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Abstract
In this paper we introduce a small Keynesian model of economic growth which is centered
around two advanced types of Phillips curves, one for money wages and one for prices,
both being augmented by perfect myopic foresight and supplemented by a measure of the
medium-term inflationary climate updated in an adaptive fashion. The model contains
two potentially destabilizing feedback chains, the so-called Mundell and Rose-effects. We
estimate parsimonious and congruent Phillips curves for money wages and prices in the US
over the past five decades. Using the parameters of the empirical Phillips curves, we show
that the growth path of the private sector of the model economy is likely to be surrounded
by centrifugal forces. Convergence to this growth path can be generated in two ways: a
Blanchard-Katz-type error-correction mechanism in the money-wage Phillips curve or a
modified Taylor rule that is augmented by a term, which transmits increases in the wage
share (real unit labor costs) to increases in the nominal rate of interest. Thus the model
is characterized by local instability of the wage-price spiral, which however can be tamed
by appropriate wage or monetary policies. Our empirical analysis finds the error-correction
mechanism being ineffective in both Phillips curves suggesting that the stability of the
post-war US macroeconomy originates from the stabilizing role of monetary policy.

JEL CLASSIFICATION SYSTEM: E24, E31, E32, J30.

KEYWORDS: Phillips curves; Mundell effect; Rose effect; Monetary policy; Taylor Rule;
Inflation; Unemployment; Instability.

RUNNING HEAD: Wage and Price Phillips curves.

∗We have to thank Reiner Franke for helpful comments on this paper. Please do not quote without the authors’

permission. Financial support from the UK Economic and Social Research Council under grant L138251009 is

gratefully acknowledged by the second author.

1



2

1 Introduction

1.1 The Phillips curve(s)

Following the seminal work in Phillips (1958) on the relation between unemployment and the
rate of change of money wage rates in the UK, the ‘Phillips curve’ was to play an important
role in macroeconomics during the 1960s and 1970s, and modified so as to incorporate inflation
expectations, survived for much longer. The discussion on the proper type and the functional
shape of the Phillips curve has never come to a real end and is indeed now at least as lively
as it has been at any other time after the appearance of Phillips (1958) seminal paper. Recent
examples for this observation are provided by the paper of Gali, Gertler and Lopez-Salido
(2001), where again a new type of Phillips curve is investigated, and the paper by Laxton,
Rose and Tambakis (1999) on the typical shape of the expectations augmented price inflation
Phillips curve. Blanchard and Katz (1999) investigate the role of an error-correction wage
share influence theoretically as well as empirically and Plasmans, Meersman, van Poeck and
Merlevede (1999) investigate on this basis the impact of the generosity of the unemployment
benefit system on the adjustment speed of money wages with regard to demand pressure in the
market for labor.

Much of the literature has converged on the so-called ‘New Keynesian Phillips curve’, based
on Taylor (1980) and Calvo (1983). Indeed, McCallum (1997) has called it the “closest thing
there is to a standard formulation”. Clarida, Gali and Gertler (1999) have used a version of it
as the basis for deriving some general principles about monetary policy. However, as has been
recently pointed out by Mankiw (2001): “Although the new Keynesian Phillips curves has many
virtues, it also has one striking vice: It is completely at odd with the facts”. The problems arise
from the fact that although the price level is sticky in this model, the inflation rate can change
quickly. By contrast, empirical analyses of the inflation process (see, inter alia, Gordon, 1997)
typically give a large role to ‘inflation inertia’.

Rarely, however, at least on the theoretical level, is note taken of the fact that there are in
principle two relationships of the Phillips curve type involved in the interaction of unemployment
and inflation, namely one on the labor market, the Phillips (1958) curve, and one on the market
for goods, normally not considered a separate Phillips curve, but merged with the other one by
assuming that prices are a constant mark-up on wages or the like, an extreme case of the price
Phillips curve that we shall consider in this paper.

For researchers with a background in structural macroeconometric model building it is,
however, not at all astonishing to use two Phillips curves in the place of only one in order to
model the interacting dynamics of labor and goods market adjustment processes or the wage-
price spiral for simplicity. Thus, for example, Fair (2000) has recently reconsidered the debate
on the NAIRU from this perspective, though he still uses demand pressure on the market for
labor as proxy for that on the market for goods (see Chiarella and Flaschel, 2000 for a discussion
of his approach).

In this paper we, by contrast, start from a traditional approach to the discussion of the
wage-price spiral which uses different measures for demand and cost pressure on the market for
labor and on the market for goods and which distinguishes between temporary and permanent
cost pressure changes. Despite its traditional background – not unrelated however to modern
theories of wage and price setting, see appendices A.2 and A.3 – we are able to show that an
important macrodynamic feedback mechanism can be detected in this type of wage – price spiral
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that has rarely been investigated in the theoretical as well as in the applied macroeconomic
literature with respect to its implications for macroeconomic stability. For the US economy we
then show by detailed estimation, using the software package PcGets of Hendry and Krolzig
(2001), that this feedback mechanism tends to be a destabilizing one. We finally demonstrate
on this basis that a certain error correction term in the money-wage Phillips curve or a Taylor
interest rate policy rules that is augmented by a wage gap term can dominate such instabilities
when operated with sufficient strength.

1.2 Basic macro feedback chains. A reconsideration

The Mundell effect

The investigation of destabilizing macrodynamic feedback chains has indeed never been at
the center of interest of mainstream macroeconomic analysis, though knowledge about these
feedback chains dates back to the beginning of dynamic Keynesian analysis. Tobin has presented
summaries and modeling of such feedback chains on various occasions (see in particular Tobin,
1975, 1989 and 1993). The well-known Keynes effect as well as Pigou effect are however often
present in macrodynamic analysis, since they have the generally appreciated property of being
stabilizing with respect to wage inflation as well as wage deflation. Also well-known, but rarely
taken serious, is the so-called Mundell effect based the impact of inflationary expectations on
investment as well as consumption demand. Tobin (1975) was the first who modeled this effect
in a 3D dynamic framework (see Scarth, 1996 for a textbook treatment of Tobin’s approach).
Yet, though an integral part of traditional Keynesian IS-LM-PC analysis, the role of the Mundell
is generally played down as for example in Romer (1996, p.237) where it only appears in the list
of problems, but not as part of his presentation of traditional Keynesian theories of fluctuations
in his chapter 5.

Figure 1 provides a brief characterization of the destabilizing feedback chain underlying the
Mundell effect. We consider here the case of wage and price inflation (though deflation may
be the more problematic case, since there is an obvious downward floor to the evolution of the
nominal rate of interest (and the working of the well-known Keynes effect) which, however, in
the partial reasoning that follows is kept constant by assumption).

Asset Markets:

Depressed
Goods Markets

Depressed
Labor Markets

wages

prices

The Mundell  Effect:

aggregate demand

REAL
interest
rate

investment

Further

Further

rising interest rates?

The Multiplier!(+durables)

Figure 1 Destabilizing Mundell effects.
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For a given nominal rate of interest, increasing inflation (caused by an increasing activity
level of the economy) by definition leads to a decrease of the real rate of interest. This stimulates
demand for investment and consumer durables even further and thus leads, via the multiplier
process to further increasing economic activity in both the goods and the labor markets, adding
further momentum to the ongoing inflationary process. In the absence of ceilings to such an
inflationary spiral, economic activity will increase to its limits and generate an ever accelerating
inflationary spiral eventually. This standard feedback chain of traditional Keynesian IS-LM-PC
analysis is however generally neglected and has thus not really been considered in its interaction
with the stabilizing Keynes- and Pigou effect, with works based on the seminal paper of Tobin
(1975) being the exception (see Groth, 1993, for a brief survey on this type of literature).

Far more neglected is however an – in principle – fairly obvious real wage adjustment
mechanism that was first investigated analytically in Rose (1967) with respect to its local and
global stability implications (see also Rose, 1990). Due to this heritage, this type of effect has
been called Rose effect in Chiarella and Flaschel (2000), there investigated in its interaction with
the Keynes- and the Mundell effect, and the Metzler inventory accelerator, in a 6D Keynesian
model of goods and labor market disequilibrium. In the present paper we intend to present and
analyze the working of this effect in a very simple IS growth model – without the LM curve
as in Romer (2000) – and thus with a direct interest rate policy in the place of indirect money
supply targeting and its use of the Keynes effect (based on stabilizing shifts of the conventional
LM-curve). We classify theoretically and estimate empirically the types of Rose effects that are
at work, the latter for the case of the US economy.

Stabilizing or destabilizing Rose effects?

Rose effects are present if the income distribution is allowed to enter the formation of Keynesian
effective demand and if wage dynamics is distinguished from price dynamics, both aspects of
macrodynamics that are generally neglected at least in the theoretical macroeconomic literature.
This may explain why Rose effects are rarely present in the models used for policy analysis and
policy discussions.

Rose effects are however of great interest and have been present since long – though un-
noticed and not in full generality – in macroeconometric model building, where wage and price
inflation on the one hand and consumption and investment behavior on the other hand are
generally distinguished from each other. Rose effects allow for at least four different cases de-
pending on whether consumption demand responds stronger than investment demand to real
wage changes (or vice versa) and whether – broadly speaking – wages are more flexible than
prices with respect to the demand pressures on the market for labor and for goods, respectively.
The figures 2 and 3 present two out of the four possible cases, all based on the assumption that
consumption demand depends positively and investment demand negatively on the real wage
(or the wage share if technological change is present).

In figure 2 we consider first the case where the real wage dynamics taken by itself is stabil-
izing. Here we present the case where wages are more flexible with respect to demand pressure
(in the market for labor) than prices (with respect to demand pressure in the market for goods)
and where investment responds stronger than consumption to changes in the real wage. We
consider again the case of inflation. The case of deflation is of course of the same type with all
shown arrows simply being reversed. Nominal wages rising faster than prices means that real
wages are increasing when activity levels are high. Therefore, investment is depressed more
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Asset Markets:

Depressed
Goods Markets

Depressed
Labor Markets

wages

prices

Normal Rose Effects:

interest rates

investment

aggregate demand

Recovery!

Recovery!

REAL
 wages

consumption

?

Figure 2 Normal Rose effects.

than consumption is increased, giving rise to a decrease in aggregate as well as effective de-
mand. The situation on the market for goods – and on this basis also on the market for labor
– is therefore deteriorating, implying that forces come into being that stop the rise in wages
and prices eventually and that may – if investigated formally – lead the economy back to the
position of normal employment and stable wages and prices.

