties of the game.

1. Myopic best response equilibria without noise

Proposition 5 The transition matrix between states S1, S2, and S3 for uniform my-
opic best response dynamics in the subscription game is given by

Tm-1 1 T\ m-1
Bm m (1— B) “m
Pss = 0 1 0 (15)
1 0 0

Proof: see Appendix A .

Figure 2 illustrates the myopic best response dynamics in form of a Markov
chain. It is easy to recognize that state S2 is an absorbing state of the process.
Once a society has reached S2, it is the unique best response for each agent
to repeat contribution of the cost share T for every iteration of the game. The
transition probabilities are given by pp o = 1, pe 51 = Ps,s3 = 0 and, as can be
seen from Figure 2(a), no branch leaves state 52, which is represented by the
bottom right node.

The transition matrix (15) also implies that S3 is a reflecting state of the so-
ciety. According to (14), S3 does not constitute a Nash—equilibrium and the
state is left with probability one. From the viewpoint of each single agent, her
contribution is not required for the completion of the public project. Conse-
quently, the aggregate contribution will be zero for the next repetition of the
game, which simultaneously implies a probability of of ps3 o = O for transiting
from S3 towards the “pivot’ state S2. Figure 2(a) illustrates that the only branch
leaving S3 points towards S1 with probability one.

The corresponding transition probabilities of leaving S1, or staying in this state
respectively, turn out to be more sophisticated. Because the public good is not
completed in this state with contributions being refunded, by (14), strategies
can be chosen arbitrarily from the entire action space. At this point, we only
give an intuitive argument for the case of transiting from S1 to the absorbing

10
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Figure 2: Transition probabilities of myopic best response in the subscription game

state S2. Here, in case of symmetric behavior, all agents are required to choose
strategy b = 1, while staying in S1 requires a common action of b < 1. If we
assume equally distributed chances for each of the mstrategies to be played, it
follows that ps; & = 1/m/!% which is displayed in Figure 2(a) with the respec-
tive branch leading from S1 to S2.

Proposition 6 In the long—run the myopic best response dynamics lock in at the
absorbing state S2. In the medium run, the process stays most of the time in the
Nash—equilibrium S1 without completion of the public good, which is more likely the

larger the number mof strategies contained in the action space B.
Proof:

ap51’31 _ T1
om  Bn?

53 is no Nash—equilibrium. O

> 0.

Proposition 7 The higher the cost—preference index 1/B, the less often the public
good is provided in the medium run.

Proof: In the medium run, the transition probability psy s is an inverse measure
of how often the public good is provided: The higher psi s1, the less often aggregate
contributions will be high enough to cover the threshold. The change of the transition
probability with respect to the cost—preference index is given by

0 Psy,s1 . M— 1

=——>0. O
a% m >

19This of course means that we rule out focal point arguments. If we did otherwise, the possible
candidate for a focal strategy, b = T, would have a higher probability to be chosen from the action
space than other strategies.

11
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Figure3: Transition probabilities of myopic best response with noisy imitation in
the subscription game

Given the general results from Proposition 5, we can now focus on the cor-
responding myopic best response equilibria of a relevant benchmark case: It
can be characterized as an all-or-nothing case T = 3, which requires truthful
revelation of individual preferences. In this scenario, each agent has to con-
tribute her maximum willingness to pay in order to have the public project
completed. The probability of transiting from S1 to S3 vanishes in this case,
i. e. ps;,3 = 0. This means that once S3 is left it can never be revisited again.
The probability of staying in S1 adapts correspondingly, psi,s1 = %, while
Pst, s, Ps, s, and pPs3s; remain unchanged. This case in displayed in Figure

2(b), which shows the respective Markov chain.

The major insight from this part of the analysis is that uniform myopic best
response dynamics are characterized by a Markov process with only one ab-
sorbing state. This means that the system will asymptotically converge to-
wards the Nash—equilibrium where every player is pivotal and participates in
the completion of the public project, which is provided at exactly the thresh-
old level. Contrary to the contribution game, there is no state—dependency.
Since the results on the stability of equilibria in the subscription game only
hold for infallible agents, we will now proceed with the analysis of myopic
best response equilibria where agents occasionally make mistakes.

Myopic best response equilibria and noisy imitation in the subscription game

As before, we extend the myopic best response dynamics with a random el-
ement, such that strategies are subject to mutation with probability €. This
affects the transition probabilities between the three states of the society. As
the main point of interest is whether S2 still is stationary, the focus lies on the
relation of the formerly communicating class consisting of S1 and S3 to the

12



pivot state S2. It is important to note that now S2 ceases to be an absorbing
state, because, with the introduction of mutation, there is a positive chance for
each state to be left in finite time.