The stabilizing forces just discussed however become destabilizing if price adjustment speeds
are reversed and thus prices rising faster than nominal wages, see figure 3. In this case, we get
falling real wages and thus – on the basis of the considered propensities to consume and invest
with respect to real wage changes – further increasing aggregate and effective demand on the
goods market which is transmitted into further rising employment on the market for labor and
thus into even faster rising prices and (in weaker form) rising wages. This adverse type of real
wage adjustment or simply adverse Rose effect can go on for ever if there is no nonlinearity
present that modifies either investment or consumption behavior or wage and price adjustment
speeds such that normal Rose effects are established again, though of course supply bottlenecks
may modify this simple positive feedback chain considerably.1

Since the type of Rose effect depends on the relative size of marginal propensities to consume
and to invest and on the flexibility of wages vs. that of prices we are confronted with a question
that demands for empirical estimation. Furthermore, Phillips curves for wages and prices have
to be specified in more detail than discussed so far, in particular due to the fact that also
cost pressure and expected cost pressure do matter in them, not only demand pressure on the
market for goods and for labor. These specifications will lead to the result that also the degree
of short-sightedness of wage earners and of firms will matter in the following discussion of Rose
effects. Our empirical findings in this regard will be that wages are considerably more flexible
than prices with respect to demand pressure, and workers roughly equally short-sighted as

1The type of Rose effect shown in figure 3 may be considered as the one that characterizes practical macro-

wisdom which generally presumes that prices are more flexible than wages and that IS goods market equilibrium

– if at all – depends negatively on real wages. Our empirical findings show that both assumptions are not

confirmed, but indeed both reversed by data of the US economy, which taken together however continues to

imply that empirical Rose effects are adverse in nature.
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Figure 3 Adverse Rose effects..

firms with respect to cost pressure. On the basis of the assumption that consumption is more
responsive than investment to temporary real wage changes, we then get that all arrows and
hierarchies shown in figure 3 will be reversed. We thus get by this twofold change in the figure
3 again an adverse Rose effect in the interaction of income distribution dependent changes in
goods demand with wage and price adjustment speeds on the market for labor and for goods.

1.3 Outline of the paper

In view of the above hypothesis, the paper is organized as follows. Section 2 presents a simple
Keynesian macrodynamic model where advanced wage and price adjustment rules are intro-
duced and in the center of the considered model and where – in addition – income distribution
and real rates of interest matter in the formation of effective goods demand. We then investigate
some stability implications of this macrodynamic model, there for the case where Rose effects
are stabilizing, as in figure 2, due to an assumed dominance of investment behavior in effective
demand and to sluggish price dynamics as well as sluggish inflationary expectations, concerning
what we will call the inflationary climate surrounding the perfectly foreseen current inflation
rate. We thus consider the joint occurrence of stable Rose and weak Mundell effects, but still do
not find stability of the steady growth path in such a situation. A standard type of interest rate
policy rule2is therefore subsequently introduced to enforce convergence to the steady state, in-
deed also for fast revisions of inflationary expectations and thus stronger destabilizing Mundell
effects. Section 3 investigates empirically whether the type of Rose effect assumed in section
2 is really the typical one. We find evidence (in the case of the US economy) that wages are
indeed more flexible than prices. Increasing wage flexibility is thus bad for economic stability
(while price flexibility is not) when coupled with the observation that consumption demand
responds stronger than investment demand to temporary real wage changes.

In section 4, this type of destabilizing Rose effect is then incorporated into our small macro-
2The discussion of such interest rate or Taylor policy rules originates from Taylor (1993), see Taylor (1999a),

for a recent debate of such monetary policy rules and Clarida and Gertler (1998) for an empirical study of Taylor

feedback rules in selected OECD countries.



7

dynamic model and the question of whether and which type of interest rate policy can stabilize
the economy in such a situation is reconsidered. We find that a standard Taylor interest rate
rule is not sufficient due to its specific tailoring that only allows to combat the Mundell type
feedback chain – which it indeed can fight successfully. In case of a destabilizing Rose or real
wage effect the tailoring of such a Taylor rule must be reflected again in order to find out what
type of rule can fight such Rose effects. We here first reintroduce wage share effects considered
by Blanchard and Katz (1999) into the money-wage Phillips curve which – when sufficiently
strong – will stabilize a system operating under standard Taylor rule. Alternatively, however,
the Taylor rule can be modified to include an income distribution term, which enforces conver-
gence in the case where the wage share effect in the money wage Phillips curve is too weak to
guarantee this.

We conclude that the role of income distribution in properly formulated wage-price spirals
represents an important topic that is very much neglected in the modern discussion of inflation,
disinflation and deflation.

2 A model of the wage–price spiral

This section briefly presents an elaborate form of the wage-price dynamics or the wage-price
spiral and a simple theory of effective goods demand, which however gives income distribution
a role in the growth dynamics derived from these building blocks. The presentation of this
model is completed with respect to the budget equations for the four sectors of the model in
the appendix A.1 to this paper. The wage-price spiral will be estimated, using US data, in
section 3 of the paper.

2.1 The wage-price spiral

At the core of the dynamics to be modeled, estimated and analyzed in this and the following
sections is the description of the money wage and price adjustment processes. They are
provided by the following equations (1) and (2):

ŵ = βw1(Ū
l − U l) − βw2(u − uo) + κw(p̂ + nx) + (1 − κw)(π + nx), (1)

p̂ = βp1(Ū
c − U c) + βp2(u − uo) + κp(ŵ − nx) + (1 − κp)π. (2)

In these equations for wage inflation ŵ = ẇ/w and price inflation p̂ = ṗ/p we denote by
U l and U c the rate of unemployment of labor and capital, respectively, and by nx the rate of
Harrod–neutral technological change. u is the wage share, u = wLd/pY .

Demand pressure in the market for labor is characterized by deviations of the rate of un-
employment U l from its NAIRU level Ū l. Similarly demand pressure in the market for goods
is represented by deviations of the rate of underemployment U c of the capital stock K from its
normal underemployment level Ū c, assumed to be fixed by firms. Wage and price inflation are
therefore first of all driven by their corresponding demand pressure terms.

With respect to the role of the wage share u, which augments the Phillips curves by the
terms βw2(u−uo) and βp2(u−uo), we assume that increasing shares will dampen the evolution
of wage inflation and give further momentum to price inflation (see Franke, 2001, for details
of the effects of a changing income distribution on demand driven wage and price inflation).
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As far as the money-wage Phillips curve is concerned, this corresponds to the error-correction
mechanism in Blanchard and Katz (1999). In appendix A.2, we motivate this assumption within
a wage-bargaining model. A similar, though less strong formulation has been proposed by Ball
and Mofitt (2001), who – based on fairness considerations – integrate the difference between
productivity growth and an average of past real-wage growth in a wage-inflation Phillips curve.

In addition to demand pressure we have also cost–pressure terms in the laws of motions
for nominal wages and prices, of crossover type and augmented by productivity change in the
case of wages and diminished by productivity change in the case of prices. As the wage–price
dynamics are formulated we assume that myopic perfect foresight prevails, of workers with
respect to their measure of cost pressure, p̂, and of firms with respect to wage pressure, ŵ.
In this respect we follow the rational expectations school and disregard model–inconsistent
expectations with respect to short-run inflation rates. Yet, in the present framework, current
inflation rates are not the only measuring root for cost pressure, so they enter wage and price
inflation only with weight κw ∈ [0, 1] and κp ∈ [0, 1], respectively, and κwκp < 1. In addition,
both workers and firms (or at least one of them) look at the inflationary climate surrounding
current inflation rates.

A novel element in such cost-pressure terms is here given by the term π, representing the
inflationary climate in which current inflation is embedded. Since the inflationary climate
envisaged by economic agents changes sluggishly, information about macroeconomic conditions
diffuses slowly through the economy (see Mankiw and Reis, 2001), wage and price are set
staggered (see Taylor, 1999b), it is not unnatural to assume that agents, in the light of past
inflationary experience, update π by an adaptive rule. In the theoretical model,3 we assume
that the medium-run inflation beliefs are updated adaptively in the standard way:

π̇ = βπ(p̂ − π). (3)

In two appendices A.2, A.3 we provide some further justifications for the two Phillips curves
here assumed to characterize the dynamics of the wage and the price level. Note that the infla-
tionary climate expression has often been employed in applied work by including lagged inflation
rates in price Phillips curves, see Fair (2000) for example. Here however it is justified from the
theoretical perspective, separating temporary from permanent effects, where temporary changes
in both price and wage inflation are even perfectly foreseen. We show in this respect in section
2.4 that the interdependent wage and price Phillips curves can however be solved for wage and
price inflation explicitly, giving rise to two reduced form expressions where the assumed perfect
foresight expressions do not demand for forward induction.

For the theoretical investigation, the dynamical equations (1)-(3) representing the laws of
motion of w, p and π are part of a complete growth model to be supplemented by simple
expressions for production, consumption and investment demand and – due to the latter – also
by a law of motion for the capital stock. These equations will allow the discussion of so–called
Mundell and Rose effects in the simplest way possible and are thus very helpful in isolating
these effects from other important macrodynamic feedback chains which are not the subject
of this paper. The econometric analysis to be presented in the following section will focus on
the empirical counterparts of the Phillips curves (1) and (2) while conditioning on the other
macroeconomic variables which enter these equations.

3In the empirical part of the paper we will simplify these calculations further by measuring the inflationary

climate variable π as a 12 quarter moving average of p̂.
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2.2 Technology

In this and the next subsection we complete our model of the wage price spiral in the simples
way possible to allow for the joint occurrence of Mundell and Rose effects in the considered
economy.

For the sake of simplicity we employ in this paper a fixed proportions technology:4

yp = Y p/K = const. , x = Y/Ld, x̂ = ẋ/x = nx = const.

On the basis of this, the rates of unemployment of labor and capital can be defined as follows:

U l =
L − Ld

L
= 1 − Y

xL
= 1 − yk

U c =
Y p − Y

Y p
= 1 − Y

Y p
= 1 − y/yp

where y denotes the output–capital ratio Y/K and k = K/(xL) a specific measure of capital–
intensity or the full employment capital - output ratio. We assume Harrod–neutral technological
change: ŷp = 0, x̂ = nx = const., with a given potential output-capital ratio yp and labor
productivity x = Y/Ld growing at a constant rate. We have to use k in the place of K/L,
the actual full employment capital intensity, in order to obtain state variables that allow for a
steady state later on.

2.3 Aggregate goods demand

As far as consumption is concerned we assume Kaldorian differentiated saving habits of the
classical type (sw = 1 − cw = 1 − c ≥ 0, sc = 1), i.e., real consumption is given by:

C = cuY = cωLd, u = ω/x, ω = w/p the real wage (4)

and thus solely dependent on the wage share u and economic activity Y . For the investment
behavior of firms we assume

I

K
= i ((1 − u)y − (r − π)) + n, y =

Y

K
,n = L̂ + x̂ = n + nx trend growth (5)

The rate of investment is therefore basically driven by the return differential between ρ =
(1 − u)y, the rate of profit of firms and r − π, the real rate of interest on long–term bonds
(consols), only considered in its relation to the budget restrictions of the four sectors of the
model (workers, asset-holders, firms and the government) in appendix A.1 to this paper.5

This financial asset is needed for the generation of Mundell (or real rate of interest) effects
in the model, which as we will show later can be neutralized by a Taylor-rule.

Besides consumption and investment demand we also consider the goods demand G of the
government where we however for simplicity assume g = G/K =const., since fiscal policy is not
a topic of the present paper.

4We neglect capital stock depreciation in this paper.
5We consider the long-term rate r as determinant of investment behavior in this paper, but neglect here the

short-term rate and its interaction with the long-term rate – as it is for example considered in Blanchard and

Fisher (1999, 10.4) – in order to keep the model concentrated on the discussion of Mundell and Rose effects. We

thus abstract from dynamical complexities caused by the term structure of interest rates. Furthermore, we do

not consider a climate expression for the evolution of nominal interest, in contrast to our treatment of inflation,

in order to restrict the dynamics to dimension 3.
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2.4 The laws of motion

Due to the assumed demand behavior of households, firms and the government we have as
representation of goods–market equilibrium in per unit of capital form (y = Y/K):

cuy + i((1 − u)y − (r − π)) + n + g = y (6)

and as law of motion for the full–employment capital–output ratio k = K/(xL):

k̂ = i((1 − u)y − (r − π)). (7)

Equations (1), (2) furthermore give in reduced form the two laws of motion (8), (9), with
κ = (1 − κwκp)−1:

û = κ
[
(1 − κp)

{
βw1(Ū

l − U l) − βw2(u − uo)
} − (1 − κw)

{
βp1(Ū

c − U c) + βp2(u − uo)
}]

(8)

p̂ = π + κ
[
βp1(Ū

c − U c) + βp2(u − uo) + κp

{
βw1(Ū

l − U l) − βw2(u − uo)
}]

(9)

The first equation describes the law of motion for the wage share u which depends positively
on the demand pressure items on the market for labor (for κp < 1) and negatively on those of
the market for goods (for κw < 1).6 The second equation is a reduced form price Phillips curve
which combines all demand pressure related items on labor and goods market in a positive
fashion (for κp > 0). This equation is far more advanced than the usual price Phillips curve of
the literature.7 Inserted into the adaptive revision rule for the inflationary climate variable it
provides as further law of motion the dynamic equation

π̇ = βπκ
[
βp1(Ū

c − U c) + βp2(u − uo) + κp

{
βw1(Ū

l − U l) − βw2(u − uo)
}]

(10)

We assume for the time being that the interest rate r on long-term bonds is kept fixed at its
steady-state value ro and then get that equations (7), (8) and (10), supplemented by the static
goods market equilibrium equation (5), provide an autonomous system of differential equations
in the state variables u, k and π.

It is obvious from equation (8) that the error correction terms βw2 , βp2 exercise a stabilizing
influence on the adjustment of the wage share (when this dynamic is considered in isolation).
The other two β−terms (the demand pressure terms), however, do not give rise to a clear-cut
result for the wage share subdynamic. In fact, they can be reduced to the following expression
as far as the influence of economic activity, as measured by y, is concerned (neglecting irrelevant
constants):

κ [(1 − κp)βw1k − (1 − κw)βp1/y
p] · y

In the case where output y depends negatively on the wage share u we thus get partial
stability for the wage share adjustment (as in the case of the error correction terms) if and
only if the term in square brackets is negative (which is the case for βw1 sufficiently large). We
have called this a normal Rose effect in section 1, which in the present case derives – broadly
speaking – from investment sensitivity being sufficiently high and wage flexibility dominance.

6The law of motion (8) for the wage share u is obtained by making use in addition of the following reduced

form equation for ŵ which is obtained simultaneously with the one for p̂ and of a very similar type:

ŵ = π + κ
�
βw1(Ū l − U l) − βw2(u − uo) + κw

�
βp1(Ūc − Uc) + βp2(u − uo)

	�
.

7Note however that this reduced form Phillips curve becomes formally identical to the one normally invest-

igated empirically, see Fair (2000) for example, if βw2 , βp2 = 0 holds and if Okun’s law is assumed to hold (i.e.

the utilization rates of labor and capital are perfectly correlated). However, even then the estimated coefficients

are far away from representing labor market characteristics solely.
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In the case where output y depends positively on u, where therefore consumption is dom-
inating investment with respect to the influence of real wage changes, we need a large βp1 , and
thus a sufficient degree of price flexibility relative to the degree of wage flexibility, to guaran-
tee stability from the partial perspective of real wage adjustments. For these reasons we will
therefore call the condition

α = (1 − κp)βw1ko − (1 − κw)βp1/y
p

{
<

>

}
0 ⇐⇒

{
normal
adverse

}
Rose effects (α)

the critical or α condition for the occurrence of normal (adverse) Rose effects, in the case where
the flexibility of wages (of prices) with respect to demand pressure is dominating the wage-price
spiral (including the weights concerning the relevance of myopic perfect foresight). In the next
section we will provide estimates for this critical condition in order to see which type of Rose
effect might have been the one involved in the business fluctuations of the US economy in the
post-war period.

Note finally with respect to equation (9) and (10) that π̇ always depends positively on y and
thus on π, since y always depends positively on π. This latter dependence of accelerator type
as well as the role of wage share adjustments will be further clarified in the next subsection.

2.5 The effective demand function

The goods–market equilibrium condition (6) can be solved for y and gives

y =
n + g − i(ro − π)

(1 − u)(1 − i) + (1 − c)u
. (11)

We assume i ∈ (0, 1), c ∈ (0, 1] and consider only cases where u < 1 is fulfilled which, in
particular, is true close to the steady state. This implies that the output–capital ratio y

depends positively on π.
Whether y is increasing or decreasing in the labor share u depends on the relative size of c

and i.
In the case of c = 1, we get the following dependencies:

yu =
(n + g − i(ro − π))(i − 1)

[(1 − u)(1 − i)]2
=

y

1 − u
,

ρu = −y − (1 − u)yu = 0.

As long as y is positive and u smaller than one, we get a positive dependence of y on u. The
rate of profit ρ is independent of the wage share u due to a balance between the negative cost
and the positive demand effect of the wage share u.8

Otherwise, i.e. if the consumption propensity out of wage income is strictly less than one,
c < 1, we have that

yu =
(c − i)y

(1 − i)(1 − u) + (1 − c)u
≥ 0 iff c ≥ i, (12)

ρu = −y + (1 − u)yu < 0, (13)
8We note that the investment function can be modified in various ways, for example by inserting the normal-

capacity-utilization rate of profit ρn = (1 − u)(1 − Ūc)yp into it in the place of the actual rate ρ, which then

always gives rise to a negative effect of u on this rate ρn and also makes subsequent calculations simpler. Note

here also that we only pursue local stability analysis in this paper and thus work for reasons of simplicity with

linear functions throughout.
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where the result for the rate of profit ρ = (1− u)y of firms follows from the fact that yu clearly
is smaller than y/(1 − u).

Therefore, if a negative relationship between the rate of return and the wage share is desir-
able (given the investment function defined in equation 7), then for the workers consumption
function, the assumption c < 1 is required: C/K = cuy, c ∈ (0, 1).

2.6 Stability issues

We consider in this subsection the fully interacting, but somewhat simplified 3D growth
dynamics of the model which consist the following three laws of motion (14) – (16) for the
wage share u, the full employment capital-output ratio k and the inflationary climate π:9

û = κ[(1 − κp)(βw1(Ū
l − U l) − βw2(u − uo)) − (1 − κw)βp1(Ū

c − U c)], (14)

k̂ = i((1 − u)y − (r − π)), (15)

π̇ = βπκ[βp1(Ū
c − U c) + κp(βw1(Ū

l − U l) − βw2(u − uo))], (16)

where U l = 1 − yk and U c = 1 − y/yp.
During this section, we will impose the following set of assumptions:10

(A.1) The marginal propensity to consume is strictly less than the one to invest: 0 < c < i.
(A.2) The money-wage Phillips curve is not error-correcting w.r.t. the wage share: βw2 = 0.
(A.3) The parameters satisfy that uo ∈ (0, 1) and πo ≥ 0 hold in the steady state.
(A.4a) The nominal interest rate r is constant: r = ro.
(A.4b) There is an interest rate policy rule in operation which is of the type:

r = ρo + π + βr(π − π̄)
with βr > 0, ρo the steady-state real rate of interest, and π̄ the inflation target.

Assumption (A.1) implies that (i) yu < 0 as in (12), (ii) U l
u > 0 and U c

u > 0 since the negative
effect of real wage increases on investment outweighs the positive effect on consumption, and
(iii) ρu < 0 with ρ = (1 − u)y (the alternative scenario with c > i is considered in section 4).
(A.2) excludes the potentially stabilizing effects of the Blanchard-Katz-type error-correction
mechanism (will be discussed in section 4.2 for the money-wage Phillips curve). (A.3) ensures
the existence of an interior steady state. Assumptions (A.4a) and (A.4b) stand for different
monetary regimes and determine the nominal interest rate in (15) and the algebraic equation
for the effective demand which supplements the 3D dynamics.