By assuming again a uniform probability Prob (b¥) = 1 for each of the mstrate-
gies bk € B to be played, the transition probabilities for state S2 in the case of
noisy imitation can be derived as follows:

m-—1
Pegp=—1—¢ (16)
m—1
pgz,szzl—TS (17)
1
oo =pao+ (PR ot PR e) = ﬁ(lJrE)- (18)

Figure 3 illustrates the corresponding Markov chain.

In order to find out, whether the pivot state will be reached more or less often
in the long-run than the other states, it is necessary to calculate the stochastic
potential of this state.!! Intuitively spoken, the stochastic potential of a state is
the difference between the probability of reaching the state and the probability
of leaving it. In other words, the stochastic potential determines if a state is
easier to be reached than to be left and vice versa, and it measures how easy
it is to leave the state. The greater the stochastic potential of a state, the more
time the process is going to spend in this state in the long-run. The stochastic
potential of states S2 in the subscription game is given by

P(R)=pro-Peo= < [1-(M-2)e. (19)

For the ‘regular’ case, with mbeing finite and € being sufficiently small, SP(S2)
is positive, such that the pivot state is stochastically stable, i. e. the most often
visited of all states in the long-run. Nevertheless, in the case of our EA simu-
lations as well as in a world of continuous action spaces, this is not necessarily
true: If the action space is continuous, m, the number of actions, goes to infin-
ity. On the other hand, the mutation probability € should be small, but not too
small in order to keep a sensible notion of possible learning errors. In the case
of mbeing infinitely large and € being strictly larger than zero, the stochastic
potential of state S2 is negative:

SP(RX) <0 for m—oe and €>0. (20)

This means, that the pivot state is easier to be left than to be reached. In the
long-run, the process will spend most of its time outside of the pivot state.

For a definition of the stochastic potential, see e. g. Vega-Redondo (1996, p. 132).

13



As we know that state S3 also is (mostly almost) reflecting, the only possible
state for the process to remain in over time is S1. This, of course, again is bad
news. It says that most of the time in the long—run the public good will not be
provided, if the agents are likely to make mistakes.

3  Evolutionary Learning in the Discrete Public Good Game

The analysis of the preceding section has shown that both types of discrete public
good games exhibit multiple equilibria, one without completion of the public good
in S1, the other given by the pivot state S2. While S1 is uniquely characterized by
a common action of b = 0 in the contribution game, it consists of multiple action
profiles in the subscription game, which all satisfy the requirement y bj < T due to
the arbitrariness of strategy choice stemming from the money-back guarantee. This
gives rise to the problem of equilibrium selection, which can be solved by means
of a learning process. We provide a short sketch of the evolutionary mechanism of
how knowledge on the quality of strategies spreads out in a population of bound-
edly rational agents. Contrary to the uniform myopic best responses dynamics dis-
cussed in the previous section, here, the evolutionary learning process is capable
of describing heterogeneous behavior of agents. The analysis draws from results
from evolutionary game theory (Miller and Andreoni, 1991; Vega-Redondo, 1996)
and from a companion paper on the evolution of free riding behavior in public good
games (Clemens and Riechmann, 2001).

Learning involves that agents replace poorly performing strategies by those
performing well. Evolutionary game theory provides us with the concept of
replicator dynamics, where learning takes place via imitation of successful strate-
gies. The intertemporal performance of an arbitrary strategy, say bX(t) € B for in-
stance, can be measured by the evolution of the population share g¥(t) of agents,
playing this type of strategy in period t. Since time—t-utility of type—k-players,
UK(t) = w(t) — bX(t) + BInG(t) also depends on the strategic decisions of all popu-
lation members via the aggregate contribution level G, the performance of a type—
k-strategy can only be calculated in relation to the performance of the entire set of

K(t)

strategies actually played in the population. The measure is relative payoff LLJJ—T,

with average utility U(t) given by
) = 3 o (t) U, @)

The evolution of the population share g*(t) of agents playing b¥(t) can then be de-
scribed by an ordinary difference equation

a(t+1) = (t)

(22)
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Equation (22) represents the replicator dynamics of an evolutionary game (Vega-
Redondo, 1996, p. 44). The population share of agents playing strategy bX(t) in-
creases over time if this strategy yields a payoff above average.