For the neutral monetary policy defined in (A.4a), we have that output y is an increasing
function of the inflationary climate π:

y =
n + g + i(π − ro)

(1 − u)(1 − i) + (1 − c)u
. (17)

9We therefore now assume – for reasons of simplicity – that βp2 = 0 holds throughout, a not very restrictive

assumption in the light of what is shown in the remainder of this paper. Note here that two of the three laws

of motion (for the wage share and the inflationary climate) are originating from the wage-price spiral considered

in this paper, while the third one (for the capital output ratio) represents by and large the simplest addition

possible to arrive at a model on the macro level that can be considered complete.
10In section 4 we will relax these assumptions in various ways.
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By contrast, assumption (A.4b), the adoption of a Taylor interest rate policy rule, implies that
the static equilibrium condition is given by

y =
n + g − i(ρ0 + βr(π − π̄))
(1 − i)(1 − u) + (1 − c)u

. (18)

which implies a negative dependence of output y on the inflationary climate π.11

Proposition 1. (The Unique Interior Steady State Position)
Under assumptions (A.1) - (A.4a), the interior steady state of the dynamics (14) –

(16) is uniquely determined and given by

y0 = (1 − Ū c)yp, k0 = (1 − Ū l)/yo, u0 = 1/c + (n + g)/y0, ρo = (1 − uo)yo.

Steady-state inflation in the constant nominal interest regime (A.4a) is given by:

πo = ro − (1 − uo)yo,

and under the interest rule (A.4b) we have that:

πo = π̄, ro = ρo + π̄

holds true.

The proof of proposition 1 is straightforward. The proofs of the following propositions are in
the mathematical appendix A.5.

The steady state solution with constant nominal interest rate (A.4a) shows that the demand
side has no influence on the long-run output-capital ratio, but influences the income distribution
and the long-run rate of inflation. In the case of an adjusting nominal rate of interest (A.4b),
the steady state rate of inflation is determined by the monetary authority and its steering of
the nominal rate of interest, while the steady-state rate of interest is obtained from the steady
rate of return of firms and the inflationary target of the central bank.

Proposition 2. (Private Sector Instability)
Under assumptions (A.1) - (A.4a), the interior steady state of the dynamics (14)

– (16) is essentially repelling (exhibits at least one positive root), even for small

parameters βp1 , βπ.

A normal Rose effect (stability by wage flexibility and instability by price flexibility in
the considered case c < i) and a weak Mundell effect (sluggish adjustment of prices and of
the inflationary climate variable) are thus not sufficient to generate convergence to the steady
state.12

11Note that our formulation of a Taylor rule ignores the influence of a variable representing the output gap.

Including the capacity utilization gap of firms would however only add a positive constant to the denominator

of the fraction just considered and would therefore not alter our results in a significant way. Allowing for the

output gap in addition to the inflation gap may also be considered as some sort of double counting.
12In the mathematical appendix A.5, it is shown that the carrier of the Mundell effect, π̇π, will always give

the wrong sign to the determinant of the Jacobian of the dynamics at the steady state.
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Proposition 3. (Interest Rate Policy and Stability)
Under assumptions (A.1) - (A.3), the interest rule in (A.4b) implies asymptotic

stability of the steady state for any given adjustment speeds βπ > 0 if the price

flexibility parameter βp1 is sufficiently small.

As long as price flexibility does not give rise to an adverse Rose effect (dominating the
trace of the Jacobian of the dynamics at the steady state), we get convergence to the steady
state by monetary policy and the implied adjustments of the long-term real rate of interest
r − π which increase r beyond its steady state value whenever the inflationary climate exceeds
the target value π̄ and vice versa. The present stage of the investigation therefore suggests
that wage flexibility (relative to price flexibility), coupled with the assumption c > i and an
active interest rate policy rule is supporting macroeconomic stability. The question however is
whether this is the situation that characterizes factual macroeconomic behavior.

An adverse Rose effect (due to price flexibility and c < i) would dominate the stability
implications of the considered dynamics: the system would then lose its stability by way of a
Hopf–bifurcation when the reaction parameter βr of the interest rate rule is made sufficiently
small. However, we will find in the next section that wages are more flexible than prices with
respect to demand pressure on their respective markets. We thus have in the here considered
case c < i that the Rose effect can be neglected (as not endangering economic stability), while
the destabilizing Mundell effect can indeed be tamed by an appropriate monetary policy rule.

3 Estimating the US wage-price spiral

In this section we analyze US post-war data to provide an estimate of the two Phillips curves
that form the core of the dynamical model introduced in section 2. Using PcGets (see Hendry
and Krolzig, 2001), we start with a general, dynamic, unrestricted, linear model of ŵ − πt

and p̂ − πt which is conditioned on the explanatory variables predicted by the theory and use
the general-to-specific approach to find an undominated parsimonious representation of the
structure of the data. From these estimates, the long-run Phillips curves can be obtained
which describe the total effects of variables and allow a comparison to the reduced form of the
wage-price spiral in (1) and (2).

3.1 Data

The data are taken from the Federal Reserve Bank of St. Louis (see http://www.stls.frb.org/fred).
The data are quarterly, seasonally adjusted and are all available from 1948:1 to 2001:2. Except
for the unemployment rates of the factors labor, U l, and capital, U c, the log of the series are
used (see table 1).

For reasons of simplicity as well as empirical reasons, we measure the inflationary climate
surrounding the current working of the wage-price spiral by an unweighted 12-month moving
average:

πt =
1
12

12∑
j=1

∆pt−j.

This moving average provides a simple approximation of the adaptive expectations mechanism
(3) considered in section 2, which defines the inflation climate as an infinite, weighted moving
average of past inflation rates with declining weights. The assumption here is that people
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Table 1 Data.
Variable Transformation Mnemonic Description of the untransformed series

U l UNRATE/100 UNRATE Unemployment Rate

Uc 1−CUMFG/100 CUMFG Capacity Utilization: Manufacturing. Percent of Capacity

w log(COMPNFB) COMPNFB Nonfarm Business Sector: Compensation Per Hour, 1992=100

p log(GNPDEF) GNPDEF Gross National Product: Implicit Price Deflator, 1992=100

y − ld log(OPHNFB) OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons, 1992=100

u log
�

COMPRNFB
OPHNFB

�
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour, 1992=100

Note that w, p, ld, y, u now denote the logs of wages, prices, employed labor, output and the wage share

(1992=1) so that first differences can be used to denote their rates of growth. Similar results are obtained

when measuring the wage share as unit labor costs (nonfarm business sector) adjusted by the GNP deflator.

apply a certain window (three years) to past observations, here of size, without significantly
discounting.

The data to be modeled are plotted in figure 4. The estimation sample is 1955:1 - 2001:2
which excludes the Korean war. The number of observations used for the estimation is 186.

1960 1970 1980 1990 2000

0.01

0.02

0.03
Price inflation

∆pt 
πt 

1960 1970 1980 1990 2000

0.01

0.02

0.03
Wage inflation

∆wt 
πt 

1960 1970 1980 1990 2000

0.02

0.04

0.06

0.08

0.10

Unemployment of labour and capital
Ut

l 
Ut

c (scaled) 

1950 1960 1970 1980 1990 2000

0.0

0.1

0.2
Wage share

u 

Figure 4 Price and Wage Inflation, Unemployment and the Wage Share.

3.2 The money-wage Phillips curve

Let us first provide an estimate of the wage Phillips curve (1) of this paper: We model wage
inflation in deviation from the inflation climate, ∆w−π, conditional on its own past, the history
of price inflation, ∆p − π, measured by the same type of deviations, overall labor productivity
growth, ∆y−∆ld, the unemployment rate, U l, and the log of the labor share, u = w+ ld−p−y,
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by means of the equation (19):

∆wt − πt = νw +
5∑

j=1

γwwj (∆wt−j − πt−j) +
5∑

j=1

γwpj (∆pt−j − πt−j)

+
5∑

j=1

γwxj

(
∆yt−j − ∆ldt−j

)
+

5∑
j=1

γwujU
l
t−j + αwut−1 + εwt, (19)

where εwt is a white noise process. The general model explains 43.7% of the variation of ∆wt−πt

reducing the standard error in the prediction of quarterly changes of the wage level to 0.467%:

RSS 0.003551 σ̂ 0.004653 R2 0.4373 R̄2 0.3653
ln L 1011 AIC −10.6298 HQ −10.4752 SC −10.2482

Almost all of the estimated coefficients of (19) are statistically insignificant and therefore not
reported here. This highlights the idea of the general-to-specific (Gets) approach (see Hendry,
1995, for an overview of the underlying methodology) of selecting a more compact model, which
is nested in the general but provides an improved statistical description of the economic reality
by reducing the complexity of the model and checking the contained information. The PcGets
reduction process is designed to ensure that the reduced model will convey all the information
embodied in the unrestricted model (which is here provided by equation 19). This is achieved by
a joint selection and diagnostic testing process: starting from the unrestricted, congruent general
model, standard testing procedures are used to eliminate statistically-insignificant variables,
with diagnostic tests checking the validity of reductions, ensuring a congruent final selection.
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Figure 5 Money Wage Phillips curve.

In the case of the general wage Phillips curve in (19), PcGets reduces the number of coef-
ficients from 22 to only 3, resulting in a parsimonious money-wage Phillips curve, which just
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consists of the demand pressure U l
t−1, the cost pressure ∆pt−1 − πt−1 and a constant (repres-

enting the integrated effect of labor productivity and the NAIRU on the deviation of nominal
wage growth from the inflationary climate)13,

∆wt − πt = 0.0158
(0.00163)

+ 0.266
(0.101)

(∆pt−1 − πt−1) − 0.193
(0.0271)

U l
t−1, (20)

without losing any relevant information:

RSS 0.003941 σ̂ 0.004641 R2 0.3755 R̄2 0.3686
ln L 1001 AIC −10.7297 HQ −10.7087 SC −10.6777

An F test of the specific against the general rejects only at a marginal rejection probability of
0.5238. The properties of the estimated model (20) are illustrated in figure 5. The first graph
(upper LHS) shows the fit of the model over time; the second graph (upper RHS) plots the fit
against the actual values of ∆wt − πt; the second graph (lower LHS) plots the residuals and
the last graph (lower RHS) the squared residuals. The diagnostic test results shown in table 2
confirm that (20) is a valid congruent reduction of the general model in (19).