In order to describe dynamics of the entire game, the evolution of (22) has to
be computed for each of the m strategies b € B. For large actions spaces B, this
method induces extremely high computational costs. Nevertheless, it is shown in
Riechmann (2001c) that there is an equivalent method to explicitly computing each
of the mequations (22), which is the use of an appropriately constructed Evolution-
ary Algorithm (EA, Goldberg 1989; Riechmann 20014,b). This method is applied in
this paper.

The core data structure of the algorithm is a set (‘population’) of real numbers,
each number representing a strategy bj(t) played by each of the n agents in period
t. In each period or round of the algorithm, the quality of each agent’s strategy is
evaluated according to the utility function (5) for the contribution game or equation
(12) for the subscription game respectively. The resulting fitness value (‘utility’) is
the criterion deciding on whether the agent repeats using her strategy or whether
she will adopt a different one.

The component of the EA determining how many players will play each strat-
egy in the next period is the operator of selection/reproduction. The canonical form
of this operator is ‘biased roulette wheel selection” (Goldberg, 1989; Goldberg and
Deb, 1991). This is a biased probabilistic process generating the following expected
population share gX(t + 1) of agents playing strategy b* in period t + 1:

E(dt+D) = 2V (. (23)

It is obvious that (23) gives the expectation of the dynamics in (22).12

Mutation is the second operator employed in the simulations. It reflects the
impact of randomness on strategy choice, which we already discussed in the pre-
vious section. In economic applications of EAs, mutation is often interpreted as a
metaphor for learning by experiment. Mutation introduces noise into the process
of replication, thereby correcting the problem of path dependency arising from the
process of pure replication by allowing lost strategies to be regained.!?

The special type of mutation applied in this paper is the one introduced in the
survey on ‘Evolution Strategies” by Béck et al. (1991): After replication has taken
place, each agent’s preliminary strategy bi(t) is slightly changed by addition of a
term €, which is drawn from a Gaussian distribution with zero mean and finite
02, the latter denoting the so—called mutation variance. The result is agent i’s final

12Note that it is only possible to denote the expected number of type—k-players in t + 1, because
otherwise the resulting absolute number might not be an integer; see Riechmann (2002).

131f a strategy b* has ‘died out’ during replication, which means that the respective population
share has become zero, there is no way of regaining this strategy via pure imitation.
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strategy for period t, bj(t):
bi(t) = max[bi(t) +&(t); 0] &i(t) ~N(0,0?). (24)

which is non—negative by assumption.

The two operators, selection/reproduction and mutation are repeatedly applied
to the population of agents, thus generating processes of population dynamics
equivalent to processes of replicator dynamics with noise.

The simulations to be presented in the following section show that the results on
the stability of Nash—equilibria already derived for the case of uniform myopic best
response extend to the case of heterogeneous behavior described by evolutionary
dynamics.

4  Simulations

Questions and Technical Details We were especially interested in the following ques-
tions: First, does the learning process support selection between states of the soci-
ety, especially between S1 and 52? Second, how does the population size affect the
learning dynamics? Third, how important is the threshold size, as measured by
the cost-preference index, for the long— and medium-run outcomes of the games?
What are the most noteworthy differences in learning dynamics between the con-
tribution and the subscription game?

The simulations are based on the evolutionary algorithm as described in the
preceding section. In order to derive results for the sensitivity of the learning pro-
cess with respect to the population size, we performed simulations with n=25and
n= 100agents, the first capturing the notion of a small community, while the latter
stands for a comparably more atomistic structure of the economy. We assume three
different threshold levels in the range of T/p € {0.25,0.5,1} for both types of games.
Especially the last value T/ = 1 requires a large degree of coordination in the pop-
ulation, since each agent is pivotal and has to contribute his maximum willingness
to pay in order to get the public good accomplished, and there is no opportunity
of ‘cheap riding’. The preference parameter from the utility function and initial en-
dowments were assumed to identical for all agents with f = 100and w = 20Q The
mutation variance is assumed to be a constant value of 02 = 0.05. The strategies of
the initial population are randomized, such that b;(0) is i. i. d. in B.

The simulation results presented in the following show the development of the
population mean of individual contributions and the percentage of successful pro-
visions over time. The plots display averages of 100 simulation runs. Data on the
last—period distribution of strategies within the population are based on 2000 sim-
ulation runs for a threshold value of /3 = 0.5.

Simulation Results Figures 4 and 5 display the results of the numerical simulations.
Figure 4 focuses on the long—run evolution of average contributions b for the two
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population sizes and the percentage of runs in which the provision of the public
good was successful. Figure 5 shows the last-period distribution of strategies in
the population. The following observations hold independently of the underlying
game:

Observation 1 (Population Size) The population size affects the learning speed.

A prominent result from the theoretical analysis of discrete public good games we
also derived in section 2 is that efficient equilibria do not depend on group size,
since all players are pivotal (Bagnoli and Lipman, 1989). Although our simula-
tions suggest that perhaps the population size might be important, this cannot be
ascribed to specific characteristics of the underlying games, but moreover to an im-
portant feature of Evolutionary Algorithms, namely that learning is improved with
an increase in group size. Smaller populations converge considerably slower than
larger ones, because the effects of experimentation are more significant in the lat-
ter.!4 This effect is particularly prevalent in our simulations, to the extent that the
learning process in the small group of n = 25 has not converged, when the simula-
tions were truncated.

Observation 2 (Selection between States of the Society) In both games, state S1 is
far more often visited throughout the learning process than S2.

Observation 3 (Threshold) The higher the cost—preference index 1/ the less likely the
public good is provided.

Observation 4 (Successful Provision of the Public Good) Completion of the public
good is more successful in the subscription than in the contribution game.

As can be seen from Subfigures 4(b), 4(d), 4(f) and 4(h) on the right hand side of
Figure 4, the public good is not provided during most of the time, which reflects the
results from the stability analysis of equilibria in section 2. The results differ with
respect to the threshold level and the type of game in consideration.

The highest percentage (50%) of runs with successful provision of the public
good can be observed at the lowest threshold level in the subscription game played
by the small population; see Figure 4(f). Contrary, the public project is never com-
pleted for the highest and hardly ever (7.5%) for the medium threshold in the contri-
bution game, see Figures 4(b) and 4(d). Hence our simulations reflect the statement
on the impact of the cost—preference index derived in Proposition 7.

Completion of the public project is more successful in the subscription game
compared to the contribution game because of the selective pressure stemming
from the refund-rule. Although the pivot state S2 is a Nash—equilibrium in both
games, from the viewpoint of a single agent in the contribution game, contributing

14For a detailed discussion on the effects of group size on learning dynamics in public good games
see Clemens and Riechmann (2001).
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a positive amount in S1 is immediately punished with a low payoff and induces
a switch towards strategies supporting S1 in the long—run. Competition between
strategies is weakened due to the money-back guarantee of the subscription game
which increases the probability of having enough contributions collected to provide
the good.

Observation 5 (Contribution Game) In the long—run, agents learn not to contribute to
the provision of the public good.

This result stems from the selective pressure already discussed above and is dis-
played in Figures 4(a) and 4(c), where average contributions converge towards zero
independent of the threshold size. If we take a further look into the final distribu-
tion of strategies, as displayed by Figures 5(e) and 5(f), we see that strategies are
densely concentrated at zero. The presence of non-zero strategies can be ascribed
to the effect of mutation. Additionally it can be seen that the threshold level itself
is positively related to the speed of convergence.

Laboratory experiments by Isaac ef al. (1989) even indicate that zero contribu-
tions are more frequent in contribution games if compared to a standard continuous
public good game. Our simulations support this result and show quite nicely the
intensity of selective pressure, which can be seen from a comparison of Figures 5(e)
and 5(f) with 5(g) and 5(h).

Observation 6 (Subscription Game I) In the long—run, agents learn not to voluntarily
contribute more than the required cost share T.

Observation 7 (Subscription Game II) Individual strategies within the population
tend towards being uniformly distributed in the interval [0, T.

These results are depicted in Figures 5(c) and 5(d). They are more obvious in the
latter due to a larger extent of convergence. Frequencies of strategies exceeding
the per capita threshold 1 = 50 decline sharply, while strategies in the interval [0, 1]
do not follow a specific pattern. The reason for this lies in the fact that there is no
selective pressure on strategies in the interval [0,7]. Because of the money—-back
guarantee all strategies b < T yield identical utility which makes any discrimination
between them impossible. This is not true for all strategies b > T, which die out,
because all contributions exceeding the threshold level T = Tnare wasted and there
is an incentive for ‘cheap riding’ (Isaac et al., 1989) on the contribution of others.

The complete lack of selective pressure for strategies b < T combined with the
random elements embedded in the Evolutionary Algorithm causes the convergence
of strategies towards a uniform distribution in the long—run.