Table 2 Diagnostics.
Wage Phillips curve Price Phillips curve

Diagnostic test (19) (20) (21) (22)

FChow(1978:2) 0.993 [0.5161] 0.866 [0.7529] 0.431 [0.9999] 0.421 [1.0000]
FChow(1996:4) 0.983 [0.4829] 0.771 [0.7315] 0.635 [0.8672] 0.551 [0.9288]
χ2

normality 0.710 [0.7012] 0.361 [0.8347] 0.141 [0.9322] 0.483 [0.7856]
FAR(1−4) 1.915 [0.1105] 1.276 [0.2810] 2.426 [0.0503] 1.561 [0.1869]
FARCH(1−4) 1.506 [0.2030] 0.940 [0.4421] 1.472 [0.2133] 3.391 [0.0107]
Fhetero 0.615 [0.9634] 1.136 [0.3411] 0.928 [0.6072] 1.829 [0.0346]

Reported are the test statistic and the marginal rejection probability.

With respect to the theoretical wage Phillips curve (1)

ŵ = βw1(Ū
l − U l) − βw2(u − uo) + κw(p̂ + nx) + (1 − κw)(π + nx)

we therefore obtain the quantitative expression

ŵ = 0.0158 − 0.193U l + 0.266p̂ + 0.734π

We notice that the wage share and labor productivity do play no role in this specification of
the money-wage Phillips curve. The result on the influence of the wage share is in line with the
result obtained by Blanchard and Katz (1999) for the US economy.

3.3 The price Phillips curve

Let us next provide an estimate of the price Phillips curve (2) for the US economy. We now
model price inflation in deviation from the inflation climate, ∆p − π, conditional on its own
past, the history of wage inflation, ∆w − π, overall labor productivity growth, ∆y − ∆ld, the

13We have E(p̂ − π) = 0, E(ŵ − π) = 0.0045 and Ū l = E(U l) = 0.058.
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degree of capital under-utilization, U c by means of the equation (21), and the error correction
term, u:

∆pt − πt = νp +
5∑

j=1

γppj (∆pt−j − πt−j) +
5∑

j=1

γpwj (∆wt−j − πt−j)

+
5∑

j=1

γpyj

(
∆yt−j − ∆ldt−j

)
+

5∑
j=1

γpujU
c
t + αput−1 + εpt, (21)

where εpt is a white noise process. The general unrestricted model shows no indication of
misspecification (see table 2) and explains a substantial fraction (63.8%) of inflation variability.
Also note that the standard error of the price Phillips curve is just half the standard error in
the prediction of changes in the wage level, namely 0.259%:

RSS 0.001072 σ̂ 0.002589 R2 0.6376 R̄2 0.5810
ln L 1122 AIC −11.7843 HQ −11.6015 SC −11.3334

There is however a huge outlier (ε̂pt > 3σ̂) associated with the oil price shock in 1974 (3) so a
centered impulse dummy, I(1974:3), was included.

Here, the model reduction process undertaken by PcGets limits the number of coefficients
to 9 (while starting again with 22) and results in the following price Phillips curve:

∆pt − πt = 0.00463
(0.0011)

+ 0.12
(0.0413)

(∆wt−1 − πt−1) + 0.0896
(0.0397)

(∆wt−3 − πt−3)

+ 0.254
(0.0691)

(∆pt−1 − πt−1) + 0.196
(0.0653)

(∆pt−4 − πt−4) − 0.18
(0.0634)

(∆pt−5 − πt−5)

− 0.0467
(0.0232)

(
∆yt−1 − ∆ldt−1

) − 0.0287
(0.00551)

U c
t−1 + 0.00988

(0.00262)

I(1974:3)t

(22)
RSS 0.001161 σ̂ 0.002562 R2 0.6074 R̄2 0.5897
ln L 1114 AIC −11.8870 HQ −11.8238 SC −11.7309

The reduction is accepted at a marginal rejection probability of 0.7093. The fit of the model
and the plot of the estimation errors are displayed in figure 6.

The long-run price Phillips curve implied by (22) is given by:

∆p − π = 0.00634
(0.0016)

+ 0.286
(0.0608)

(∆w − π) − 0.064
(0.0305)

(
∆y − ∆ld

) − 0.0393
(0.00795)

U c

+ 0.0135
(0.00366)

I(1974:3)
(23)

With respect to the theoretical price Phillips curve

p̂ = βp1(Ū
c − U c) + βp2(u − uo) + κp(ŵ − nx) + (1 − κp)π,

we therefore obtain the quantitative expression

p̂ = 0.006 − 0.039U c + 0.286ŵ + 0.714π,

where we ignore the dummy and the productivity term in the long-run Phillips curve.14 We
notice that the wage share and labor productivity do again play no role in this specification

14From the perspective of the theoretical equation just shown this gives by calculating the mean of Uc the

values Ūc = 0.18, nx = 0.004.
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Figure 6 Price Phillips curve.

of the money-wage Phillips curve. The result that demand pressure matters more in the labor
market than in the goods market is in line with what is observed in Carlin and Soskice (1990,
section 18.3.1), and the result that firms are (slightly) more short-sighted than workers may be
due to the smaller importance firms attach to past observations of wage inflation.

3.4 System results

So far we have modeled the wage and price dynamics of the system by analyzing one equation at
a time. In the following we check for the simultaneity of the innovations to the price and wage
inflation equations. The efficiency of a single-equation model reduction approach as applied in
the previous subsection depends on the absence of instantaneous causality between ∆pt−πt and
∆wt − πt (see Krolzig, 2001). This requires the diagonality of the variance-covariance matrix
Σ when the two Phillips curves are collected to the system

zt =
5∑

j=1

Ajzt−j + Bqt + εt, (24)

which represents zt = (∆pt−πt,∆wt −πt)′ as a fifth-order vector autoregressive (VAR) process
with the vector of the exogenous variables qt = (1, U c

t−1, U
l
t−1,∆yt−1−∆ldt−1,I(1974:3))

′ and the
null-restrictions found by PcGets being imposed. Also, εt is a vector white noise process with
E[εtε

′
t] = Σ.

Estimating the system by FIML using PcGive10 (see Hendry and Doornik, 2001) gives
almost identical parameter estimates (not reported here) and a log-likelihood of the system of
1589.34. The correlation of structural residuals in the ∆w − π and ∆p − π equation is just
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0.00467, which is clearly insignificant.15 Further support for the empirical Phillips curves (20)
and (22) comes from a likelihood ratio (LR) test of the over-identifying restrictions imposed
by PcGets. With χ2(44) = 46.793[0.3585], we can accept the reduction. The presence of
instantaneous non-causality justifies the model reduction procedure employed here, which was
based on applying PcGets to each single equation in a turn.

The infinite-order vector moving average representation of the system corresponding to the
system in (24) is given by

zt =
∞∑

j=0

ΨjBqt−j +
∞∑

j=0

Ψjεt−j (25)

where Ψ(L) = A(L)−1 and L is the lag operator. By accumulating all effects, z = A(1)−1Bq,

we get the results in table 3.

Table 3 Static long run solution.
Constant U c U l ∆y − ∆ld I(1974:3)

∆w − π 0.0189
(0.1109)

−0.0113
(0.0090)

−0.2093
(0.0300)

−0.0184
(0.0028)

+0.0039
(0.0011)

∆p − π 0.0118
(0.0680)

−0.0426
(0.0340)

−0.0600
(0.0228)

−0.0693
(0.0105)

+0.0146
(0.0040)

∆w − ∆p 0.0071 +0.0313 −0.1493 +0.0509 −0.0107
Derived from the FIML estimates of the system in (24).

Note here that all signs are again as expected, but that the estimated parameters are now
certain compositions of the β, κ terms and are in line with the values of these parameters
reported earlier. Taking into account all dynamics effects of U l and U c on wage and price
inflation, real wage growth reacts stronger on the under-utilization of the factor labor U l than
of the factor capital U c.

3.5 Are there adverse Rose effects?

The wage Phillips curve in (20) and the price Phillips curve in (22) can be solved for the two
endogenous variables ŵ and p̂. The resulting reduced form representation of these equations is
similar to equations (8) and (9), but for wages and prices and simplified due to the eliminated
Blanchard-Katz-type error correction terms (i.e., βw2 = βp2 = 0):

ŵ − π = κ
[
βw1(Ū

l − U l) + κwβp1(Ū
c − U c)

]
(26)

p̂ − π = κ
[
βp1(Ū

c − U c) + κpβw1(Ū
l − U l)

]
(27)

with κ = (1 − κw1κp1)
−1.

For the US economy, we found that wages reacted stronger to demand pressure than prices
(βw1 > βp1), that βw2, βp2 and wage share influences as demand pressure corrections could be
ignored (as assumed in section 2) and that wage–earners are roughly equally short–sighted as
firms (κw ≈ κp). Furthermore, using the FIML estimates of the static long run solution of

15Note that under the null hypothesis, the FIML estimator of the system is given by OLS. So we can easily

construct an LR test of the hypothesis Σ12 = Σ21 = 0. As the log-likelihood of the system under the restriction

is 1587.51. Thus the LR test of the restriction can be accepted with χ2(1) = 3.6554[0.0559].
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system ŵ−π, p̂−π reported in table 3, we have the following empirical equivalents of (26) and
(27):

ŵ − π ≈ 0.019 − 0.209U l − 0.011U c (28)

p̂ − π ≈ 0.012 − 0.060U l − 0.043U c (29)

where we abstract from the dummy and productivity term.
These calculations imply with respect to the critical condition (α) derived in section 2,

α = (1 − κp)βw1ko − (1 − κw)βp1/y
p ≈ 0.714 · 0.209 − 0.734 · 0.043 ≈ 0.118 > 0,

if we assume that k = K/(xL) and 1/yp = K/Y p are ratios of roughly similar size, which is
likely since full-employment output should be not too different from full-capacity output at the
steady state.

Hence, the Rose effect will be of adverse nature if the side-condition i < c is met. For the
US, this condition has been investigated in Flaschel, Gong and Semmler (2001) in a somewhat
different framework (see Flaschel, Gong and Semmler, 2002a for the European evidence). Their
estimated investment parameters i is 0.136, which should be definitely lower than the marginal
propensity to consume out of wages.16 Thus the real wage or Rose effect is likely to be adverse.
In addition to what is known for the real rate of interest rate channel and the Mundell effect,
increasing wage flexibility might add further instability to the economy. Advocating more wage
flexibility may thus not be as unproblematic as it is generally believed.

Given the indication that the US wage-price spiral is characterized by adverse Rose effects,
the question arises which mechanisms stabilized the US economy over the post-war period
by taming this adverse real wage feedback mechanism. Some aspects of this issue will be
theoretically investigated in the remainder of the paper. But a thorough analysis from a global
point of view must be left for future theoretical and empirical research on core nonlinearities
possibly characterizing the evolution of market economies.