Observation 8 (Subscription Game III) In the long run, the average population mean
contribution b attains values of above roughly one half of the cost share T required to com-
plete the public project.
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In our example, a uniform distribution of strategies implies an average individual
contribution of b = %T. Although the result, that higher thresholds imply higher
average contributions seems counter—intuitive, it can again be explained by the
lack of selective pressure in the subscription game. Perhaps it is of some interest
for contributions dealing with the question of artifically introducing thresholds in
order to make agents participate in public good provision (Morelli and Vesterlund,
2000).

5 Conclusions

In this paper we examined the learning dynamics of boundedly rational agents,
who were asked to voluntarily contribute to a discrete public good. The theoretical
part of the paper focused on static equilibria and myopic best response dynamics
of two different types of the threshold public good game. Whereas in the contri-
bution game individual contributions are lost in case of provision failure, there is
a money-back guarantee in the subscription game. Both games exhibit multiple
equilibria: an efficient one, where the public good is completed and all agents are
pivotal, and inefficient equilibria, where provision is not accomplished. We were
able to show that the efficient outcome is an absorbing state of uniform myopic
best response learning in the subscription game, while it is an instable equilibrium
in the contribution game. With the introduction of randomness in the course of
strategy formation, the analysis could be extended in order to establish results on
the stochastic stability of equilibria. The pivot state, i. e. the efficient equilibrium,
was shown to be stochastically instable in the contribution game and demonstrated
only to be stochastically stable in the subscription game by imposing additional re-
strictive conditions regarding the number of strategies available. Moreover it could
be shown that in the medium run the society spends more time in states without
provision than otherwise. We additionally found that provision failure is positively
correlated with the threshold level, a result which is supported by our simulations
as well as by laboratory experiments on discrete public good games.

The learning process of heterogeneous agents in our simulations was modeled
by an Evolutionary Algorithm, which is closely related to replicator dynamics of
evolutionary game theory. In summary, the simulations strongly support our pre-
viously derived theoretical results. For high threshold values, the public good was
almost never provided in the contribution game, while provision on average was
more successful in the subscription game. Nevertheless, even in the subscription
game, the public project was not completed in the majority of cases, due to the
properties stated on medium-run behavior.
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A

Myopic best response in the subscription game

Proof of Proposition 5

(i)

(ii)

(iti)

State S1: every possible action from the action space B is a best reply to S1 due to
the money-back guarantee. We assume identical behavior of all agents and that each
action b € B is equally likely to be played, i. e. has probability Prob(b) = 1 ¥ bk € B.
According to Proposition 4, a transition from S1 to S2 is only accomplished if agents
simultaneously play strategy b* = 1. Consequently, the probability is ps, = 1/m,
while non-uniform behavior of agents implies g, o = (%) "

For a transition from S1 to S1, the common action of agents must be b < 1. The deter-
mination of psg, s involves to count the number of strategies less than the cost share:
Let T C B,T := {b* € B|bX < 1} be the set of actions less or equal T. Let furthermore

#(T) denote the number of elements of set T. The number of actions smaller than

T can be determined as #(T) — 1. The probability of staying in state S1 is given by

Psi,s1 = #‘f(—gl = #(Tn)q_l. The remaining task is to count the elements in T.

The distance between two neighboring elements in B is given by 6:= |bk -bt vke
{1,2,...,m}. Between the m elements of B there are exactly m— 1 distances, from
which follows

5—_P

S m-1
T is a subset of B. The distance between elements in T is equal to the distance &

between elements in B. There are exactly #(T) — 1 distances between b! = 0 and 1. Tt
follows that

T=#(T)-1)0. (A1)

Consequently, #(T) can be obtained as
#(T) = % (Mm—1)+1.
Finally, the probability of transiting from S1 to S1 can be derived as
#T)—1 tm-1
- = A2
Pst,s1 p B m (A2)
The probability of transiting from S1 to S3 can be derived residually
Pst,s3 = 1— Pst,s1— Ps, s
Tm-1 1 T\ m-1

State S2: obvious from Proposition 4. The contribution of each agent is necessary for
the completion of the public good, which provides the incentive not to deviate from
the equilibrium strategy b* =1

Ppoe=1 = posa=Ppes=0 (A.4)
State S3: obvious from Proposition 4

psssi=1 = pse=psss=0 (A.5)

If the society is located in S3, the unique best response for each agent i is to signal
bi = O, since completion of the public project (in theory) does not require player i’s
contribution. As this is true for every player participating in the game, the aggregate
contribution will be zero when the game is repeated in the next period. From this
argument it becomes evident that it is not possible to switch from S3 to S2 (the ‘pivot’
state) in one move, that is ps3 & = 0. Consequently, the probability of transiting from
S3 to S1 is given by psz 1 = 1.

O

24