The results obtained show that (as long as goods demand depends positively on the wage
share) the wage-price spiral in its estimated form is unstable as the critical condition (α) creates
a positive feedback of the wage share on its rate of change. We stress again that the innovations
for obtaining such a result are the use of two measures of demand pressure and the distinction
between temporary and permanent cost pressure changes (in a cross-over fashion) for the wage
and price Phillips curves employed in this paper.

4 Wage flexibility, instability and an extended interest rate rule

In section 2, we found that a sufficient wage flexibility supports economic stability. The imposed
assumption c < i ensured that the effective demand and thus output are decreased by a rising
wage share; thus deviations from the steady-state equilibrium, are corrected by the normal
reaction of the real wage to activity changes. In contrast, sufficiently flexible price levels (for
given wage flexibility) result in an adverse reaction of the wage share, since a rising wage share
stimulate further increases via output contraction and deflation.

16In the context of our model, one might want to estimate the effective demand function y = [(n + g − i(ro −
π)]/[(1 − u)(1 − i) + (1 − c)u]. In view of the local approach chosen, it would in fact suffice to estimate a linear

approximation of the form y = a0 + a1u + a2(r− π), where sign(a1) = sign(c− i) and a2 < 0 holds. However, in

preliminary econometric investigations, we found a1 being statistically insignificant so that no conclusions could

be drawn regarding the sign of c − i.
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Motivated by the estimation results presented in the preceding section, we now consider the
situation where c > i and α > 0 holds true with respect to the critical Rose condition (α). The
violation of the critical condition implies that û depends positively on y. In connection with
c > i, i.e., yu > 0 it generates a positive feedback from the wage share u onto its rate of change
û. Thus sufficiently strong wage flexibility (relative to price flexibility) is now destabilizing.
This is the adverse type of Rose effect.

4.1 Instability due to an unmatched Rose effect

Here we consider the simplified wage-price dynamics (14) – (16) under the assumption i < c

instead of (A.1). If, in the now considered situation, monetary policy is still inactive (A.4a),
the Rose effect and the Mundell effect are both destabilizing the private sector of the economy:

Proposition 4. (Private Sector Instability)
Assume i < c, i.e., yu > 0, α > 0 and κp < 1. Then, under the assumptions (A.2) -

(A.4a) introduced earlier, the interior steady-state solution of the dynamics (14) –

(16) is essentially repelling (exhibits at least one positive root).

Let us consider again to what extent the interest rate policy (A.4b) can stabilize the economy
and in particular enforce the inflationary target π̄. We state here without proof that rule (A.4b)
can stabilize the previously considered situation if the adjustment speed of wages with respect
to demand pressure in the labor market is sufficiently low. However, this stability gets lost if
wage flexibility is made sufficiently large as is asserted by the following proposition, where we
assume κp = 0 for the sake of simplicity.

Proposition 5. (Instability by an Adverse Rose Effect)
We assume (in the case i < c) an attracting steady-state situation due to the

working of the monetary policy rule (A.4b). Then: Increasing the parameter βw1

that characterizes wage adjustment speed will eventually lead to instability of the

steady state by way of a Hopf bifurcation (if the parameters κp, i, βr are jointly

chosen sufficiently small). There is no reswitching to stability possible, once stability

has been lost in this way.

Note that the proposition does not claim that there is a wage adjustment speed which implies
instability for any parameter value βr in the interest rate policy rule. It is also worth noting
that the instability result is less clear-cut when for example κp > 0 is considered. Furthermore,
increasing the adjustment speed βr may reduce the dynamic instability in the case κp = 0 (as
the trace of the Jacobian is made less positive thereby). In the next subsection we will however
make use of another stabilizing feature which we so far neglected in the considered dynamics
due to assumption (A.2): the Blanchard and Katz (1999) error correction term βw2(u − uo) in
the money-wage Phillips curve.

4.2 Stability from Blanchard–Katz type ‘error correction’

We now analyze dynamics under the assumption βw2 > 0. Thus money wages react to deviations
of the wage share from its steady-state value. In this situation the following proposition holds
true:

Proposition 6. (Blanchard-Katz Wage Share Correction)
Assume i < c, i.e., yu > 0, α > 0 and κp < 1. Then, under the interest rate
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policy rule (A.4b), a sufficiently large error correction parameter βw2 implies an

attracting steady state for any given adjustment speed βπ > 0 and all price flexibility

parameters βp1 > 0. This stability is established by way of a Hopf bifurcation which

in a unique way separates unstable from stable steady-state solutions.

We thus have the result that the Blanchard–Katz error correction term if sufficiently strong
overcomes the destabilizing forces of the adverse Rose effect in proposition 5.

Blanchard and Katz (1999) find that the error correction term is higher in European coun-
tries than in the US, where it is also in our estimates insignificant. So the empirical size of the
parameter βw2 may be too small to achieve the stability result of proposition 6. Therefore, we
will again disregard the error correction term in the money-wage Phillips curve (A.2) in the
following, and instead focus on the role of monetary policy in stabilizing the wage-price spiral.

4.3 Stability from an augmented Taylor rule

The question arises whether monetary policy can be of help to avoid the problematic features of
the adverse Rose effect. Assume now that there interest rates are determined by an augmented
Taylor rule of the form,

r = ρo + π + βr1(π − π̄) + βr2(u − uo), βr1 , βr2 > 0, (30)

where the monetary authority responds to rising wage shares by interest rate increases in order
to cool down the economy, counter-balancing the initial increase in the wage share.

The static equilibrium condition is now given the

y =
n + g − i(ρ0 + βr1(π − π̄) + βr2(u − uo))

(1 − i)(1 − u) + (1 − c)u
.

Thus the augmented Taylor rule (30) gives rise to a negative dependence of output y on the
inflationary climate π as well as the wage share u.

We now consider the implications for the stability of the steady state:

Proposition 7. (Wage Gap Augmented Taylor Rule)
Assume i < c, α > 0 and κp < 1. Then: A sufficiently large wage-share correction

parameter βr2 in the augmented Taylor rule (30) implies an attracting steady state

for any given adjustment speed βπ > 0 and all price flexibility parameters βp1 > 0.
This stability is established by way of a Hopf bifurcation which in a unique way

separates unstable from stable steady-state solutions.

Thus, convergence to the balanced growth path of private sector of the considered economy
is generated by a modified Taylor rule that is augmented by a term that transmits increases in
the wage share to increases in the nominal rate of interest. To our knowledge such an interest
rate policy rule that gives income policy a role to play in the adjustment of interest rates by the
central bank has not yet been considered in the literature. This is due to the general neglect
of adverse real wage or Rose effects which induce an inflationary spiral independently from the
one generated by the real rate of interest or Mundell effect, though both of these mechanisms
derive from the fact that real magnitudes always allow for two interacting channels by their very
definition, wages versus prices in the case of Rose effects and nominal interest versus expected
inflation in the case of Mundell effects.
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5 Conclusions

In context of the ‘Goldilocks economy’ of the late 1990s, Gordon (1998) stressed the need for
explaining the contrast between decelerating prices and accelerating wages as well as the much
stronger fall of the rate of unemployment than the rise of the rate of capital utilization. The
coincidence of the two events is exactly what our approach to the wage-price spiral would
predict: wage inflation is driven by demand and cost pressures on the labor market and price
inflation is formed by the corresponding pressures on the goods markets.

Based on the two Phillips curves, we investigated two important macrodynamic feedback
chains in a simple growth framework: (i) the conventional destabilizing Mundell effect and (ii)
the less conventional Rose effect, which has been fairly neglected in the literature on demand
and supply driven macrodynamics. We showed that the Mundell effect can be tamed by a
standard Taylor rule. In contrast, the Rose effect can assume four different types depending on
wage and price flexibilities, short-sightedness of workers and firms with respect to their cost-
pressure measures and marginal propensities to consume c and invest i in particular (where
we argued for i < c). Empirical estimates for the US-economy then suggested the presence of
adverse Rose effects: the wage level is more flexible than the price level with respect to demand
pressure (and workers roughly equally short-sighted as firms with respect to cost pressure). We
showed that this particular Rose effect can cause macroeconomic instabilities which can not
be tamed by a conventional Taylor rule. But the paper also demonstrated means by which
adverse real interest rate and real wage rate effects may be modified or dominated in such
a way that convergence back to the interior steady state is again achieved. We proved that
stability can be re-established by (i) an error-correction term in the money-wage Phillips curve
(as in Blanchard and Katz, 1999),17 working with sufficient strength, or (ii) a modified Taylor
rule with monetary policy monitoring the labor share (or real unit labor costs) and reacting in
response to changes in the income distribution.

In this paper, we showed that adverse Rose effects are of empirical importance, and indicated
ways of how to deal with them by wage or interest rate policies. In future research, we intend to
discuss the role of Rose effects for high and low growth phases separately, taken account of the
observation that money wages may be more rigid in the latter phases than in the former ones
(see Hoogenveen and Kuipers, 2000, for a recent empirical confirmation of such differences and
Flaschel, Gong and Semmler, 2002b, for its application to a 6D Keynesian macrodynamics).
The existence of a ‘kink’ in the money-wage Phillips curve should in fact increase the estimated)
wage flexibility parameter further (in the case where the kink is not in operation). Furthermore,
the robustness of the empirical results should be investigated (say, by analyzing the wage-price
spiral in other OECD countries). Finally, more elaborate models have to be considered to
understand the feedback mechanisms from a broader perspective (see Flaschel et al., 2001,
2002a, for first attempts of the dynamic AS-AD variety).18

17The related error correction in the price Phillips curve should allow for the same conclusion, but has been

left aside here due to space limitations.
18Concerning the validity of Okun’s law and the degree of correlation of labor and capital under-utilization

we should then also distinguish between the unemployment rate on the external labor market and the under-

or over-employment of the employed, which may in particular explain the difference in volatility in the under-

utilization of labor and capital. This, however, introduces to further parameters into the model, the impact of

employment within firms on money-wage inflation and the speed with which the labor force of firms is adjusted to

the observed under or over utilization of labor within firms. Here again, significant differences may be expected

regarding the situation in the United state and Europe.
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Friedmann, R., Knüppel, L., and Lütkepohl, H.(eds.), Econometric Studies - A Festschrift
in Honour of Joachim Frohn, pp. 129–157. Münster: LIT Verlag.

Laxton, D., Rose, D., and Tambakis, D. (1999). The U.S. Phillips-curve: The case for asym-
metry. Journal of Economic Dynamics and Control, 23, 1459–1485.

Lorenz, H.-W. (1993). Nonlinear dynamical economics and chaotic motion 2 end. Heidelberg:
Springer.

Mankiw, N. G. (2001). The inexorable and mysterious tradeoff between inflation and unem-
ployment. Economic Journal, forthcoming.

Mankiw, N. G., and Reis, R. (2001). Sticky information versus price. A proposal to replace the
New Keynesian Phillips curve. Working paper 8290, NBER, Cambridge, MA.

McCallum, B. (1997). Comment. NBER Macroeconomics Annual, 355–359.

Phillips, A. W. (1958). The relation between unemployment and the rate of change of money
wage rates in the United Kingdom, 1861–1957. Economica, 25, 283–299.

Plasmans, J., Meersman, H., van Poeck, A., and Merlevede, B. (1999). Generosity of the
unemployment benefit system and wage flexibility in EMU: time varying evidence in five
countries. Mimeo.

Romer, D. (1996). Advanced Macroeconomics. New York: McGraw Hill.

Romer, D. (2000). Keynesian macroeconomics without the LM curve. Working paper 7461,
NBER, Cambridge, MA.

Rose, H. (1967). On the non-linear theory of the employment cycle. Review of Economic
Studies, 34, 153–173.

Rose, H. (1990). Macroeconomic Dynamics. A Marshallian Synthesis. Cambridge, MA.: Basil
Blackwell.

Sargent, T. (1987). Macroeconomic Theory. New York: Academic Press. 2nd edition.

Scarth, W. (1996). Macroeconomics. An Introduction into Advanced Methods. Toronto: Dryden.

Taylor, J. (1980). Aggregate dynamics and staggered contracts. Journal of Political Economy,
88, 1–24.

Taylor, J. (1993). Discretion versus policy in practice. Carnegie-Rochester Conference Series
on Public Policy, 39, 195–214.

Taylor, J. (1999a). Monetary Policy Rules. Chicago: University of Chicago Press.

Taylor, J. (1999b). Staggered wage and price setting in macroeconomics. In Taylor, J., and
Woodford, M.(eds.), Handbook of Macroeconomics, C.H. 15. Amsterdam: North-Holland.

Tobin, J. (1975). Keynesian models of recession and depression. American Economic Review,
65, 195–202.

Tobin, J. (1980). Asset Accumulation and Economic Activity. Oxford: Basil Blackwell.

Tobin, J. (1993). Price flexibility and output stability. An old-Keynesian view. Journal of
Economic Perspectives, 7, 45–65.

Wiggins, S. (1993). Introduction to applied nonlinear dynamical systems and chaos. Heidelberg:



27

Springer.

A Appendices

A.1 The sectoral budget equations of the model

For reasons of completeness, we here briefly present the budget equations of our four types of
economic agents (see Sargent, 1987, ch.1, for a closely related presentation of such budget equa-
tions, there for the sectors of the conventional AS-AD growth model). Consider the following
scenario for the allocation of labor, goods and assets:

cupY + Ḃd = upY + r̄B (workers: consumption out of wage income and saving deposits)
pbḂ

d + peĖ
d = B + (1 − u)pY (asset–holders: bond and equity holdings)

pI = peĖ (firms: equity financed investment)
r̄B + B + pG = Ḃ + pbḂ (government: debt financed consumption).

where g = G/K =const. In these budget equations we use a fixed interest rate r̄ for the saving
deposits of workers and use – besides equities – perpetuities (with price pb = 1/r) for the
characterization of the financial assets held by asset-holders. Due to this choice, and due to the
fact that investment was assumed to depend on the long-term expected real rate of interest,
we had to specify the Taylor rule in terms of r in the body of the paper. These assumptions
allow to avoid the treatment of the term structure of interest rate which would make the model
considerably more difficult and thus the analysis of Mundell or Rose effects more advanced, but
also less transparent. For our purposes the above scenario is however fully adequate and very
simple to implement.

Furthermore, we denote in these equations the amount of saving deposits of workers by B

(and assume a fixed interest rate r̄ on these saving deposits). Outstanding bonds (consols or
perpetuities) are denoted by B and have as their price the usual expression pb = 1/r. We finally
use pe for the price of shares or equities E. These equations are only presented for consistency
reasons here and they immediately imply

p(Y − C − I − G) = (Ḃd − Ḃ) + pb(Ḃd − Ḃ) + pe(Ėd − Ė) = 0.

We have assumed goods–market equilibrium in this paper and assume in addition that all
saving deposits of workers are channeled into the government sector (Ḃd = Ḃ). We thus
can also assume equilibrium in asset market flows via a perfect substitute assumption (which
determines pe, while pb is determined by an appropriate interest rate policy rule in this paper).
Note that firms are purely equity financed and pay out all profits as dividends to the sector of
asset holders. Note also that long-term bonds per unit of capital b = B/(pK) will follow the
law of motion

ḃ = r(b + g − swuy) − (p̂ + K̂)b

which – when considered in isolation (all other variables kept at their steady-state values). –
implies a stable evolution of such government debt b towards a steady-state value for this ratio
if ro − p̂o = ρo < n holds true. Since fiscal policy is not our concern in this paper we only
briefly remark that this is the case for government expenditure per unit of capital that is chosen
sufficiently small:

g <
nuo(1 − c)

1 − uo



28

Similarly, we have for the evolution of savings per unit of capital b = B/(pK) the law of motion

ḃ = swuy + (r̄ − (p̂ + K̂))b

which – when considered in isolation – implies convergence to some finite steady-state value if
r̄ < p̂o +n holds true. Again, since the Government Budget Restraint is not our concern in this
paper, we have ignored this aspect of our model of wage–price and growth dynamics.

A.2 Wage dynamics: theoretical foundation

This subsection builds on the paper by Blanchard and Katz (1999) and briefly summarizes their
theoretical motivation of a money-wage Phillips curve which is closely related to our dynamic
equation (1).19 Blanchard and Katz assume – following the suggestions of standard models of
wage setting – that real wage expectations of workers, ωe = wt − pe

t , are basically determined
by the reservation wage, ω̄t, current labor productivity, yt − ldt , and the rate of unemployment,
U l

t :

ωe
t = θω̄t + (1 − θ)(yt − ldt ) − βwU l

t .

Expected real wages are thus a Cobb-Douglas average of the reservation wage and output per
worker, but are departing from this normal level of expectations by the state of the demand
pressure on the labor market. The reservation wage in turn is determined as a Cobb-Douglas
average of past real wages, ωt−1 = wt−1 − pt−1, and current labor productivity, augmented by
a factor a < 0:

ω̄t = a + λωt−1 + (1 − λ)(yt − ldt )

Inserting the second into the first equation results in

ωe
t = θa + θλωt−1 + (1 − θλ)(yt − ldt ) − βwU l

t ,

which gives after some rearrangements

∆wt = pe
t − pt−1 + θa− (1 − θλ)[(wt−1 − pt−1) − (yt − ldt )] − βwU l

t

= ∆pe
t + θa− (1 − θλ)ut−1 + (1 − θλ)(∆yt − ∆ldt ) − βwU l

t

where ∆pe
t denotes the expected rate of inflation, ut−1 the past (log) wage share and ∆yt −∆ldt

the current growth rate of labor productivity. This is the growth law for nominal wages that
flows from the theoretical models referred to in Blanchard and Katz (1999, p.70).

In this paper, we proposed to operationalize this theoretical approach to money-wage infla-
tion by replacing the short-run cost push term ∆pe

t by the weighted average κw∆pe
t +(1−κw)πt,

where ∆pe
t is determined by myopic perfect foresight. Thus, temporary changes in the correctly

anticipated rate of inflation do not have full impact on temporary wage inflation, which is also
driven by lagged inflation rates via the inflationary climate variable πt. Adding inertia to the
theory of wage inflation introduced a distinction between the temporary and persistent cost
effects to this equation. Furthermore we have that ∆yt − ∆ldt = nx due to the assumed fixed
proportions technology. Altogether, we end up with am equation for wage inflation of the type
presented in section 2.1, though now with a specific interpretation of the model’s parameters
from the perspective of efficiency wage or bargaining models.20

19In this section, lower case letters (including w and p) indicate logarithms.
20Note that the parameter in front of ut−1 can now not be interpreted as a speed of adjustment coefficient.
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A.3 Price dynamics: theoretical foundation

We here follow again Blanchard and Katz (1999, IV.), see also Carlin and Soskice (1990, ch.18),
and start from the assumption of normal cost pricing, here under the additional assumption
of our paper of fixed proportions in production and Harrod neutral technological change. We
therefore consider as rule for normal prices

pt = µt + wt + ldt − yt, i.e., ∆pt = ∆µt + ∆wt − nx,

where µt represents a markup on the unit wage costs of firms and where again myopic perfect
foresight, here with respect to wage setting is assumed. We assume furthermore that the markup
is variable and responding to the demand pressure in the market for goods Ū c −U c

t , depending
in addition negatively on the current level of the markup µt in its deviation from the normal
level µ̄. Firms therefore depart from their normal cost pricing rule according to the state of
demand on the market for goods, and this the stronger the lower the level of the currently
prevailing markup has been (markup smoothing). For sake of concreteness let us here assume
that the following behavioral relationship holds:

∆µt = βp(Ū c − U c
t−1) + γ(µ̄ − µt−1),

where γ > 0. Inserted into the formula for price inflation this in sum gives:

∆pt = βp(Ū c − U c
t−1) + γ(µ̄ − µt−1) + (∆wt − nx)

In terms of the logged wage share ut = −µt we get

∆pt = βp(Ū c − U c
t−1) + γ(ut−1 − ū) + (∆wt − nx).

As in the preceding subsection of the paper, we again add persistence the cost pressure term
∆wt − nx now in the price Phillips curve in the form of the inflationary climate expression π

and thereby obtain in sum the equation (2) of section 2.1.

A.4 Routh-Hurwitz stability conditions and Hopf bifurcations

We consider the matrix of partial derivatives at the steady state of the 3D dynamical systems
of this paper in (u, k, π), the so-called Jacobian J , in detail represented by:

J =


 J11 J12 J13

J21 J22 J23

J31 J32 J33


 .

We define the principal minors of order 2 of this matrix by the following three determinants:

J1 =

∣∣∣∣∣ J22 J23

J32 J33

∣∣∣∣∣ , J2 =

∣∣∣∣∣ J11 J13

J31 J33

∣∣∣∣∣ , J3 =

∣∣∣∣∣ J11 J12

J21 J22

∣∣∣∣∣
Note furthermore that Blanchard and Katz (1999) assume that, in the steady state, the wage share is determined

by the firms’ markup u = −µ (both in logs) to be discussed in the next subsection. Therefore the NAIRU can be

determined endogenously on the labor market by Ū l = β−1
w

�
θa − (1 − θλ)µ̄ − θλ(∆yt − ∆ldt )

�
. The NAIRU of

their model therefore depends on both labor and goods market characteristics in contrast to the NAIRU levels

for labor and capital employed in our approach.
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We furthermore denote by a1 the negative of the trace of the Jacobian −traceJ , by a2 the
sum of the above three principal minors, and by a3 the negative of the determinant |J | of the
Jacobian J . We note that the coefficients ai, i = 1, 2, 3 are the coefficients of the characteristic
polynomial of the matrix J .

The Routh Hurwitz conditions (see Lorenz, 1993) then state that the eigenvalues of the
matrix J all have negative real parts if and only if

ai > 0, i = 1, 2, 3 and a1a2 − a3 > 0.

These conditions therefore exactly characterize the case where local asymptotic stability of the
considered steady state is given.

Supercritical Hopf bifurcations (the birth of a stable limit cycle) or subcritical Hopf bi-
furcations (the death of an unstable limit cycle) occur (if asymptotic stability prevailed below
this parameter value) when the following conditions hold simultaneously for an increase of a
parameter β of the model (see Wiggins, 1993, ch.3):

a3(β) > 0, (a1a2 − a3)(β) = 0, (a1a2 − a3)′(β) > 0.

We note here that the dynamics considered below indeed generally fulfill the condition a3 > 0
and also J2 = 0, the latter up to proposition 6 and due to the proportionality that exists
between the laws of motion (14), (16) with respect to the state variables u, π.

A.5 Proofs of propositions

In the following we present the mathematical proofs of the propositions 2 – 7 of the paper. The
proofs involve the stability analysis of the 3D dynamics in (14) to (16) under certain parametric
assumptions and different monetary regimes and are based on the Routh-Hurwitz conditions
just considered.

Proof of Proposition 2: Choosing βp1 or βπ sufficiently large will make the trace of J , the
Jacobian of the dynamics (14) – (16) at the steady state, unambiguously positive and thus
definitely lead to local instability.

Yet, even if βp1 and βπ are sufficiently small, we get by appropriate row operations in the
considered determinant the following sequence of result for the sign of detJ :

|J | =̂

∣∣∣∣∣∣∣
0 + 0
− 0 +
− 0 +

∣∣∣∣∣∣∣ =̂ − (+)

∣∣∣∣∣ − +
− +

∣∣∣∣∣ =̂
∣∣∣∣∣ −y0 +1

yu yπ

∣∣∣∣∣
= y0

∣∣∣∣∣ −1 +1
c−i

(1−u)(1−i)+(1−c)u
i

(1−u)(1−i)+(1−c)u

∣∣∣∣∣
=

y0

(1 − u)(1 − i) + (1 − c)u

∣∣∣∣∣ −1 +1
c − i i

∣∣∣∣∣ =
cy0

(1 − u)(1 − i) + (1 − c)u
> 0

One of the necessary and sufficient Routh-Hurwitz conditions for local asymptotic stability
is therefore always violated, independently of the sizes of the considered speeds of adjustment.
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Proof of Proposition 3: Inserting the interest rule in (A.4b) into the y(u, π) and i(ρ−(r−π))
functions gives rise to the functional dependencies

y = y(u, π) =
n + g − i[ρ0 + βr(π − π̄)]
(1 − u)(1 − i) + (1 − c)u

, yu < 0, yπ < 0,

i = i(ρ − (r − π)) = i(u, π), iu < 0, iπ < 0.

The signs in the considered Jacobian are therefore here given by

J =


 − + −

− 0 −
− + −




if βp1 is chosen sufficiently small (and thus dominated by wage flexibility βw1). We thus then
have trace J < 0 (a1 = − trace J > 0) and

J3 =

∣∣∣∣∣ − +
− 0

∣∣∣∣∣ > 0, J1 =

∣∣∣∣∣ 0 −
+ −

∣∣∣∣∣ > 0, i.e. ,

a2 = J1 + J2 + J3 > 0 for βp1 sufficiently small. Next, we get for |J | with respect to signs:

|J | =̂

∣∣∣∣∣∣∣
0 + 0
− 0 −
− 0 −

∣∣∣∣∣∣∣ =̂ − (+)

∣∣∣∣∣ − −
− −

∣∣∣∣∣ =̂
∣∣∣∣∣ −y0 −βr

yu yπ

∣∣∣∣∣ = −
∣∣∣∣∣ −y0 −βr

c−i
N y0

−iβr

N

∣∣∣∣∣
= −βr(yo/N)

∣∣∣∣∣ −1 −1
c − i −i

∣∣∣∣∣ = −βr
yo

N
c < 0.

since N = (1− u)(1− i) + (1− c)u > 0 at the steady state. Therefore: a1, a2, a3 = −|J | are all
positive.

It remains to be shown that also a1a2 − a3 > 0 can be fulfilled. Here it suffices to observe
that a1, a2 stay positive when βp1 = 0 is assumed, while a3 becomes zero then. Therefore
a1a2 − a3 > 0 for all adjustment parameters βp1 chosen sufficiently small. These qualitat-
ive results hold independently of the size of βπ and βr (with an adjusting size of βp1 however).

Note in addition that the trace of J is given by

κβp1/y
p[(1 − κw)(i − c)y − βπβri]/((1 − i)(1 − u) + (1 − c)u)

as far as its dependence on the parameter βp1 is concerned. Choosing βπ or βr, for given
βp1 , sufficiently small will make the trace of J positive and thus make the steady state of the
considered dynamics locally unstable.

Proof of Proposition 4: With r ≡ ro, we have for the Jacobian J of the dynamics at the
steady state:

J =


 + + +

− 0 +
+ + +



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and thus in particular trace J > 0 and

|J |=̂

∣∣∣∣∣∣∣
0 + 0
− 0 +
+ 0 +

∣∣∣∣∣∣∣ = −(+)

∣∣∣∣∣ − +
+ +

∣∣∣∣∣ > 0.

Thus there is at least one positive real root, which establishes the local instability of the
investigated interior steady state solution.

Proof of Proposition 5: For the considered parameter constellations, the Jacobian J is
given by

J =


 + + −

− 0 −
+ + −


 .

This Jacobian first of all implies

|J |=̂

∣∣∣∣∣∣∣
0 + 0
− 0 −
+ 0 −

∣∣∣∣∣∣∣ = −(+)

∣∣∣∣∣ − −
+ −

∣∣∣∣∣ < 0

and thus for the Routh-Hurwitz condition a3 = −|J | > 0 as necessary condition for local
asymptotic stability. We assert here without detailed proof that local stability will indeed
prevail if βw1 is chosen sufficiently close to zero, since |J | will be close to zero then too and
since the Routh-Hurwitz coefficients a1, a2 are both positive and bounded away from zero.
Wages that react sluggishly with respect to demand pressure therefore produce local stability
in the case c > i.

This is indeed achieved for example by the assumption κp = 0: Obviously, trace of J is
then an increasing linear function of the speed parameter βw1 in the considered situation, since
this parameter is then only present in J11 and not in J33. This proves the first part of the
assertion, if note is taken of the fact that |J | does not change its sign. Eigenvalues therefore
cannot pass through zero (and the speed condition for them is also easily verified). The second
part follows from the fact that a1a2 − a3 becomes zero before trace J = −a1 passes through
zero, but cannot become positive again before this trace has become zero (since a1a2 − a3 is a
quadratic function of the parameter βw1 with a positive parameter before the quadratic term
and since this function is negative at the value βw1 where trace J has become zero).

Proof of Proposition 6: The signs in the Jacobian of the dynamics at the steady state are
given by

J =


 − + −

− 0 −
− + −



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if βw2 is chosen sufficiently large (and thus dominating the wage flexibility βw1 term). We thus
have trace J < 0 (a1 = −traceJ > 0) and

J3 =

∣∣∣∣∣ − +
− 0

∣∣∣∣∣ > 0, J1 =

∣∣∣∣∣ 0 −
+ −

∣∣∣∣∣ > 0, signJ2 = sign

∣∣∣∣∣ − −
+ −

∣∣∣∣∣ > 0, i.e. ,

a2 = J1 + J2 + J3 > 0, in particular due to the fact that the βwi , i = 1, 2-expressions can be
removed from the second row of J2 without altering the size of this determinant.

Next, we get for |J | with respect to signs:

|J | =̂

∣∣∣∣∣∣∣
− + −
− 0 −
+ 0 −

∣∣∣∣∣∣∣ =̂ − (+)

∣∣∣∣∣ − −
+ −

∣∣∣∣∣ < 0.

since the βwi , i = 1, 2-expressions can again be removed now from the third row of |J | without
altering the size of this determinant.

Therefore: a1, a2, and a3 = −|J | are all positive as demanded by the Routh-Hurwitz
conditions for local asymptotic stability. There remains to be shown that also a1a2 − a3 > 0
can be fulfilled. In the present situation this however is an easy task, since – as just shown –
|J | does not depend on the parameter βw2, while a1a2 depends positively on it (in the usual
quadratic way). Finally, the statement on the Hopf bifurcation can be proved in a similar way
as the one in proposition 5.

Proof of Proposition 7: Inserting the Taylor rule

r = ρo + π + βr1(π − π̄) + βr2(u − uo), βr1 , βr2 > 0

into the effective demand equation

y =
n + g − i(ro − π)

(1 − u)(1 − i) + (1 − c)u

adds the term
ỹ = − iβr2(u − uo)

(1 − u)(1 − i) + (1 − c)u

to our former calculations – in the place of the βw2 term now. This term gives rise to the
following additional partial derivative

ỹu = − iβr2

(1 − uo)(1 − i) + (1 − c)uo

at the steady state of the economy. This addition can be exploited as the βw2 expression in
the previous subsection used there to prove proposition 7.


